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Abstract. Accurate wind farm flow predictions based on analytical wake models are crucial for wind farm design and lay-

out optimisation. In this regard, wake superposition methods play a key role and remain a substantial source of uncertainty.

Recently, new models based on mass and momentum conservation have been proposed in the literature. In the present work,

such methods are extended to the superposition of super-Gaussian type velocity deficit models, allowing the full wake velocity

deficit estimation and design of closely packed wind farms.5

1 Introduction

Wind farm design and layout optimisation rely on analytical flow models due to a large number of configurations to be evaluated

and the computational efficiency of such numerical methods. A typical wind farm flow solver consists of a combination of

several sub-models, including a minima a velocity deficit model, a wake-added-turbulence (WAT) model, and possibly a wake

deflection model, a blockage model, and a coupled wake/atmospheric-boundary-layer model. The velocity deficit and WAT10

models usually apply to a single wind turbine: wake superposition methods accumulate the wakes and estimate a wind farm

power production for given environmental conditions. Concerning the superposition of velocity deficits, the available methods

lacked theoretical justification, see Zong and Porté-Agel (2020), until the recent work of Zong and Porté-Agel (2020) and

Bastankhah et al. (2021). In these studies, analytical solutions for the velocity deficit superposition are proposed based on the

mass and momentum conservation principle. These superposition methods assume Gaussian-shaped velocity deficit profiles.15

In the present article, the approach of Bastankhah et al. (2021) is extended to super-Gaussian wake velocity deficit profiles.

Such models, proposed in Shapiro et al. (2019) and later refined in Blondel and Cathelain (2020), allow for the evaluation

of the velocity deficit over the full wake. On the contrary, the Gaussian-based approaches are limited to the far-wake. Apart

from preventing the appearance of unrepresentable numbers, this allows the study of closely packed wind farm layouts. Indeed,

some offshore wind farms such as Lillgrund exhibit small wind turbine inter-distances, down to 3.3 wind turbine diameters.20

Considering such super-Gaussian velocity profiles together with the Bastankhah et al. (2021) superposition method, an integral

has no analytical solution, and an approximation is proposed and compared with the numerical solution. It is also shown

in section
:
S

:::::
ection

:
3 that the method proposed in Bay et al. (2022) leads to similar results in terms of centerline velocity

deficit and is suited for wind-farm power predictions. The new superposition method has more robust theoretical foundations
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than the traditionally used local-linear-sum (LLS) superposition technique (method C in Zong and Porté-Agel (2020)), and its25

applicability is demonstrated based on the large Horns-Rev wind farm.

2 Extension of the Bastankhah et al. (2021) model

2.1 Model derivation

In Bastankhah et al. (2021), the conservation of momentum deficit for multiple wakes takes the form:∫
Ã

(
u0cnfn− (cnfn)

2− 2cnfn

n−1∑
i=1

cifi

)
dÃ≈ T̃n

ρ
, (1)30

with cn the maximum velocity deficit of turbine n, i the index of the turbine
::::::
turbines

:
upwind of turbine n, fn the self-similar

function, Ã= πr̃2 the rotor surface with r̃ = r/d0 and d0 the wind turbine diameter, T̃n the thrust force of the unit diameter

rotor, u0 the undisturbed wind velocity, and ρ the fluid density. Based on comparisons to numerical results from a large-eddy

simulation (LES) solver, a modified form was proposed in Bastankhah et al. (2021): the factor two in the left-hand side of Eq.

(1) is dropped.35

Let us consider the original form, Eq. (1). Given a super-Gaussian shape function fn, a solution for cn is sought. Following

Blondel and Cathelain (2020), the shape function reads fi = exp
(
−r̃ik/2σ̃i2

)
, with k = k(x̃) the super-Gaussian order and i

or n the index of a wind turbine. In the following, we assume that the turbines are sorted from the most upwind to the most

downwind, and for two turbines i and n, we have i < n.

Here, the radius r̃i =
√

(y− yi)2 + (z− zi)2/d0 ::
as

:::::::
indicated

:::
by

:::
the

:::::
tilde,

:::
the

:::::
radius

:
and the super-Gaussian characteristic40

width σ̃i are
::
are

::::
both

:
normalized by the wind turbine diameter d0, indicated by the tilde

::::
such

:::
as:

::::::::::::::::::::::::::
r̃i =

√
(y− yi)2 + (z− zi)2/d0

:::
and

:::::::::
σ̃i = σi/d0. The following integrals are defined in terms of the gamma function Γ:∫

Ã

fndÃ=
π

k
Γ

(
2

k

)
22/k+1σ̃4/k

n ,
∫
Ã f

2
ndÃ=

2π

k
Γ

(
2

k

)
σ̃
4/k
n , and

∫
Ã fnfidÃ= I. (2)

No analytical solution could be found for the last integral, denoted I. Inserting Eqs. (2) into Eq. (1) leads to:

u0cn
π

k
Γ

(
2

k

)
22/k+1σ̃4/k

n − c2n
2π

k
Γ

(
2

k

)
σ̃4/k
n − 2cn

n−1∑
i

ciI ≈
T̃n
ρ
. (3)45

Using the thrust coefficientCTn
= 8T̃n/

(
πρd̃0

2 < Un−1 >
2
(n,xn)

)
:::::::::::::::::::::::::::::::
CTn

= 8T̃n/
(
πρd̃0

2 < un−1 >
2
(n,xn)

)
, the operator<>(n,xn)

denoting the spatial averaging over the frontal projected area of rotor n at x= xn,
:::
and

::
u

:::
the

:::::::::
streamwise

:::::::
velocity

::::::::::
component

as in Bastankhah et al. (2021), one obtains:

c2n− cn22/k

u0− 2

n−1∑
i

ci
22/k

kI

2πΓ

(
2

k

)
σ̃
4/k
n

+
kCTn

16

< un−1 >
2
(n,xn)

Γ

(
2

k

)
σ̃
4/k
n

≈ 0. (4)
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Let us introduce a modified integral J = kI/
(

22/kπΓ

(
2

k

)
σ̃
4/k
n

)
. After straightforward manipulations, and assuming50

u0 = uh, i.e., a constant, shear-free inflow, the solution for cn reads:

cn
uh

=

(
1−

n−1∑
i=1

ci
uh
J

)22/k−1−

√√√√√√√√24/k−2−
kCTn

(
< un−1 >(n,xn)

uh

)2

16Γ

(
2

k

)
σ̃
4/k
n

(
1−

∑n−1
i=1

ci
uh
J
)2

 . (5)

The modified form is obtained by using a modified J together with Eq. (5) and Imod = I/2:

Jmod =
kImod

22/kπΓ

(
2

k

)
σ̃
4/k
n

. (6)

2.2 Approximate solutions of the integral I55

In a first approach,
:::::::
hereafter

:::::::
referred

::
to

::
as

:::
the

::::::
Gauss

::::::::
approach,

:
one may assume a Gaussian behaviour of the model to evaluate

J , as done in Bay et al. (2022). One obtains, see Bastankhah et al. (2021):

Jmod
Gauss =

πσ̃2
i σ̃

2
n

σ̃2
i + σ̃2

n

exp

(
− (ỹn− ỹi)2

2(σ̃2
n + σ̃2

i )

)
exp

(
− (z̃n− z̃i)2

2(σ̃2
n + σ̃2

i )

)
. (7)

Alternatively,
:
in

::
a
::::::
second

::::::::
approach

::::::::
hereafter

:::::::
referred

::
to

:::
as

:::
the

:::::::
kEquiv

:::::::::
approach, one may first consider aligned turbines

(ỹi− ỹn = 0, z̃i− z̃n = 0) and later correct the integral for the lateral distance between the rotor
:::::
rotors

:
using a function δ(ỹ, z̃).60

This function is identified from the Gaussian solution. A second approximation consists in considering an equivalent super-

Gaussian order, keq = 1/2(ki + kn). Under these hypotheses, the integral I takes the form:

Imod
kEquiv =

πΓ(2/keq)22/keq+1σ̃
4/keq

i σ̃
4/keq
n

keq (σ̃2
i + σ̃2

n)
2/keq

δ(ỹ, z̃), with δ(ỹ, z̃) = exp

(
− (ỹn− ỹi)keq

2(σ̃2
n + σ̃2

i )

)
exp

(
− (z̃n− z̃i)keq

2(σ̃2
n + σ̃2

i )

)
, (8)

and Eq. (6) is used to calculate Jmod
kEquiv . Another straightforward approach consists in tabulating the integral values (excluding

the δ(ỹ, z̃) function) and linearly interpolating between the data, which is the one retained in practice. For a quantitative65

comparison, the proposed analytical approximations of the integral J are compared to the numerical integration. An interval

of 0.2≤ σi,σn ≤ 2.5
:::::::::::::::
0.2≤ σ̃i, σ̃n ≤ 2.5

:
is considered for the characteristic width, and several intervals 2≤ ki,kn <maxk are

considered for the super-Gaussian order, with 2<maxk ≤ 8. The bounding values are representative of the very near wake of

a wind turbine under laminar flow conditions and the very far wake (x̃ > 15d0) under highly turbulent conditions: the typical

operating range of a turbine in a wind farm is covered. Among the characteristic width and super-Gaussian order intervals,70

15 values are sampled. Regarding the maximum super-Gaussian order, 6
::
six

:
equally-spaced values are sampled. For each set

of four inputs, and for a given maximum super-Gaussian order, the analytical approximations are evaluated, and the error

is computed (error = (|JAnalytical| − |JNumerical|)/ |JNumerical|). The numerical evaluation is based on the scipy (Jones

et al. (2001)) “integrate.quad" integration routine, and extends from 0 to 6·max(σi,σn). Then, for eachmaxk, the average and

maximal error are computed and reported in Figure 1. From these results, the so-called kEquiv method seemingly outperforms75

the Gauss method and should be preferred. However, it will be shown in Section 3 that the impact on the velocity deficit is

limited.

3



2 3 4 5 6 7
0

0.2

0.4

0.6

Maximal super-Gaussian order (-)

M
ea

n
re

la
tiv

e
er

ro
r(

-)

2 3 4 5 6 7
0

1

2

3

Maximal super-Gaussian order (-)

M
ax

im
um

re
la

tiv
e

er
ro

r(
-) Jmod

Gauss

Jmod
kEquiv

Figure 1. Mean (left) and maximal (right) relative error of the analytical integrals compared with the numerical evaluation of J as a function

of the maximal considered super-Gaussian order

3 Results

Due to the poor performance of the
:
In

::
a
:::::
recent

::::::
study,

::::::::::::::::::::::::
Lanzilao and Meyers (2022)

::::::
showed

::::
that

:::
the

:
super-Gaussian model

noticed in Lanzilao and Meyers (2022), the model has first been re-calibrated, focusing on the far wake, and enforcing k = 280

as a boundary condition. The procedure and notations
:::::::::
performed

:::::
poorly

:::::::::
compared

::::
with

::::
other

:::::::
models:

:::
for

::::
both

:::::::::
Horns-Rev

::::
and

::
the

:::::::
London

::::::
Array

::::
wind

::::::
farms,

:::
the

::::::::
predicted

::::::
power

:::::::::
production

::
is

:::
far

:::::
below

:::
the

:::::::::
measured

:::::
power

:::::
from

:::::::
SCADA

:::::
data.

::::
Due

::
to

::::
these

:::::::::::
observations,

:::
the

::::::
model

::
is

::::::::::
re-calibrated

:::
for

:::
the

::::::
present

:::::
study.

::::
The

:::::::::
calibration

:::::::::
procedure

:::
and

:::
the

::::::::
notations

::::
used

::::::::
hereafter

follow the work of Cathelain et al. (2020). Instead of using a root-finding algorithm for af ,
:::
The

::::
main

:::::::::
difference

::::
here

::::
lies

::
in

::
the

::::
use

::
of a polynomial approximation is used:

:::::::
Gaussian

::::::
profile

::
in

:::
the

:::
far

:::::
wake,

:::
i.e.,

:::::::::::::
lim
x̃→∞

k(x̃) = 2.
::::
The

::::
wake

::::::::::::
characteristic85

:::::
width

:
is
::::::::
assumed

::
to

::::::
evolve

::::::
linearly

::::
with

:::::
axial

:::::::
distance:

:

σ̃ = (asTI + bs) x̃+ cs

√(
1

2

1 +
√

1−CT√
1−CT

)
.

:::::::::::::::::::::::::::::::::::::

(9)

:::
The

:::::
three

:::::::::
parameters,

:::
as,

::
bs::::

and
::
cs,

:::
are

::::
used

:::
for

::::
both

:::
the

:::::::::::::
super-Gaussian

:::
and

:::
the

::::::::
Gaussian

::::::
model.

:::
The

:::::::::::::
super-Gaussian

:::::
order

::::::
follows

::
an

::::::::::
exponential

:::::
decay

::::::::
function:

:

k = afe
bf x̃ + cf .

:::::::::::::
(10)90

:
A
::::::::

Gaussian
::::::

profile
::

is
::::::::

assumed
::
in

:::
the

:::
far

::::::
wake,

::::
thus

::::::
cf = 2.

::::
The

:::::::::
parameter

:::
bf :::::::

controls
:::
the

:::::
decay

:::
of

:::
the

:::::::::::::
super-Gaussian

:::::
order,

:::
and

::
is

:::::
taken

::
as

:
a
::::::::
function

::
of

:::
the

:::::::::
turbulence

:::::::
intensity.

:::
af::

is
::::::
chosen

::
in

::::
such

::
a
::::
way

:::
that

:::
the

::::::
model

:::::
fulfils

:::
the

:::::::::::
actuator-disk

:::::
theory

::::
(see

::::::::::::::::::
Cathelain et al. (2020)

::
).

::::
This

:::
can

::
be

::::::::
enforced

::::::::::
numerically

:::::
using

::
a

::::::
Newton

::::::::::
fixed-point

:::::::::
algorithm.

::
To

::::::::
facilitate

:::
the

:::::::::::::
implementation,

:::
this

::::::::
inversion

::
is

:::::::::
performed

::
in

:
a
:::::::::::::
pre-processing

:::::
stage,

:::
and

::
a

:::::::::
third-order

:::::::::
polynomial

::
fit
::
is
:::::::::
proposed:

af =−8.2635C3
T + 8.5939C2

T − 8.9691CT + 10.7286. (11)95
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The proposed calibration is not meant to be universal but dedicated to the present study. Future work will be dedicated to

a calibration that is reliable in both near and far-wake regions. Table 1 provides the list of the model coefficients used in the

present study
::
this

:::::
study,

::::::::
obtained

:::::
using

:
a
:::::::::
differential

::::::::
evolution

::::::::
algorithm

:::
and

::
a

::
set

::
of

::::
nine

::::
LES

::::::::::
simulations. As noticed in Figure

Table 1. Coefficients of the super-Gaussian wake model

as bs cs af bf cf

0.28 0.01 0.1×CT +0.1 Eq. 11 1.68exp(−25.98TI)− 1.06 2.

3, the increase of the centerline velocity deficit in the very near-wake is not strong enough, inducing a non-smooth transition

between the vortex-cylinder-based induction zone and the wake. Furthermore, using the momentum-conserving method, a100

velocity discontinuity appears at the rotor plane. This is due to the so-called modified formulation. Using the un-modified

formulation leads to very high near-wake velocity deficits or even unrepresentable numbers in the presented test case.

3.1 Comparison against large-eddy simulations from Bastankhah et al. (2021)

For the model comparison, the numerical setup based on the aligned wind farm introduced in Bastankhah et al. (2021) is

reproduced. The wind
:
A
:::::::::
schematic

::::
view

::
of

:::
the

:::::
wind

::::
farm

::
is

::::
given

::
in

::::::
Figure

::
2.

::
It

::::::
consist

::
of

:::
five

:::::::
columns

::
of

:::::
three

::::
wind

::::::::
turbines,105

:::::
which

:::
are

:::
all

:::::::
included

::
in

:::
the

::::::::::
simulation.

:::
The

:::::::
velocity

::::::
deficit

::::::
studied

::::
later

::
is
::::::::

extracted
::::
over

::
a
:::
line

:::::::
passing

:::::::
through

:::
the

:::
hub

:::
of

::
the

:::::
wind

:::::::
turbines

::
of

:::
the

::::::
central

::::
line,

::
as

::::::
shown

::
in

:::
the

:::::::
schema.

:::
The

::::
first

::::::
column

:::
in

:::
our

:::::::::
simulations

::
is
:::::::
located

:
at
::::::
x̃= 0.

:

u0

x̃= 5

ỹ = 3

Figure 2.
::::::::
Schematic

::::
view

::
of

::
the

::::::::
simulated

::::
wind

::::
farm

:::
The

:::::
wind farm flow model builds upon the super-Gaussian model as described in Blondel and Cathelain (2020), using the

calibration introduced in section
::::::
Section

:
3. The WAT model proposed in Ishihara and Qian (2018) is employed, together with

a so-called “maximum-value" WAT superposition, see Niayifar and Porté-Agel (2016). A correction factor of 1.25 is applied110

on the maximum of added turbulence to match the results presented in Bastankhah et al. (2021). The
::::::::
Following

:
a
:::::::::::
convergence

:::::
study,

:::
the rotor disks are discretized based on 12× 12 polar grids. The rotor averaged

::::::
Velocity

::::::
deficit

:::
and

:::::
WAT

:::
due

::
to

:::::::
upwind

::::
rotor

:::::
wakes

:::
are

::::::::
evaluated

::
at
:::::

every
:::::
point

:::
on

:::
the

::::
disk.

:::::
Then,

:::::
mean

:
velocity and turbulence intensity are estimated using a local

rotor element area ponderated average .
::::::::
computed

:::
and

::::
used

:::
as

::
an

:::::
input

::
for

:::
the

:::::
wake

::::::
models

::::
and

::::
rotor

:::::::::::
performance

:::::::::
evaluation,
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:::
i.e.,

:::
the

::::::
power

:::
and

:::::
thrust

::::::::::
coefficients

:::
are

:::::
given

::
as

::
a
:::::::
function

:::
of

::::
wind

::::::
speed.

:::::
Using

::
a
:::::
polar

:::::::::::
discretization,

::::
the

::::
mesh

:::::
cells

:::
are115

:::
not

:::::::
uniform

::
in

::::
size:

:::
the

::::
ones

::::::
located

::::
near

:::
the

:::::
edge

::
of

:::
the

::::
disk

:::
are

::::::::::
significantly

::::::
larger

::::
than

:::
the

::::
ones

::::
near

:::
the

::::
hub.

:::::
Thus,

:::::
when

:::::::::
computing

:::
the

::::
mean

:::::::::
quantities,

:::
we

:::
use

::
a
::::::::
weighted

:::::::
average

:::::
whose

::::::::::
ponderation

::
is
:::::
based

:::
on

:::
the

:::::
mesh

:::
cell

:::::::
surface.

::
In

::::::::
practice,

::
in

:::
the

::::
case

::
of

::::::
aligned

::::::
rotors,

::::
this

::::
tends

::
to
::::::

lower
:::
the

::::
wake

:::::
effect

:::::
since

:::
the

::::::
higher

:::::::
velocity

:::::
deficit

::
is
:::::::
located

::
at

:::
the

::::
rotor

::::::
centre

:::::
where

:::
the

::::
mesh

:::::
cell’s

::::::
relative

:::::
areas

:::
are

:::
the

:::::::
smallest.

:
A blockage correction based on the vortex cylinder flow model

:
is
::::
used, see

Branlard and Meyer Forsting (2020), is used. The LLS method is compared to the present method, denoted MC (Momentum120

Conserving), with the two approximations for Jmod, as well as a direct numerical evaluation of the integral, denoted Jmod
Num.
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Figure 3. Centerline velocity deficit in the middle column of the farm, LES data scanned from Bastankhah et al. (2021)
:
.
:::
Top

::::::
figure:

::::::::
comparison

:::::::
between

::::
LES,

:::
the

::::
LLS

::::::
method

:::::::
together

::::
with

:::
the

:::::::::::
super-Gaussian

::::::
model

::::::::
(LLS-SG),

:::
and

:::
the

::::::::::::::::::
momentum-conserving

::::::
method

::::::
together

::::
with

::
the

::::::::::::
super-Gaussian

::::::::::
formulations

:::::::
(MC-SG).

::::::
Bottom

::::::
figure:

:::::::::
comparison

::::::
between

::::
LES

:::
and

:::
the

:::::::::::::::::
momentum-conserving

::::::
method

:::
and

::
the

:::::::
Gaussian

::::::
model,

::::
using

:::
the

::::::
Original

:::::::::::
(MC-GOriginal) :::

and
::::::
modified

:::::::
(MC-G)

::::::::::
formulations,

:::
and

:
a
::::::::::::
super-Gaussian

:::::::::
formulation

::::::::
(MC-SG).

Figure 3
:::
(top)

:
shows that, compared with the LLS superposition method, the MC model predicts a lower velocity deficit

in both near and far wake regions
:::::
which

::
is

::::
more

:::::::::
consistent

::::
with

:::::
LES

::::
data. Moreover, the proposed analytical approxima-

tions of the integral Jmod are very close to the numerical approximation in the presented test case.
::
At

::::
the

::::
rotor

:::::::
planes,

::::::::::::
discontinuities

:::
are

::::::::
observed.

:::::
This

:::
can

:::
be

::::::::
partially

::::::::
attributed

:::
to

:::
the

:::
use

:::
of

:::
the

::::::::
modified

:::::::::::::::::::::
momentum-conservation

:::::::
method125

:::::
which

::::::::
improves

:::
the

::::::
results

::
in

:::
the

:::
far

:::::
wake

::
as

::::::
shown

::
in

::::::
Figure

::
3
::::::::
(bottom)

:::
but

::::
does

:::
not

:::::
fully

::::::
respect

:::
the

:::::::::::
conservation

:::::
laws,

::
as

:::::::
detailed

::
in

::::::::::::::::::::
Bastankhah et al. (2021)

:
.
:::::
Using

:::
the

:::::::::::
un-modified

::::::::::
formulation

::::
leads

:::
to

::::
very

::::
high

:::::::::
near-wake

:::::::
velocity

::::::
deficits

:::
or

::::
even

:::::::::::::
unrepresentable

:::::::
numbers

::
in
:::

the
:::::::::

presented
:::
test

:::::
case. In the far wake regions, 3

::::
three

:
diameters behind the wind turbines,

the
:::::
results

:::::
based

:::
on

:::
the Jmod

kEquiv and Jmod
Gauss approximations lead to superimposed velocity deficit,

:::
are

:::::::::::
superimposed

:
since the

6



super-Gaussian order is close to 2. These observations validate the approach employed in Bay et al. (2022), despite the higher130

errors noticed in Figure 1. In practice, using a tabulated version of the integral is a fast and convenient approach. However,

it does not circumvent the approximation based on the rotor distance function, δ(ỹ, z̃), since tabulating the complete integral

results in large data files that are time-consuming to load. The global agreement against the LES dataset is satisfying. In the

first turbine wake, the hub effect prevents a proper analysis of the results. For the second turbine, a good agreement is obtained

with the LLS method, while the MC method underpredicts the velocity deficit. This behavior
:::::::
behaviour, as noted in Bastankhah135

et al. (2021), is a consequence of the application of the modified momentum conservation law. For the following three turbines,

a good agreement is obtained.

Table 2.
:::::::::::::::::::
Root-Mean-Square-Error

::
of

::
the

::::::::
analytical

:::::
models

::::::
against

:::
the

:::
LES

:::::
results

::::
from

::::::::::::::::::
Bastankhah et al. (2021)

:::::::::
MC-GOriginal :::::

MC-G
::::::
LLS-SG

: ::::::
MC-SG,

::::::
Jmod

Gauss: ::::::
MC-SG,

:::::::
Jmod

kEquiv: ::::::
MC-SG,

::::::
Jmod

Num

::::
0.160

::::
0.145

::::
0.078

: ::::
0.059

: ::::
0.055

::::
0.056

:::
For

:
a
:::::

more
::::::::::
quantitative

::::::::
analysis,

:::
the

:::::::::::::::::::::
Root-Mean-Square-Error

::::::::
(RMSE)

:::::::
between

:::
the

::::::::
different

::::::::
analytical

:::::::
models

::::
and

:::
the

::::
LES

:::::
results

::::
are

:::::
given

::
in

:::::
Table

::
2.

:::::
First,

:::
the

:::
use

::
of

::::::::
Gaussian

:::::
wake

:::::::
models

::::
leads

:::
to

:
a
:::::
rather

:::::
high

:::::
error,

:::
due

::
to

:::
the

::::::::::
inaccuracy

::
in

:::
the

:::::::::
near-wake.

:::::
This

::::::::
behaviour

:::
is

::::::::
expected,

::::
and

:::
we

:::
are

::::
here

:::::
using

::::
the

:::::
model

:::::::
outside

::
of

:::
its

::::::::
definition

::::::::
domain,

:::
i.e.,

::::
the140

:::::::
Gaussian

::::::
model

::
is

:
a
:::::::
far-wake

::::::
model.

:::::
Using

:::
the

:::::::::::::
super-Gaussian

::::::
model,

:::
the

:::::::
RMSEs

:::
fall

:::::
below

::::
8%.

::::::::
Whatever

:::
the

::::::::::::
approximation

::::::::
performed

:::
on

:::
the

::
J

:::::::
integral,

:::
the

::::::::::::::::::::
momentum-conserving

::::::::
approach

::::::::::
outperforms

:::
the

::::
LLS

:::::::
method:

:::
the

:::::::
RMSEs

:::
fall

:::::
again

:::::
from

::::::::::::
approximately

:
8
::
to
::::

less
::::
than

::::
6%.

:::::
Using

::::
the

::::::
Jmod
Gauss:::::::::::::

approximation,
:::
the

:::::
error

::
is

::::::
slightly

::::::
higher

:::::::::
compared

::::
with

:::::::
Jmod
kEquiv::::

and

::::::
Jmod
Num.

::::
One

:::::
should

::::
thus

::::::
prefer

:::
one

::
of

:::::
these

:::
two

:::::::::::
formulations

::::
over

:::
the

::::::::
so-called

::::::
Jmod
Gauss:::::::::::::

approximation.

3.2 Comparison against large-eddy simulations of the Horns-Rev wind farm from Porté-Agel et al. (2013)145

The model predictions are also compared with large-eddy simulations of the Horns-Rev wind farm, as presented in Porté-Agel

et al. (2013). With a minimal inter-turbine distance of 7
::::
seven

:
diameters, this wind farm can not be considered as closely-

packed. However, the availability of a large set of large-eddy simulation results makes it a good candidate for validation pur-

poses.
:::
The

::::::
inflow

:::::::::
conditions

::
are

:::::
based

:::
on

:::::
inflow

:::::::
velocity

:::
and

:::::::::
turbulence

:::::::
intensity

:::::::
profiles

::::::
scanned

:::::
from

:::::::::::::::::::
Porté-Agel et al. (2013)

:
. Figure 4 compares the wind farm efficiency η (predicted power

:::::
divided

:
by theoretical power without wake effect) over a wide150

range of wind directions θ. We use the LES as a reference to avoid the uncertainties of SCADA measurements, mainly due to

the wind direction changes during the 10 min averaging in the available data. The agreement between the analytical model and

the LES dataset is overall good. Differences between the momentum-conserving superposition method and the LLS approach

are noticed for wind directions where the wake effects are strong, typically at θ ≈ {222o,270o,312o}. Around such directions,

the lower velocity deficits predicted by the MC approach lead to lower wake losses and better efficiency of the wind farm .155

:::::
which

::
is

:::::
more

::::::::
consistent

::::
with

::::
the

::::
LES

::::
data.

:::::
Both

:::
the

::::::::
Gaussian

:::
and

:::
the

:::::::::::::
super-Gaussian

:::::::
models

::::::
predict

:::
the

:::::
same

::::
wind

:::::
farm

::::::::
efficiency

::::::::
whatever

:::
the

::::
wind

::::::::
direction:

::::
this

::
is

:::
due

::
to

:::
the

::::
large

:::::::::::
inter-turbine

::::::::
distances

::
in

:::
the

:::::::::
Horns-Rev

:::::
wind

::::
farm.

::
It
::::::::
confirms

7
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Figure 4. Centerline velocity deficit in the middle column
:::::::::
Comparison of the

::::::::
normalized

::::::::
Horns-Rev

::::
wind farm ,

::::
power

:::::
output

:::::
based

::
on

:
LES

data scanned
::::::::
simulations

:
from Bastankhah et al. (2021)

:::::::::::::::::
Porté-Agel et al. (2013),

:::
the

::::
LLS

::::::
method

::::::
together

::::
with

:::
the

::::::::::::
super-Gaussian

:::::
model

::::::::
(LLS-SG),

:::
the

:::::::::::::::::
momentum-conserving

::::::
method

::::::
together

::::
with

:::
the

::::::::::::
super-Gaussian

:::::
model

:::::::
(MC-SG)

::::
and

::
the

::::::::::::::::::
momentum-conserving

::::::
method

::::::
together

::::
with

::
the

:::::::
Gaussian

:::::
model

:::::::
(MC-G)

:::
that

:::
the

:::::
poor

:::::
results

::::::::
obtained

::
in

::::::::::::::::::::::::
Lanzilao and Meyers (2022)

::
for

::::
the

::::
same

:::::
wind

:::::
farm

:::
are

::::::
mostly

:::
due

:::
to

::::::::::
inaccuracies

:::
in

:::
the

:::::
model

::::::::::
calibration

:::::::::
introduced

::
in

:::::::::::::::::::
Cathelain et al. (2020).

:

:::
For

:
a
:::::
more

::::::::::
quantitative

::::::::::
comparison,

:::
the

:::::::
RMSEs

::
of

:::
the

::::::::
different

::::::::
analytical

:::::::
models

::::::
against

:::
the

::::
LES

::::::
results

:::
are

::::::::
provided

::
in160

::::
Table

:::
3.

:::
The

::::
LLS

:::::::
method

:::::::
together

::::
with

::::
the

::::::::::::
super-Gaussian

::::::
model

:::
has

::::
the

::::::
highest

::::
level

:::
of

:::::
error,

::::::
around

:::
3.7

:::
per

:::::
cent,

:::::
while

::::
using

:::
the

::::::::::::::::::::
momentum-conserving

::::::::
approach,

::::
both

::::
with

::
a
::::::::
Gaussian

::
or

::
a
:::::::::::::
super-Gaussian

::::::
model,

:::
the

:::::::
RMSEs

::::
falls

:::::
below

::::::
2.5%.

:::::::::
Differences

::::::::
between

:::
the

:::
two

:::::::::::::
aforementioned

:::::::
models

::::::
appear

::
in

:::
the

:::::::
RMSEs

::::
only

::
at

:::
the

:::::
fourth

::::::::
decimal.

::::::::::
Considering

:::
the

:::::
large

::::::::::
inter-turbine

:::::::
spacing

::
in

:::
the

:::::::::
Horns-Rev

::::
wind

:::::
farm,

:::
this

::::
was

::::::::
expected,

:::::
since

::::
both

::::::
models

:::
use

:::
the

:::::
same

:::::::::::
characteristic

:::::
width,

::::
and

::
the

:::::::::::
inter-turbine

::::::::
distances

:::
are

::::
large

:::::::
enough

::
to

::::
have

:::::::::::::
super-Gaussian

:::::
orders

::::
very

:::::
close

::
to

:::::
k = 2

::
at

:::
the

::::
rotor

::::::
planes.

:

Table 3.
:::::::::::::::::::
Root-Mean-Square-Error

::
of

::
the

::::::::
analytical

:::::
models

::::::
against

:::
the

:::
LES

:::::
results

::::
from

::::::::::::::::::
Porté-Agel et al. (2013)

:::::
MC-G

::::::
LLS-SG

: ::::::
MC-SG,

:::::::
Jmod

kEquiv:

::::
0.024

::::
0.037

: ::::
0.024

165

4 Conclusions

In this work, the momentum-conserving wake superposition method proposed in Bastankhah et al. (2021) was extended to

super-Gaussian-type of velocity deficit models. An integral could not be resolved analytically, and an approximation has been

proposed. This approximation is closer to numerical evaluations of the integral that the Gaussian assumption used in Bay et al.

(2022). Comparisons against large-eddy simulations of wind farms show a satisfactory agreement, allowing the simulation of170

8



large wind farms using the super-Gaussian wake model. Further studies will include an extensive validation of the resulting

wind farm flow model, including closely-packed wind farms.

Code and data availability. The numerical results based on the analytical models can be made available on demand.
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