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Abstract. This work aims at developing an analytical model for the velocity and turbulence in the wake of a wind turbine

where the expansion and the meandering of the wake can be independently calibrated. The velocity and turbulence breakdowns

presented in the companion paper allow a better interpretation of the physical phenomena at stake and facilitate the modelling,

in particular when it comes to wakes in a non-neutral atmosphere. A model for the dominating terms of these breakdowns

is here proposed, using only five input parameters: the widths (in vertical and horizontal directions) of the non-meandering5

wake, the standard deviation of wake meandering (in both directions) and a mixing length. This model can be used either in the

FFOR for a static approach or in the MFOR combined with the dynamic wake meandering model for an unsteady approach.

The resulting shapes are tested on a neutral and an unstable LES dataset that was computed with Meso-NH. The model shows

good results for the axial velocity in both directions. For the axial turbulence, the horizontal profiles are satisfying but further

research is needed on the treatment of shear and the parametrisation of the missing terms to better reproduce the vertical10

asymmetry.

1 Introduction

The CPU cost of classical computational fluid dynamic models is too high to deal with all the different cases needed to estimate

and optimise the performances of a wind farm. Thus, so-called engineering models have been developed to estimate the power

loss due to wakes at a low computational cost, e.g. Jensen (1983); Frandsen et al. (2006); Larsen et al. (2008); Bastankhah15

and Porté-Agel (2014). These design tools are based on physical considerations and are often calibrated and validated against

numerical results or measurements. Among these tools, analytical models are the simplest: they consist of a single formula

that can be directly applied to the wind farm setup and atmospheric conditions, leading to fast results even for a whole farm.

A very commonly used model is the one developed by Bastankhah and Porté-Agel (2014) who assumed an axisymmetric and

self-similar Gaussian velocity deficit in the wake and solved the mass and momentum conservation equations to find a relation20

between the amplitude and width of the Gaussian. It can be adapted for a non-axisymmetric wake (Xie and Archer, 2014):
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∆U(x,y,z) =
U∞−U

U∞
= C(x)exp

(
− y2

2σy(x)2
− z2

2σz(x)2

)
(1)

C(x) = 1−

√
1− CT

8σy(x)σz(x)/D2
(2)

where U is the mean velocity field, U∞ is the mean velocity upstream of the turbine, C(x) is the maximum velocity deficit,

CT is the thrust coefficient, D is the turbine diameter, (x,y,z) are the streamwise, lateral and vertical coordinates, centred25

at the turbine’s hub, and σy,z the wake widths in the lateral and vertical directions. In this work, the vertical and horizontal

axes are centred at the hub position. Here and in the following, the Reynolds decomposition is used to write any unsteady

field X(t) as a sum of a mean and a varying part: X(t) =X +X ′(t). For the turbulent kinetic energy (TKE), it is common to

model only the maximum value of added turbulence which can be computed with the Crespo model (Crespo and Hernandez,

1996) or the Frandsen model (Frandsen, 2007) as in the IEC 61400-1 standard. Their approach is mainly empirical and can30

be extended to describe the whole profile of turbulence instead of the maximum value alone (Ishihara and Qian, 2018). More

recently, a physically-based model for each Reynolds’ stress component has been proposed based on self-similarity (Stein and

Kaltenbach, 2019).

The stability of the atmospheric boundary layer (ABL) influences the wake recovery (Abkar and Porté-Agel, 2015) and

the large-scale eddies carried in this region of the atmosphere are often associated with wake meandering, i.e. oscillations of35

the instantaneous wake around its mean position (Larsen et al., 2008). To model the meandering, the concepts of fixed and

moving frames of reference (respectively denoted FFOR and MFOR) defined in the dynamic wake meandering (DWM) model

are used herein. The FFOR is bound to the ground: it is the frame of reference in which we want to compute the turbulence

and velocity fields. In the FFOR the effects of meandering are not differentiated from the wake expansion caused to turbulent

mixing, making the fields in this frame of reference harder to interpret. The MFOR is moving with the wake centre at each time40

step: in this frame of reference, only the wake expansion due to turbulent mixing is represented. The instantaneous streamwise

velocity can be changed from one frame to another according to the relation:

UMF (x,y,z, t) = UFF (x,y+ yc(x,t),z+ zc(x,t), t) (3)

where subscripts MF and FF denote the velocity fields in the MFOR and FFOR respectively, yc(x,t) and zc(x,t) are the

time series of the wake centre’s coordinates at the downstream position x. The concept of MFOR and FFOR can be used to45

write an analytical wake model for the velocity deficit as in the work Braunbehrens and Segalini (2019):

∆U(y,z) = C

[
1+

(
σfy

σy

)]−1/2 [
1+

(
σfz

σz

)]−1/2

exp

[
− y2

2σ2
y +2σ2

fy

− z2

2σ2
z +2σ2

fz

]
(4)

where σfy,fz(x) are the standard deviations of the wake centre’s coordinates in the lateral and vertical directions respectively,

σy,z(x) are the wake widths in the MFOR and C(x) is the maximum velocity deficit in the MFOR. Such a model allows
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calibrating independently the effects of meandering (through the variables σfy,fz) and of wake expansion due to turbulent50

mixing (through the variables σy,z). The former parameters are a function of atmospheric stability through lateral and vertical

turbulence (Braunbehrens and Segalini, 2019; Du et al., 2021; Brugger et al., 2022) whereas the latter parameters can be a

function of axial turbulence as in Eq. 1 (Fuertes et al., 2018; Niayifar and Porté-Agel, 2016) or turbine operating conditions

such as CT and atmospheric shear (Braunbehrens and Segalini, 2019).

The notation â(y,z) = a(y− yc(t),z− zc(t)) for any field a, introduced in the companion paper, is used to shorten Eq. 3.55

For this work, it is also important to note that for any field a:

â= a ∗ ∗fc (5)

where ∗∗ denotes a 2D convolution and fc is the probability density function (PDF) of the wake centre position. In the

companion paper, it has been shown that the velocity (Eq. 6) and turbulence (Eq. 7) in the FFOR can be expressed as a function

of their counterparts in the MFOR. This is achieved by decomposing these quantities into several terms, noted (I) and (II) in60

Eq. 6 and (III) to (VII) in Eq. 7.

UFF = ÛMF︸ ︷︷ ︸
(I)

+ Û ′
MF︸ ︷︷ ︸
(II)

(6)

kFF = ÛMF

2

− ÛMF

2︸ ︷︷ ︸
km=(III)

+ k̂MF︸︷︷︸
ka=(IV )

+2cov
(
ÛMF , Û ′

MF

)
︸ ︷︷ ︸

(V )

+ ̂(U ′2
MF )

′︸ ︷︷ ︸
(V I)

−Û ′
MF

2︸ ︷︷ ︸
(V II)

(7)

These terms are thoroughly described and quantified in the companion paper where they are separated into pure-terms

((I),(III) and (IV)) and cross-terms ((II), (V), (VI) and (VII)).65

The term (I) is the convolution of UMF with fc. It is a pure mean velocity term: it is null only if the mean velocity is null.

Conversely, the term (II) is a cross-term because it can be equal to 0 either if there is no meandering (x̂= x) or if there is

no turbulence in the MFOR (U ′
MF = 0). The term (III), also written km in the following to be consistent with notation from

Keck et al. (2013) and Conti et al. (2021), is the turbulence purely induced by meandering: in the case of a meandering steady

wake i.e. U ′
MF = 0, Eq. 7 reduces to this term only. The term (IV) is the rotor added turbulence, which is also written ka for70

consistency with other works. It is the turbulence purely induced by the rotor: in absence of meandering (x̂= x), the equation

reduces to this term only, also written ka in the following for consistency with the literature. Term (V) is the covariance of ÛMF

and Û ′
MF , term (VI) can be viewed as the varying part of the MFOR turbulence and term (VII) is the square of the term (II). It

is a pure dissipation term as it is always negative. Like the term (II), they are cross-terms since they are equal to zero if either

the turbulence in the MFOR or the meandering is null. The companion paper showed that terms (II) and (VII) are negligible in75

their respective equations. In the breakdown of the turbulence equation, terms (V) and (VI) are of lesser importance than (III)

and (IV) but drive the vertical asymmetry of the turbulence profiles.
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The objective of this paper is to propose an analytical model based on the velocity and turbulence breakdowns (Eqs. 6 and 7).

Similarly to Eq. 4 (Braunbehrens and Segalini, 2019), the reasoning starts by writing the wake properties in the MFOR and the

wake meandering with different parameters to take into account meandering due to atmospheric stability independently of the80

expansion due to turbulence mixing. It is common in wake modelling to assume that meandering can be entirely accounted for

by increasing the wake expansion. In the present model, these phenomena are modelled separately, but it will be assumed that

they do not interact. This is equivalent to neglecting cross-terms in Eqs. 6 and 7 which have been shown to take consistently

smaller values than pure-terms in the companion paper. In the future though, modelling these cross-terms might be necessary

to improve the results.85

In the first section of this work, the reference datasets obtained from the large eddy simulations (LESs) used in the com-

panion paper are described. The second section presents the assumptions of the model and the shape functions chosen for the

meandering, velocity deficit and added turbulence in the MFOR. The third and fourth sections are dedicated to the results of

the model for the velocity and turbulence fields, respectively. We will show that due to meandering, the turbulence in the wake

no longer respects self-similarity and that another parameter is needed to yield correct shape functions in the wake.90

2 The LESs datasets

The analytical model developed in this work is based on LESs datasets generated with the Meso-NH solver (Lac et al., 2018). It

is a finite volume research code for ABL simulations where the Navier-Stokes equations and the energy conservation equation

are resolved on an Arakawa C-grid. This solver models the stability of the ABL with a buoyancy term in the momentum equa-

tion. The Coriolis force and large-scale forcing are also taken into account. The effect of the wind turbine on the surrounding95

flow is modelled with an actuator line method, i.e. rotating source terms in the momentum equation.

To close the set of equations, the subgrid TKE equation is resolved, allowing to write all the subgrid quantities as a function

of this subgrid TKE, the resolved variables and a Deardorff mixing length. A grid nesting method allows having simultaneously

a vertical and horizontal mesh size of 0.5 m in the wake region and a domain large enough to compute the largest eddies of the

atmosphere. The model and numerical parameters are described in more detail in the companion paper.100

The simulated turbine is a modified version of the Vestas V27: it is a three-bladed rotor with a diameter D = 27 m and a

hub height of 32.1 m. In the companion paper, three cases of stability were simulated but the stable case has been discarded

for this paper due to its strong veer. The veer could have been modelled as in Abkar et al. (2018) but it would significantly

complicate the present derivations. Moreover, meandering and meandering turbulence are negligible in a stably stratified ABL

(see companion paper) and thus there is little interest in using the approach presented herein. For the remaining neutral and105

unstable cases, the veer upstream of the turbine is negligible: respectively, the difference between the maximum and minimum

wind direction between the ground and 90 m above the ground is of 1.25◦ and 0.5◦. The stability parameter at z = 10 m is

respectively z/LMO = {0.003,−0.16} where LMO is the Monin-Obukhov length, the inflow velocity at hub height is Uh =

{8.4,6.2} m s-1, the inflow streamwise turbulence intensity (TI) at hub height is TIx = {11.2,12.3} %, the thrust coefficient
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is CT = {0.79,0.81} and the rotational velocity of the turbine is fixed to Ω= {4.56,3.89} rad s-1. In this study, the wake is110

studied at eight positions downstream, from x/D = 1 to x/D = 8

The wake centre’s coordinates yc(x,t) and zc(x,t) are computed at each time step and each downstream position with the

Constant Flux wake tracking algorithm, which is described in the companion paper. To facilitate the wake tracking and to have

cleaner results of velocity deficit and added turbulence in the MFOR, a Reference simulation is also run. It is a simulation with

the same inflow and boundary conditions but without the wind turbine. The corresponding velocity field noted Uref is thus115

representing a developing ABL without the perturbations of a wind turbine. Even though there is no wake and thus no wake

meandering, an equivalent MFOR can be deduced for this simulation by applying Eq. 3, with the yc and zc computed in the

case with the wind turbine.

Due to limited computational resources for the post-processing, the LESs datasets are sampled at 1 Hz and do not take

into account the subgrid turbulence. The resulting computations of TKE consequently do not take into account the variations120

at higher frequencies than this sampling frequency. Finally, only the mean streamwise velocity (Ux), and the streamwise

turbulence (kx = u′u′) are computed.

3 Independent modelling of the wake in the MFOR and meandering

An analytical form for some of the main terms of Eqs. 6 and 7 is proposed and tested on the neutral and unstable cases.

Similarly to what has been done in the companion paper, the normalised root-mean-square-error (RMSE, defined in Eq. 8) is125

used here to quantify the error between the model and the Meso-NH simulations. The reference value α is the value of the

studied quantity in Meso-NH, αp is the value predicted by the model and N is the number of samples, i.e. the number of mesh

points in the studied 2D plane.

RMSE =

√∑N
i=1(α−αp)

2

N
/(αmax−αmin) (8)

3.1 Wake velocity deficit in the MFOR130

The first step of this analytical reasoning is to define the shape of the mean velocity deficit and added turbulence fields in the

MFOR. The velocity deficit ∆U in the MFOR computed from the reference dataset is plotted in Fig. 1 for the neutral and

unstable cases at three positions downstream. In the LESs datasets, the velocity deficit in the MFOR is computed as:

∆UMF (x,y,z) =
Ux,MF,ref (x,y,z)−Ux,MF (x,y,z)

Ux,MF,ref (x,y,z)
(9)

whereas in the analytical model, it is defined as:135

∆UMF,am(x,y,z) =
Ux,∞(z)−Ux,MF,am(x,y,z)

Ux,∞(z)
(10)
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Figure 1. Velocity deficit in the MFOR for the neutral (top) and unstable (bottom) cases computed with Meso-NH.

where Ux,∞(z) (hereafter abbreviated U∞(z)) is the time-averaged and laterally-averaged streamwise velocity profile up-

stream the turbine. Equation 9 is used because it allows computing a smooth and almost axisymmetric velocity deficit in the

MFOR, which is moreover very similar between the neutral and unstable cases. Even though it is convenient for the post-

process of LES data, Ux,MF,ref does not correspond to any physical reality so instead, Eq. 10 is used for the model. Based on140

the shapes observed in Fig. 1, this mean velocity deficit is modelled with the long-established Gaussian velocity deficit (cf Eq.

1):

∆UMF,am(x,y,z) = C(x)exp
(
− y2

2σ2
y(x)

− z2

2σ2
z(x)

)
(11)

where subscript .am stands for "analytical model", C(x) is defined in Eq. 2 and σy,σz are the wake widths in the MFOR,

which are deduced from the LESs datasets (see Sect. 3.4). For both cases, the resulting velocity deficit is plotted in Fig. 2.145

The RMSE is higher in the near-wake because the shape of the velocity deficit is assumed to be Gaussian, whereas a "top-hat"

function is observed in the LESs datasets. In the literature, it has been shown that double-Gaussian (Keane et al., 2016) or

super-Gaussian (Blondel and Cathelain, 2020) shapes provide more accurate results, but here the Gaussian shape allows a

straight-forward computation of our model and is still pertinent in the far wake for both datasets, especially in the unstable

case.150

3.2 Wake added turbulence in the MFOR

To model term (IV) or ka, one needs an analytical form for the turbulence in the MFOR kMF . It is proposed to separate the

rotor-added turbulence ∆(IV) from the ambient turbulence. Similarly to the velocity deficit, the ambient turbulence is chosen

as the value from the reference simulation for the LES dataset:
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Figure 2. Modelled velocity deficit in the MFOR for the neutral (top) and unstable (bottom). The RMSE is given with respect to the LES

value (Fig. 1).

kx,MF (x,y,z) = ∆kx,MF (x,y,z)+ kx,MF,ref (x,y,z) (12)155

but as the upstream value for the analytical model:

kx,MF,am(x,y,z) = ∆kx,MF,am(x,y,z)+ kx,∞(z) (13)

where ∆kx,MF is the added streamwise turbulence in the MFOR and kx,∞ (abbreviated k∞) is the laterally averaged

streamwise turbulence upstream of the turbine. The added axial turbulence field in the MFOR computed from the LESs datasets

is plotted in Fig. 3. It is normalised like a turbulence intensity to have similar orders of magnitude between the neutral and160

unstable datasets:

∆TIMF =
|∆kx,MF |
∆kx,MF

·
√
|∆kx,MF |
Uh

(14)

where Uh is the upstream velocity at hub height. Similarly to the velocity deficit, the added turbulence field in the MFOR

is very alike between the two cases of stability. Atmospheric stability and hub-height velocity are thus not parameters of the

added turbulence in the MFOR, as long as sufficiently large turbulent structures are present in the inflow (Jézéquel et al.,165

2022). Instead, shear has a clear effect in the neutral case, by breaking the symmetry of the wake as it travels downstream.

Other parameters, such as thrust coefficient or roughness length, may impact ∆TIMF but are here constant among the two

cases so more work is needed to estimate their impact.

The derivation of a model for ∆kx,MF is not as straightforward as for ∆UMF because turbulence comes from the unsteadi-

ness of the flow whereas an analytical model is by definition steady. In the DWM, the Madsen formulation (Madsen et al.,170
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Figure 3. Added turbulence in the MFOR for the neutral (top) and unstable (bottom) case computed with Meso-NH.

2010) is used to scale the velocity profile with an empirical function of the wake-generated shear. One could also assume

self-similarity of the ∆kx,MF function and try to derive a model as it was done for the velocity in Bastankhah and Porté-Agel

(2014). The main issue here is that an analytical form of the model is needed in the FFOR, i.e. the convolution of fc,am with

the chosen shape function for ∆kx,MF,am must have an analytical solution, which is not trivial for the aforementioned models.

It is here proposed to assume that the turbulence in the MFOR is solely driven by wake-generated shear. To relate the175

turbulence in the MFOR to mean gradients, two models for the velocity scale u0 are combined. In the first, it is assumed to

be proportional to the square root of the TKE (Pope, 2000). However in the present work, the three-dimensional TKE is not

computed, so it is replaced with the axial turbulence kx:

u0 = C1/4
µ k1/2x . (15)

where Cµ is a constant and lm is the mixing length. The value Cµ = 0.09 will be used in this work. Note that this value180

has been fitted to yield correct behaviour in the log-law region of a wall, and can be extended in regions where the turbulence

production equals the dissipation (Pope, 2000). It is a strong assumption that has not been verified, but since the mixing length

is here fitted on the LES results, this choice has no significant consequences. In the future, it would be interesting to compute

this constant in the MFOR of a wind turbine wake. In the second method, the velocity scale is defined from the norm of the

strain-rate tensor |S|:185

u0 = lm|S|

= lm ·

√(
∂Ux

∂x

)2

+

(
∂Uy

∂y

)2

+

(
∂Uz

∂z

)2

+
1

2

(
∂Ux

∂y
+

∂Uy

∂x

)2

+
1

2

(
∂Ux

∂z
+

∂Uz

∂x

)2

+
1

2

(
∂Uy

∂z
+

∂Uz

∂y

)2

(16)
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From the literature (Iungo et al., 2017), it appears that in the wake of a wind turbine, the dominating term (in cylindrical

coordinates) is
∂U

∂r
. It is supposed herein that these results can be transposed in Cartesian coordinates and are applicable in the

MFOR. The velocity scale can thus be written as a function of the derivatives of the axial velocity.190

u0 = lm ·

√
1

2

(
∂Ux

∂y

)2

+
1

2

(
∂Ux

∂z

)2

(17)

To simplify the equation of added turbulence in the MFOR and to analytically develop the convolution product, it is needed

to consider U∞ as a constant with z when it comes to the vertical derivative, i.e. make the following approximation:

∂Ux(y,z)

∂z
= U∞(z)

∂∆U(y,z)

∂z
. (18)

Note that the model could be computed in the MFOR by developing the derivative with Ux(y,z) = U∞(z)(1+∆U(y,z))195

but then no analytical solution can be found for the rotor-added turbulence in the FFOR ∆kx,a,am (i.e. after the convolution),

either with a power law or a logarithmic profile for U∞.

∆kx,MF,am =

(
u0

C
1/4
µ

)2

=
l2m(x)

2C
1/2
µ

·

[(
∂Ux,MF

∂y

)2

+

(
∂Ux,MF

∂z

)2
]

=
(C(x)U∞(z)lm(x))

2

2C
1/2
µ

[(
∂∆UMF,am

∂y

)2

+

(
∂∆UMF,am

∂z

)2
]

200

=KMF (x,z)

[(
y

σ2
y(x)

)2

+

(
z

σ2
z(x)

)2
]
exp

(
− y2

σ2
y(x)

− z2

σ2
z(x)

)
(19)

Computing the mixing length in Eq. 19 is a challenge that has not been answered yet in this work. Formulations that

depend on the vertical coordinate (like the Prandtl mixing length lm = κz or the modified version of Blackadar (1962)) are

not appropriate herein because they would result in a value constant with x whereas the work of Iungo et al. (2017) showed

the opposite in a wind turbine wake. Local formulations such as Grisogono and Belušić (2008) could also be used but would205

increase the complexity of the model and for this particular case would lead to the simplification of kx,MF,am, which we want

to avoid since it is the variable of interest. Moreover, these formulations have been developed for the ABL whereas we are

looking for a mixing length to apply to the wake in the MFOR, which is relatively independent of the ABL state (Jézéquel

et al., 2021).

It has thus been decided to use a mixing length that only depends on the streamwise direction lm(x). Two mixing length210

values proposed in the literature have been tried (Keck et al., 2012; Iungo et al., 2017) without success. However, the authors

think that these type of formulations are more appropriate than those aforementioned but need some modifications to fit our
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model. A proper formulation of the mixing length will be proposed in further works, but for the present work, the value of lm

at each position downstream is deduced through an optimisation algorithm (see Sect. 3.4).

The maps of ∆kx,MF,am, normalised as in Eq. 14 (in order to compare with Fig. 3) are plotted in Fig. 4. Strong assumptions215

were made to obtain Eq. 19, especially on shear, which led to an almost axisymmetric turbulence field in the MFOR. Indeed, the

only component inducing vertical asymmetry in Eq. 19 is U∞(z)2. In the neutral case, the ratio between the squared velocity

at top and bottom tip is U2
∞(z =+D/2)/U2

∞(z =−D/2)≈ 1.2, a fairly low value compared to e.g. Fig. 3 at x/D = 5 where

the ratio of added turbulence at these positions is about 2.

Moreover, the error in the near-wake due to the Gaussian shape assumption for velocity deficit in the MFOR propagates220

onto ∆kx,MF,am, leading to a much weaker but more spread axial turbulence. Note that the RMSE are significantly higher

than for ∆UMF . Finally, the model imposes that ∆kx,MF,am = 0 at the centre of the wake, a condition that is not fulfilled in

the reference dataset (Fig. 3). A possible improvement would be to add the streamwise gradient ∂Ux/∂x in Eq. 17. Despite

these flaws, this expression has been chosen since it has an analytical solution of its convolution with the wake centre position

distribution fc,am and gives acceptable results. Note that an empirical correction can be used to correct for the overestimation225

in the near wake (Ishihara and Qian, 2018), but this option has not been retained in the presented work since it aimed to build

a fully physically-built model.
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Figure 4. Modelled added turbulence in the MFOR. The RMSE is given with respect to the s values in Fig. 3.

3.3 Wake meandering

For the PDF of wake meandering, the central limit theorem leads to a Gaussian distribution (Braunbehrens and Segalini, 2019):

fc,am(x,y,z) =
1

2πσfy(x)σfz(x)
exp

(
− y2

2σ2
fy(x)

− z2

2σ2
fz(x)

)
(20)230
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The distribution of the wake centre fc is known to be non-axisymmetric and thus its variance σf is defined in both dimen-

sions. In Fig. 5, the partial distributions fcy = 1/(
√
2πσfy)exp(−y2/(2σ2

fy)) and fcz = 1/(
√
2πσfz)exp(−z2/(2σ2

fz)) are

plotted against the histograms of yc(t) and zc(t) found in the LESs datasets. The RMSE computed between the 2D histograms

and Eq. 20 is indicated at each downstream position (the first value corresponds to the neutral case and the second to the

unstable case). It appears that the results are much better in the neutral case (in orange) than in the unstable case (in red). This235

is likely due to the higher meandering in the unstable case, which would require a higher number of data to reach a converged

PDF, whereas it has twice less data as the neutral case (see the companion paper for more details). Simulations of more than 40

minutes should thus be performed to have a converged meandering distribution for such atmospheric stability and rotor size.

Moreover, in the vertical direction, the shape of the LES histogram is closer to a skewed Gaussian than a symmetric Gaussian

shape due to the ground presence.240
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Figure 5. Histograms of the wake distribution in Meso-NH along with the modelled distributions (solid lines), in the horizontal (top) and

vertical (bottom) directions. The RMSE is computed in the YZ plane.

The RMSE associated to ∆UMF,am, ∆kx,MF,am and fc,am (respectively Figs 2, 4 and 5) indicate the sources of error from

the different assumptions. For the velocity model that uses only ∆UMF,am and fc,am, the error will come from the Gaussian

shape hypothesis of the velocity deficit in the near wake and from the Gaussian distribution of the wake centre in the far wake.

For the turbulence model that uses the three functions, the error will come mainly from the chosen function of ∆ka,MF,am, in

particular for the neutral case, due to the bad accounting of shear.245
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3.4 Computation of the model’s parameters

In the following, the dependency of the variables on coordinates x is omitted to lighten the equations. The presented work does

not aim at calibrating properly the modelled terms but simply to show that a simple shape function can already lead to a rather

good approximation. Consequently, the parameters that should normally be calibrated as a function of the turbine operating

conditions and atmospheric states are here directly deduced from the LES field:250

– The widths of the wake in the MFOR (σy,σz) are deduced from fitting the function of Eq. 21 on the velocity deficit

∆UMF through a non-linear least squares method.

f(y,z,C0,y0,z0,σy,σz,ω) = C0 +C exp
(
−a(y− y0)

2− 2b(y− y0)(z− z0)− c(z− z0)
2
)

(21)

with a=

(
cos2ω

2σ2
y

+
sin2ω

2σ2
z

)
, b=

(
−sin2ω

4σ2
y

+
sin2ω

4σ2
z

)
and c=

(
sin2ω

2σ2
y

+
cos2ω

2σ2
z

)
. Parameter C is fixed as in Eq. 2,

and the optimisation is run on parameters {C0,y0,z0,σy,σz,ω} where ω is the angle of rotation of the wake, y0,z0 the255

mean wake deviation, and C0 and offset to help the algorithm.

– The widths of the wake centre distribution σfy and σfz are computed as the variances of the wake centre’s coordinate

yc(x,t) and zc(x,t):

σfy(x) =

√
yc(x,t)′2 ; σfz(x) =

√
zc(x,t)′2 (22)

– The mixing length lm(x) is imposed so that Eq. 19 fits the streamwise turbulence in the MFOR (see Fig. 3) at each260

position x. This optimisation is done with a non-linear least squares method.
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Figure 6. Wake properties calibrated from the neutral and unstable cases: (a) wake width in the MFOR; (b) wake meandering; (c) mixing

length.

12



The resulting values for σy , σz , σfy , σfz and lm are plotted as a function of the downstream direction x/D in Fig. 6 and

are also used to plot Figs. 2, 5 and 4. The unstable and neutral wake widths in the MFOR are close to each other and the

wake is approximately describing a circle i.e. σy = σz . It is however not necessarily axisymmetric due to the shear. Conversely,

the amount of meandering is much higher in the unstable case compared to the neutral case and in the horizontal direction265

compared to the vertical direction. Thus, the fact that in the FFOR, wakes are wider in the horizontal than the vertical direction

and in an unstable ABL compared to a neutral ABL mostly comes from the meandering. This observation underlines the

pertinence of our approach to differentiate meandering from wake expansion. Finally, the mixing length plotted in Fig. 6c

shows an approximately linear behaviour between x/D = 2 and x/D = 6, followed by a break of the slope. It is difficult to

conclude for this relatively small range of x but it is reassuring that the shape is similar to Iungo et al. (2017). Moreover, this270

linear behaviour will be convenient to model in the future.

4 Model for the velocity in the FFOR

In Eq. 6, the velocity in the wake is written under its dimensional form whereas the model chosen in Eq. 11 is written under the

velocity deficit form. To relate the velocity to the velocity deficit, it is needed to assume that despite its dependency on z due

to the atmospheric shear, the upstream velocity U∞ can be considered as a constant when applying the 2D convolution product275

with the wake centre distribution. For any function g(y,z), this simplification can be written:

fc,am(y,z) ∗ ∗(U∞(z) · g(y,z)) = U∞(z) · [fc,am(y,z) ∗ ∗g(y,z)] . (23)

An analytical form of the term (I) can then be deduced from Eqs. 11 and 20:

Ux,FF,am(y,z) = fc,am(y,z) ∗ ∗ [U∞(z)(1+∆UFF,am(y,z))]

= U∞(z)

(
1+

∫ ∫
∆UMF,am(y− yc,z− zc) · fc,am(yc,zc)dycdzc

)
280

= U∞(z)(1+∆UFF,am) (24)

The velocity deficit in the FFOR ∆UFF,am is thus the convolution product of two Gaussian functions. It is known that the

convolution product of two normalised Gaussian functions of variance σ2
a and σ2

b is a normalised Gaussian function of variance

σ2
a +σ2

b (Teitelbaum). Equation 24 can be written as the product of two convolution products, leading to:
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∆UFF,am = 2Cπσyσz

[∫
1√
2πσy

exp

(
− (y− yc)

2

2σ2
y

)
1√

2πσfy

exp

(
− y2c
2σ2

fy

)
dyc285

∫
1√
2πσz

exp

(
− (z− zc)

2

2σ2
z

)
1√

2πσfz

exp

(
− z2c
2σ2

fz

)
dzc

]

= C

√
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

exp

(
− y2

2σ2
y +2σ2

fy

− z2

2σ2
z +2σ2

fz

)
(25)

Even though the reasoning of Braunbehrens and Segalini (2019) is different, it is here shown that their model (Eq. 4) can be

found by neglecting term (II) and assuming Eq. 23 as well as Gaussian shapes for the velocity deficit in the MFOR and the wake

centre’s distribution. This is still a Gaussian form i.e. Eq. 1 with a FFOR wake widths defined as σty,tz =
√

σ2
y,z +σ2

fy,fz , and290

a maximum velocity deficit of:

CFF = C

√
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

. (26)

From Figs. 6a and 6b, the amount of meandering starts lower but grows faster than the wake width, in particular in the

unstable case. Hence, one can expect that σty,tz will be close to σ for x→ 0 and if the meandering is sufficiently strong, it will

be close to σf as x→∞.295

To fulfill the conservation of momentum as in Eq. 2, one would need CFF = 1−
√
1−CT /(8σtyσtz/D2), which is not the

case here. Actually, with this methodology, the conservation of momentum can only be enforced in the MFOR or the FFOR.

This is the consequence of neglecting the term (II) in the velocity breakdown, however, the error hence induced is relatively

low (not shown here). Combining Eqs. 24 and 25 leads to our model for the velocity in the wake of a wind turbine:

Ux,FF,am(y,z) = U∞(z)

(
1+C

√
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

exp

(
− y2

2σ2
y +2σ2

fy

− z2

2σ2
z +2σ2

fz

))
(27)300

The resulting horizontal (top) and vertical (bottom) velocity profiles computed with the parameters from Fig. 6a and 6b are

plotted in Figs. 7 and 8 for the neutral and unstable cases, respectively. On the same figures are also plotted the velocity profiles

in the FFOR in Meso-NH and the velocity profiles of the term (I) computed in Meso-NH, which is the only term modelled in

the velocity breakdown equation. Despite the error in the near wake, the shapes are well-reproduced as soon as the wake takes

an actual Gaussian shape. In the neutral case, the fit is good, except near the ground, where the assumption on shear (Eq. 23)305

might be too constraining. These overall good results confirm that the hypotheses made in Sect. 3 for the velocity in the MFOR

and the wake centre distribution are good and that meandering has been correctly computed.

In the unstable case (Fig. 8), the results are still good but some discrepancies are observed with the reference data. As

pointed out in Sect. 3, the error on fc,am is larger in the unstable case than in the neutral case, supposedly because the unstable

simulation has not run for long enough. Moreover, the tracking might not have been as good as in the neutral case: if all310
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Figure 7. Results of the analytical velocity model (orange) in the neutral case, compared to the modelled term in Meso-NH (blue) and

the total velocity in the FFOR (black) for the neutral case. Lateral (top) and vertical (bottom) profiles are plotted for different positions

downstream.

the movements due to meandering have not been detected by the tracking algorithm, the computed σfz is underestimated,

explaining why the Gaussian shape is more pronounced in the model than in the reference data. Finally, the term (II) takes

larger relative values for this case, explaining the larger gap between the blue and black curves in Fig. 8 compared to Fig. 7.

Since the analytical model is a model of the term (I) i.e. the blue curve, it increases the potential error compared to the actual

velocity field in the FFOR (black curve).315

5 Model for the turbulence in the FFOR

5.1 Meandering term

With the same assumptions as for the term (I), it is possible to derive an analytical formulation for the term (III) of Eq. 7 i.e.

the turbulence induced by meandering. This meandering turbulence field computed with the two LESs datasets is plotted in

Fig. 9 under its turbulence intensity value (see Eq. 14).320
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Figure 9. Meso-NH values of kx,m i.e. the term (III) for the neutral and unstable cases.
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The assumption of Eq. 23 must again be used to get U2
∞ out of the convolution product and Eq. 25 is reused to compute the

right hand side of term (III): ÛMF

2

. In the left hand side, there is a convolution of the Gaussian function fc,am with ∆U2
MF,am,

which is also a Gaussian function of widths
√
0.5σy and

√
0.5σz . It is thus possible to use the fact that the convolution of two

Gaussian functions is a Gaussian function (Teitelbaum).

kx,m,am(y,z) =
[
fc,am ∗ ∗U2

x,MF,am

]
−U2

x,FF,am325

= U2
∞(z)

∫ ∫
(1+∆UMF,am(y− yc,z− zc))

2
fc,am(yc,zc)dycdzc−U2

∞(z)(1+∆UFF,am)
2

= U2
∞(z)

∫ ∫
∆U2

MF,am(y− yc,z− zc)fc,am(yc,zc)dycdzc−U2
∞(z)∆U2

FF,am

= (CU∞(z))2

[√
σ2
y

σ2
y +2σ2

fy

√
σ2
z

σ2
z +2σ2

fz

exp

(
− y2

σ2
y +2σ2

fy

− z2

σ2
z +2σ2

fz

)

−
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

exp

(
− y2

σ2
y +σ2

fy

− z2

σ2
z +σ2

fz

)]
(28)
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Figure 10. Results of kx,m,am i.e. the model for the term (III) for the neutral and unstable cases. The RMSE is given with respect to the term

(III) computed from Meso-NH (Fig. 9).

The shape of term (III) is thus not a double Gaussian, as one could interpret from Fig. 9, but rather Gaussian of width330 √
0.5σ2 +σ2

f minus a thinner and less pronounced Gaussian of width
√
0.5σ2 +0.5σ2

f . It can be verified that this expression

is always larger than 0 i.e. the meandering only produces turbulence and does not dissipate it. The results of this model with

the parameters shown in Figs. 6a and 6b is plotted in Fig. 10 at three positions downstream. To quantify the error induced by

the model, the RMSE is computed between the model and the term (III) in the LESs datasets (Fig. 9). The results are overall

promising: the shape and order of magnitude are respected for both cases. The increased error in the near and far wake is the335
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direct consequence of the error made by the model on the term (I) and on the meandering estimation (see the two previous

sections).

5.2 Rotor-added turbulence term
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Figure 11. Results of the LESs datasets for term ∆kx,a i.e. ∆(IV) for the neutral and unstable cases.

The term (IV) of Eq. 7, also written ka for "rotor-added turbulence", is simply the 2D convolution of kMF with fc. However,

it has been chosen to model ∆kx,MF,am = kx,MF,am− k∞ instead of directly kx,MF,am because it is easier to interpret and340

model. Similarly to the unperturbed velocity, the reference turbulence is not modelled, so it is assumed that k̂∞(z) = k∞(z)

despite the dependency of k∞ on z. In term of added turbulence, it thus writes:

∆kx,a,am = ̂∆kx,MF,am (29)

Applying the assumed shape for the added turbulence in the MFOR in Eq. 19 leads to an analytical form of the axial

rotor-added turbulence:345

∆kx,a,am =∆kx,MF,am ∗ ∗fc,am

=
KMF

2πσfyσfz

∫ ∫ [(
yc
σ2
y

)2

+

(
zc
σ2
z

)2
]
exp

(
− y2c
σ2
y

− z2c
σ2
z

)
exp

(
− (y− yc)

2

2σ2
fy

− (z− zc)
2

2σ2
fz

)
dycdzc

=
KMF

2πσfyσfz

[∫ (
yc
σ2
y

)2

exp

(
− y2c
σ2
y

− (y− yc)
2

2σ2
fy

)
dyc

∫
exp

(
− z2c
σ2
z

− (z− zc)
2

2σ2
fz

)
dzc

+

∫ (
zc
σ2
z

)2

exp

(
− z2c
σ2
z

− (z− zc)
2

2σ2
fz

)
dzc

∫
exp

(
− y2c
σ2
y

− (y− yc)
2

2σ2
fy

)
dyc

]
(30)
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At this point, the added turbulence in the FFOR is the sum of two terms, that are identical if the coordinates y and z are350

swapped. It is the product of two convolutions: the first of f : y→ y2 exp(−y2/σ2
y) with a Gaussian function and the second of

two Gaussian functions. The first convolution product has been solved with a computer algebra tool (Scherfgen) and the other

has already been solved in Eq. 28. It gives:

∫ (
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y

)2

exp
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− y2c
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2

2σ2
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)
dyc

∫
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dzc

=

√
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(31)

From Eq. 31, it remains to add the same quantity with y← z and z← y, factorise and simplify to deduce the model for ∆ka:

∆kx,a,am =KFF

(
y2σ2

y +σ2
yσ

2
fy +2σ4

fy

σ2
y(σ

2
y +2σ2

fy)
2
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z(σ
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exp

(
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)
(32)

with:

KFF =
KMF√

1+2(σfy/σy)2
√
1+2(σfz/σz)2

. (33)360
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Figure 12. Results of ∆kx,a,am i.e. the model for term ∆(IV) for the neutral and unstable cases. The RMSE is given with respect to the term

∆kx,a computed from Meso-NH (Fig. 11).
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It can be noted that in absence of meandering, i.e. for σf = 0, the model retrieves its MFOR form (Eq. 19). The result of Eq.

32 is plotted in Fig. 12 at three positions downstream in the neutral and unstable cases, and the RMSE is given with respect to

the LESs results for term ∆ka (Fig. 11). As for the term (I) and (III), the expression of ka,am is based on a Gaussian velocity

deficit hypothesis, even in the near wake where the LES wake takes a shape closer to a top-hat function. The velocity gradient

that is the source of the rotor-added turbulence is thus lower and more spread in the model compared to the actual values.365

Another issue of the model is that it poorly takes into account shear, due to the assumptions of Eqs. 18 and 23. Indeed, the only

source of vertical asymmetry in Eq. 32 is U2
∞, i.e. the velocity shear upstream of the turbine. In the neutral case, it leads to a

model that is less asymmetric than what is observed in the MFOR in Meso-NH (Fig. 3), and this error propagates in the FFOR.

In the unstable case, this issue is less marked due to weaker shear upstream of the turbine.

5.3 Results of the model for turbulence370

For the turbulence, a model is found only for terms (III) (Eq. 28) and ∆(IV) (Eq. 32). Even though the contribution of the three

cross-terms of Eq. 7 is not negligible, the two modelled terms are predominant and the result of the model limited to these two

terms can be compared to the turbulence in the FFOR. The total modelled turbulence is here computed as:

kx,am = k∞ + kx,m,am +∆kx,a,am. (34)

where k∞ is taken directly 2.5 D upstream of the turbine in the LESs datasets. With the same plotting convention as in Figs.375

7 and 8, the profiles of turbulence in the horizontal and vertical directions are plotted in Figs. 13 and 14 for the neutral and

unstable cases, respectively.

As it has been noted in Sects. 5.1 and 5.2, the error on the near-wake velocity model due to the Gaussian shape assumption

propagates on the turbulence model. More realistic shapes (double- or super-Gaussian) that show larger wake-generated shear

in the near wake would result in higher and more localised meandering and rotor-added turbulence, as in the Meso-NH profiles.380

At x/D = 5 and x/D = 8 i.e. when the Gaussian velocity shape is reached, the results of the model in both cases are much

better, in particular in the horizontal direction: the order of magnitude is respected and the positions of maxima are correct. In

the neutral case, where a double peak shape is still distinguishable at these positions, the minimum of turbulence located at

y = 0 is slightly overestimated.

The vertical profiles (bottom lines of Figs. 13 and 14) show less good results. In the neutral case, in particular, the maxima of385

the double Gaussian shape are located near z/D±0.3 instead of the tip positions z/D±0.5 as seen in the LESs data. Moreover,

the turbulence is overestimated in the bottom part of the wake and underestimated in the top part. This is the combination of two

different issues. On one hand, the terms (V) and (VI) from Eq. 7 are not modelled yet and it has been shown in the companion

paper that these terms (in particular the term (V)) redistribute the TKE from the bottom to the top of the wake. The error due

to this first approximation is represented by the difference between the blue and black curves. On the other hand, the shear390

in the model is only accounted for through U2
∞ in factor of km,am and ka,am. This small contribution is compensated by the

upstream turbulence k∞ that is larger at the bottom than at the top, leading to almost symmetric vertical profiles for the model
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Figure 13. Results of the axial turbulence analytical velocity model (orange) in the neutral case, compared to the modelled terms in Meso-NH

(blue) and the total turbulence in the FFOR (black). Lateral (top) and vertical (bottom) profiles are plotted for different positions downstream.

The IQ2018 model is plotted in purple for comparison.

whereas the LES profiles, even when neglecting the cross-terms, have much stronger asymmetry. The error due to this second

approximation is represented by the difference between the orange and blue curves.

In purple is also plotted the model of Ishihara and Qian (2018), denoted IQ2018 hereafter. The results from IQ2018 are395

obtained from the values of CT , TIx and kx upstream of the turbine (see Sect. 2). It should be noted that the comparison is

not very fair because our model has not been calibrated and thus does not depend on calibration like IQ2018. We can note that

the IQ2018 model gives fairly good results for vertical profiles, due to the correction near the ground proposed by the authors.

However, for the IQ2018 profile to show a peak at the top tip, it needs to also show a double peak for the y profile (see Fig. 13

at x/D=8), a phenomenon that is not observed in the LES and that is not necessarily seen in our model due to the definition of400

σ and σf in the two directions

In the unstable case, the results of our model are surprisingly better than the Meso-NH approximation of (III)+(IV) near the

ground. A possible explanation would be that in the unstable case, the meandering standard deviation σf becomes larger than

the wake width in the MFOR σ (see Fig. 6), and that both km,am and ka,am tends toward a Gaussian shape in these conditions.
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Figure 14. Results of the axial turbulence analytical velocity model (orange) in the unstable case, compared to the modelled terms in

Meso-NH (blue) and the total turbulence in the FFOR (black). Lateral (top) and vertical (bottom) profiles are plotted for different positions

downstream. The IQ2018 model is plotted in purple for comparison.

Consequently, and despite the error induced by neglecting terms (V) and (VI), it is not surprising to find a vaguely Gaussian405

function in the modelled unstable case, which happens to be the actual shape of the turbulence field.

The unstable case shows the main shortcoming of the IQ2018 model and the added value of our model. Besides the up-

stream turbulence profiles, the inflow conditions used in the IQ2018 are very similar between the neutral and unstable cases.

Consequently, the purple profiles are alike in Figs. 13 and 14 whereas the stronger meandering in the unstable case leads to a

Gaussian-like turbulence profile, even in the vertical direction. The maximum turbulence is thus no longer located at the top410

tip but rather at hub height. This property is well-predicted by our model whereas the IQ2018 model, which does not take

meandering into account, predicts quasi-identical behaviours between the neutral and unstable cases.

6 Conclusions and perspectives

This work is the second part of a two-step study that aims at modelling the turbulence in the wake of a wind turbine based

on the meandering phenomenon. In the companion paper, the velocity and turbulence in the FFOR were broken down into415
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different terms, some of which have been shown to be negligible. In the present work, an analytical model is proposed for the

dominating terms of the turbulence breakdown, i.e. the meandering turbulence and the rotor-added turbulence. The originality

of this work is that it allows calibrating independently the effects of meandering and of the wake expansion and that it gives

the whole turbulence profile rather than only the maximum value. For the velocity, it writes:

Uam(y,z) = U∞(z)

(
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√
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and for the turbulence:
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where C = 1−
√
1−CT /(8σyσz/D2), CT is the thrust coefficient, D is the turbine diameter, k∞ and U∞ are the upstream

turbulence and velocities and Cµ is a constant. The model’s parameters are the wake widths σy,σz , the amount of meandering

σfy,σfz and the mixing length lm. The expressions of velocity and added turbulence in the MFOR used to build Eqs. 35 and 36

can also be used as inputs to the DWM: combined with a synthetic turbulence generation, the unsteady effects of meandering

can be modelled.430

The model has been tested on two LESs datasets that simulated a single wind turbine wake under a neutral and an unstable

atmosphere. For the velocity, the results are satisfactory, either in the vertical or lateral direction. The horizontal turbulence

profiles are also satisfying but in the vertical direction, due to the neglected terms and to a very simple treatment of shear,

the model is overestimating turbulence at the bottom of the wake and underestimating it at the top. This lack of asymmetry

is attributed to the simplifications made on the atmospheric shear and to the absence of the covariance term that redistributes435

vertically the turbulence in the model.

This is the first step toward a fully analytical, physically-based model for turbulence and velocity in the wake of a wind

turbine. For future works, it would be interesting to derive an analytical model for the other terms of the turbulence breakdown.

As shown in Figs. 7, 8, 13 and 14 the error induced by neglecting cross-terms (between black and blue curves) is lower than the

error of the model itself (between blue and orange curves) but modelling these terms could improve the results, in particular440

in the vertical direction. The treatment of shear must be improved to model more realistically vertical turbulence profiles. The

added turbulence in the MFOR could also be improved by taking into account the velocity gradient in the streamwise direction

∂Ux/∂x. For the model to be complete, an expression for every term of the Reynolds-stress tensor (or at least the diagonal
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terms to get the total TKE) would be needed, which implies a model for the lateral and vertical velocities Uy and Uz . A better

near-wake modelling could be achieved by using a non-Gaussian velocity assumption in the vicinity of the rotor (such as445

super-Gaussian or double-Gaussian functions). Taking into account veer such as in Abkar et al. (2018) is necessary to apply

the model to cases where the wake is skewed, typically in cases of a stably stratified ABL. Finally, a calibration (i.e. relating

different parameters σ, σf and lm to the inflow conditions) under different atmospheric conditions will be needed to have an

operational method.

Code and data availability. The code Meso-NH is open-source and can be downloaded on the dedicated website. The authors can provide450

the source code of the modified version 5-4-3 that was used in this work. The data used for the plot presented here and in part 1 are available

under this online deposit: 10.5281/zenodo.6562720. The model equations have been written in python under the following online deposit

10.5281/zenodo.6560685.
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