21 Apr 2022
21 Apr 2022
Status: this preprint is currently under review for the journal WES.

Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems

Paul Veers1, Carlo Bottasso2, Lance Manuel3, Jonathan Naughton4, Lucy Pao5, Joshua Paquette6, Amy Robertson1, Michael Robinson1, Shreyas Ananthan7, Athanasios Barlas8, Alessandro Bianchini9, Henrik Bredmose8, Sergio González Horcas8, Jonathan Keller1, Helge Aagaard Madsen8, James Manwell10, Patrick Moriarty1, Stephen Nolet11, and Jennifer Rinker8 Paul Veers et al.
  • 1National Renewable Energy Laboratory, Golden, Colorado, 80401, USA
  • 2Technical University of Munich, Garching b. München, 85748, Germany
  • 3University of Texas, Austin, Texas, 78712, USA
  • 4University of Wyoming, Laramie, Wyoming, 82071-2000, USA
  • 5University of Colorado Boulder, Boulder, Colorado, 80309-0425, USA
  • 6Sandia National Laboratories, Albuquerque, New Mexico, 87185, USA
  • 7Siemens Gamesa Renewable Energy, Inc., Orlando, Florida, 32826, USA
  • 8Technical University of Denmark, Roskilde, 4000, Denmark
  • 9Università degli Studi di Firenze, Firenze, 50139, Italy
  • 10University of Massachusetts, Amherst, Massachusetts, 01003, USA
  • 11TPI Composites, Warren, Rhode Island, 02885, USA

Abstract. Wind energy is foundational for achieving 100 % renewable electricity production and significant innovation is required as the grid expands and accommodates hybrid plant systems, energy-intensive products such as fuels, and a transitioning transportation sector. The sizable investments required for wind power plant development and integration make the financial and operational risks of change very high in all applications, but especially offshore. Dependence on a high level of modeling and simulation accuracy to mitigate risk and ensure operational performance is essential. Therefore, the modeling chain from the large-scale inflow down to the material microstructure, and all the steps in between, needs to predict how the wind turbine system will respond and perform to allow innovative solutions to enter commercial application. Critical unknowns in the design, manufacturing, and operability of future turbine and plant systems are articulated and recommendations for research action are laid out.

This article focuses on the many unknowns that affect the ability to push the frontiers in the design of turbine and plant systems. Modern turbine rotors operate through the entire atmospheric boundary layer, outside the bounds of historic design assumptions, which requires reassessing design processes and approaches. Traditional aerodynamics and aeroelastic modeling approaches are pressing against the boundaries of applicability for the size and flexibility of future architectures and flow physics fundamentals. Offshore turbines have additional motion and hydrodynamic load drivers that are formidable modeling challenges requiring innovation. Uncertainty in turbine wakes complicates both structural loading and energy production estimates and requires advances in plant operations and flow control to achieve full energy capture and load alleviation potential. Opportunities in co-design can bring controls upstream into design optimization if captured in design-level models of the physical phenomena. It is a research challenge to integrate improved materials into the manufacture of ever-larger components while maintaining quality and reducing cost. High-performance computing used in high-fidelity, physics-resolving simulations offer opportunities to improve design tools through artificial intelligence and machine learning. Finally, key recommended actions needed to continue the progress of wind energy technology toward even lower cost and greater functionality are summarized.

Paul Veers et al.

Status: open (extended)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on wes-2022-32', Peter Clive, 02 May 2022 reply
  • RC1: 'Comment on wes-2022-32', Pietro Bortolotti, 12 Jul 2022 reply

Paul Veers et al.

Paul Veers et al.


Total article views: 2,926 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,812 1,101 13 2,926 20 9
  • HTML: 1,812
  • PDF: 1,101
  • XML: 13
  • Total: 2,926
  • BibTeX: 20
  • EndNote: 9
Views and downloads (calculated since 21 Apr 2022)
Cumulative views and downloads (calculated since 21 Apr 2022)

Viewed (geographical distribution)

Total article views: 2,553 (including HTML, PDF, and XML) Thereof 2,553 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 06 Oct 2022
Short summary
Critical unknowns in the design, manufacturing, and operability of future turbine and plant systems are articulated and recommendations for research action are laid out.