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Abstract. Accurate modeling of the dynamic stall remains a challenge for the design and construction of turbine
blades and helicopter rotors. At the same time, wind turbines, for instance, are becoming steadily larger, further
increasing the demands on their structure and necessitating even more detailed modeling of the forces at hand. The
primarily used (semi-)empirical models today have a long research history and are invariably based on phase-averaged
data from oscillating blade pitch experiments. However, much potential for more accurate modeling of uncertainties5

and force peaks is wasted here, since averaging blurs many features of the response signals. Even computational fluid
dynamics can help little in this regard, since the Reynolds-averaged Navier-Stokes equations used in practice cannot
account for cycle variations, and scale-resolving models require extremely large amounts of computational resources.
This paper presents an approach for a fully stochastic machine learning model that can nevertheless simulate these
critical properties. Aerodynamic coefficients are compared with experimental data for different test cases. It is shown10

that synthetic force profiles can be generated which cannot be distinguished from the experimental data visually
and are very close to them in the frequency spectrum. Additionally, attention is drawn to the difficulty of evaluating
such a model, as traditional error metrics are of little use. A combination of Dynamic Time Warping and the Earth
Mover Distance provides a robust solution for this problem.

1 Introduction15

As the trend towards increased performance of wind turbines continues, the calculation of the dynamic forces acting
on the blades is becoming increasingly important. For classical horizontal axis turbines, a number of factors such as
atmospheric turbulence, tower shadow and yaw misalignment lead to highly unsteady and nonlinear aerodynamic
conditions. In vertical axis turbines, the periodic change of the angle of attack is even an inherent part of the working
principle. For all turbine types, however, there is a desire to predict loads and fatigue stresses as accurately as possible20

in order to build cost-effective and robust structures. Since the same phenomenon also occurs in rotary-wing aircraft
such as helicopters, the common interest in these industries led to extensive research in a desire to learn more details
about the mechanisms behind it ((McAlister et al., 1978), (McCroskey, 1981) and (Carr, 1988)).

The aerodynamic forces present on a wing show exceptional strong fluctuations if the flow dynamically detaches
from the suction surface. This unsteady phenomenon, called dynamic stall, is typically caused by a rapid change of25

the inflow conditions, such as a sudden increase in the angle of attack often in conjunction with a change in the
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inflow velocity. In his very well-known publication, Carr (1988) identifies approximately 11 stages of dynamic stall.
Briefly, when the static stall angle αs is exceeded, flow reversal starts to occur on the surface while the boundary
layer remains attached for a short amount of time and a dynamic lift overshoot occurs. The subsequent separation
process is characterized by the detachment of a dynamic stall vortex (DSV) formed near the leading edge. The30

vortex first remains near the leading edge above the suction surface for a short time and increases in strength until
its detachment into the wake triggers the complete boundary layer detachment. The detached vortex causes a sharp
decrease in pitching moment followed by a loss in lift (Müller-Vahl et al., 2017).

Modeling this phenomenon has always been a challenging task. Even the use of computational fluid dynamics
(CFD) has not produced particularly satisfactory results. Stangfeld et al. (2015) found that the Reynolds-averaged35

Navier-Stokes (RANS) equations, which are often used in practice, are not able to represent unsteady vortical
structures. Due to their formulation, the RANS equations produce a smooth and smeared solution. Essentially,
cycle-to-cycle variations are not present in the simulations, which contradicts experimental findings on pitching
airfoils. They state that Largy Eddy Simulation (LES) and other scale-resolving simulation methods can be a
solution, but due to extreme computational requirements, they are often not well suited for the design of an entire40

wind turbine.
Another approach is to use empirical (Gormont (Gormont et al., 1973), Berg (Bianchini et al., 2016)) and semi-

impirical stall models (Øye (Øye, 1990), Beddoes-Leishman (Leishman and Beddoes, 1989), ONERA (Tran and Petot,
1980)) that have been developed over the years. These models attempt to compress the entire physical process into
a set of equations that analytically return the corresponding lift, drag, and moment forces. The Beddoes-Leishman45

model is still considered state-of-the-art today. It models the dynamic stall effect with a set of differential equations
that, divided into modules, describe different flow states, such as unsteady attached flow, unsteady separated flow
and dynamic stall. Recently, there have been attempts to further improve this model by also predicting second order
lift and drag forces (Bangga et al., 2020). Common to all of these models is that there is a set of static parameters
that are tuned so that the predicted results fit the phase-averaged experimental data as well as possible. This set50

can include up to 15 parameters, which makes it hard to tune manually.
Problematically, other researchers have found that blade pitch experiments required up to 50 cycles to converge to

a mean (McAlister et al., 1978). Also, vortex shedding and recovery phases are subject to stochastic variations. Even
in simple 2D cases, multiple separation flow-structures can be detected, which become even more complicated when
the patterns are viewed on a real 3D blade (Manolesos et al., 2014). Lennie et al. (2017) argue that the variations and55

outliers are an important part of the data set and should not be discarded by averaging. When calculating maximum
aerodynamic loads, some forces could otherwise be significantly underestimated. Another argument is that at some
point it becomes too difficult for a human to build a model complex enough to fit all flow regimes.

This is where data-driven models come into play, especially machine learning, which has become very popular
in recent years. Machine learning promises to solve the aforementioned problems, as it can detect the underlying60

probabilistic process of the problem and draw the right conclusions in the form of resulting distributions of statistics,
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estimators or metrics. This can be advantageous when the complexity of the data is such that physics-based models
have difficulty fitting the data or fit it poorly. First attempts in the past with surrogate models deal with the fitting
of Kriging models (Glaz et al., 2010). Neural Networks are used by Glaz et al. (2012) and Spentzos et al. (2006) to
predict unsteady RANS data. Tatar and Sabour (2020) created a nonlinear reduced order dynamic stall model using65

a fuzzy inference system (FIS) and adaptive network-based FIS (ANFIS) to fit simulated RANS data as well. All of
these publications have in common that their models are based on simulation data that roughly corresponds to the
phase-averaged data from the measurements discussed earlier. Here, however, the potential of true unsteady data
is not yet used. We argue that since all dynamic stall models use experimental data to tune their parameters, one
may as well use the raw experimental data directly. The presented model extracts all relevant features from the raw70

data itself and can make much more accurate predictions than the commonly used models. It can not only predict
unsteady forces, but also allows to derive the range of fluctuations, maximum values, and frequencies. The ability
to simulate a transient load at a constant angle of attack, e.g., in a region where the flow is continuously shedding,
is also of interest for aeroelastic problems. The novelty of this work therefore lies in the combination of using raw
experimental data to feed a machine learning model that can understand the stochastic process of dynamic stall in75

combination with an appropriate evaluation technique for the best fit to the data. Our model is based on DeepMind’s
WaveNet architecture, a model for generating raw audio waveforms (van den Oord et al., 2016a). Since audio data
has similar 1-D time series characteristics as the wind tunnel test data, the choice was made to use the proven model
in a slightly modified form. Other generative machine learning models could potentially be used as well, but are not
explored in this research.80

The work is organized as follows. First, Section 2 demonstrates the architecture and mathematical foundations of
the neural network. Building on this, Section 3 shows how the experimental raw data is processed so that it can be
fed to the model. Section 4 describes the challenges of evaluating such a model and describes how the best learning
parameter combination was found. Then, in Section 5, the dynamic stall results of the model for three different test
cases are presented. The results of one test case are further clustered in Section 6, followed by a brief discussion of85

the method and an outlook in Section 7, ending with a conclusion in Section 8.

2 The Architecture

The Neural Network architecture used here is based on a Convolutional Neural Network called WaveNet (van den
Oord et al., 2016a). It itself was inspired by PixelCNN (van den Oord et al., 2016b), a network that completes
images pixel by pixel based on previously known color information. Unlike PixelCNN, which works with 2D RGB90

images, WaveNet processes one-dimensional audio waveforms, ergo time series. The model is generative and predicts
a conditional probability distribution for sample xt based on a set of past samples x = {x1, ...,xt−1}. Thus, the
probability distribution resulting from the sequence x can be derived from the conditional probabilities of each
sample given its previous samples by application of the chain rule, as follows (boilard et al., 2019):
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p(x) =
T∏

t=1
p(xt | x1, ...,xt−1) (1)95

The most important features of such a model are that it is autoregressive, i.e., it generates new samples based
on values that it itself has previously generated. And it is fully probabilistic, i.e. there is a probability distribution
prediction from which the final value needs to be sampled each time.

The dilated causal convolutions shown in the network architecture diagram in Figure 1 are the key idea for
WaveNet to work properly. Causal here means left-side padding with zeros for all data in the network, so that the100

sliding window of the convolutional filter can only access information from previous time steps and order is not
violated. The dilated part describes a convolutional filter with holes that slides along the data. This enables to
drastically increase the receptive field of the network without requiring too many computationally expensive nodes.
By stacking m filters the distance seen into the past is doubled each time. Consequently, the dilation factors are
1,2,4,8,16, ... as shown in Figure 2. The figure also shows that for a given input, no information from the future is105

used to drive the calculation for the next step. Nevertheless, the model can process the entire sequence of time steps
in the input vector quasi simultaneously. This vectorized processing has performance advantages during training
over serial models, such as the classic Recurrent Neural Network (RNN).

The original model uses quantization of the output for 8-bit integers, resulting in 256 discrete possible values. This
is too imprecise for our model and introduces additional difficulties for learning performance, since the cross-entropy110

loss used cannot differentiate the spatial distance between the categorical buckets. Therefore, the same loss can be
assigned to a close hit as to one far-off target. For our purposes it makes more sense to use a mixed density output
where we stack a user-defined amount n of Gaussian N distributions weighted by ϕ which are each described by a
mean value µ and standard derivation σ. This allows to approximate arbitrary conditional probability distributions
(Reynolds, 2008) and is formally defined as:115

p(y | x) =
n∑

i=1
ϕi(x) · N (y | µi(x),σi(x)) (2)

where i denotes the index of the corresponding mixture components. The n mixture coefficients ϕ must sum to
one, which is reflected in the use of a softmax layer as part of the output in Figure 1. Another constraint for the
Gaussian is that the standard deviation is σ(x) > 0 and is therefore using a softplus layer. The mean can take any
value and is assigned to a linear layer.120

The loss is described by the average negative log-likelihood of the propability density functions. First, the posterior
probability is calculated by using the true solution y:

N (y | µi(x),σi(x)) = 1√
2πσ

· exp

[
− (y − µ)2

2σ2

]
(3)
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Figure 1. Wavenet-based model with m stacked blocks. Each block containing the characteristic gated activation units
combined with the skip- and residual connections. The 1×1 filters are convolutional filters with a width of 1 and are equivalent
to a time-distributed, dense layer. This means, for example, that a 1 x 1 layer with 8 feature maps links the information
of each time step in the same way as 8 classic fully connected nodes would do with the input of a single time step. Each
coefficient needs three output nodes for the weight ϕ of each stacked Gaussian, the corresponding standard deviation σ, and
mean µ.

Then all posterior probabilities are multiplied with their associated weights ϕ to get the likelihood. After averaging
the Logarithm of each result from the whole solution vector we can submit the data to an appropriate optimizer like125

SGD or Adam (see Equation 4). More information on the role of the skip and residual connections or the activation
functions can be found in the original source (van den Oord et al., 2016a).

argmin
Θ

f(Θ) = 1
|D|

∑
(x,y)∈D

− logp(y | x) (4)
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Figure 2. Visualization of stacked dilated causal convolutional layers. Each node in the input vector represents a single time
step and the time flow is from left to right.

The hyperparameters batch size, number of feature maps, number of stacked dilation filters and number of mixed
Gaussians are fine tuned by a grid search for the best score. For this, the data is split into a training and test set.130

The test set is ignored until the final predictions are made. The training set is further divided into five parts and
a k-fold cross validation is performed (Fushiki, 2011). The k-fold cross validation is a re-sampling technique used
to estimate the accuracy of the model on new data. The parameter k denotes the number of folds into which the
training data is divided. Then, for each hyperparameter combination from the grid search, the training is repeated
k times. Each time a different fold is left out of the training and used as a validation set. The accuracy scores of135

all folds are averaged afterwards. This increases the reliability of estimating the subsequent accuracy of the models
given new data over a simple split into training and validation data. Ultimately, we use a batch size of 30, 64 feature
maps for all convolutional filters, and n = 7 stacked blocks, so that we look back 128 time steps, or in this context,
about one full oscillation cycle. The 128 time steps were therefore selected by an automatic optimization process that
produced the best overall score. This does not necessarily have anything to do with the approximate relationship140

to a full cycle in the experiments. We found that smaller receptive fields can still provide robust solutions, but may
miss flow behavior caused by earlier events, leading to a worse overall score. As the optimization algorithm we use
the default Adam-optimizer (Chollet et al., 2015).

3 Experimental Data and Preprocessing

The data in this paper was originally prepared for an extensive series of experiments conducted by Hanns Müller-145

Vahl as part of his doctoral thesis (Müller-Vahl, 2015). The main objective was to determine whether dynamic or
static blowing from two slits in the airfoil can have a beneficial effect on dynamic stall control (Müller-Vahl et al.,
2015). Thus, wind tunnel tests with a 75 kW centrifugal blower were carried out in the Technion Flow Control Lab
(see Figure 3). The wind tunnel is characterized by a particularly low turbulence of 0.2% and is able to vary the
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flow velocity cyclically by a controlled louver mechanism to simulate gusts. A detailed description of the facility can150

be found in (Greenblatt, 2016).

aluminium rings with plexi-
glass window

support bearings

airfoil

150:1 gear system

servomotor belt drives

plexiglass floor
and ceiling

Figure 3. View of the test section (Müller-Vahl, 2015)

The wing model is made of Obumodulan® and is pitched about the quarter-chord position. It has 40 surface
pressure ports located in the mid-span area that are staggered to avoid interference. Piezoresistive pressure trans-
ducers are placed inside the wing to improve transient response. The experimental study relies solely on surface
pressure measurements from which the instantaneous aerodynamic coefficients can be derived by integration. This155

means that drag forces due to friction are not considered. However, it is assumed that at the high incidence levels
encountered in the experiments, the pressure-induced forces far outweigh the viscous drag forces. Overall, this is
considered acceptable in the context of this work, since we are mainly interested in the corresponding lift forces. It
should be noted that in the experiments presented in this section, both blowing slots were sealed with tape (75 µm
thickness) to reduce the effects of surface discontinuity. For more information about the measurement setup, see160

(Müller-Vahl et al., 2016).
Since in this paper we want to examine standard airfoils that do not actively blow, a large part of the test

data was omitted. Also, Müller-Vahl’s focus was mainly on the averaged data. In the end, however, there are still
91 data-sets available for the observed S809 airfoil that meet our requirements. During the experiments, a large
number of different frequencies and Reynolds numbers were recorded for a few combinations of angle of attack165

and amplitude. Therefore, a manual division into training and test set is necessary and makes it more difficult for
the Neural Network. Otherwise the Neural Network would often practically already know the case at hand if, for
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Table 1. Available experimental data sets for the S809 airfoil sorted by the mean angle of attack αm. Each case consists of
3-4 repetitions with each around 120 cycles. The highlighted cases are the ones with active surge and experience a drastic
flow velocity oscillation that is phase shifted by the angle τ relative to the main pitch sinusoidal oscillation.

Cases αm[deg] αa[deg] f [Hz] τ [deg] Re[−]

Training 0 25 0.81 90,270 300k ± 50%
9 4 0.67 0 300k ± 50%
12.5 12.5 0.6,1.18 0,45, . . . ,315 300k ± 50%
13.5 6 0.93 180 450k ± 21%
16.5 9 1.33 180 450k ± 24%
8 5.5 0.48,0.94,1.43 300k, 400k
9 4 0.67 330k,390k,. . . ,570k
12.5 12.5 0.6,0.93 150k,188k,. . . ,450k
13.5 6 0.93 330k,390k,. . . ,570k
14 5.5 0.48,0.94 390k, 450k
16.5 9 1.33 330k,390k,. . . ,570k
18 7 0.73,1.10 250k,300k,. . . ,450k
20 5.5 0.48,0.94,1.43 300k, 400k
21.25 8.25 1.33 330k,390k,. . . ,570k

Test 10 10 1.2 0,45, . . . ,315,57 300k ± 50%
10 10 1.2 150k,188k,. . . ,450k
17 6 0.93 330k,390k,. . . ,570k

example, only the Reynolds number is slightly different. An overview of the data used for training and testing can
be found in Table 1.

The experimental data is sampled at a high rate of 500Hz with the pitch oscillation frequency f , the mean angle of170

attack αm, the pitch amplitude αa, and the Reynolds number Re. The pitching motion over time t can be described
by the equation for the angle of attack α = αm + αa sin(2πft). An example of a single set can be seen in Figure 4,
where the chord of 348mm at 19.7ms−1 flow speed resulted in a Reynolds number of 450k. To illustrate the behavior
of most classic dynamic stall methods, a simulation with QBlade (Marten et al., 2013) was also added, using the
Beddoes-Leishman based model implemented there. It is obvious that the model can only do what it is designed175

to do, which is to predict the mean lift values. Strong fluctuations in the curves are thus extremely smoothed. The
model is struggling especially in the reattachment regime of the cycle, where cl is overpredicted.

Reviewing several parameter sets, it is revealed that not many interesting features are visible in the frequency
spectrum beyond 30Hz (see Figure 5). To reduce the computational demand and data load, the whole experimental
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Figure 4. Example of raw results from the Technion Wind Tunnel tests compared to the Beddoes-Leishman Model from the
QBlade package for the S809 airfoil (f = 1.43Hz, αm = 14°, αa = 5.5° and Re = 450000)
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Figure 5. FFT of the S809 airfoil coefficients signals subtracted by their mean for f = 1.43Hz, αm = 14°, αa = 5.5° and
Re = 450000
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data set is therefore downsampled by a constant factor of five to 100Hz. The downsampling is done by a low-pass filter180

and subsequent discarding of superfluous values. The highest frequency that can be represented by a Fourier analysis
afterwards is 50Hz. It should be noted that the time vector is not a feature used in the training data. Therefore,
the model can only work with a constant time step of 0.01s. If a different time step is needed for the coupling e.g.
with CFD codes, the WaveNet model can be executed asynchronously to the simulation. The corresponding values
can then be extrapolated.185

Each sample used as input is a small slice of specific length from the various experimental files. The length of
each slice is kept relatively short with 512 time steps, which allows a good mixing of the samples when randomly
assigning them into batches. The loss is calculated only over the part of the solution vector that has a history longer
than the receptive field (see Figure 2). To ensure that each data point is still mapped at least once with a complete
time history, the samples overlap by half. The contents of each input slice X are the current angle of attack α, the190

Reynolds number Re and the coefficient cl shifted by one time step (see Equation 5 and Equation 6). Therefore,
the "memory" of the model contains only the lift values, which means that the drag and moment coefficient must
be derived from the lift for the prediction. It has been found that this leads to a more reliable prediction, since the
coefficients are strongly correlated. If the model is asked to predict all coefficients based on previously self-generated
data, the new samples can easily show a previously unseen pattern, making the response very noisy and degrading195

the training. Consequently, only the solution vector Y contains the value of all coefficients for each time step. The
use of other precomputed features, such as the derivative of the angle of attack, did not seem to affect the result
significantly. Thus, the model can extract the important information on its own and does not need any further
guidance.

Since there are not enough past time steps available during the beginning of the prediction phase, the startup200

slice is first filled with synthetic data. Here it has been shown to be sufficient to select a constant Reynolds number
at a static 0° angle of attack and zero lift. A short transient process may take place after the start of the simulation.

X =


α2 Re2 cl,1

α3 Re3 cl,2
...

...
...

αt Ret cl,t−1

 (5)

Y =


cd,2 cl,2 cm,2

cd,3 cl,3 cm,3
...

...
...

cd,t cl,t cm,t

 (6)

The final loss is calculated by applying Equation 4 separately to each coefficient and averaging the results.205
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4 Accuracy Metric

The accuracy metric is more challenging than in the usual case for Neural Networks as we cannot use scores like the
mean squared error, classification accuracy or the coefficient of determination, R2. Neither a single predicted value
or even a full cycle provides enough information to make statements about the quality of the model. Therefore, we
need to compare the global distribution of predictions with the experimental one for each case. Thus, 60 cycles each210

were predicted into the future, which corresponds to several thousand time steps. It turned out, however, that the
comparison of the distributions involves further difficulties. If the distribution is put into a simple 2D-histogram
and compared directly (compare Figure 8b), e.g. using the total variation (sum of absolute difference between the
buckets), even a slight miss match can mean a bad score.

The Earth Movers Distance (EMD (Rubner et al., 2004) (Flamary et al., 2021), or Wasserstein Distance) is a metric215

for comparing two probability distributions. It can be thought of as two piles of dirt, represented by the weighted
distributions P = ⟨(p1,ωp,1), ...,(pm,ωp,m)⟩ and Q = ⟨(q1,ωq,1), ...,(qm,ωq,n)⟩ with m and n number of points, which
are to be transformed into each other. The flow F is a matrix F = (fij) ∈ Rm×n where fij represents the amount of
dirt at pi which is matched with qj . If F is the set of all possible flows F ∈ F(p,q) is one specific flow for which the
amount of work can be calculated.220

WORK(F,P,Q) =
m∑

i=1

n∑
i=1

fijdij (7)

here dij = d(pi, qj) is the distance between pi and qj . The final EMD distance is using the flow with the minimum
amount of work to match P and Q normalized by the weight of the lighter distribution.

EMD(P,Q) =
minF =(fij)∈F(P,Q)WORK(F,P,Q)

min(
∑n

i=1 ωp,i,
∑m

i=1 ωq,i)
(8)

Applied to a 2D histrogram, this means that the weights correspond to the value of the buckets and the distance225

corresponds to the spatial distance. While the metric works considerably better than the total variation, it still has
some disadvantages. For example, it provides a usable metric for the global distribution similarity, but ignores the
frequency and appearance of the individual time series. Using a combination of Earth Movers Distance and Dynamic
Time Warping (DTW (Senin, 2008) (Meert et al., 2020)) provides a solution that we discuss in the following passage.

DTW on itself is a distance measure, which is suitable to compare one-dimensional time series with each other.230

The algorithm searches for the "shortest" path from the beginning to the end of both signals over an array of the
pairwise distance of all points of both signals (see Figure 6). DTW has already successfully been used to prepare
the clustering of cycle variations for this type of pitching airfoil experiments (Lennie et al., 2017).
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Figure 6. DTW distance between two representative time series. The sum of all local distances is the result.

For the full scoring, each set (predictions and experimental data) is treated as part of a bipartite graph. To
prepare the EMD calculation that is essentially an optimal transport problem, the same weight ω is assigned to235

each member of the graph. All weights sum up to 1. The distance d between all vertices of the graph is therefore
calculated by using the DTW distance (compare Figure 7) in the phase space. For this purpose, a distance matrix
is constructed that maps each time series of one set to each time series of the set to be compared. After the DTW
distances between all time series are determined, it is possible to insert them into the EMD algorithm and receive a
single score that accurately describes the quality of our prediction. The evaluation method, hereafter referred to as240

DTW+EMD score, can be applied to all types of problems where distributions of time series are compared. Because
of the relatively cumbersome calculation, the evaluation of the validation set is performed only every 25 epochs. If
the score stagnates or increases again, the training is stopped early.

Figure 7. 2D visualization of optimal transport, where each point represents a time series that is part of either the predicted
or experimental distribution. Instead of the Euclidean distance as shown here, the DTW distance is used in practice.
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5 Dynamic Stall Results

The usefulness of the WaveNet-based approach is illustrated in this section using an oscillating pitch S809 airfoil245

and comparing it to experimental data for unsteady lift, drag and moment coefficients. The pitching motion can
be described by the equation α = αm + αa sin(ωt) where ω is the angular frequency corresponding to the oscillatory
pitch frequency f . One case of surging is shown as well, here the Reynolds number is varied by the similar formula
Re = Rem +Rea sin(ωt + τ). The oscillation of the surge is phase-shifted by the angle τ with respect to the normal
pitch oscillation. Due to the down sampling of the experimental data, the fixed time resolution is now ∆t = 0.01s.250

In general the graphs presented are based on parameters that are not known to the Neural Network during training.
To make the different amplitudes of the coefficients comparable, all results are normalized to the range of [0,1] by

min-max scaling relative to the corresponding experimental data before calculating the scores. Otherwise, it would
be difficult to compare different parameter ranges, because even if their relative differences are the same, the sum
of all absolute differences can still vary significantly.255

Figure 8 indicates that the model accurately reconstructs the dynamic forces and is in good agreement with
the higher harmonic effects. In the first case of α = 10° + 10° · sin(ωt) the calculated lift curve displays a primary
vortex formed by the upstroke motion that leads to the maximum lift (Point A). While the first leading edge vortex
detaches and travels downstream the lift is severely reduced (Point B). This also corresponds to a drop in pitching
moment associated with the presence of the vortex above the rear part of the upper airfoil surface (Müller-Vahl et al.,260

2017)(Point C). Shortly after, a secondary vortex forms near the leading edge and increases the lift momentarily
(Point D). The subsequent break down of the vortices into smaller scale structures leads to a noisy lift response and
the lowest overall lift values (Point E). The secondary vortex is a peculiarity of the S809 profile used here and does
not occur, for example, with the NACA0018 or other profiles. The dip in lift after the secondary vortex is sometimes
slightly under predicted by the model, nevertheless as the rate of change in α is reduced and the incidence approaches265

zero, the flow fully reattaches appropriately (Point F). Thereafter, the hysteresis curve begins again similar to the
static values with a narrow distribution during the pitch-up motion (Point G). The black arrows in Figure 8 show the
direction of time. Overall, the Neural Network reliably identifies the position of greatest uncertainty and reproduces
the range of variation. Similar patterns emerge for the coefficient of drag and momentum, where the source of the
biggest error occurs during the vortex detachment as well. The visual impression is confirmed by the low DTW +270

EMD scores.
Figure 9 illustrates a similar case, but uses the special surge feature of the wind tunnel. Here the flow velocity is
strongly oscillating around ±50% and phase shifted relative to the main oscillation. While overall the matching of
the data indicates a decent agreement for all coefficients, some details are not correct. Particularly noticeable is
the overestimation of the lift overshoot (Point A) and the vortex shedding is triggered slightly too early (Point B).275

The neural network is likely unable to gather enough information about the surge case due to the relatively sparse
training data in this parameter regime.
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The third case α = 17° + 6° · sin(ωt) in Figure 10 does not employ the surge feature and is in reasonably good
agreement with the measurement results. Here, the airfoil oscillates at a high angle of attack in the deep stall region.
The hysteresis curve for lift clearly shows the noisy lift overshoot during vortex detachment (Point A) and further280

the point where the flow reattaches abruptly, almost stepwise, with the support of the pitch-down motion (Point B).
In addition, the distribution of the coefficients at all angles of attack is considerably broader than in the earlier cases,
which is also anticipated by the model, well seen in the heat map in Figure 10b. For the lift and drag coefficients,
a minimal offset of the values can be observed (Point C), which is likely due to inaccuracies with the non-linear
interpolation in hyperspace and can be fixed with more training samples as well. The scores reflect these difficulties285

accordingly and are slightly worse than in the earlier test cases.
Another important feature that distinguishes this model from traditional methods is that the returned frequency

spectrum is close to the real spectrum as well. This opens the possibility for a more accurate analysis of blade flutter
and realistic aeroelastic responses. To illustrate this, Figure 11 shows the frequency spectrum from the first test
case next to the power spectral density estimated by Welch’s method (Welch, 1967). In the frequency spectrum, the290

peaks correspond to the multiples of the pitching frequency, which is imitated by the Neural Network accordingly.
The power of the simulated signal matches the experiment well. The Neural Network also recognizes the drop in the
spectral density estimate after 40 Hz , which is already at a very low power. This artifact is present in the training
data only due to down sampling, because the method used from the SciPy toolkit (Virtanen et al., 2020) employs a
Chebyshev low-pass filter before removing the samples.295

As far as the computational cost of applying this model is concerned, the following can be stated. The time
needed to train the final model amounts to about 4 hours on an NVIDIA GEFORCE GTX 1060 6 GB. Since only
one-dimensional time series are considered here, the computational time and memory consumption is certainly low
compared to hardware-intensive problems, such as image recognition. Prediction requires about 0.046 s per time
step, or about 4.6 s wall-clock time per second of simulated time. The prediction is thus relatively slow, since while300

the model can process hundreds of parameter sets in parallel, it can only predict all sets step by step into the future.
This serial mode of operation during evaluation probably has its bottleneck in the communication between CPU
and GPU. However, it is still orders of magnitude faster than simulation using CFD.
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Figure 8. Unsteady aerodynamic coefficients under dynamic stall conditions in comparison with the experimental results
for the parameters f = 1.2Hz, αm = 10°, αa = 10°, Re = 300000. The DTW + EMD score score indicates how close the
two distributions are for each individual coefficient (smaller is better). 60 cycles are predicted. Figure 8b shows the global
probability density function of the experiments (top) and predictions (bottom) for the unwrapped lift case in phase space.
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Figure 9. Unsteady aerodynamic coefficients with gusts under dynamic stall conditions in comparison with the experimental
results for the parameters f = 1.20Hz, αm = 10°, αa = 10°, Re = 300000 ± 50%, τ = 90°. The DTW + EMD score score
indicates how close the two distributions are for each individual coefficient (smaller is better). 60 cycles are predicted.
Figure 9b shows the global probability density function of the experiments (top) and predictions (bottom) for the unwrapped
lift case in phase space.
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Figure 10. Unsteady aerodynamic coefficients under dynamic stall conditions in comparison with the experimental results
for the parameters f = 0.93Hz, αm = 17°, αa = 6°, Re = 450000. The DTW + EMD score score indicates how close the
two distributions are for each individual coefficient (smaller is better). 60 cycles are predicted. Figure 10b shows the global
probability density function of the experiments (top) and predictions (bottom) for the unwrapped lift case in phase space.
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(b) Fourier transform of the lift signal

Figure 11. Frequency response analysis for the S809 airfoil with the parameters f = 1.2Hz, αm = 10°, αa = 10° and Re =
300000

6 On Clustering

Clustering of raw airfoil measurement data is a topic recently investigated by several authors. It is now consensus,305

that the statistical mean and standard deviation used to represent cycle-to-cycle variations is inaccurate (Lennie
et al., 2020). By clustering the data, group probabilities and their associated individual variances can be presented.
Thus, allowing the discovery of bi- or multimodal distributions. Switching between those groups can be described
as a Markov process (Ramasamy et al., 2019).

The model discussed here is able to learn and predict multimodal distributions without the need for active310

switching between data-groups. However, the data available does not show obvious furcation in the coefficient data.
Nevertheless, we can cluster the time series with the method used by Lennie et al. (2020). At first we create a DTW
distance matrix between all available time series at once. Then we can apply hierarchical clustering using the Ward
method as a distance measure to form a dendrogram. The branches of the dendogram are then cut at a specific
height that results in a user-defined number of clusters. The choice of exactly two clusters here is to some extent315

arbitrary and guided only by the fact that the authors have recognized meaningful different characteristics. In this
manner physically meaningful clusters can be discovered, like the slightly different behavior after the secondary
vortex shedding in Figure 12. While one part of the time series of the experiments shows a clearly pronounced lift
overshoot, the peak is considerably weaker for the other part. When clustering the predicted data set, a similar result
is seen in Figure 13. However, whether the predicted ratios from clusters 1 and 2 are accurate is difficult to determine320

with the limited amount of data. With three available measurements of 116 cycles each for this parameter set, the
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ratios are spread over a wide range. The first measurement has a ratio of 62:54 for the cases with low overshoot to
those with high overshoot. The other measurements show ratios of 39:77 and 62:54, indicating a phenomenon during
the measurement and possibly worth investigating in further wind tunnel tests. The synthetic data has a ratio of
53:63.325
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Figure 12. Experimental data cluster analysis for the S809 airfoil with the parameters f = 1.2Hz, αm = 10°, αa = 10° and
Re = 300000. This is using the first measurement with 116 cycles resulting in a 62:54 relation for two clusters, with the first
number representing the time series with little pronounced overshoot.
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Figure 13. Predicted synthetic data cluster analysis for the S809 airfoil with the parameters f = 1.2Hz, αm = 10°, αa = 10°
and Re = 300000, the cluster ratio is 63:53, with the first number representing the time series with little pronounced overshoot.
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7 Discussion and Outlook

While the model’s capabilities are promising, its practical use is of course still limited in so far as only one blade
profile can be used within a wide but still restricted parameter range. However, robust and fully functional models
can be obtained by designing experiments specifically tailored to this machine learning problem. The additional
information about the frequency response and possible load spectra represent a clear added value for the engineer.330

To be able to map a wider parameter range without gaps, more angle and oscillation frequency combinations should
be used. In addition to the pitch motion, plunging could be added as a further parameter to allow the simulation of
more demanding aeroelastic problems. If the necessary computing capacities are available, a comprehensive database
of LES simulations could also extend or possibly replace the experiments. (Bertagnolio et al., 2006) presents such
simulations, which show the post-stall fluctuations for different airfoils. This is an area that conventional dynamic335

stall models struggle with, as they cannot reproduce unsteady forces at constant angles of attack. In principle, data
from this catalogue can be applied directly to the WaveNet model. Another, less demanding solution would be to
train the neural network on the difference between the experimental data and the Beddoes-Leishman model. Then,
as a post-process step to Beddoes-Leishman, the WaveNet model could already be applied to other airfoils. However,
the question of how meaningful the data obtained in this way is still to be answered.340

With more data for different airfoils available global conditioning could be added to introduce geometry parameters
that do not vary in time. In such a way, a very powerful and flexible model could be created to describe all types of
airfoils, or even to discover novel airfoil shapes with desired characteristics through optimization. Another complex
model could be created by relying on the data from the pressure ports on the airfoils surface. The derived coefficients
cl, cd and cm could then be calculated in a post processing step. This could potentially create a more accurate model345

down to the surface pressure distribution, but comes at a cost of using vastly more data and resources. Finally, the
current time step could be included in the time history, since the high sampling rate theoretically allows to re-sample
the training data at significantly smaller and larger time steps. In this way, a flexible change of the time step during
the runtime would be possible. This could be interesting for the easier coupling with CFD codes or if coarser time
steps are sufficient.350

One has to be very sure about the quality of the training data. Since there are no subsequent plausibility checks,
some major errors in the experiments would also remain in the data and predictions. Nevertheless, the model could
already be incorporated into existing turbine design tools that utilize blade element theory or lifting-line theory to
describe dynamic stall for an S809 airfoil.

8 Conclusions355

In this paper, a WaveNet-based Neural Network is established as a reduced order model for the relationship between
the motion parameters of an airfoil under dynamic stall and the aerodynamic loads on it. In contrast to existing
(semi-)empirical models it is fully probabilistic and working with raw wind tunnel time series. The Neural Network
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is autoregressive and predicts one time step at a time by generating a probability distribution from which a sample
is drawn. Thus, it can predict realistic frequency responses and the local variance of the aoerodynamic coefficients.360

This opens up new possibilities in the study of blade flutter and other aeroelastic problems.
The presented model improves the prediction for the aerodynamic forces and their higher-harmonic effects due to

vortex shedding and introduces a new level of detail, which has not been possible with traditional modeling methods.
Details on the model architecture, implementation and challenges have been summarized in the present work. Three
test cases were shown with different mean angles of attack, amplitude, and oscillation frequencies. The results of one365

case were examined in more detail for its frequency response and decomposed into clusters for comparison with the
experimental data. The technique is currently limited to the S809 airfoil due to the small amount of data available,
but may be expanded through further studies. Finally, this work serves as a proof-of-concept for further elaboration
of the method to apply stochastic machine learning models into the field of aerodynamics. The main conclusions can
be summarized as follows:370

– Autoregressive machine learning models provide a promising base for future complex and accurate dynamic
stall models.

– Fully stochastic models can present a physically realistic frequency response of the aerodynamic coefficients.

– Recovery of more raw data from old wind tunnel tests or new experiments at high sampling rates tailored to
machine learning are necessary to create truly flexible models.375

– The phenomena detected by clustering wind tunnel data, such as furcations and bi-modal distributions of
forces, can be learned by the model.
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