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Abstract.

Wind turbines are designed to minimize the cost of energy, a metric aimed at making wind competitive with other energy-

producing technologies. However, now that wind energy is competitive, how can we increase its value for society? And how

much would a societal gain cost other stakeholders, such as investors or consumers? This paper tries to answer these questions

from the perspective of wind turbine design.5

Although wind turbines produce green renewable energy, they also generate various impacts on the environment, as all

human endeavours. Among all impacts, the present work adopts the environmental effects produced by a turbine over its entire

life cycle, expressed in terms of CO2-equivalent emissions. A new approach to design is proposed, whereby Pareto fronts of

solutions are computed to define optimal trade-offs between economic and environmental goals.

The new proposed methodology is demonstrated on the redesign of a baseline 3 MW wind turbine at two locations in10

Germany, differing for typical wind speeds
:::
but

:::::
within

:::
the

:::::
same

::::::
energy

::::::
market. Among other results, it is found that, in these

conditions, a 1% increase in the cost of energy can buy about a 5% decrease in the environmental impact of the turbine.

Additionally, it is also observed that in the specific case of Germany, very low specific-power designs are typically favored,

because they produce more energy at low wind speeds, where both the economic and environmental values of wind are higher.

::::::::::
Furthermore,

::
it
::
is

:::::
found

::::
that

:::
the

:::::::::::::
CO2-equivalent

::::::::
emissions

::::::::
displaced

:::
by

:
a
::::
wind

:::::::
turbine

::
are

::::
one

:::::
order

::
of

:::::::::
magnitude

:::::
larger

::::
than15

::
the

::::::::
produced

:::::::::
emissions.

:

Although limited to the sole optimization of wind-generating assets at two different locations, these results suggest the

existence of new opportunities for the future development of wind energy where, by shifting the focus slightly away from a

purely cost-driven short-term perspective, longer-term benefits for the environment (and, in turn, for society) may be obtained.

1 Introduction20

The levelized cost of energy (LCOE) is defined as the net-present cost of an energy-producing technology over its lifetime

per MWh supplied. LCOE is the metric that has been traditionally used to evaluate the competitiveness of energy sources.

In recent years, the LCOE from wind (and from the sun) has experienced a dramatic decrease (Roser, 2021), which in turn

has fueled an astonishing growth of wind energy and great expectations for its further expansion (Veers et al., 2019). About a

decade ago, the International Energy Agency (IEA) Wind Task 26, which focuses on the cost of wind energy, identified a key25

driver for the future development of wind technology: the ability of generating cost parity – without direct policy support –
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with conventional sources, in a broad range of conditions and locations (Lantz et al., 2012). This indeed has largely happened

and the evolution of wind energy technology continues at a fast pace, to the point that even offshore wind is rapidly marching

towards subsidy-free competitiveness (Jansen et al., 2020). The decrease in LCOE from wind has been partially driven by

technological advancements, which have led to more reliable turbines characterized by higher hub heights and larger rotor30

diameters and, most importantly, much improved capacity factors. Additionally, economies of scale, increased competitiveness

and an improved maturity of the sector have also contributed to the fall of LCOE witnessed in recent years (IRENA, 2021).

LCOE, however, paints only a partial view of a situation that is much more complex and articulated than what appears

through cost alone (Joskow, 2011). A more holistic picture of the overall effects of renewable energies in general, and of wind

in particular, can only be obtained when looking beyond cost metrics. Indeed, the urgency created by climate change, energy35

security and independence could not be clearer, as stressed by the headline news coming from all over the world every day.

In fact, the future participation of wind power in the energy market and, more broadly, its societal role will not only be

shaped by its relative competitiveness, but also by its value (Beiter et al., 2021). The word value is generally understood in the

literature as a synonym for economic value, which is a measure of the benefit provided to an actor by some good or service.

In reality, in the case of an energy-generating technology, the concept of value is extremely broad. Leaving aside aspects such40

as energy security and independence, which are of crucial importance but also beyond the scope of the present analysis, it is

worth noticing that the value of an energy technology cannot be quantified per se, because it depends on the interactions of that

technology with the system in which it operates (Mai et al., 2021). For instance, the total system-value of an asset can be seen

as the sum of different system-value components – including energy value, capacity value, ancillary service value and others

(Mai et al., 2021). Additionally, due to supply and demand variability, the market price of electricity can vary widely, with high45

wholesale prices during peak demand times, which however can reach down to even negative values when large amounts of

renewable energy are available in the grid. This fact, in addition to transmission and storage constraints, makes the economic

value of electricity time- and location-specific (Hirth, 2012).

The importance of value has not gone unnoticed to the recent literature, and a range of options for increasing the economic

value of wind energy have been explored. For instance, the geographic location of wind plants – and, more in general, of50

variable renewable energy plants – and the diversification of the energy mix are two strategies that can be used to this effect

(Hirth and Mueller, 2016). Additionally, even the design characteristics of wind-generating assets (which is the focus of the

present work) can change when considering value, rather than simply cost. In fact, some wind turbine design parameters –

in particular hub height and specific power (i.e. rated power divided by rotor swept area) – can have a significant effect on

economic value, as shown by Hirth and Mueller (2016); Lantz et al. (2017); Swisher et al. (2022), among others.55

Economic cost and value, however, are actor-centric metrics, which mostly capture the investor point of view and, in turn,

also the price eventually paid by the end consumer. Additionally, cost and value are short-term metrics: cost evolves rapidly

from year to year, whereas value changes on even much faster time scales of minutes/hours. In this sense, economic cost and

value – if used alone – seem to be rather myopic metrics for the design of a wind turbine. Indeed, time is ripe for looking

beyond the benefit of the single actor and beyond short-term effects: wind energy should evolve to
:::
also take into account also60

its broad and long-term impacts at the societal level. It is a major ambition of this paper to bring this new point of view to the
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design of wind turbines. Clearly, the same philosophy can also be applied to the design of wind plants and, more in general, to

the design of the whole energy system.

From this broader perspective, the overarching goal of design becomes the alignment of short-term economic needs with

long-term sustainable development goals. In fact, while it is necessary to enhance the economic value of wind energy to65

increase its competitiveness today, it is also our moral duty to improve the value of this technology for society now and into

the future.

How can these broader goals be achieved? What are the new metrics that should be used to capture long-term societal effects?

How can value be defined beyond its current economic meaning? How different would new more eco-conscious turbines be

from standard LCOE-driven designs? And how much would a societal-level gain cost in terms of LCOE? These are some of70

the questions that are in need of answers, and that the present paper is trying to address, albeit in a preliminary and certainly

yet somehow incomplete form.

There are undoubtedly several different options for including long-term societal effects in the design of wind turbines. This

study focuses on the impact exerted by wind technology on the environment in terms of greenhouse gas (GHG) emissions.

While GHG emissions clearly do not capture all effects of wind energy, they do provide for a major and quantifiable impact with75

long-term consequences. As long as they are quantifiable through some appropriate metric, other impacts could be included in

a future even more general approach than the one presented here.

At first glance, it might seem unusual to speak about GHG emissions in the context of wind energy. After all, a wind tur-

bine is an eco-friendly machine by definition, which captures kinetic energy from wind to produce electricity without directly

releasing pollutants into the environment. Additionally, the deployment of each new wind turbine displaces a certain amount80

of GHG emissions, because the output of other more polluting energy sources can be correspondingly reduced. However, even

wind turbines do have an environmental cost – as indeed all human activities –, and non-negligible amounts of GHGs are

emitted throughout the different stages of their life. For example, the production of the large amount of steel needed
:::::::
required

for the tower, or the extraction of raw materials – such as the rare-earth elements present in the generator –, do have significant

environmental impacts; additionally, the end-of-life (EOL) treatments of components with limited recyclability, such as blades85

largely made of reinforced thermoset polymers, do release polluting emissions into the atmosphere. More in general, all stages

of the life-cycle of a turbine, from the extraction of raw materials all the way to the eventual disposal/recycling/repurpos-

ing of its components, generate impacts that can be quantified in terms of CO2-equivalent emissions. Given its importance,

it is no surprise that the evaluation of the environmental cost of wind turbines is the subject of various recent studies, in-

cluding Al-Behadili and El-Osta (2015); Ozoemena et al. (2018)
::::::::::::::::::::::::::
Al-Behadili and El-Osta (2015)

:::
and

:::::::::::::::::::
Ozoemena et al. (2018),90

among others. In addition to representing a meaningful metric per se, GHG emissions can also be turned into economic costs

by using the societal cost of carbon (SCC), which is an estimate of the net present value of monetized social damages occurring

from the emission of an additional metric ton of CO2 (Gillingham and Stock, 2018; National Academies of Sciences, Engineering and Medicine, 2017)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(National Academies of Sciences, Engineering and Medicine, 2017; Gillingham and Stock, 2018). However, care should be ex-

ercised when using SCC, as it can take a large range of values, depending on the underlying assumptions and models (IPCC,95

2007; Ricke et al., 2018; Kikstra et al., 2021).
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While several publications propose metrics that capture the economic profitability of a wind turbine (Ueckerdt et al., 2013;

Simpson et al., 2020; Mai et al., 2021), no metrics are yet available to describe the environmental cost and value of wind energy.

To address this gap, this work introduces novel eco-conscious metrics that mirror existing economic ones. These metrics are

then used within a multi-objective design framework, which sizes some macroscopic parameters of a wind turbine (here rotor100

diameter and hub height) to find optimal trade-offs between economic and environmental perspectives.

The eco-conscious metrics are defined based on a life-cycle assessment (LCA) method, which has the added benefit of

breaking down the contribution to the overall GHG emissions of a wind turbine by its components, materials and technological

choices
::::::::
life-cycle

:::::
stages. This way, a ranking of the most harmful aspects of a design is readily obtained, revealing new oppor-

tunities and highlighting the most promising pathways for further mitigating GHG emissions beyond what is possible by sizing105

alone (Guilloré et al., 2022).

The paper is organized as follows. Section 2 defines metrics that quantitatively measure the cost and value of a wind-

generating asset, both from the economic and the environmental perspectives. Next, Sect. 3 describes the methods that were

used here to estimate the design metrics. In addition to standard energy production, mass, and cost models, this section describes

and validates an LCA model whose goal is to estimate
:::
that

::::::::
estimates

:
the CO2-equivalent emissions produced during each stage110

of the life and by each component of a wind turbine. The design approach is also formulated in this same section, in terms

of single- and multi-objective constrained optimization problems. The new proposed methodology is exercised in Sect. 4, by

redesigning a baseline 3 MW wind turbine at two different locations in Germany, one in the north and the other in the south

of the country, characterized by different wind resources
::
but

::::::
within

:::
the

:::::
same

::::::::
electricity

::::::
market. The results are analyzed by

looking at the trade-offs between economic and environmental metrics, and at the change in the design characteristics of the115

optimal turbines with respect to a standard LCOE-driven baseline. Finally, Sect. 5 summarizes the main findings of this study

and offers an outlook towards future work.

2 Design metrics from economic and environmental perspectives

This section describes metrics for the preliminary design of an energy-generating unit using three common concepts: cost,

value, and net value. In general, cost indicates the expense incurred for making a product or service, whereas value is a120

measure of the benefit brought by that good or service. The difference between cost and value is termed net value. In the

present context, the good or service is the production of energy. The three terms cost, value and net value will be used with

two different connotations: economic, when relating to money, and environmental, when relating to the GHGs emitted in the

lifetime of an asset. These metrics are applicable to both single generating units (e.g., a wind turbine) or a plant (e.g., a wind

farm), although the present work focuses only on the former case.
:::
For

::::::
metrics

:::
not

:::::
based

:::
on

::::
cost,

:::::
value

::
or

:::
net

:::::
value,

:::
the

::::::
reader125

:
is
:::::::
referred

::
to

:::::::::::::::::::::::::::::::::::::
Ueckerdt et al. (2013); Simpson et al. (2020)

:::
and

::::::::::::::
Mai et al. (2021).

:
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2.1 Economic perspective

The economic perspective results from an actor-centric point of view, e.g. the investor or the consumer, where the focus is

primarily driven by short-term economic forces, such as revenue or out-of-pocket expenditure.

2.1.1 Levelized Cost of Energy (LCOE)130

LCOE is an estimate of the average net-present cost of each unit of energy produced over the lifetime of a generating asset.

As such, this metric is widely used to assess the competitiveness of different energy technologies. LCOE is formally defined

as the ratio of the discounted lifetime costs with
:::
and the discounted generated energy (Aldersey-Williams and Rubert, 2019;

Duffy et al., 2020), i.e.

LCOE
[
e

MWh

]
=

Economic costs
Energy production

=

∑Y
y=1

CCAPEX
y +COPEX

y

(1+d)y∑Y
y=1

Ey

(1+d)y

, (1)135

where the subscript (·)y indicates the y-th year and Y is the lifetime in years, while CCAPEX are the capital costs, COPEX are

the operating and maintenance costs, E is the asset-generated energy, and finally d is the discount rate.

Capital costs include all expenditures incurred to manufacture the asset, while the operating and maintenance costs include

all expenditures necessary for running the asset and maintaining it in working conditions (Joskow, 2011; Mai et al., 2021).

The discount rate is the interest rate used to determine the present value of future cash flows and, therefore, expresses the time140

value of money. The discount rate is often affected by significant uncertainties, which in turn may impact LCOE.

2.1.2 Levelized Value of Energy (LVOE)

LVOE is an estimate of the average net-present economic value of each unit of energy produced over the lifetime of a generating

asset (Mai et al., 2021). Similarly to LCOE, LVOE is defined as

LVOE
[
e

MWh

]
=

Economic value
Energy production

=

∑Y
y=1

Vy

(1+d)y∑Y
y=1

Ey

(1+d)y

. (2)145

The total revenue Vy generated by the asset in the y-th year is computed as a function of time t as

Vy =

Ty∫
t=0

p(t)P (t)dt, (3)

where Ty is the year duration, p(t) is the spot market price in e/MWh, and P (t) is the power produced by the unit at time

instant t. Alternatively, the same quantity can be estimated as a function of wind speed U as

Vy = Ty

Uo∫
Ui

py(U)P (U)Wy(U)dU, (4)150

5



where Ui and Uo are respectively the cut-in and cut-out wind speeds, P (U) is the turbine power curve, while py(U) and

Wy(U) are respectively the spot market price of energy and the Weibull probability density function at the site where the asset

is installed in the year y.

2.1.3 Net Value of Energy (NVOE)

NVOE is defined as the difference between LVOE and LCOE (Mai et al., 2021), i.e.155

NVOE
[
e

MWh

]
=

Economic value−Economic cost
Energy production

= LVOE−LCOE. (5)

2.2 Environmental perspective

The environmental perspective results from a societal point of view, in which the goal is no longer to achieve the cheapest

energy in the short term, but rather the most sustainable one in the long term. The metrics presented here mirror the ones

defined in the previous section. However, instead of considering the economic perspective, these novel metrics focus on the160

environmental impactand are ,
::::::
which

:
is
:
quantified in terms of CO2-equivalent emissions.

As money is attributed a time value through the discount rate, even impacts could in principle be discounted, because

emissions produced/displaced today might have a different effect from the ones of tomorrow. Indeed, time horizons are included

in the estimation of the Global Warming Potential (GWP) that is used to convert the effects of different gases into equivalent

CO2 climate impacts (IPCC, 2007). However, discount rates for CO2-equivalent emissions are at present not available, and165

would probably be subjected to high uncertainties; therefore, discount rates were not considered in the definition of the
::::
these

environmental-based metrics.

2.2.1 Impact of Energy (IOE)

IOE represents an estimate of the average environmental cost of each unit of energy produced over the lifetime of a generating

asset:170

IOE
[

kg CO2eq
MWh

]
=

Environmental cost
Energy production

=

∑M
m=1Qm∑Y
y=1Ey

, (6)

where Qm is the CO2-equivalent GHG emissions during life
:::::::
life-cycle

:
stage m, and M is the total number of life

::::::::
life-cycle

stages of the asset, from the extraction of the raw materials all the way to EOL treatments. IOE is the environmental counterpart

of LCOE, with the difference that decommissioning and EOL costs are generally not considered in the definition of the latter.

Similar definitions of IOE have been given elsewhere using different names, as for example Carbon Footprint
:::
CO2::::::::

Intensity175

(Hauschild et al., 2018)
::::::::::::::::::::::::
(Tremeac and Meunier, 2009), Emission Factor (Koffi et al., 2017), CO2 Intensity

:::::::
Carbon

::::::::
Footprint

(Tremeac and Meunier, 2009)
:::::::::::::::::::
(Hauschild et al., 2018), and Global Warming Potential (Ozoemena et al., 2018).
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2.2.2 Environmental Value of Energy (EVOE)

EVOE is the counterpart of LVOE, and it is defined as the average environmental value per unit of energy generated by an asset

over its lifetime:180

EVOE
[

kg CO2eq
MWh

]
=

Environmental value
Energy production

=

∑Y
y=1V

env
y∑Y

y=1Ey

. (7)

The environmental value is quantified here in terms of the CO2-equivalent emissions that are displaced in the grid by the

energy-producing asset. At time t, the energy mix is characterized by Gt generating technologies, each producing a certain

power Pg(t). The activation of a renewable generating unit that produces a power output P (t) displaces some output P dis
g (t)

of the g-th generating technology, such that P (t) =
∑Gt

g=1P
dis
g (t). Despite the activation of a renewable generating unit, the185

time-dependent total power in the grid remains the same, as it is driven by demand. As a consequence, an environmental value

V env
y is generated over the time duration Ty , which is equal to the amount of displaced emissions, i.e.

V env
y =

Ty∫
t=0

Gt∑
g=1

fg(t)P
dis
g (t)dt. (8)

The emission factor fg quantifies the environmental impact of each generating technology in the mix. This quantity depends

on time, because it is related to the operational conditions of the generating technology. For instance, operating a fossil-fueled190

plant at partial load has an efficiency penalty that increases the fuel consumption and the GHG emissions per unit of generated

energy (Silver-Evans et al., 2012; Thomson et al., 2017). For simplicity, here each given technology g is associated with an

average time-independent emission factor defined as

fg =
Qg

Eg
, (9)

where Qg indicates the average CO2-equivalent GHG emissions caused by the production of an amount of energy Eg .195

The actual displacement of grid emissions is a complex time-dependent phenomenon (Hawkes, 2010; Thomson et al., 2017;

Boeing et al., 2019). In fact, the only emissions that will be displaced are the ones of generators operating on the margin, i.e. the

last generators needed to meet demand at a given time that are capable of rapidly adapting their power generation in response

to a change in demand (Silver-Evans et al., 2012; Seckinger, 2021). Therefore, the actual displacement of grid emissions

is determined by these marginal generators, which in turn depend on time-variable factors such as power demand, resource200

availability (e.g., wind speed and solar irradiation), or availability of other generation technologies. For simplicity, here it is

assumed that all generating technologies are displaced equally, i.e. P dis
g (t)/Pg(t) = P (t)/

∑Gt

g=1Pg(t), for each generating

technology g at each time t. This is a conservative approach that is generally used to estimate emission displacements, and

which has been shown to underestimate the real displacement potential of wind energy (Hawkes, 2010; Silver-Evans et al.,

2012; Thomson et al., 2017). Under this hypothesis, the environmental value writes205

V env
y =

Ty∫
t=0

∑Gt

g=1 fgPg(t)∑Gt

g=1Pg(t)
P (t)dt=

Ty∫
t=0

fgrid(t)P (t)dt. (10)
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The expression on the right hand side of the equation considers the whole grid as one aggregated generating unit, characterized

by one equivalent time-dependent system-average emission factor fgrid(t), which reflects the composition of the energy mix at

each time instant (Thomson et al., 2017; Seckinger, 2021).

As for economic value Vy , also environmental value V env
y can be estimated as a function of wind speed, instead of time, by210

the following expression

V env
y = Ty

Uo∫
Ui

fgrid(U)P (U)Wy(U)dU. (11)

2.2.3 Net Environmental Value of Energy (NEVOE)

NEVOE is the counterpart of the economic metric NVOE, and it is defined as the difference between the environmental value

of energy and the impact of energy, i.e.215

NEVOE
[

kg CO2eq
MWh

]
=

Environmental value−Environmental cost
Energy production

= EVOE− IOE. (12)

2.2.4 Future economic Societal Savings (FSS)

FSS estimates the future societal savings enabled by the displacement of GHG emissions, and writes

FSS
[
e

MWh

]
= SCC ·NEVOE. (13)

The societal cost of carbon (SCC) is the present discounted monetary value of the future damage caused to the environment by220

one metric ton increase in CO2-equivalent emissions (National Academies of Sciences, Engineering and Medicine, 2017). The

quantification of SCC is clearly not a straightforward task. Indeed, the literature reports a large range of values (Ricke et al.,

2018; Kikstra et al., 2021), mostly due to different assumptions on climate sensitivity, economic and non-economic impacts,

and response lags, among others (IPCC, 2007). Additionally, NEVOE depends on EVOE that, as previously argued, is based

on the simplifying assumption that all generation technologies are equally displaced by wind power; since this is hardly exactly225

true in practice, further uncertainties are introduced in the estimation of FSS.

3 Methods

This section describes the eco-conscious design of wind turbines, formulated as a constrained multi-objective optimization

problem based on a number of interconnected underlying models. Figure 1 shows a schematic representation of the workflow

and of its main components.230

3.1 Energy model

The energy Ey produced by a wind turbine at a specific location in the year y is computed as

Ey = fafpfwTy

Uo∫
Ui

P (U)Wy(U)dU. (14)
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Figure 1. Schematic illustration of the workflow for the eco-conscious multi-objective design optimization of wind turbines. Rounded squares

represent variables, squares are models and trapezoids are merit functions.

Three correction coefficients are included in the formula. The availability factor fa accounts for failures, maintenance, and

curtailment time, and it is set to the typical value of 0.98 (Vestas, 2011, 2013a, b; Pfaffel et al., 2017). The performance factor235

fp considers different sources of losses due to turbulence, gusts, wakes, blade soiling/erosion, etc., and is set to the value of

0.65, which is the lower limit of the range indicated in Lantz et al. (2017). The wind factor fw accounts for possible deviations

of the wind resource from the Weibull distribution, for example due to yearly variability (Lantz et al., 2017). Since the present

analysis is based on actual historical data, which already includes any variability of the resource, fw is set to the value of one.

3.2 Mass model240

The mass estimation model is composed of three sub-models. The mass of the various turbine components is based on the

2017 NREL mass model (NREL, 2021), which is an updated version of the 2006 cost and scaling model (Fingersh et al.,

2006).
:::
The

:::::
inputs

::
of

:::
the

:::::
mass

::::::
model

:::
are

::::
rated

::::::
power,

:::
hub

::::::
height

:::
and

:::::
rotor

::::::::
diameter.

:::
The

:::::::
gearbox

:::::
mass

::
is

::::::::
estimated

:::::
based

:::
on

::
the

:::::::::
maximum

::::::::
generator

::::::
torque,

::::::
which

:::
was

:::::::::
computed

::::::::
assuming

:
a
:::::
fixed

::::::::
maximum

:::
tip

:::::
speed

::
of

:::
80

:::::
ms−1.

:
Based on the mass of

the single components, a material breakdown model defines a bill of materials. This model is based on information sourced245

from several references (Rydh et al., 2004; Vestas, 2011, 2013a, b; Demir and Taskin, 2013; Haapala and Prempreeda, 2014;

Ozoemena et al., 2018), and includes 15 different material types: glass fiber, carbon fiber, epoxy resin, sandwich foam, alloyed

steel, unalloyed steel, galvanized steel, copper, aluminium, PVC and other plastics, rubber, paint and coating, Neodymium

permanent magnet (NdFeB), electronics, and concrete. Finally, a waste factor model estimates the quantity of material that is

9



wasted during the different stages of the component lifetime. Waste factors for fiberglass, epoxy resin, foam, rubber, paint and250

coating are modeled according to Bortolotti et al. (2019), while a factor of 5% is considered for the other materials.

The use of mass and scaling models is one of the various approximations of the present approach. More precise estimates

of masses and bills of materials would clearly be possible by using detailed sizing procedures (Bortolotti et al., 2016; NREL,

2021). This level of complication and computational cost was however not deemed necessary for capturing general trends,

which is the main goal here.255

3.3 LCA model

LCA is a normed scientific methodology to exhaustively assess the environmental impacts of a product or a service, over its

entire lifetime from cradle to grave. Here LCA is performed by an in-house-developed literature-sourced model that follows

the environmental management standards of the International Organization for Standardization (ISO), according to ISO 14040

and ISO 14044 (Wolf et al., 2012; Hauschild et al., 2018).260

The objective of the LCA model is to assess the complete life-cycle GHG emissions associated with the production of one

functional unit, which in this case is 1 kWh of electricity. Emissions are broken down in terms of life-cycle stages, components

and materials. Only climate-change-related environmental impacts are considered, and other effects such as human toxicity,

eco-toxicity, acidification or resource depletion are excluded.

The model is formulated in a parametric way, i.e it is not specific to a given wind turbine model
::::
type, and it is generally265

applicable to contemporary onshore variable-speed horizontal-axis technology. It is assumed that the turbine is installed in

Europe between
:::
the

::::
years

:
2015 and 2025, and has a lifetime of 20 years. The machine is composed by rotor, nacelle, drivetrain,

tower and foundations, and the elements within these components (e.g., the generator); connection to the grid, storage or other

equipment and devices are outside of the scope of this model.

The processes involved in each one of the life-cycle stages are modeled based on typical scenarios from Rydh et al. (2004);270

Vestas (2011, 2013a, b); Demir and Taskin (2013); Haapala and Prempreeda (2014); Ozoemena et al. (2018), among others.

Emission factors are based on Ecoinvent IPCC 2013 (Myhre et al., 2013; Ecoinvent, 2019; Bourgault, 2019).

This LCA method considers the atmospheric emissions of all gases that are recognized to have a greenhouse effect, including

CO2, CH4, N2O and fluorinated gases. For each one of these gases, the mass of CO2 that would have the same greenhouse

effect is defined and used as a measure of impact (Myhre et al., 2013; Bourgault, 2019).275

3.3.1 Life-cycle stages

This section briefly defines the life-stages
::::::::
life-cycle

:::::
stages

:
considered in the present work, and the assumptions taken in each

of them. For further details, the reader is referred to Guilloré et al. (2022).

– Life-cycle stage 1: Raw material extraction and processing. This stage accounts for the environmental impact upstream

of the purchasing of a unit of ready-to-use material for manufacturing. Raw material extraction and processing emissions280
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are modelled according to Ecoinvent (2019).
:
,
::::::::
assuming

::::
that

::
all

::::::::
materials

:::::
derive

:::::
from

:::::::
primary

::::::
sources

::
–

:::
i.e.

::::
there

::
is
:::
no

:::::::
recycled

:::::::
content.

– Life-cycle stage 2: Transportation of raw materials to manufacturing sites. This stage considers both direct emissions

caused by the burning of transportation fuel, and indirect emissions produced in the life-cycle of the fuel from well to

tank. Indirect emissions from the production of the transportation technology itself are also included. Based on Vestas285

(2011, 2013a, b), it is assumed that all materials are transported over a distance of 600 km to the manufacturing site,

except for concrete, which is only transported over a distance of 50 km. Emission factors for transportation are considered

from Ecoinvent (2019), assuming that materials are transported by freights and lorries heavier than 32 t, with EURO4

exhaust emissions (Spielmann et al., 2007).

– Life-cycle stage 3: Wind turbine component manufacturing. This stage considers the environmental impact of the energy290

consumed for the transformation of the materials into wind turbine components. The
:::::
model

:::::::
includes

:::
the

:
upstream envi-

ronmental impact of the energy consumed
::::::::
consumed

::::::
energy – which is generally electricity from the grid, whose impact

::
in

:::
turn

:
depends on the specific electricity mix – is also considered. Manufacturing emissions are obtained from several

sources (Song et al., 2009; Hill and Norton, 2018; Ecoinvent, 2019).

– Life-cycle stage 4: Transportation of the components to the wind plant site. For this stage, the same assumptions on295

transportation vehicles of the life-cycle stage 2 are taken, adding ship transport. Assumptions on transportation distances

are modeled according to Vestas (2011, 2013a, b).

– Life-cycle stage 5: Assembly and installation of the wind turbine. This life-cycle stage considers the direct and indirect

emissions from the assembly and installation of the different wind turbine components. It is assumed that a hydraulic

crane is required for 16 hours of work (Rydh et al., 2004; Ozoemena et al., 2018).300

– Life-cycle stage 6: Operation and maintenance (O&M). This stage considers different impacts related to operation and

maintenance, and is defined according to Rydh et al. (2004); Vestas (2011, 2013a, b); Demir and Taskin (2013); Haa-

pala and Prempreeda (2014); Ozoemena et al. (2018). The GHG emitted during O&M are determined as the sum of the

emissions related to the turbine lubricant oil change, to the use of an inspection van and maintenance crane, and related

to the replacement of components, as detailed next. :
:

305

– Lubricant Oil. The oil employed for the regular change of gearbox oil and lubricant is considered. Assumptions are

taken according to Rydh et al. (2004), Haapala and Prempreeda (2014) and Ozoemena et al. (2018).

– Inspection van. It is assumed that a roundtrip from the maintenance base is required every 6 months (Ozoe-

mena et al., 2018) with a diesel passenger car of emission category EURO4 (Spielmann et al., 2007).

– Maintenance Crane. It is considered that heavy crane machinery is required for a total of 8 hours over the turbine310

lifetime (Ozoemena et al., 2018).
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– Replacements of components. All components may be subjected to failures, and generally several parts need to be

replaced over the lifetime of a wind turbine. Failure rates are modeled according to Tremeac and Meunier (2009);

Demir and Taskin (2013); Haapala and Prempreeda (2014); Ozoemena et al. (2018). Life-cycle stages 1 to 5 are

used to estimate the emissions resulting from the spare components that need to be replaced. Additionally, the315

impact of the transport of the replacement components to the site is doubled, to account for the trip back with the

defect replaced components.

– Life-cycle stage 7: Decommission and transportation of parts. This life-cycle stage considers 16 hours of crane work, as

described in Rydh et al. (2004) and Ozoemena et al. (2018). The same assumptions taken for life-cycle stage 4 are used

also here to estimate the emissions caused by the transportation of the parts to their EOL treatment centers.320

– Life-cycle stage 8: EOL treatment. The EOL scenario is a key stage in the life-cycle of a wind turbine. Three treatments

are considered in this work: recycling, incineration, and landfilling. In accordance with ISO 14044 (Wolf et al., 2012;

Hauschild et al., 2018), the approach of closed-loop material cycle is considered, where full credit is given to the emis-

sions of life-cycle stage 1 linked to the recycled materials. Recycled materials are therefore
:::
here

:
considered to have a

negative impact, and thus represent environmental benefits. Metals – steel, copper, and aluminium – have high recycla-325

bility rates, as shown in Fig. 2 (Tremeac and Meunier, 2009; Vestas, 2011, 2013a, b; Haapala and Prempreeda, 2014;

Schmid, 2020). On the other hand, there is no mature technology yet for the recycling of thermoset glass-fiber reinforced

polymers (GFRP), which are currently incinerated or landfilled (Schmid, 2020; Beauson et al., 2022), depending on

the legislation of the country. A representative scenario of 50% incineration and 50% landfilling is assumed here, as

described in Vestas (2011, 2013a, b).
:
. The overall EOL impact is the sum of the recycling, incineration and landfilling330

environmental impacts. This quantity can either be positive or negative, depending on whether or not the recycling bene-

fits outweigh the incineration and landfilling environmental impacts.
:::::::
Whether

::::
blade

:::::
EOL

::
is

::
by

::::::::::
incineration

::
or

:::::::::
landfilling

:::::::
depends

::
on

:::
the

:::::::::
legislation

::
of

:::
the

::::::
country,

::::::
which

:
is
:::
far

::::
from

:::::::
uniform

::::
even

::::::
across

:::::::
Europe;

::
for

::::::::
example,

:::::
some

:::::::
countries

::::
like

:::::::
Germany

:::
or

:::
the

::::::::::
Netherlands

:::::::
prohibit

::
the

:::::::::
landfilling

::
of

::::::::::
composites

::::::::
altogether

:::::::::::::::::::::::::::::::::::
(WindEurope, 2020; Beauson et al., 2022)

:
.
:::
On

:::
the

:::::::
contrary,

::::
the

:::::::::
landfilling

::
of

:::::
wind

::::::
turbine

::::::
blades

::
is

::::::::::
widespread

::
in

:::
the

::::
US,

:::
due

:::
to

::
its

::::
low

::::
cost

:::
and

:::
the

::::
lack

:::
of335

::::::
specific

:::::::::
legislation

::::
that

:::::::
prohibits

::
it
::::::::::::::::::::::::::::::::::::::::::
(Beauson et al., 2022; Ramirez-Tejeda et al., 2017).

:::
As

:::
the

::::::
present

:::::
study

::
is
:::::::
located

::
in

::::::::
Germany,

::
a

:::::::
scenario

::
of

::::::
100%

::::::::::
incineration

::
is
:::::
used

::::
here.

:::::::
Clearly,

::::
this

::
is

:
a
::::::::::::

simplification
:::
of

:
a
:::::
much

:::::
more

::::::::
complex

::::
EOL

::::::
reality,

:::::::
because

:::::
other

::::::::
solutions

::
–

::::
such

:::
as

::::::
cement

::::::::::::
co-processing

::
–

:::
are

::::
used

::
in
:::::::::

Germany
:::
for

:::
the

::::
EOL

:::
of

::::::
blades

::::::::::::::::::::::::::::::::::
(WindEurope, 2020; Beauson et al., 2022).

:

3.3.2 Validation of the LCA model340

The LCA model was validated against results published by Schleisner (2000); Tremeac and Meunier (2009); Vestas (2011, 2013a, b);

Al-Behadili and El-Osta (2015); Ozoemena et al. (2018), as shown in Fig. 3.

In general, there is a good match between previous studies and the present model. Differences arise due to non identical

hypotheses and assumptions , for instance in life-cycle scenarios, bill of materials, or energy production. Indeed,
::::::
energy
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Figure 2. EOL treatment rates (by mass) for various materials types.
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Figure 3. Comparison of the environmental impact obtained with the present LCA model and with results sourced from the literature.

:::::::::
production,

:::
or

:::::
other

::::::
aspects

:::
of

:::
the

:::::::
models.

::::
For

::::::::
example,

::::::::::::::::::::
Vestas (2011, 2013a, b)

:::::::
consider

::
an

:::::::
average

:::::
EOL

:::::::::
treatment

:::
for345

:::::::::
composites

::
of

::::
50%

::::::::::
incineration

::::
and

::::
50%

:::::::::
landfilling,

:::::
while

:
a
:::::::
scenario

::
of

:::::
100%

::::::::::
incineration

::
is

:::::::
assumed

::
in
:::
the

:::::::
present

:::::
study;

:::
the

::::
study

::
of

:::::::::::::::::::::::::::
Al-Behadili and El-Osta (2015)

:
is

::::::
located

::
in

:::::
Lybia,

:::::
while

:::
the

::::::
present

:::
one

::
in
:::::::
Europe;

::::::::::
additionally,

::::::::::::::::::::
Ozoemena et al. (2018)

::::
apply

::
a
:::::::
recycled

::::::
content

::::::::
approach

::::
and

:::::::
therefore

:::
do

:::
not

:::::::
consider

:::
any

::::::::
recycling

:::::
credit

::
at
::::
end

::
of

:::
life.

:::::::::::
Additionally,

:
several publi-

cations do not thoroughly detail the assumptions taken
:::
they

:::
are

:::::
based

:::
on, or the processes considered in the different life-stage

cycles, which hinders an exact comparison.350

3.4 Cost model

Costs are based on the 2015 NREL cost model (NREL, 2021), converted to 2017e values. The model estimates the initial

capital costs and O&M costs. Initial capital costs include rotor, nacelle, drivetrain, tower and foundations, as well as balance

of station (BOS) costs, including transportation, assembly and installation. Additional BOS-related costs such as engineering,
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permitting, and grid connection are excluded, as their environmental impact is not considered in the present LCA model.355

Annual operating expenses include O&M costs, whereas land lease costs are not considered.

3.5 Value estimation model

This model estimates the economic and environmental value of a wind turbine, for a specific location and a specific time frame,

as illustrated in Fig. 4.

Figure 4. Workflow of the value estimation model of Fig. 1. Rounded squares represent variables, squares are models, rhombuses are data,

and trapezoids are merit functions
::::::
metrics.

The estimation of economic value is based on historical data, using Eq. (4). Time series of spot market price were correlated360

with time series of wind speed at a specific location and hub height, resulting in the price-wind model py(U). Similarly, the

environmental value was estimated with Eq. (11), where the grid average emission factor fgrid(U) was computed based on the

energy mix time history of the country, or region, where the turbine is located. The average emission factor of each generation

technology in the mix was obtained from Ecoinvent (2019), and only considers operational emissions (Thomson et al., 2017;

Boeing et al., 2019). Wind speed time histories were adjusted to the turbine hub height based on the site mean shear, and
::::
were365

used to estimate the Weibull distribution, spot market price, and
:::
and

::
to

::::::
adjust

::
the

::::::::::
price-wind

:::::
py(U)

::::
and grid-average emission

factor
::::::
fgrid(U)

::::::
factors.

3.6 Optimal design problems

In this work two different design problems are considered, based on either a single- or a two- objective constrained optimization.

In both cases, the problem is formulated as:370

min
p

J(p), (15a)

such that: c(p)≤ 0, (15b)

where J is the cost function, chosen among the design metrics of Sect. 2, p= (D,H) are the design variables, with D the

rotor diameter and H the hub height. Finally, c are inequality constraints that enforce desired design conditions.

14



The single-objective optimization problem is solved with a sequential quadratic programming algorithm, in which gradients375

are computed by means of finite differences (Mathworks, 2019). The multi-objective optimization problem is solved with a

non-dominating sorting genetic algorithm (NSGA-II) (Seshadri, 2020).

This simplified design problem is termed preliminary, in the sense that it only determines macroscopic parameters of the

machine. Based on the results of this preliminary sizing, standard detailed design procedures should be used to dimension all

components and systems
:::::::::::::::::::
(Bortolotti et al., 2016).380

4 Case study: cost-driven and eco-conscious designs of a wind turbine for Germany

Trade-offs were investigated between an economic and an environmental point of view, by analyzing the characteristics of the

resulting optimal turbines with respect to a standard LCOE-driven baseline assumed as reference. The study was performed

with the methods described in the previous sections, where the cost model was tuned to represent the situation in Germany

according to Deutsche WindGuard (2018) and Duffy et al. (2020).385

4.1 Baseline description

The baseline is chosen to represent a recent LCOE-driven industrial product, and corresponds to a wind class IIA machine

with a rated power of 3 MW, a rotor diameter of 115.7 m, a hub height of 92 m, and a lifetime of 20 years. These char-

acteristics make the baseline loosely resemble one of the several E-115/3.0 MW models (Enercon, 2021) that, according to

Deutsche WindGuard (2018), was the most installed turbine in Germany in 2016, 2017 and 2018 – the years considered in this390

study.
:::::::::
According

::
to

:::
the

::::::
adopted

:::::
mass

::::::
models

::::
(see

:::::
§3.2),

:::
the

::::
rotor

:::::
blade

:::
has

::
a

::::
mass

::
of

:::
13

:
t
:::
and

:
a
:::::
steel

:::::
tower

::
of

:::
190

::
t.

:::
The

:::::
main

:::
key

::::
cost

:::::
items

::
of

:::
the

:::::::
baseline

:::::::
turbine,

:::::
based

:::
on

:::
the

::::
cost

:::::
model

:::::::::
described

::
in

::::
§3.4

:::
and

::::::
shown

::
in
:::::

Table
:::

1,
:::
are

::
in

:::
line

:::::
with

:::
the

:::::
values

::::::::
provided

::
by

:::::::::::::::::::::::::
Deutsche WindGuard (2018)

:::
and

::::::::::::::::
Stehly et al. (2017).

:::::::
Slightly

:::::
lower

::::::::
operating

:::::::::::
expenditures

:::
are

::::::::
reported

::
by

::::::::::::::::
Stehly et al. (2017),

:::::::
because

::
of

:::
the

::::::::
different

:::::::
location

::
of

:::
the

::::
study

::::::::::::::::
(Duffy et al., 2020)

:
.

This wind turbine has an IOE of 11.83
:::::
12.37 kg CO2eq/MWh and an LCOE of 35.6

::::
38.6e/MWh, according to the models395

of §3.4. Given the typical large uncertainties in the discount rate, d= 0 was assumed in Eq. (1).

Figure 5 shows a breakdown of the environmental cost of the wind turbine by its principal components. The figure reports

both absolute emissions per unit of component mass (green bars), as well as relative emissions with respect to the overall impact

produced by the wind turbine (blue bars)
:
,
::
as

::::
well

::
as

:::::::
absolute

:::::::::
emissions

:::
per

::::
unit

::
of

:::::::::
component

:::::
mass

::::::
(green

::::
bars). Tower and

foundations play the largest role in the overall IOE, each one accounting for about 20% of the total. The high environmental400

impact of the foundations is due to the significant amount of concrete that they require, and the negative effects caused by

landfilling at the end of life. The tower, on the other hand, is made of steel, a material with a high recyclability rate (see Fig. 2).

Notwithstanding the resulting emissions credits at the end of life, the tower still has a significant environmental impact because

of its very large mass. Blades also present a large environmental impact, because of their reduced recyclability. Electronics

have the highest impact per unit of material, but a small overall contribution due to their reduced mass.405
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Table 1.
:::::::::
Comparison

::
of

::::
some

:::
key

::::
cost

::::
items

::
of

:::
the

::::::
baseline

::::::
turbine

:::
with

:::::
values

::::::
sourced

::::
from

:::
the

:::::::
literature.

::::::
Baseline

:::::::::::::::::::::
Deutsche WindGuard (2018)

::::::::::::::
Stehly et al. (2017)

::::
Rated

:::::
power [

:::
MW]

:
3
:

2
::

to
::
3

:::
2.32

::::::
Diameter

:
[
:

m]
::::
115.7

:
-

::
113

:

:::
Hub

:::::
height

:
[
::
m]

::
92

:::
less

:::
than

:::
100

: ::
86

::::
Cost [e

:::
/kW]

:::
Cost

:
[e

:::
/kW]

:::
Cost [e

:::
/kW]

::::
Rotor

: :::
274

:
-

::
276

:

:::::::
Drivetrain

::
&

::::::
Nacelle

:::
400

:
-

::
469

:

:::::
Tower

:::
192

:
-

::
206

:

::::::
Turbine

:::::
capital

::::::::::
expenditures

:::
866

:::
1000

: ::
951

:

::::::
Balance

::
of

:::::
station

:::
343

:::
331

::
313

:

:::::::
Operating

::::::::::
expenditures

::
54

::
52

::
38
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Hub

GB+Shaft

Generator

Electro
nics
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Foundatio
ns
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Figure 5. Environmental impact of the life-cycle of each component of the baseline wind turbine, expressed in terms of absolute emissions

per unit of component mass (green bars), and relative percent emissions with respect to the overall impact of the machine (blue bars)
:
,
:::
and

::::::
absolute

::::::::
emissions

::
per

::::
unit

:
of
:::::::::

component
::::
mass

:::::
(green

::::
bars).
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4.2 Cost-driven design

The baseline turbine was then optimized from an economic-environmental cost perspective. Only hub height and rotor diameter

are free design variables, whereas rated power is held fixed to the baseline value. The bi-objective design problem is expressed

by Eq. (15), where J considers economic cost by LCOE and environmental cost by IOE. The design constraints of Eq. (15b)

are set to express conditions on height/diameter ratio and on the specific power of the turbine:410

0.5<
H

D
< 1, (16a)

100MWm−2 <
Pr

A
< 350MWm−2, (16b)

where Pr is the rated power, and A= πD2/4 is the rotor swept area. These same inequality constrains were used also in all

the following design problems.

Figure 6a shows the resulting Pareto front of optimal non-dominating solutions. The corresponding optimal rotor diameters415

and hub heights of the Pareto front designs are shown in Fig. 6b.

Figure 6. Pareto front of IOE vs. LCOE (a). Rotor diameter and hub height of the Pareto optimal designs (b). Differences are expressed with

respect to the baseline configuration, whose dimensions are given
::::::
indicated

:
by black ▲ (diameter) and ⋆ (hub height) symbols.

Results indicate that a decrease in IOE can be achieved by reducing the overall size of the turbine, both in terms of rotor

diameter and hub height; since rated power is held fixed, the resulting turbines have an increased specific power Pr/A. A

maximum reduction in IOE of about 8% is achieved at the expense of an increase of about 5% in LCOE.

However, what is
::
it

:
is
:::::
even more interesting to observe is that the curve is very steep close to the point of minimum LCOE.420

This means that a significant reduction in IOE can be achieved with marginal increments in LCOE. For instance, a turbine with
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a 110 m diameter and a 75 m hub height presents an LCOE that is only 1% higher than the baseline, while at the same time

achieving
:
it
::::::::
achieves an IOE reduction of about 5%. This result is achieved

:::::::
obtained by the design of smaller rotors and shorter

towers that, although imply a somewhat reduced power capture, have lower environmental costs.

4.3 Value-driven design425

The previous section showed that, from a cost perspective, there is room to reduce the impact on the environment if one is

willing to accept some increase in the cost of energy from wind. However, cost by itself does not capture the full complexity

of the problem, and further insight can be obtained by including also value in the analysis.

To this end, the turbine was optimized considering economic and environmental value, instead of cost. Two different loca-

tions in Germany were selected: one in the north of the country (labelled LN in the following), characterized by very good430

wind conditions, and a second one in the south (labelled LS), with lower average wind speeds. The site wind characteristics

are more precisely shown by the two Weibull distributions reported in Fig. 7 (NEWA, 2021).
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Figure 7. Weibull distributions at the northern and southern German locations, at 50 m height above ground.

The economic and environmental values were estimated with the model described in §3.5. Day-ahead spot market price and

energy mix time series were collected from the SMARD database (SMARD, 2020), and completed with wind speed time series

obtained from NEWA (2021), considering the years 2016, 2017 and 2018. All quantities were sorted into 50 wind speed bins,435

each containing the same number of data points. The resulting interpolating curves were
::
A

::::
trend

:::::
curve

:::
of

:::
cost

:::
vs.

:::::
wind

:::::
speed

:::
was

:::::::
obtained

:::::
from

:::
the

:::::
mean

:::::
values

::
of

::::
each

::::
bin,

:::
and

:
extrapolated above the last bin upper boundary all the way to cut-out wind

speed.

Figure 8 and 9 respectively show the histograms
:::::
curves of spot market price and grid GHG emissions vs. wind speed at 50 m

height at the LN and LS sites , for the three considered years.
::
To

::::::
reduce

::::::
clutter,

:::
the

::::::
figures

::::
only

:::::
show

::
9

::
of

:::
the

:::
50

:::
bins

:::::
used440

::
to

:::::
create

:::
the

:::::
curve.

:
For both locations, the spot market price and grid GHG emissions exhibit a decreasing trend with respect

to wind speed. In fact, at low wind speeds there is a large amount of energy from coal-fired power stations in the energy mix,

pushing both the price and grid GHG emissions up. With higher wind speeds, the amount of wind energy in the grid increases,
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so that more expensive and polluting energy sources are displaced. This is clearly a partial view of the behavior of a very

complex system, which does not only depend on wind speed.445

Figure 8. Spot market price (a) and grid GHG emissions (b) vs. wind speed at 50 m for LN (site in the north of Germany).
::
In

:::
the

:::::::
boxplots,

::
the

::::::
central

::
red

:::::
mark

::::::
indicates

:::
the

::::::
median,

:::
and

:::
the

::::::
bottom

:::
and

::
top

::::
blue

:::::
edges

::
of

::
the

:::
box

:::::::
indicate

::
the

::::
25th

:::
and

::::
75th

::::::::
percentiles,

::::::::::
respectively.

:::::::
Whiskers

:::::
extend

::
to

::
the

::::
most

:::::::
extreme

:::
data

:::::
points

:::
not

::::::::
considered

::
as

::::::
outliers,

:::::::
whereas

:::::
outliers

:::
are

:::::
plotted

::::::::::
individually

::::
using

:
a
:::
red

:::
‘+’

::::::
symbol.

:::::
Above

::::
15.52

:::::
ms−1,

:::
the

::::
curve

::
is

::::::::::
extrapolated.

Figure 9. Spot market price (a) and grid GHG emissions (b) vs. wind speed at 50 m for LS (site in the south of Germany).
::

The
::::
data

:
is
::::::
plotted

:
as
::

in
::::
Fig.

:
8,
::::

with
:::
the

::::::::::
extrapolation

::::::
starting

:
at
::::
11.6

:::::
ms−1.

4.3.1 Single-objective optimization

First, a single-objective optimization was run for each metric at the two locations in order to analyze the behavior of the optimal

turbine design characteristics. The resulting diameters are shown in Fig. 10a, while the hub heights are given in Fig. 10b. The
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figures of merit are organized from left to right as follows: the first two are cost-based metrics (LCOE and IOE), the next two

are value-based metrics (LVOE and EVOE), and finally the last two are net-value-based metrics that consider both cost and450

value (NVOE and NEVOE).

Figure 10. Optimal diameters (a) and hub heights (b) for each single objective function, for the two locations. Cost-based metrics: LCOE,

IOE; value-based metrics: LVOE, EVOE; net-value-based metrics: NVOE, NEVOE.

Analyzing first the cost-based perspective, results indicate that, as already observed in §4.2, a turbine designed for minimum

IOE has a smaller rotor and a shorter tower than a turbine designed for minimum LCOE, on account of their large environmental

impact. For both metrics, the southern location LS requires a turbine with a larger rotor and a taller tower than the northern

location, due to lower typical wind speeds.455

From a value point of view, no differences in rotor diameter and hub height are found between the economic (LVOE) and the

environmental (EVOE) perspectives. In fact, for both metrics, the optimal rotor and hub height are as large as possible, hitting

the lower bound for specific power. This can be explained by noticing that, since low wind speeds are associated with larger

economic and environmental values (see Figs. 8 and 9), optimal economic/environmental value-driven designs tend to produce

as much as possible at low wind speeds. This can be achieved by minimizing the extent of the partial load region (region II),460

which is obtained by reducing the rated wind speed Vr =
3
√
2Pr/ρACPmax

, where ρ is the air density and CPmax
the maximum

power coefficient of the rotor. A shown by the formula, since CPmax
is limited by physics, for given ambient conditions ρ, Vr

decreases for smaller specific powers Pr/A. These results are in line with similar studies that have shown how low specific

power
::::::::::::
specific-power

:
turbines have a higher economic value (Hirth and Mueller, 2016; Swisher et al., 2022).

Finally, both NVOE and NEVOE – which consider both cost and value – lead to configurations that can be interpreted465

as compromises between the cost and value perspective. For NVOE, as economic value has the same order of magnitude as

20



economic cost, the solution presents a rotor diameter and hub height that fall in between the cost- and value-based solutions.

On the other hand, for NEVOE the environmental value is one order of magnitude larger than the environmental cost, and this

drives the rotor size, which even in this case hits the lower limit for specific power. The introduction of cost, however, penalizes

the hub height, which is reduced with respect to the value-based solution because of the large influence of the tower.470

4.3.2 Bi-objective optimization

Next, trade-offs between the economic and environmental net value were analyzed through a Pareto front, computed solving

the bi-objective optimization problem expressed by Eq. (15). The LCOE-driven designs obtained in the previous section and

displayed in Fig. 10 are used here as baselines for each location.

For the two sites LN and LS, Fig. 11a shows the Pareto front NEVOE vs. NVOE, while Fig. 11b reports the change in475

rotor diameter and hub height with respect to the baselines, as functions of NVOE. As already observed in Fig. 6, even in this

case results indicate that it is possible to increase the environmental net value (NEVOE) without significantly decreasing the

economic net value (NVOE). For example, accepting a decrease in NVOE of 1 e/MWh buys half of all possible improvement

in NEVOE, for both locations. This is achieved with larger diameters (i.e., smaller specific powers), and taller hub heights.

Another interesting observation is that both locations present the same Pareto front shape. While LN has a better economical480

performance than LS (as expected, because of the better wind resource), both locations appear to have a similar net value from

an environmental point of view.

Figure 11. Pareto front between a net environmental value point of view (NEVOE) and a net economic value point of view (NVOE) (a).

Optimal diameters and hub heights for the solutions of the Pareto front, expressed as percent changes with respect to the corresponding

LCOE-driven baseline of each location (b)
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Finally, environmental net value was used to estimate future economic societal savings, multiplying NEVOE by SCC, as

described in §2.2.4. An SCC of 1e/kg CO2eq was considered in this work. However, as previously noted, SCC can take widely

different values depending on the assumptions and models considered (IPCC, 2007). Although this makes the resulting FSS485

values affected by high uncertainty, the analysis is still useful because it may reveal interesting trends.

Figure 12 presents the designs that result from trading LCOE – the metric currently used to asses the competitiveness of

an energy-producing technology – with FSS – the metric proposed here to estimate the future societal savings obtained by

deploying an energy-producing technology.

Figure 12. Pareto front between FSS and LCOE, in absolute values (a), and relative to the LCOE-driven baseline of each location (b).

Optimal diameters and hub heights of the Pareto solutions in absolute values (c), and relative to the corresponding LCOE-driven baseline of

each location(d).

The Pareto front is displayed in absolute quantities in Fig. 12a, and relative to the LCOE-driven baselines in Fig. 12b.490

Similary
:::::::
Similarly, the solutions of the Pareto front are displayed in absolute quantities in Fig. 12c, and relative to the baseline

configurations in Fig. 12d. The values shown here should be treated only as rough estimates because of the many simplifications

and assumptions. Nonetheless, some interesting trends seem to emerge.
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First, as expected, the current LCOE-driven designs (which capture the individual point of the view of the investor and

consumer) are not optimal from the societal point of view. This means that, to improve the societal metric, an individual would495

have to accept an increase in out-of-pocket expenditure.

Second, the largest opportunities appear to be close to the LCOE optima, where the curves are very steep. This means

that even marginal increases in cost can have an impact on the societal savings. However, away from the LCOE optima, the

curves level off, meaning that optimal societal savings would require significant increases in cost, which would probably not

be acceptable by consumers.500

Third, the general trend of the Pareto solutions is similar at both sites. Hence, even at sites characterized by poor wind

resources, there is room for improving the societal value of wind energy.

Fourth, although better wind resources at the northern Germany site
::
site

:::
in

:::::::
northern

::::::::
Germany

:
are associated with lower

costs, the societal savings are similar at both locations. This is an interesting finding, because it implies that the installation

of each new wind turbine is of a similar environmental and societal value, independently of the characteristics of the site.505

However, since sites with worse wind resources are penalized by a higher LCOE, policies may be needed that – by taking a

long-term view on future economic societal savings – increase in the short-term the competitiveness of wind turbines at these

locations.

5 Conclusions

This paper has explored the idea of enhancing the inherent societal value of wind turbines by changing the way they are510

designed. While societal value is clearly a very broad concept, the focus here is on the societal benefits brought by the dis-

placement of environmental emissions made possible by the generation of renewable energy from wind.

The paper first defined metrics that quantify the societal value of wind turbines based on two concepts: environmental cost

and environmental value. The former expresses the GHG emissions generated throughout the entire lifetime of a wind turbine,

while the latter quantifies the displacement of GHG emissions from the grid caused by the deployment of a wind turbine; in515

both cases, these quantities are computed per unit of generated energy. These metrics are defined mirroring already existing

economic metrics, based on the familiar concepts of economic cost and value.

Next, a toolchain was described, which implements a complete LCA model capable of estimating the emissions of a wind

turbine throughout its lifetime, broken down in life-cycle stages, components and materials. Using the LCA model, together

with energy and mass models, a simplified design problem was formulated, which can determine the optimal geometric char-520

acteristics of a wind turbine (in terms of its rotor diameter and hub height) for a given rated power. The resulting preliminary

design gives only the overall dimensions of the turbine, and would have to be followed by a detailed design of its aerody-

namics, structures, systems and control laws. The design problem can be formulated either as a single or a multi(bi)-objective

minimization. The classical standard approach of designing wind turbines by minimizing LCOE is included in the formulation

as a special case.525
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A 3 MW wind turbine, representative of the LCOE-driven machines currently installed in Germany, was chosen as a baseline

reference to study the effects of considering various possible economic and/or environmental metrics in the preliminary sizing

problem.

The environmental assessment of the baseline highlighted the large contribution of the foundations – made of concrete –,

and of the tower – made of highly-recyclable steel – to the total life-cycle emissions of the wind turbine. These components530

have low emission factors – i.e., a low environmental cost per unit of mass – but require large quantities of material. Electronic

components, on the other hand, have a modest overall contribution even if they have very high emission factors. Clearly,

the overall environmental cost of a wind turbine depends on the technological solutions chosen for its main components.

Indeed, choices at all stages of the life-cycle – from the processes used to mine or produce the materials to EOL decisions –

have implications on both the economic and environmental costs, as the two aspects are intimately connected. Understanding535

the environmental cost of each material, each component and each life-cycle stage is critical for identifying alternatives that

minimize both forms of cost.

The baseline turbine was then redesigned using a bi-objective optimization for LCOE and IOE, obtaining a Pareto front of

optimal non-dominating solutions. This family of solutions can be interpreted as the cost-optimal designs that trade the point

of view of the individual (LCOE) with the point of view of society (IOE). It is one of the main findings of this work that the540

Pareto front is very steep around the LCOE-optimal designs. For the case considered here, it appears that an LCOE increase

of only 1% can buy an IOE decreases of 5%. In other words, it pays off to be altruistic, and a large societal impact can be

achieved if consumers are willing to pay a bit more for the energy that they consume.

Finally, the effects of value and net value were considered, again looking at both the economic and environmental points of

view. Value-based metrics are location- and time-dependent quantities, and therefore tightly linked to the site where the wind545

turbine is installed. Two locations were considered: one in the north of Germany with better wind resources, and one in the

south of the country, where typical wind speeds are lower. Results show that, for the years considered here, spot market price

and grid GHG emissions are generally higher at low wind speeds for both sites, as generally expected.

A Pareto front of optimal solutions was generated that trades-off economic net value – i.e. the difference between economic

value and cost –, and environmental net value – similarly defined, but considering emissions. Results indicate that, here again,550

the curves are very steep close to the net-value economic optima. Therefore, even from this point of view altruism pays off,

and significant net value environmental gains can be achieved with rather small losses in net economic value.

Unsurprisingly, economic net values were found to be profoundly different at the two locations, the better wind resources in

the north being associated with much lower values of NVOE. However, interestingly, the environmental net values at the two

locations were found to be very similar. This result points to the fact that wind turbines have similar beneficial effects no matter555

where they are installed, with little sensitivity to the local wind resources
:::
(at

::::
least

:::
for

::
the

:::::::
present

:::::::
German

:::::::
scenario). Therefore,

wind energy is a sensible choice also for places with modest wind conditions, as for example the south of Germany. Clearly,

these
::::
These

:
results should be further explored considering transmission constraints.

Additionally, it was found that environmental value is one order of magnitude larger than environmental cost, whereas eco-

nomic value and cost are of the same order of magnitude. Consequently, the economic net value is more sensitive than the envi-560
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ronmental one to the characteristics of the location.
::::
This

:::::::::
conclusion,

::::
here

::::::
again,

:
is
:::::
valid

::::
only

:::
for

:::
the

::::::
specific

:::::::::
electricity

::::::
market

::
of

::::::::
Germany.

:::::::
Further

::::::
studies

::::::
should

:::::::
analyze

:::
the

::::::::::::
environmental

::::
and

::::::::
economic

:::::
value

::
of

:::::
wind

:::::::
turbines

:::
in

:::::::
different

:::::::::
electricity

:::::::
markets,

:::
for

:::::::
example

::::
with

:
a
:::::::
smaller

::
or

:::::
larger

::::::::::
penetration

::
of

::::::::::
renewables.

Finally, future societal savings were estimated by using the societal cost of carbon, which quantifies the present cost of

future damage caused by the emission of one additional unit of CO2eq. Similar conclusions as the ones discussed earlier can565

be drawn from these results.

This study shows that, in general, low specific power
::::::::::::
specific-power turbines present higher economic and environmental

values, at the expense of a higher cost of energy. This is due to the fact that, with the present technology, the larger energy

captured by a bigger rotor does not generally compensate its larger cost. However, the present findings highlight that the

benefits of low specific power
:::::::::::
specific-power

:
turbines go well beyond what is quantified through LCOE alone, which, in570

hindsight, appears to be a rather myopic and incomplete metric. Indeed, several studies have shown that low specific power

::::::::::::
specific-power turbines bring benefits beyond economic value: for instance they can better utilize the transmission system,

reduce forecasting errors, and could lead to cheaper financing (Hirth and Mueller, 2016; Swisher et al., 2022).

The present work and its findings are affected by several limitations.

First, the LCA, mass, and cost models are based on general trends of current wind turbines. Clearly, low specific power575

::::::::::::
specific-power machines push the boundaries of these models. More accurate estimates could be obtained by using detailed

design procedures
:::
(for

::::::::
example,

:::
see

::::::::::::::::::::::::::::::
Bortolotti et al. (2016); NREL (2021)

:
) that, from the rough sizing produced by the present

approach, yield refined designs.

Additionally, the
::::
study

:::::
could

::
be

::::::::
extended

::
to

:::::::::
investigate

:::
the

::::::
impact

::
of

:::::::::
additional

::::::::
variables;

:::
one

::::
such

::::::::
example

:
is
:::::
rated

::::::
power,

:::::
which

::::
was

:::::::
assumed

::::
here

::
to

:::
be

:::::
given

:::
and

:::::
fixed,

::::
but

::
in

:::::
reality

::::::
could

::
be

:::::
freed

::
to

:::::::
possibly

::::::
reveal

::::
other

:::::::
features

:::
of

:::
the

:::::::
solution580

:::::
space.

:::
The

:
trends shown here are only valid for Germany in the years considered. Clearly, both economic and environmental value

depend on the time-specific composition of the energy mix, whose behavior is very complex and depends on more variables

than just wind speed, as it was assumed here for simplicity. The assumptions taken in this work are clearly oversimplifications

that try to produce initial rough preliminary trends. Future work should couple the present models with more sophisticated585

descriptions of the energy mix, able to capture their present and future composition. In fact, understanding how the economic

and environmental value of wind energy will develop in the next years
:::::
future is yet another crucial element that deserves further

work. Indeed, as wind penetration is set to increase, the economic value of wind energy is expected to decrease, an effect called

“self-cannibalization”. However, predicting the impact of an increase in wind energy is not straightforward, as the final effects

depend on the emission factors of the generating technologies in the energy mix. The impact on displaced GHG is even more590

complex to estimate, as it depends on the emission factors of the generating technologies operating on the margin, which are

not only strongly country-specific, but also time-dependent. Here again, these effects can only be properly captured by using

more sophisticated models, including an electricity market model.

:::
The

::::::
results

::::::::
presented

::
in

:::
this

:::::
work

:::
are

::::::
subject

::
to

:::::::::
significant

:::::::::::
uncertainties.

:::::::
Indeed,

::
in

:::::::
addition

::
to

:::
the

:::::::::::
uncertainties

::::::
brought

:::
by

::
the

:::::::
variable

::::::
nature

::
of

:::
the

:::::
wind

::::::::
resource,

:::
one

::::::
should

::::
also

:::::::
consider

:::
the

:::::::::::
uncertainties

:::::::
brought

::
by

:::
the

::::::::
volatility

::
of

:::
the

:::::::::
electricity595
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::::::
market,

:::
and

:::
the

:::::::::::
uncertainties

::
in

:::
the

::::
LCA

::::::
model

::::::
(which

:::
are

:::::::::
significant,

:::::
given

:::
the

::::::
holistic

::::::
nature

::
of

:
a
::::::::
life-cycle

:::::::
analysis,

::::
with

:::
its

::::
many

::::::
stages

:::
and

:::::::::
potentially

::::::::
complex

:::::::::
processes).

:::::
While

:::::
mean

::::::
yearly

:::::
values

:::::
were

::::
used

::
in

::::
this

:::::::::
preliminary

:::::
work

:::
for

:::::::::
simplicity,

:::::
further

:::::::
studies

::::::
should

:::
be

:::::::::
conducted

:::::
from

:
a
:::::::::::

probabilistic
:::::

point
:::

of
::::
view

::
–
::::

for
:::::::
instance

:::::::
through

::::::::::
uncertainty

::::::::::::
quantification

:::::::
methods

:
–
:::

to
:::::::
produce

:
a
:::::

more
:::::::
detailed

::::::
picture

:::
of

:::
the

:::::::::
variability

::
of

:::
the

:::::::::
economic

:::
and

::::::::::::
environmental

::::
cost

::::
and

:::::
value

::
of

:::::
wind

:::::::
turbines.600

Notwithstanding these limitations, it was one major ambition of this paper to bring the inherent societal value of wind

turbines under the spotlight.
::::::
Indeed,

:::
the

:::::
paper

::::::
shows

:::
that

::
a

:::::
purely

:::::::::
economic

:::::::
analysis

:::::
paints

::::
only

::
a

::::
very

:::::
partial

::::::
picture

:::
of

:::
the

:::
true

::::::
nature

:::
and

:::::::
possible

::::
role

::
of

:
a
:::::
wind

::::::
turbine

:::::
(and,

::::
more

::
in

:::::::
general,

::
of

:::::
wind

:::::::
energy).

::::::
Indeed,

:::::::::
enlarging

::
the

::::::::::
perspective

:::::
away

::::
from

:::::::::
economics

::::
can

:::::::
uncover

::::
new

:::::::::::
opportunities

:::
for

:::
the

::::::
future

:::::::::::
development

::
of

:::::
wind.

:
While this study only focused on the

changes in overall dimensions (and, in turn, specific power) of the machine, the potential for further improvements is much605

larger that what would appear by this simple analysis alone. In fact, the same metrics developed here can also be employed to

guide the choice of technologies and the detailed design of the various components of a wind turbine. In addition, beyond the

single wind turbine case analyzed here, this new eco-conscious design philosophy can be used to design a whole wind plant.
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Nomenclature

A Rotor swept area

C Cost

D Rotor diameter

E Energy620

H Hub height

J Cost function

P Power

26



T Duration

Q Emissions625

U Wind speed

V Value

W Weibull distribution

c Constraints

d Discount rate630

f Factor

p Spot market price

p Design parameters

t Time

CO2eq Equivalent grams
::::
mass

:
of CO2 with the same global warming potential of a given gas635

(·)y Relative to year y

EOL End of life

EVOE Environmental value of energy

FSS Future societal savings

GFRP Glass-fiber reinforced plastic640

GHG Greenhouse gas, i.e. CO2, CH4, NO2, F-gases, among others

IOE Impact of energy

LCA Life-cycle assessment

LCOE Levelized cost of energy

LVOE Levelized value of energy645

NEVOE Net environmental value of energy

NVOE Net value of energy

SCC Societal cost of carbon
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