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Abstract. Accurate wind farm flow predictions based on analytical wake models are crucial for wind farm design and lay-

out optimisation. In this regard, wake superposition methods play a key role and remain a substantial source of uncertainty.

Recently, new models based on mass and momentum conservation have been proposed in the literature. In the present work,

such methods are extended to the superposition of super-Gaussian type velocity deficit models, allowing the full wake velocity

deficit estimation and design of closely packed wind farms.5

1 Introduction

Wind farm design and layout optimisation rely on analytical flow models due to a large number of configurations to be evaluated

and the computational efficiency of such numerical methods. A typical wind farm flow solver consists of a combination of

several sub-models, including a minima a velocity deficit model, a wake-added-turbulence (WAT) model, and possibly a wake

deflection model, a blockage model, and a coupled wake/atmospheric-boundary-layer model. The velocity deficit and WAT10

models usually apply to a single wind turbine: wake superposition methods accumulate the wakes and estimate a wind farm

power production for given environmental conditions. Concerning the superposition of velocity deficits, the available methods

lacked theoretical justification, until the recent work of Zong and Porté-Agel (2020) and Bastankhah et al. (2021). In these

studies, analytical solutions for the velocity deficit superposition are proposed based on the mass and momentum conservation

principle. These superposition methods assume Gaussian-shaped velocity deficit profiles. In the present article, the approach15

of Bastankhah et al. (2021) is extended to super-Gaussian wake velocity deficit profiles. Such models, proposed in Shapiro

et al. (2019) and later refined in Blondel and Cathelain (2020), allow for the evaluation of the velocity deficit over the full

wake. On the contrary, the Gaussian-based approaches are limited to the far-wake. Apart from preventing the appearance of

unrepresentable numbers, this allows the study of closely packed wind farm layouts. Indeed, some offshore wind farms such

as Lillgrund exhibit small wind turbine inter-distances, down to 3.3 wind turbine diameters. Considering such super-Gaussian20

velocity profiles together with the Bastankhah et al. (2021) superposition method, an integral has no analytical solution, and an

approximation is proposed and compared with the numerical solution. It is also shown in Section 3 that the method proposed

in Bay et al. (2022) leads to similar results in terms of centerline velocity deficit and is suited for wind-farm power predictions.

The new superposition method has more robust theoretical foundations than the traditionally used local-linear-sum (LLS)

1



superposition technique (method C in Zong and Porté-Agel (2020)), and its applicability is demonstrated based on the large25

Horns-Rev wind farm.

2 Extension of the Bastankhah et al. (2021) model

2.1 Model derivation

In Bastankhah et al. (2021), the conservation of momentum deficit for multiple wakes takes the form:∫
Ã

(
u0cnfn− (cnfn)

2− 2cnfn

n−1∑
i=1

cifi

)
dÃ≈ T̃n

ρ
, (1)30

with cn the maximum velocity deficit of turbine n, i the index of the turbines upwind of turbine n, fn the self-similar function,

Ã= πr̃2 the rotor surface with r̃ = r/d0 and d0 the wind turbine diameter, T̃n the thrust force of the unit diameter rotor, u0

the undisturbed wind velocity, and ρ the fluid density. Based on comparisons to numerical results from a large-eddy simulation

(LES) solver, a modified form was proposed in Bastankhah et al. (2021): the factor two in the left-hand side of Eq. (1) is

dropped.35

Let us consider the original form, Eq. (1). Given a super-Gaussian shape function fn, a solution for cn is sought. Following

Blondel and Cathelain (2020), the shape function reads fi = exp
(
−r̃ik/2σ̃i2

)
, with k = k(x̃) the super-Gaussian order and i

or n the index of a wind turbine. In the following, we assume that the turbines are sorted from the most upwind to the most

downwind, and for two turbines i and n, we have i < n.

Here, as indicated by the tilde, the radius and the super-Gaussian characteristic width are both normalized by the wind40

turbine diameter d0, such as: r̃i =
√

(y− yi)2 + (z− zi)2/d0 and σ̃i = σi/d0. The following integrals are defined in terms of

the gamma function Γ:∫
Ã

fndÃ=
π

k
Γ

(
2

k

)
22/k+1σ̃4/k

n ,

∫
Ã

f2ndÃ=
2π

k
Γ

(
2

k

)
σ̃4/k
n , and

∫
Ã

fnfidÃ= I. (2)

No analytical solution could be found for the last integral, denoted I. Inserting Eqs. (2) into Eq. (1) leads to:

u0cn
π

k
Γ

(
2

k

)
22/k+1σ̃4/k

n − c2n
2π

k
Γ

(
2

k

)
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ciI ≈
T̃n
ρ
. (3)45

Using the thrust coefficient CTn = 8T̃n/
(
πρd̃0

2 < un−1 >
2
(n,xn)

)
, the operator <>(n,xn) denoting the spatial averaging over

the frontal projected area of rotor n at x= xn, and u the streamwise velocity component as in Bastankhah et al. (2021), one

obtains:

c2n− cn22/k

u0− 2
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≈ 0. (4)
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Let us introduce a modified integral J = kI/
(

22/kπΓ

(
2

k

)
σ̃
4/k
n

)
. After straightforward manipulations, and assuming50

u0 = uh, i.e., a constant, shear-free inflow, the solution for cn reads:

cn
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=

(
1−
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i=1

ci
uh
J

)22/k−1−
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(
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)2

16Γ
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 . (5)

The modified form is obtained by using a modified J together with Eq. (5) and Imod = I/2:

Jmod =
kImod

22/kπΓ

(
2

k

)
σ̃
4/k
n

. (6)

2.2 Approximate solutions of the integral I55

In a first approach, hereafter referred to as theGauss approach, one may assume a Gaussian behaviour of the model to evaluate

J , as done in Bay et al. (2022). One obtains, see Bastankhah et al. (2021):

Jmod
Gauss =

πσ̃2
i σ̃

2
n

σ̃2
i + σ̃2

n

exp

(
− (ỹn− ỹi)2

2(σ̃2
n + σ̃2

i )

)
exp

(
− (z̃n− z̃i)2

2(σ̃2
n + σ̃2

i )

)
. (7)

Alternatively, in a second approach hereafter referred to as the kEquiv approach, one may first consider aligned turbines

(ỹi− ỹn = 0, z̃i− z̃n = 0) and later correct the integral for the lateral distance between the rotors using a function δ(ỹ, z̃). This60

function is identified from the Gaussian solution. A second approximation consists in considering an equivalent super-Gaussian

order, keq = 1/2(ki + kn). Under these hypotheses, the integral I takes the form:

Imod
kEquiv =

πΓ(2/keq)22/keq+1σ̃
4/keq

i σ̃
4/keq
n

keq (σ̃2
i + σ̃2

n)
2/keq

δ(ỹ, z̃), with δ(ỹ, z̃) = exp

(
− (ỹn− ỹi)keq

2(σ̃2
n + σ̃2

i )

)
exp

(
− (z̃n− z̃i)keq

2(σ̃2
n + σ̃2

i )

)
, (8)

and Eq. (6) is used to calculate Jmod
kEquiv . Another straightforward approach consists in tabulating the integral values (exclud-

ing the δ(ỹ, z̃) function) and linearly interpolating between the data, which is the one retained in practice. For a quantitative65

comparison, the proposed analytical approximations of the integral J are compared to the numerical integration. An interval

of 0.2≤ σ̃i, σ̃n ≤ 2.5 is considered for the characteristic width, and several intervals 2≤ ki,kn <maxk are considered for

the super-Gaussian order, with 2<maxk ≤ 8. The bounding values are representative of the very near wake of a wind tur-

bine under laminar flow conditions and the very far wake (x̃ > 15d0) under highly turbulent conditions: the typical operating

range of a turbine in a wind farm is covered. Among the characteristic width and super-Gaussian order intervals, 15 values70

are sampled. Regarding the maximum super-Gaussian order, six equally-spaced values are sampled. For each set of four in-

puts, and for a given maximum super-Gaussian order, the analytical approximations are evaluated, and the error is computed

(error = (|JAnalytical| − |JNumerical|)/ |JNumerical|). The numerical evaluation is based on the scipy (Jones et al. (2001))

“integrate.quad" integration routine, and extends from 0 to 6 ·max(σi,σn). Then, for each maxk, the average and maximal er-

ror are computed and reported in Figure 1. From these results, the so-called kEquiv method seemingly outperforms theGauss75

method and should be preferred. However, it will be shown in Section 3 that the impact on the velocity deficit is limited.
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Figure 1. Mean (left) and maximal (right) relative error of the analytical integrals compared with the numerical evaluation of J as a function

of the maximal considered super-Gaussian order

3 Results

In a recent study, Lanzilao and Meyers (2022) showed that the super-Gaussian model performed poorly compared with other

models: for both Horns-Rev and the London Array wind farms, the predicted power production is far below the measured power

from SCADA data. Due to these observations, the model is re-calibrated for the present study. The calibration procedure and80

the notations used hereafter follow the work of Cathelain et al. (2020). The main difference here lies in the use of a Gaussian

profile in the far wake, i.e., lim
x̃→∞

k(x̃) = 2. The wake characteristic width is assumed to evolve linearly with axial distance:

σ̃ = (asTI + bs) x̃+ cs

√(
1

2

1 +
√

1−CT√
1−CT

)
. (9)

The three parameters, as, bs and cs, are used for both the super-Gaussian and the Gaussian model. The super-Gaussian order

follows an exponential decay function:85

k = afe
bf x̃ + cf . (10)

A Gaussian profile is assumed in the far wake, thus cf = 2. The parameter bf controls the decay of the super-Gaussian

order, and is taken as a function of the turbulence intensity. af is chosen in such a way that the model fulfils the actuator-disk

theory (see Cathelain et al. (2020)). This can be enforced numerically using a Newton fixed-point algorithm. To facilitate the

implementation, this inversion is performed in a pre-processing stage, and a third-order polynomial fit is proposed:90

af =−8.2635C3
T + 8.5939C2

T − 8.9691CT + 10.7286. (11)
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The proposed calibration is not meant to be universal but dedicated to the present study. Future work will be dedicated to a

calibration that is reliable in both near and far-wake regions. Table 1 provides the list of the model coefficients used in this

study, obtained using a differential evolution algorithm and a set of nine LES simulations.

Table 1. Coefficients of the super-Gaussian wake model

as bs cs af bf cf

0.28 0.01 0.1×CT +0.1 Eq. 11 1.68exp(−25.98TI)− 1.06 2.

3.1 Comparison against large-eddy simulations from Bastankhah et al. (2021)95

For the model comparison, the numerical setup based on the aligned wind farm introduced in Bastankhah et al. (2021) is

reproduced. A schematic view of the wind farm is given in Figure 2. It consist of five columns of three wind turbines, which

are all included in the simulation. The velocity deficit studied later is extracted over a line passing through the hub of the wind

turbines of the central line, as shown in the schema. The first column in our simulations is located at x̃= 0.

u0

x̃= 5

ỹ = 3

Figure 2. Schematic view of the simulated wind farm

The wind farm flow model builds upon the super-Gaussian model as described in Blondel and Cathelain (2020), using the100

calibration introduced in Section 3. The WAT model proposed in Ishihara and Qian (2018) is employed, together with a so-

called “maximum-value" WAT superposition, see Niayifar and Porté-Agel (2016). A correction factor of 1.25 is applied on the

maximum of added turbulence to match the results presented in Bastankhah et al. (2021). Following a convergence study, the

rotor disks are discretized based on 12× 12 polar grids. Velocity deficit and WAT due to upwind rotor wakes are evaluated at

every point on the disk. Then, mean velocity and turbulence intensity are computed and used as an input for the wake models105

and rotor performance evaluation, i.e., the power and thrust coefficients are given as a function of wind speed. Using a polar

discretization, the mesh cells are not uniform in size: the ones located near the edge of the disk are significantly larger than the

ones near the hub. Thus, when computing the mean quantities, we use a weighted average whose ponderation is based on the

mesh cell surface. In practice, in the case of aligned rotors, this tends to lower the wake effect since the higher velocity deficit

is located at the rotor centre where the mesh cell’s relative areas are the smallest. A blockage correction based on the vortex110
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cylinder flow model is used, see Branlard and Meyer Forsting (2020). The LLS method is compared to the present method,

denoted MC (Momentum Conserving), with the two approximations for Jmod, as well as a direct numerical evaluation of the

integral, denoted Jmod
Num.
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Figure 3. Centerline velocity deficit in the middle column of the farm, LES data scanned from Bastankhah et al. (2021). Top figure: com-

parison between LES, the LLS method together with the super-Gaussian model (LLS-SG), and the momentum-conserving method together

with the super-Gaussian formulations (MC-SG). Bottom figure: comparison between LES and the momentum-conserving method and the

Gaussian model, using the Original (MC-GOriginal) and modified (MC-G) formulations, and a super-Gaussian formulation (MC-SG).

Figure 3 (top) shows that, compared with the LLS superposition method, the MC model predicts a lower velocity deficit in

both near and far wake regions which is more consistent with LES data. Moreover, the proposed analytical approximations of115

the integral Jmod are very close to the numerical approximation in the presented test case. At the rotor planes, discontinuities

are observed. This can be partially attributed to the use of the modified momentum-conservation method which improves the

results in the far wake as shown in Figure 3 (bottom) but does not fully respect the conservation laws, as detailed in Bastankhah

et al. (2021). Using the un-modified formulation leads to very high near-wake velocity deficits or even unrepresentable numbers

in the presented test case. More than three diameters behind the wind turbine, the results based on the Jmod
kEquiv and Jmod

Gauss120

approximations are superimposed since the super-Gaussian order is close to 2. These observations validate the approach em-
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ployed in Bay et al. (2022), despite the higher errors noticed in Figure 1. In practice, using a tabulated version of the integral is a

fast and convenient approach. However, it does not circumvent the approximation based on the rotor distance function, δ(ỹ, z̃),

since tabulating the complete integral results in large data files that are time-consuming to load. The global agreement against

the LES dataset is satisfying. In the first turbine wake, the hub effect prevents a proper analysis of the results. For the second125

turbine, a good agreement is obtained with the LLS method, while the MC method underpredicts the velocity deficit. This

behaviour, as noted in Bastankhah et al. (2021), is a consequence of the application of the modified momentum conservation

law. For the following three turbines, a good agreement is obtained.

Table 2. Root-Mean-Square-Error of the analytical models against the LES results from Bastankhah et al. (2021)

MC-GOriginal MC-G LLS-SG MC-SG, Jmod
Gauss MC-SG, Jmod

kEquiv MC-SG, Jmod
Num

0.160 0.145 0.078 0.059 0.055 0.056

For a more quantitative analysis, the Root-Mean-Square-Error (RMSE) between the different analytical models from x̃= 0

to x̃= 30 and the LES results are given in Table 2. First, the use of Gaussian wake models leads to a rather high error, due to130

the inaccuracy in the near-wake. This behaviour is expected, and we are here using the model outside of its definition domain,

i.e., the Gaussian model is a far-wake model. Using the super-Gaussian model, the RMSEs fall below 8%. Whatever the

approximation performed on the J integral, the momentum-conserving approach outperforms the LLS method: the RMSEs

fall again from approximately 8 to less than 6%. Using the Jmod
Gauss approximation, the error is slightly higher compared with

Jmod
kEquiv and Jmod

Num. One should thus prefer one of these two formulations over the so-called Jmod
Gauss approximation.135

3.2 Comparison against large-eddy simulations of the Horns-Rev wind farm from Porté-Agel et al. (2013)

The model predictions are also compared with large-eddy simulations of the Horns-Rev wind farm, as presented in Porté-Agel

et al. (2013). With a minimal inter-turbine distance of seven diameters, this wind farm can not be considered as closely-packed.

However, the availability of a large set of large-eddy simulation results makes it a good candidate for validation purposes. The

inflow conditions are based on inflow velocity and turbulence intensity profiles scanned from Porté-Agel et al. (2013). Figure140

4 compares the wind farm efficiency η (predicted power divided by theoretical power without wake effect) over a wide range

of wind directions θ. We use the LES as a reference to avoid the uncertainties of SCADA measurements, mainly due to the

wind direction changes during the 10 min averaging in the available data. The agreement between the analytical model and

the LES dataset is overall good. Differences between the momentum-conserving superposition method and the LLS approach

are noticed for wind directions where the wake effects are strong, typically at θ ≈ {222o,270o,312o}. Around such directions,145

the lower velocity deficits predicted by the MC approach lead to lower wake losses and better efficiency of the wind farm

which is more consistent with the LES data. Both the Gaussian and the super-Gaussian models predict the same wind farm

efficiency whatever the wind direction: this is due to the large inter-turbine distances in the Horns-Rev wind farm. It confirms
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Figure 4. Comparison of the normalized Horns-Rev wind farm power output based on LES simulations from Porté-Agel et al. (2013), the

LLS method together with the super-Gaussian model (LLS-SG), the momentum-conserving method together with the super-Gaussian model

(MC-SG) and the momentum-conserving method together with the Gaussian model (MC-G)

that the poor results obtained in Lanzilao and Meyers (2022) for the same wind farm are mostly due to inaccuracies in the

model calibration introduced in Cathelain et al. (2020).150

For a more quantitative comparison, the RMSEs of the different analytical models against the LES results are provided in

Table 3. The LLS method together with the super-Gaussian model has the highest level of error, around 3.7 per cent, while

using the momentum-conserving approach, both with a Gaussian or a super-Gaussian model, the RMSEs falls below 2.5%.

Differences between the two aforementioned models appear in the RMSEs only at the fourth decimal. Considering the large

inter-turbine spacing in the Horns-Rev wind farm, this was expected, since both models use the same characteristic width, and155

the inter-turbine distances are large enough to have super-Gaussian orders very close to k = 2 at the rotor planes.

Table 3. Root-Mean-Square-Error of the analytical models against the LES results from Porté-Agel et al. (2013)

MC-G LLS-SG MC-SG, Jmod
kEquiv

0.024 0.037 0.024

4 Conclusions

In this work, the momentum-conserving wake superposition method proposed in Bastankhah et al. (2021) was extended to

super-Gaussian-type of velocity deficit models. An integral could not be resolved analytically, and an approximation has been

proposed. This approximation is closer to numerical evaluations of the integral that the Gaussian assumption used in Bay et al.160
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(2022). Comparisons against large-eddy simulations of wind farms show a satisfactory agreement, allowing the simulation of

large wind farms using the super-Gaussian wake model. Further studies will include an extensive validation of the resulting

wind farm flow model, including closely-packed wind farms.

Code and data availability. The numerical results based on the analytical models can be made available on demand.

Author contributions. Frédéric Blondel derived the analytical solution introduced herein, performed the simulations and wrote the manuscript165

Competing interests. The author declares no competing interests.

Acknowledgements. The author is grateful to Majid Bastankhah for the helpful discussions.

9



References

Bastankhah, M., Welch, B. L., Martínez-Tossas, L. A., King, J., and Fleming, P.: Analytical solution for the cumulative wake of wind turbines

in wind farms, Journal of Fluid Mechanics, 911, A53, https://doi.org/10.1017/jfm.2020.1037, 2021.170

Bay, C. J., Fleming, P., Doekemeijer, B., King, J., Churchfield, M., and Mudafort, R.: Addressing deep array effects and impacts to wake

steering with the cumulative-curl wake model, Wind Energy Science Discussions, 2022, 1–28, https://doi.org/10.5194/wes-2022-17, 2022.

Blondel, F. and Cathelain, M.: An alternative form of the super-Gaussian wind turbine wake model, Wind Energy Science, 5, 1225–1236,

https://doi.org/10.5194/wes-5-1225-2020, 2020.

Branlard, E. and Meyer Forsting, A. R.: Assessing the blockage effect of wind turbines and wind farms using an analytical vortex model,175

Wind Energy, 23, 2068–2086, https://doi.org/https://doi.org/10.1002/we.2546, 2020.

Cathelain, M., Blondel, F., Joulin, P., and Bozonnet, P.: Calibration of a super-Gaussian wake model with a focus on near-wake characteristics,

Journal of Physics: Conference Series, 1618, 062 008, https://doi.org/10.1088/1742-6596/1618/6/062008, 2020.

Ishihara, T. and Qian, G.-W.: A new Gaussian-based analytical wake model for wind turbines considering ambient turbu-

lence intensities and thrust coefficient effects, Journal of Wind Engineering and Industrial Aerodynamics, 177, 275–292,180

https://doi.org/https://doi.org/10.1016/j.jweia.2018.04.010, 2018.

Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python, http://www.scipy.org/, 2001.

Lanzilao, L. and Meyers, J.: A new wake-merging method for wind-farm power prediction in the presence of heterogeneous background

velocity fields, Wind Energy, 25, 237–259, https://doi.org/https://doi.org/10.1002/we.2669, 2022.

Niayifar, A. and Porté-Agel, F.: Analytical Modeling of Wind Farms: A New Approach for Power Prediction, Energies, 9,185

https://doi.org/10.3390/en9090741, 2016.

Porté-Agel, F., Wu, Y.-T., and Chen, C.-H.: A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a

Large Wind Farm, Energies, 6, 5297–5313, https://doi.org/10.3390/en6105297, 2013.

Shapiro, C. R., Starke, G. M., Meneveau, C., and Gayme, D. F.: A Wake Modeling Paradigm for Wind Farm Design and Control, Energies,

12, https://doi.org/10.3390/en12152956, 2019.190

Zong, H. and Porté-Agel, F.: A momentum-conserving wake superposition method for wind farm power prediction, Journal of Fluid Me-

chanics, 889, A8, https://doi.org/10.1017/jfm.2020.77, 2020.

10

https://doi.org/10.1017/jfm.2020.1037
https://doi.org/10.5194/wes-2022-17
https://doi.org/10.5194/wes-5-1225-2020
https://doi.org/https://doi.org/10.1002/we.2546
https://doi.org/10.1088/1742-6596/1618/6/062008
https://doi.org/https://doi.org/10.1016/j.jweia.2018.04.010
http://www.scipy.org/
https://doi.org/https://doi.org/10.1002/we.2669
https://doi.org/10.3390/en9090741
https://doi.org/10.3390/en6105297
https://doi.org/10.3390/en12152956
https://doi.org/10.1017/jfm.2020.77

