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Abstract. As wind energy increases its share of total electricity generation and its integration into the power system becomes
more challenging, accurately representing the spatio-temporal variability in wind data becomes crucial. Wind fluctuations im-
pact power and energy systems, e.g., energy system planning, vulnerability to storm shutdowns, and available voltage stability
support. To analyze such fluctuations and their spatio-temporal dependencies, time series of wind speeds at hourly time-
frequency or higher are needed. We provide a comprehensive evaluation of the global and mesoscale-model derived wind time
series against observations by using a set of metrics that we present as requirements for wind energy integration studies. We
also perform a sensitivity analysis to find the best model setup of the Weather Research and Forecasting (WRF) model, focus-
ing on evaluating the wind speed fluctuation metrics. The results show that using higher spatial resolution in the WRF model
simulations improves the representation of temporal fluctuations; however, higher spatial resolution simulations often lower
the correlations of wind time series with measurements. Thus, we recommend finer spatial resolution simulations for model-
ing power ramp or voltage stability studies, but ERAS rather than mesoscale simulations for studies where correlations with
measurements are essential. We also show that the nesting strategy is an important consideration, and a smoother transition
from the forcing data to the nested domains improves the correlations with measurements. All mesoscale model simulations
overestimate the value of the spatial correlations in wind speed as estimated from observations. Still, the spatial correlations
and the wind speed distributions are insensitive to the mesoscale model configuration tested in this study. Regarding these two

metrics, mesoscale model simulations present more favorable results than ERAS.

1 Introduction

Many wind energy applications use meteorological data derived from atmospheric models; for example, in the production of
wind resource atlases (Tammelin et al., 2013; Dorenkdmper et al., 2020; Solbrekke et al., 2021), and extreme wind atlases
(Larsén et al., 2012), and wind turbine icing in cold climates (Hamaéldinen and Niemeld, 2017). In general, most studies use
time series of wind speed, but different applications require distinct qualities in meteorological data and, therefore, different
evaluations are necessary. For a wind resource atlas, for instance, accurate wind speed distributions are necessary (Dorenkdmper
et al., 2020; Knoop et al., 2020); for wind power forecasting, accurate timing is vital (Das et al., 2017; Olson et al., 2019).
Energy and power system modeling, including optimal energy system planning, (e.g., Gea-Bermudez et al., 2020; Brown

et al., 2018; Malvaldi et al., 2017), the study of power system ramp rates and vulnerability to storm shutdowns (e.g., Murcia
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et al., 2021) and available voltage stability support (e.g., Souxes et al., 2019), require an accurate representation of temporal
dependencies and spatial correlations, and accurate wind speed distributions. Time synchronization with measurements (i.e.,
the high correlation between measured and simulated data) is important when the wind time series are used in conjunction with
other data, e.g., electricity load time series (Gea-Bermiidez et al., 2020).

Several studies have validated meteorological data sets for the specific purpose of modeling weather-dependent wind power
generation and its highly fluctuating behavior. These works use data provided by global atmospheric reanalysis (e.g., Cannon
et al., 2015; Gonzdlez-Aparicio et al., 2017; Gruber et al., 2022), mesoscale numerical weather prediction (NWP) models
(Murcia Leon et al., 2021; Koivisto et al., 2021) or both (Jourdier, 2020; Murcia et al., 2022). Because mesoscale NWP models
cannot represent the effects of the most detailed microscale processes, extra information such as the effect of the terrain in
the wind speed distribution can be added by combining (i.e., adjusting) mesoscale with microscale data (e.g., Staffell and
Pfenninger, 2016; Ruiz et al., 2019; Murcia et al., 2022). Due to its relatively low temporal resolution (usually available
from 30 minutes to 1-hour resolution) and intrinsic numerical smoothing, data from mesoscale models cannot include minutes
to seconds-scale variability and even hourly variability may be too low compared to measurements (Koivisto et al., 2020).
Therefore, it may be necessary to combine synthetic data through statistical methods (e.g., Hawker et al., 2016; Larsén et al.,
2012; Murcia et al., 2021) to represent wind fluctuations at shorter time scales.

Validation studies of time series from existent high spatial resolution data sets (in the order of a few kilometers) produced by
mesoscale NWP models can be found in the literature for wind power integration studies. Jourdier (2020) compared data sets
from several sources, including large scale and regional downscaled reanalyses, with mesoscale data such as the NWP model
AROME and the New European Wind Atlas (NEWA) in simulating mean wind speed, power production, and its temporal
correlations over France. Murcia et al. (2022) performed a large scale validation study, comparing the ERAS reanalysis and
two data sets based on the Weather Research and Forecasting (WRF), NEWA, and an ERA-Interim (Dee et al., 2011) based
European-level atmospheric reanalysis (Nuilo et al., 2018) with and without the addition of microscale details provided by the
Global Wind Atlas (Badger et al., 2015). Regarding wind speed, validations were done using wind measurements over Northern
Europe on various time-series metrics, such as errors in autocorrelations, spatial correlations, and wind speed distribution. Both
studies found that ERAS is well skilled but present deficiencies in simulating wind speed in areas with more complex terrain, if
not corrected. Jourdier (2020) found that the higher-resolution regional models (i.e., AROME and COSMO-REA®6) also show
very good skills and reduced bias, specially in complex topography. Murcia et al. (2022) found that NEWA is significantly
better than ERAS in representing the temporal properties of the wind speed time series at individual locations or WPPs.

There are fewer articles presenting model development focused on time series for wind integration studies. Drax] and Clifton
(2015) discussed that many efforts have been made for modeling the wind distributions for wind resource assessments with
NWP models. Creating data sets for wind integration studies for modeling wind power variability, on the other hand, is a not
straightforward step from the NWP outputs. Some studies utilize the mesoscale model to generate time series and validate
it for an individual application. For example, Nufio et al. (2018) developed hourly time series of European transcontinental
wind and solar photovoltaic generation using the WRF model to dynamically downscale a global reanalysis and analyzed

regionally aggregated power variability in different time scales, which is relevant for system planning, market studies, and
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others. Mehrens et al. (2016) assessed the WRF model ability in simulating coherence, spatial correlation, and power spectra
in a large range of distances over the North and Baltic Sea. Focusing on local wind power generation variability, Koivisto
et al. (2021) validated the WRF model time series aggregated for several countries in Europe. The results of this article show
that combining mesoscale and microscale data and the addition of missing power plant technical parameters through machine
learning improve the representation of the annual capacity factors and hourly generation distributions for most countries.
However, no significant differences are shown for the auto and spatial correlations. Draxl and Clifton (2015) generated a sub-
hourly high spatial resolution data set a target for application in wind integration studies over the United States but besides the
high temporal resolution, the work focused on the validations only on intra-day and seasonal variability, in addition to wind
speed distribution. By focusing on several essential aspects of time series, this paper adds to the development of time series
modeling of wind speeds for wind integration studies and evaluation techniques. The comparison results between the models
allow users to select the most appropriate modeling and data sets for different applications.

This work focuses on modeling wind speed time series suitable for power and energy system applications and adds to the
literature by 1) investigating the impact of the interaction between mesoscale model and its forcing data on the quality of
the resultant time series and, 2) providing a comprehensive evaluation of the different data sets, with focus on how well they
can represent temporal and spatial correlations over Northern Europe. We perform a sensitivity study of the WRF model in
multiple configurations, varying the influence of the forcing global reanalysis in the simulations to understand its role and
distinguish the model configuration that outperforms various time series aspects. The results are also compared to ERAS and
NEWA mesoscale data. We hypothesize that these modeling aspects, defined by the nesting choice, size, and position of the
domains, impact the accuracy of the time series more than the horizontal resolution of the model simulations.

This paper is structured as follows: Section 2 describes the simulations, the measured data, and the metrics used to generate
and validate the time series; Section 3 presents the results of the time series comparisons; Section 4 presents the discussion and

experiment’s ranking and Section 5, the conclusions and perspectives.

2 Data and methods
2.1 Simulated data

The simulations used in this work were produced by the WRF mesoscale model in two different versions, using the configu-
ration for the model physics and model dynamics as in the New European Wind Atlas (NEWA) (Dorenkdmper et al., 2020).
The analyses are presented for the WRF version 4.2.1 (Skamarock et al., 2019), which was the latest available version at the
moment when running the experiments. However, the WRF version 3.8 (Skamarock et al., 2008) used for the NEWA produc-
tion, was utilised as a control simulation for all experiments to check for possible impacts on the results due to the model
modifications. The model updates could lead to changes in the simulated wind due to changes in parameterisations that can
affect the results. The configuration of both versions were checked to ensure some degree of consistency, but it can be difficult

tracking the exactly combination of modifications in the model version and its possible effects.
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All simulations use nudging to the forcing reanalysis in the outer domain with time tendencies computed from reanalysis
data at six hours, as outlined in Hahmann et al. (2015). The WRF model has been broadly validated and used for wind resource
assessment, and sensitivity studies for Northern Europe, such as Hahmann et al. (2015, 2020b) and Li et al. (2021) have shown
that generally, the simulated wind profile matches the observations despite systematic biases, and that the WRF downscalings
add value to the reanalyses for wind energy applications.

The purpose of the nesting experiments (hereafter named "10km", "6km", "Skm" and "3.3km") is to vary the influence of
the forcing data in the innermost domain by changing the grid arrangement of the simulation or to verify the impact of the grid
spacing, for similar arrangements. The WRF model domains used in the simulations are presented in Fig. 1 using two nesting
approaches: 1) using one nested domain (blue) and 2) using two nested domains (orange). The simulations were configured to
have the innermost domains covering the same geographical area. The parent domain (d1) has the same dimensions and position
for both arrangements. However, for nested domains, the number of grid points must be proportional to the parent grid ratio
(Skamarock et al., 2008), which means that even for similar arrangements (i. e., single nest with ratio 1/3 or 1/5), the innermost
domains have slightly (a few km) different geographical extension. These differences were neglected for the comparisons, as
it is shown in Fig. 1. The horizontal resolution of the innermost domain is a result of the nesting ratio and the resolution jump
used, as it can be seen in Table 1. We included one additional experiment to test the impact from different forcing data. The
forcing data provides initial and boundary conditions to the simulations. All experiments were forced by the ERAS reanalysis
(Hersbach et al., 2020) as in the NEWA configuration, except experiment "10km_erai", which was forced by the ERA-Interim
reanalysis (Dee et al., 2011). All experiments produced with WREF version 3.8 (as in the NEWA production) for checking the
consistency among the results were analysed, but only the analogous to "10km" from version 4.2.1 (named "10km_v3") is
presented here. This arrangement makes all experiments comparable to the "10km" with only one aspect modified, either in
the nesting arrangement, resolution jump, forcing data, or model version. The multiple experiments were limited to one year
of simulations due to computational limitations, and the year 2009 was selected as a function of the observations availability
(see Sect. 2.2) and for being a typical year in terms of wind speed over the region studied (analysis not shown).

Time series from NEWA and ERAS reanalyses were included in the comparisons. All time series (from the simulations and
the existent reanalyses) were extracted using a horizontal linear interpolation and a logarithmic vertical interpolation for each
measurement location and its respective height. WRF simulations and ERAS5 and NEWA reanalyses use the two closest levels
for the vertical logarithmic interpolation. The NEWA data set and the WRF simulations have outputs in several fixed levels
ranging from 25 m to 250 m. From the ERAS data set, two fixed height levels (10 m and 100 m) were used and an extrapolation
is assumed for sites taller than 100 m. No assumption on the atmospheric stability condition is used, and the same process is

applied at every time step throughout the entire year.
2.2 Measured data

Data from 14 met masts over Northern Europe (Fig. 1) were processed and filtered using an adapted version of the quality
control routine described in Ramon et al. (2020). The filter eliminates suspicious data or sequences of data, including implau-

sible values or too extreme variations, freezing, or stuck instrument readings. When necessary, a rough attempt to minimize
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Figure 1. Location of the domains used in the WRF model simulations for two configurations: 1) single nest (domains 1 and 2, in blue) and
2) two nests (domains 1, 2 and 3, in orange). The wind speed measurements locations are shown by the red dots. Base map created with

Natural Earth.

Table 1. Experiment names and WRF model configuration. Nesting ratio refers to the grid of the relative parent domain as shown in Fig. 1.

Resolution jump is the grid spacing of the outer and inner grids.

Experiment  Nesting arrangement (Fig.1) Nesting ratio Resolution jump [km] Forcing data WREF version

10km single nest 1/3 30/10 ERAS 4.2.1
6km single nest 1/5 30/6 ERAS 4.2.1
Skm single nest 173 15/5 ERAS 42.1
3.3km two nests 1/3/3 30/10/3.3 ERAS5 42.1
10km_erai single nest 1/3 30/10 ERA-Interim 4.2.1
10km_v3 single nest 1/3 30/10 ERAS 3.8

the effect of flow distortion caused by the mast on the wind speed measurements was made. When wind speed measurements
are available from only one boom at one height on the mast, winds originating at +10° of the boom direction are filtered. At
other sites, where wind speeds at one height are measured with more than one boom direction, the wind speed measurements
are combined according to the wind direction to minimize flow distortion. Wind speed time series measured at heights ranging
from 30m to 140 m and originally at 10 minutes averaged resolution, were aggregated to hourly resolution. To ensure that
all measured data has been reported at UTC times (information not always provided by the data source), an inspection of the
cross-correlations between measured data and reanalysis (Fig. 2.f) has been done for checking suspicious shifted lags. Missing

or invalid data identified in the measured time series were marked NaN also in the simulated data. The completeness of the



135

140

145

series is shown in Table 2. The series covers one year of observations, and the year 2009 was chosen for being the period with

time series from the maximum number of sites available. Anonymized stations were named according to the location: Central

North Sea (CNS), South-North Sea (SNS), and Western Baltic Sea (WBS). Other information on the type of location (land,

forest, coastal or offshore) and measurement device (met mast or lidar) are presented in Table 2.

Table 2. Observational data sets. Type: meteorological masts (M), LIDAR (L); location: coastal (C); land (L); offshore (S); forest (F).

Availability [%] refers to the valid data within time coverage during 2009 after the quality control and minimization of flow distortion.

Site Height [m]  Availability [%] Type Location Data sources
Bgrglum 31.5 99.0 M C DTU Database
Cabauw 140 99.3 M L CESAR Database
CNS1 108 94.9 L S Hasager et al. (2013)
DockingShoal 90 99.2 M C Marine Data Exchange
FINO1 90.3 94.3 M S FINO Offshore
FINO2 92.4 92.9 M S FINO Offshore
Hgvsgre 100 97.4 M C DTU Database
Lillgrund 65 99.3 M C DTU Database
Lindenberg 98 99.4 M F Ramon et al. (2020)
SNS1 116 859 M S Hasager et al. (2013)
SNS2 72.5 994 M S Hasager et al. (2013)
Sorg 43* 82.6 M F DTU Database
Tystofte 39 98.7 M L DTU Database
WBS1 50 62.9 M C commercial site

* includes a displacement height of 20.5 m based on Dellwik et al. (2006).

2.3 Evaluation metrics

Different qualities in wind speed time series are required for applications in power and energy system studies, as described in

Sect. 1. We analyze five aspects of data quality using error metrics defined in Murcia et al. (2022). The comparisons against

observations include the six WRF model experiments, NEWA, and ERAS5 data sets. The time series evaluation metrics include:

1. Correlation to measurements. Given an observed time series, X (¢,7), and a simulated time series, Y (¢,7), at time ¢ and

location 4, the Pearson correlation coefficient p(X (¢,7),Y (¢,4)) is calculated for each simulation with respect to the

measured data. This metric is important when the wind speed data (or the resulting generation data) needs to be correctly

correlated with other time-stamped data sets (e.g., electricity price).

2. Error in the autocorrelation function. The autocorrelation functions (ACF), p(X (t,), X (t — At,4)) and p(Y (¢,4),Y (t —

At, 1)), at location i, are calculated for the observed and simulated time series, respectively. The error in the metric
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is computed as ACFl)?g =2 minus ACFl}fg:At. The ACF metric represents how well the simulated data can represent

temporal variability seen in the measured data.

3. Error in wind speed distribution. This metric quantifies the difference between simulated and observed wind speed
distribution. It is computed by using the Earth mover’s distance (EMD) technique, introduced in Hahmann et al. (2020b).
The EMD is defined by the area between two cumulative density functions (CDF) and, therefore, is always positive. An
accurate wind speed distribution is essential for estimating a site’s potential annual energy production, with a good fit
also at the higher percentiles important for understanding storm shutdown risks. It is acknowledged that because of the
shapes of power curves, certain parts of the wind speed distributions matter more than others when considering the wind
generation output. However, in this study the focus was kept in modeling wind speeds, so all wind speed ranges are

considered equally in EMD.

4. Error in the standard deviation of the first difference. The standard deviation of the first difference time series o (X (¢,4) —
X (t— At,i)) and o(Y (¢,0) — Y (t — At,i)) at location ¢ are calculated for the observed and simulated time series, re-
spectively. The error is computed as the difference between the simulated and observed standard deviations. This metric

describes how well the simulated data can represent the 1-hour ramps seen in the measured data.

5. Error in the spatial correlation among measurements. The correlations p(X (¢,7), X (¢,7)) and p(Y (¢,7),Y (¢,5)) are
calculated for the observed and simulated time series for all pairs of sites 7, j. The metric is computed by fitting equation
pij = exp(—dij/ L), with di; and L in km, to the correlations and distances (d) between the locations for both the
measured and simulated data, and taking the ratio of the characteristic length scales, Ly /L. The smaller the length
scale, the faster the correlations decay to zero as distance increases. Modeling spatial correlations well is relevant for
system integration studies, as the probability of wind speeds being low or high or ramping up or down simultaneously in

multiple locations impacts the aggregate wind generation variability in the system.

Figure 2 illustrates all the metrics used in this work, but including only three data sets for simplicity. Figure 2a shows an
example of a time series for Bgrglum, a short mast at a coastal location in Denmark, with observed (OBS, in black), ERAS
(yellow), and NEWA (blue) data sets. Figure 2b shows the wind speed distribution for the three data sets and the CDFs for
ERAS and NEWA, which the EMD metrics is computed in respect to OBS are illustrated in Fig.2c. Figure 2d shows the ACF
for the first 24 hours, although only the ACF at lag = 1 h is used in the comparisons. Figure 2e illustrates the correlations among
simulated and OBS. Figure 2f shows the cross-correlation function of simulated data with OBS, which was used for checking
the correctness of the timestamps in every observed time series. Lastly, Fig. 2g illustrates the comparison between parameter L
computed from the spatial correlations over a distance of all 14 pairs of locations. Each metric described is computed for every
location and experiment, as well as the median over different types of site (onshore, coastal and offshore) and the median of

all locations for each metric. The final rank among all data sets for each metric is based on the medians of all sites.
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Figure 2. Example of the analysis done for one location (a-f) and all locations (g) comparing only observed data and two reanalyses (for
simplicity) during one year. a) wind speed time series; b) probability density function (PDF) and Earth mover’s distance (EMD); ¢) cumulative
density function (CDF); d) autocorrelation function (ACF); e) observed versus simulated wind speed; f) cross-correlation function; g) spatial

correlations versus distance for all pairs of locations (dots) and their fitted curve (lines).

3 Results

This section presents the results for each metric described in Sect. 2.3. The tables contain the results for each data set (rows)
and every site (columns). Columns 1 to 4 are located inland, 5 to 9 are located inland but close to the sea (hereafter named
"coastal"), and 10 to 14 are offshore sites. The four last columns present the median over sites "onshore," "coastal," "offshore,"
and of "all" 14 sites, respectively. The color palette represents the best results in dark purple and the worst results in brown.
The rows are sorted by the column median "all," with the most accurate results on the top and least accurate results on the

bottom of each table.
3.1 Correlation to measurements

In Fig. 3, time series from ERAS5 reanalysis have higher correlation with measurements (median "all" = 0.91), followed by
the "5km" experiment (0.89). The "3.3km" experiment is the least correlated among all data sets (0.80). The type of location
impacts the correlations. Sites offshore have higher correlations than coastal sites, which have higher correlation than onshore

sites. The worst correlations for all simulations compared to observations are Sorg and Lindenberg, both met masts (43 m, and
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98 m tall, respectively) located in forested sites. It reveals the difficulties of mesoscale models in simulating the effects of the
forest on the flow dynamics, e.g., due to oversimplification and an unappropriated representation of roughness length, as it is

discussed in Dellwik et al. (2014).
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Figure 3. Correlation of simulated time series to measurements for the various experiments in Table 1 and reanalyses. The darkest purple
colors are the most accurate metrics; the darkest brown, the least accurate metrics. The rows are sorted by the column median "all," with the

most accurate results on the top and least accurate results on the bottom of the table.

3.2 Autocorrelation function

The ACEF results (Fig. 4) show a clear spatial resolution impact. NEWA (3 km horizontal grid spacing) and "3.3km" exper-
iment present the smaller errors in ACF (~ 0.031), while experiments with 10km grid spacing ("10km_erai", "10km" and
"10km_v3") and ERAS (~30km) present the larger errors (0.047,0.047,0.049 and 0.051, respectively). As in the previous
metrics, all simulations contain larger errors over forested sites (Sorg and Lindenberg). The ACF is simulated more accurately

in offshore sites, followed by coastal and onshore sites.
3.3 Standard deviation of first difference

As in the ACF analysis, the standard deviation (STD) of the first difference (Fig. 5) is impacted by the grid spacing of the
simulations. The "3.3km" and NEWA simulations show smaller errors in this metric (—0.30 for both simulations), while

experiments with 10km grid spacing ("10km_erai", "10km" and "10km_v3") and ERAS time series present the larger errors
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Figure 4. Error in autocorrelation function (ACF) at lag = 1 h of simulated time series to measurements for the various experiments in Table
1 and reanalyses. The darkest purple colors are the best results; the darkest brown, the worst. The rows are sorted by the column median

"all," with the most accurate results on the top and least accurate results on the bottom of the table.

(—0.54,—0.55,—0.58 and —0.66, respectively). All simulations underestimate the metric (negative values). Unlike all previous
metrics, the STD of the first difference is more accurately represented over inland sites (especially for Sorg). The reason for
larger errors in coastal and offshore sites can be due to the difficulties of mesoscale models in simulating turbulence over and
close to the sea (Floors et al., 2018). On the other hand, the displacement height applied in the simulated time series over Sorg
can mask the 1 h step changing errors. Originally, the time series interpolated at Sorg height (43 m) overestimates the wind
speed above the canopy of the trees at this forested site (Dellwik et al., 2014) and, therefore, produce errors in other metrics,
such as correlations with measurements and wind speed distribution. We lowered the level of the interpolated time series using
the fixed displacement height of -20.5 m without taking into account that displacement height depends, among other things, on
the wind speed (Dellwik et al., 2006). It is possible that the simulated time series exaggerates the turbulence at the displaced
height and alleviates the underestimation in the STD of first difference metrics only for Sorg. For comparison, Lindenberg is
a forest site, but we have not applied displacement height, and the errors are consistent with other inland sites. Even when the
Sorg results are disregarded from the median "onshore", the onshore sites are more accurately simulated with respect to the

standard deviation of the first difference than coastal and offshore sites.

10
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Figure 5. Error in the standard deviation of first difference (STD of 1st diff) between the simulated time series and the measurements for
the various experiments in Table 1 and reanalyses. The darkest purple colors are the best results; the darkest brown, the worst. The rows are

sorted by the column median "all," with the most accurate results on the top and least accurate results on the bottom of the table.

3.4 Wind speed distribution

The analysis of the wind speed distribution (Fig. 6) shows more homogeneous results over all experiments. The "3.3km" simu-
lation has slightly smaller EMD (0.27 ms~1!), while its more equivalent simulation, the NEWA, presents an intermediate result
(0.29 ms~1). Larger EMDs are found for inland sites (especially Sorg and Tystofte); however, the coastal sites Docking Shoal
and Lillgrund also present large EMD values. There is no clear sequence for the quality of wind speed distribution concerning
the type of location, although onshore sites have larger EMD values in all data sets. All data sets underestimate (overestimate)

the low (high) wind speed values for inland observations in lower heights (less than 50 m tall). Figure 7 highlights this issue.
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Figure 6. Earth mover’s distance (EMD; ms ™) between simulations and measurements for the various experiments in Table 1 and reanal-
yses. The darkest purple colors are the best results; the darkest brown, the worst. The rows are sorted by the column median "all," with the

most accurate results on the top and least accurate results on the bottom of the table.

Soroe (22.5m, forest)

emd [m/s]
[ obs
[ era516
0.20 [ newa 1.8
[ 10km 2.1
[ 6km 2.1
= 015 ) 5km 2.1
3.3km 2.1

1

POF [

0.10

0.05

0 5 10 15 20 25
Wind Speed [m/s]

Tystofte (39.0m, land)

emd [m/s]

) era51.2
[ newa 0.7
3 10km 1.3
[ 6km 1.0
[ 5km 0.9
3.3km 0.8

Wind Speed [m/s]

Figure 7. Probability density function (PDF) and Earth mover’s distance (EMD) between simulations and measurements (OBS) for the

various experiments in Table 1 and reanalyses, and for two inland sites measured at lower heights.
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3.5 Spatial correlations

The metric to assess the spatial correlations (Fig. 8) is computed as described in Sect. 2.3. All simulations overestimate the
correlations for most points, leading to larger parameters L, which agrees with previous studies (e.g., Murcia et al., 2022;
Mehrens et al., 2016). The observed value of L is 410 km, while the ones derived from the simulations vary between 496 km
in the NEWA simulations and 541 km in the ERAS time series. Mehrens et al. (2016) discuss the problem of the WRF model
being incapable of resolving wind variability sufficiently at higher frequencies due to the numerical smoothing, resulting in
exaggerated correlations. Except for the NEWA time series, all simulations produce similar results despite horizontal grid spac-
ing. The coefficient of determination r-squared (r2) for all fitted curves and the standard error (e) of the estimated parameters

L is also shown in Fig. 8.

Spatio-temporal correlation
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Figure 8. Correlation versus distance for each pair of sites (Table 2) and the fitted curves for the measurements (black) and the various model

simulations in Table 1 and reanalyses. The estimated de-correlation length L is also shown for each simulation.

4 Impacts from model setup

The boxplots in Fig. 9 represent the ranking among all simulated data sets in the first four presented metrics. The plots show the

median (50th percentile), the first quartile (25th percentile), the third quartile (75th percentile), the maximum and minimum
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values, as well the outliers. The boxplots are ordered from best (lowest median, left) to worst (highest median, right) in all

metrics.
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Figure 9. Boxplots of the metrics for all stations as a function of the model experiment: (a) correlations (CORR) to measurements; (b) error
in the autocorrelation function (ACF); (¢) error in the standard deviation (STD) of first difference and (d) Earth mover’s distance (EMD).

The model experiments are sorted as a function of their median, from the best to the worst.
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The ranking for correlation to measurement (Fig. 9a) does not indicate a clear impact from spatial resolution. However, ERAS
(coarser resolution) presents a higher correlation with measurements, which can be in part due to spatial smoothness. Also, the
"ERAS" has the advantage of data assimilation, which periodically adjusts and approximates the simulation to the observations.
Regarding the nesting arrangement and the way correlations are passed into inner domains, the "Skm" experiment was more
similar to the observed time series than its comparable "6km". The "Skm" uses a nesting ratio of 1/3 (domain 1/domain 2),
but setting domain 1 using 15 km and the "6km" uses a ratio of 1/5 and resolution of domain 1 equal to 30 km (close to the
reanalysis resolution). The "10km" experiment (also ratio 1/3, but the resolution of domain 1 set to 30 km) correlates technically
the same as the "6km". As the WRF model freely develops the simulations in the inner domains, it loses the correlation to the
reanalysis. Double nesting amplifies this effect, such as the "3.3km" ratio 1/3/3). Using a smoother resolution jump, such as
15 to 5 km instead of 30 to 6 km, could be an advantage in keeping the correlations in the inner domain consistent with the
driving reanalysis. Further tests are needed to confirm this behavior. Nevertheless, the ratio 1/3 — 15 to 5 km is double as
computationally expensive as the 1/5 — 30 to 6 km or the 1/3 — 30 to 10 km. The comparison to the NEWA time series (1/3/3,
27 to 9 to 3 km) and the "3.3km" (1/3/3, 30 to 10 to 3.3 km) supports this hypothesis. However, the NEWA simulations are
not directly comparable to the "3.3km" simulations because NEWA uses different choices of domains size and placement (e.g.,
domain 1 in NEWA is much larger than in "3.3km", and domain 3 is longitudinally longer in NEWA, while in "3.3km" is larger
in latitude).

The boxplot of error in autocorrelation function (Fig. 9b) shows a clear impact from spatial grid spacing. The NEWA
and "3.3km" simulations present smaller errors than the measured time series. The 10 km grid spacing experiments and the
"ERAS5" time series show the most significant errors. Coarser resolution simulations exaggerate the correlations due to the
inherent spatial smoothness of the atmospheric models, which can be seen in the results for all simulations (Fig. 4). The same
interpretation can be made from the boxplot for the standard deviation of first difference (Fig. 9¢), although in this metric
experiments with very similar results, such as NEWA and "3.3km", and "10km" and "10km_erai" have inverted its ranking
positions.

The EMD boxplot (Fig. 9d) has the least conclusive ranking order among the metrics. There is no apparent influence from
the spatial resolution in the wind speed distribution since the ranking alternates finer and coarser-resolution experiments. Both
"Skm" and "6km" present intermediate results and nearly identical values. From these results, there is also no significant
indication of an impact on the simulated wind speed distribution, neither positive nor negative, from the complexity of nesting
(e.g., single versus two nested domains), the choice of nesting ratio, or the resolution jump.

The fitted spatial correlations (Fig. 8) show a clear distinction between the NEWA and the rest of the simulations. The NEWA
time series presents the smaller value of parameter L and the closest to the parameter determined for the measured points. A
ranking of the simulations can be seen in Fig. 10, showing the NEWA simulations with the smallest ratio Lx over observed
Ly, followed by all the other simulations with close overestimated results. As for the EMD, the spatial correlations explain
the ranking order, neither on the nesting choice nor the resultant spatial resolution. Part of the spread among the results from

a single experiment comes from the use of various measurement heights. The results found for this metric agree with Murcia
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et al. (2022) that all simulations overestimate the spatial correlations and that the NEWA time series modeled this aspect of the

time series more accurately than the ERAS data set.
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Figure 10. Ratio of simulated and observed characteristic length scales Ly /Lx, both parameters fitted from curves in Fig. 8, and the
standard error of the estimated parameters (bars). Winter refers to months Jan—-Mar; Summer refers to Jul-Sep. L > 1 means that simulations

overestimate the parameter L.

To check the consistency of the results in different periods, we recalculated all the metrics for the winter (Jan—-Mar) and
summer (Jul-Sep) months. The results (not shown) keep a similar ranking order to the annual time series for all metrics, except
for the EMD and spatial correlations. In any seasonal period considered, the EMD values range from approximately 0.3-0.4
ms~ !, but the ranking of the simulations is different (not shown). For the spatial correlations, Fig. 10 shows a different order for
each considered period. Almost all simulations represent have higher correlations during winter months than summer months.
For all simulations and the observed time series, the decorrelation length L is larger during winter than during summer (not
shown). This could be explained by the larger spatial scale of winter versus summer atmospheric processes and their variability.
Nevertheless, this result contradicts Solbrekke et al. (2020), although that study only includes correlations versus distances over
the northern North Sea and the Norwegian Sea and a limited number of measurement sites.

All five WRF model experiments were repeated using the WRF model version 3.8, although only the "10km_v3" was
included in the plots for comparison with "10km" (WRF version 4.2.1). The rank is unchanged from that with WRF V4.2.1
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(with minor differences) for the correlations to measurements, error in ACF, and for the error in STD of first difference (not
shown). However, the ranking order is changed for the EMD and the spatial correlations. Nevertheless, the conclusions for
these two metrics do not show a clear impact from grid spacing or model nesting. The direct comparison between "10km" and
"10km_v3" shows no clear effect from the two WRF model versions, and both experiments present a similar position in the
rank for most metrics (Fig. 9).

Lastly, an experiment testing different forcing data ("10km_erai") was included to compare simulations forced by ERAS
versus ERA-Interim reanalyses. For all metrics, the "10km" and "10km_erai" present a close position in the ranking (Fig. 9).
The three experiments with 10 km grid spacing are clustered among the ranks due to the same resultant grid spacing and model

nesting.

5 Conclusions

To investigate how to improve the mesoscale modeling of wind time series over Northern Europe for power and energy system
purposes, we performed a sensitivity study to various WRF model setups, including varying nesting configuration (1 or 2 inner
domains), nesting ratio (1/3 or 1/5) and resolution of the innermost domain (10, 6, 5 or 3.3 km). Simulations using different
model versions and forced by different reanalyses are also explored. Five metrics relevant to wind power integration studies are
presented for the time series derived from the WRF model simulations and compared to those from the New European Wind
Atlas and the ERAS reanalysis. We also ranked the time series simulations metrics to identify significant factors controlling the
simulation performance in their generated wind speed time series. Measured data from 14 sites over land, coastal and offshore
locations in Northern Europe were used.

We found that the model configuration affects the value of the wind time series correlations with measurements metrics more
than the grid spacing. Thus, we recommend ERAS reanalysis over the mesoscale simulations for studies where the correlations
with measurements are essential. However, when producing mesoscale simulations for power and energy system purposes, a
smoother resolution jump from outer to inner domains benefits the simulations by keeping it more correlated to the forcing
reanalysis. This is especially relevant when the wind speed time series are combined with other series data (e.g., electric load or
price time series). Finer spatial resolution simulations such as NEWA and "3.3km" may be best for applications where temporal
variability has to be well modeled, such as power ramp analyses or voltage stability studies. For more accurate simulations in
terms of wind speed distribution and spatial resolutions, NEWA presents more favorable results than ERAS.

The value of the metrics at the considered sites shows more accurate results for offshore and coastal than for inland locations
in all metrics, except for the standard deviation of the first difference. Simulated sites located in forest landscapes generally
have the more significant errors, specially when measurements are taken at lower heights (i.e., less than 50 m tall). This could
be due to model deficiencies in simulating boundary layer processes near the ground in more complex terrain, in agreement
with Hahmann et al. (2020b).

The evaluation of correlations to measurements indicates that strengthening the influence of the forcing from the reanalysis

data on the mesoscale model simulation can be achieved by using a smooth transition between the computational domains.
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Thus, a nest transition from 15km to 5km (domain 1/domain 2), is more effective than using 30km to 6 km (considering
the forcing data resolution close to 30 km) for maintaining the high correlations from the reanalysis in the inner domain. A
comparison between simulations using three domains (30/10/3.3 km, and 27/9/3 km) confirms this result. However, the NEWA
and "3.3km" simulations are not entirely comparable because they differ in the size of the outer domain. A large nudged outer
domain appears to be important for improving the correlation with observations in the inner domains. Still, our results do not
provide a systematic validation of this hypothesis. The ERAS-derived wind speed time series has the largest correlation to
measurements for all sites, and this behavior is in agreement with Jourdier (2020). From experiences in weather forecasting,
it is known that higher resolution does not always produce improved statistics (Mass et al., 2002) because the various metrics
are sensitive to the smoothness of the time series.

The ranking order in the autocorrelation function and standard deviation of first difference is a function of decreasing spatial
grid spacing rather than the nesting arrangement. This is probably a consequence of the higher frequency of occurrence of
convective processes in finer grid spacing domains, as it is discussed in Mass et al. (2002) and Vincent et al. (2013). For the
wind speed distribution, the results are inconclusive for the impact from the model configuration or the spatial resolution on the
quality of the time series. The analysis of the spatial correlations confirmed results from previous papers, that all simulations
exaggerate the spatial correlations (Murcia et al., 2022; Mehrens et al., 2016) and that NEWA time series can simulate this
aspect more accurately than does the time series derived from the ERAS reanalysis (Murcia et al., 2022). Mass et al. (2002)
show that finer horizontal resolution leads to lower correlations due to a higher spatial variability. However, our results for
spatial correlations do not find an explanation in the model setup and are sensitive to the period of the year. Simulated time
series longer than one year are needed to better investigate this findings. Also, this could be because our tested grid spacings
are very similar (from 10 km to 3.3 km) while in Mass et al. (2002) the simulation resolutions have a larger range from 36 km
to 4km.

Due to computational cost, many other details related to the model setup have not been tested. For example, we used the
same size and position of the innermost domain for all simulations. Therefore, we did not test the sensitivity of the simulated
time series to these aspects. Hahmann et al. (2020a) found that smaller domains in the WRF simulation tend to show smaller
wind speed biases, but higher root mean square errors (RMSE) compared to observations. They claim, however, that it was
unclear if this was resultant from the domain size or rather from the location of the boundaries in relation to the large-scale
flow. Further tests including these two model setup aspects could point to improvements in modeling time series correlated
with measurements since RMSE and correlations are related metrics. Additional numerical experiments on grid spacing could
be carried out to clarify the potential impacts of horizontal resolution on the simulated spatial correlations and wind speed
distribution. Finally, simulations using a much larger outer domain than the one in Fig. 1 and the same inner domain could

explain the different performances between NEWA and "3.3km" (Fig. 10) in representing spatial correlations.

Code availability. The WRF model is an open-source code and can be obtained from the WRF Model User’s Page. We used WRF versions
3.8 and 4.2.1 (Skamarock et al., 2008, 2019). The code modifications, namelists, and tables files we used are available from the NEWA
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