The Jensen wind farm parameterization for the WRF and MPAS models
- 1Center for Research in Wind (CReW), University of Delaware, Newark, DE 19716, USA
- 2Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
- 1Center for Research in Wind (CReW), University of Delaware, Newark, DE 19716, USA
- 2Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
Abstract. Wind farm power production is known to be significantly affected by turbine wakes. When mesoscale numerical models are used to predict power production, the turbine wakes cannot be resolved directly because they are sub-grid features and therefore their effects need to be parameterized. Here we propose a new wind farm parameterization that is based on the Jensen model, a well-known analytical wake model that predicts the expansion and wind speed of an ideal wake. The Jensen parameterization is implemented and inserted into two commonly-used atmospheric numerical models: the Weather Research and Forecasting (WRF) Model and the Model for Prediction Across Scales (MPAS). In addition, the internal variability in wind speed and direction within a wind farm, the wind direction uncertainty, and the superposition of multiple wakes are taken into account with an innovative approach. The proposed approach and parameterization are tested against observational data at two offshore wind farms: Lillgrund (small in size and tightly spaced) and Anholt (large and widely spaced). Results indicate that power production is predicted more accurately with the Jensen than with the Fitch wind farm parameterization, which is the only one available in WRF. Power predictions with the Jensen parameterization are similar in WRF and MPAS. The sensitivity to grid resolution is small and the bias is generally low and negative. In conclusion, we recommend that the Jensen wind farm parameterization be used in the WRF and MPAS models, especially for coarse resolution, high turbine density, and wind directions aligned with the turbine columns.
Yulong Ma et al.
Status: final response (author comments only)
-
RC1: 'Comment on wes-2022-19', Patrick Volker, 20 May 2022
The comment was uploaded in the form of a supplement: https://wes.copernicus.org/preprints/wes-2022-19/wes-2022-19-RC1-supplement.pdf
- AC1: 'Reply on RC1', Cristina Archer, 21 Jun 2022
-
RC2: 'Review of wes-2022-19', Paul van der Laan, 31 May 2022
The comment was uploaded in the form of a supplement: https://wes.copernicus.org/preprints/wes-2022-19/wes-2022-19-RC2-supplement.pdf
- AC2: 'Reply on RC2', Cristina Archer, 21 Jun 2022
Yulong Ma et al.
Yulong Ma et al.
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
286 | 108 | 8 | 402 | 1 | 1 |
- HTML: 286
- PDF: 108
- XML: 8
- Total: 402
- BibTeX: 1
- EndNote: 1
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1