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Abstract. This work aims to develop an analytical model for the streamwise velocity and turbulence in the wake of a wind

turbine where the expansion and the meandering are taken into account independently. The velocity and turbulence breakdown

equations presented in the companion paper are simplified and resolved analytically, using shape functions chosen in the

moving frame of reference. This methodology allows us to propose a physically-based model for the added turbulence and

thus to have a better interpretation of the physical phenomena at stake, in particular when it comes to wakes in a non-neutral5

atmosphere. Five input parameters are used: the widths (in vertical and horizontal directions) of the non-meandering wake, the

standard deviation of wake meandering (in both directions) and a modified mixing length. Two calibrations for these parameters

are proposed: one if the user has access to velocity time series, and the other if he or she does not. The results are tested on a

neutral and an unstable LES simulations that were computed with Meso-NH. The model shows good results for the streamwise

velocity in both directions and can accurately predict modifications due to atmospheric unstability. For the axial turbulence, the10

model misses the maximum turbulence at the top tip in the neutral case and the proposed calibrations lead to an overestimation

in the unstable case. However, the model shows encouraging behaviour as it can predict a modification of the shape function

(from bimodal to unimodal) as unstability, and thus meandering, increases.

1 Introduction

The CPU cost of classical computational fluid dynamic models is too high to deal with all the different cases needed to15

estimate and optimise the performances of a wind farm. Thus, so-called engineering models have been developed to estimate

the power loss due to wakes at a low computational cost, e.g. Jensen (1983); Larsen et al. (2008); Bastankhah and Porté-Agel

(2014). These design tools are based on physical considerations and are often calibrated and validated against numerical results

or measurements. Among these tools, analytical models are the quickest: they consist of a single formula that can be directly

applied to the wind farm setup and atmospheric conditions, leading to fast results even for a whole farm. A very commonly used20

model is the one developed by Bastankhah and Porté-Agel (2014) who assumed an axisymmetric and self-similar Gaussian

velocity deficit in the wake and solved the mass and momentum conservation equations to find a relation between the amplitude

and width of the Gaussian. It can be adapted for a non-axisymmetric wake (Xie and Archer, 2014):
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∆U(x,y,z) =
U∞−U
U∞

= C(x)exp
(
− y2

2σy(x)2
− z2

2σz(x)2

)
(1)

C(x) = 1−

√
1− CT

8σy(x)σz(x)/D2
(2)25

where U is the mean velocity field, U∞ is the mean velocity upstream of the turbine, C(x) is the maximum velocity deficit,

CT is the thrust coefficient, D is the turbine diameter, (x,y,z) are the streamwise, lateral and vertical coordinates, centred at

the turbine’s hub, and σy,z the wake widths in the lateral and vertical directions. In the present work, the vertical and horizontal

axes are centred at the hub position. Here and in the following, the Reynolds decomposition is used to write any unsteady field

X(t) as a sum of a mean and a varying part: X(t) =X +X ′(t).30

The stability of the atmospheric boundary layer (ABL) influences the wake recovery (Abkar and Porté-Agel, 2015) and the

large-scale eddies carried in this region of the atmosphere are often associated with wake meandering, i.e. oscillations of the

instantaneous wake around its mean position (Larsen et al., 2008). To model the meandering, the concepts of fixed and moving

frames of reference (respectively denoted FFOR and MFOR) defined in the dynamic wake meandering (DWM) model are

used herein (Larsen et al., 2007). The FFOR is bound to the ground: it is the frame of reference in which we want to compute35

the turbulence and velocity fields. In the FFOR the effects of meandering are not differentiated from the wake expansion

caused by turbulent mixing. The MFOR is moving with the wake centre at each time step: in this frame of reference, only the

wake expansion due to turbulent mixing is represented, making the fields in this frame of reference easier to interpret. The

instantaneous streamwise velocity can be changed from one frame to another according to the relation:

UMF (x,y,z, t) = UFF (x,y+ yc(x,t),z+ zc(x,t), t) (3)40

where subscripts MF and FF denote the velocity fields in the MFOR and FFOR respectively, yc(x,t) and zc(x,t) are the

time series of the wake centre’s coordinates at the downstream position x. The concept of MFOR and FFOR can be used to

write an analytical wake model for the velocity deficit as in the work of Braunbehrens and Segalini (2019):

∆UFF (y,z) = C

[
1+

(
σfy
σy

)]−1/2 [
1+

(
σfz
σz

)]−1/2

exp

[
− y2

2σ2
y +2σ2

fy

− z2

2σ2
z +2σ2

fz

]
(4)

where σfy,fz(x) are the standard deviations of the wake centre’s coordinates in the lateral and vertical directions respectively,45

σy,z(x) are the wake widths in the MFOR and C(x) is the maximum velocity deficit in the MFOR. Such a model allows

calibrating independently the effects of meandering (through the variables σfy,fz) and of wake expansion due to turbulent

mixing (through the variables σy,z). The former parameters are a function of atmospheric stability through lateral and vertical

turbulence (Braunbehrens and Segalini, 2019; Du et al., 2021; Brugger et al., 2022) whereas the latter parameters can be a

function of axial turbulence as in Eq. 1 (Fuertes et al., 2018; Niayifar and Porté-Agel, 2016) or turbine operating conditions50

such as CT and atmospheric shear (Braunbehrens and Segalini, 2019).
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For the turbulent kinetic energy (TKE), it is common to model only the maximum value of added turbulence which can

be computed with the Crespo model (Crespo and Hernandez, 1996) or the Frandsen model (Frandsen, 2007) as in the IEC

61400-1 standard. Their approach is mainly empirical and can be extended to describe the whole profile of turbulence instead

of the maximum value alone (Ishihara and Qian, 2018). This widely used model (hereafter denoted I&Q2018) is simple since55

it only requires the knowledge of the thrust coefficient and the upstream turbulence intensity, but it is totally empirical and does

not account for atmospheric stability. Moreover, it has been shown that the wake in an unstable ABL dissipates faster than in

a neutral ABL even at the same level of turbulence intensity (Du et al., 2021). This behaviour cannot be taken into account in

the I&Q2018 model due to the limited number of inputs.

The present work aims to propose a physically-based model that predicts both the mean and variance (i.e. turbulence) of the60

axial velocity in the wake of a wind turbine. The advantage of basing our model on physical interpretations is that it gives more

room for further improvements, as we know which assumptions were made, and how it degrades the results. Moreover, the

proposed model is dependent on atmospheric stability, since it influences both the velocity and the turbulence fields in the wake

(see companion paper). Many models, such as the I&Q2018 model do not take atmospheric stability into account, assuming

that stable and unstable cases compensate each other and thus a calibration on neutral cases is sufficient. This approach is65

valid for monthly or yearly estimations of wind farms’ performances. But some applications of the future wind industry such

as digital twins need estimations over a day, an hour, or even smaller periods. In such cases, the stability must be taken into

account. Since we showed in the companion paper that stability mainly affects the wake meandering, this phenomenon must

be decoupled from the wake expansion to take the ABL stability into account. To do so, the breakdowns described in the

companion paper are reused and quickly reminded in the following lines.70

A field in the MFOR can be written as an unsteady translation of the same field in the FFOR through Eq. 3. To shorten this

equation, the notation â(y,z) = a(y− yc(t),z− zc(t)) for any field a, is used. For the present work, it is also important to

note that for any field a:

â= a ∗ ∗fc (5)

where ∗∗ denotes a 2D convolution and fc is the probability density function (PDF) of the wake centre position. In the75

companion paper, it has been shown that the velocity (Eq. 6) and turbulence (Eq. 7) in the FFOR can be expressed as a function

of their counterparts in the MFOR. This is achieved by decomposing these quantities into several terms, noted (I) and (II) in

Eq. 6 and (III) to (VII) in Eq. 7.

UFF = ÛMF︸ ︷︷ ︸
(I)

+ Û ′
MF︸ ︷︷ ︸
(II)

(6)

kFF = ÛMF

2

− ÛMF

2︸ ︷︷ ︸
km=(III)

+ k̂MF︸︷︷︸
ka=(IV )

+2cov
(
ÛMF , Û ′

MF

)
︸ ︷︷ ︸

(V )

+ ̂(U ′2
MF )

′︸ ︷︷ ︸
(V I)

−Û ′
MF

2︸ ︷︷ ︸
(V II)

(7)80
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These terms are thoroughly described and quantified in the companion paper where they are separated into pure-terms

((I),(III) and (IV)) and cross-terms ((II), (V), (VI) and (VII)).

The term (I) is the convolution of UMF with fc. It is a pure mean velocity term: it is null only if the mean velocity is null.

Conversely, the term (II) is a cross-term because it can be equal to 0 either if there is no meandering (operator .̂ has no effect)

or if there is no turbulence in the MFOR (U ′
MF = 0). The term (III), also written km in the following to be consistent with85

notation from Keck et al. (2013) and Conti et al. (2021), is the turbulence purely induced by meandering: in the case of a

meandering steady wake i.e. U ′
MF = 0, Eq. 7 reduces to this term only. The term (IV) is the rotor-added turbulence, which is

also written ka for consistency with other works (Conti et al., 2021). It is the turbulence purely induced by the rotor: in absence

of meandering, the equation reduces to this term only, also written ka in the following for consistency with the literature. Term

(V) is the covariance of ÛMF and Û ′
MF , term (VI) can be viewed as the varying part of the MFOR turbulence and term (VII)90

is the square of the term (II). It is a pure dissipation term as it is always negative. Like the term (II), they are cross-terms since

they are equal to zero if either the turbulence in the MFOR or the meandering is null. The companion paper showed that terms

(II) and (VII) are negligible in their respective equations. In the breakdown of the turbulence equation, the term (V) is of lesser

importance than (III) and (IV) but drives the vertical asymmetry of the turbulence profiles.

The proposed analytical model is based on the velocity and turbulence breakdowns (Eqs. 6 and 7). Similarly to Eq. 495

(Braunbehrens and Segalini, 2019), the reasoning starts by writing the wake properties in the MFOR and the wake meandering

with different parameters to take into account meandering due to atmospheric stability independently of the expansion due to

turbulence mixing. It is common in wake modelling to assume that meandering can be entirely accounted for by increasing the

wake expansion. However, it is a phenomenon of different nature and it leads to velocity and turbulence profiles of different

shapes. In the present model, these phenomena are modelled separately, and it will be assumed that they do not interact. This is100

equivalent to neglecting cross-terms in Eqs. 6 and 7 which have been shown to take consistently smaller values than pure-terms

in the companion paper. In the future though, modelling these cross-terms might be necessary to improve the results. The main

added value of this work is to propose a new framework that can be used with different shape functions in the MFOR to propose

other turbulence models. Nevertheless, two calibrations (one requiring the inflow time series, and another that does not) are

proposed for the model, to demonstrate how it can be tuned and to test the model.105

In the second section of this work, the datasets are presented: for the calibration of the model, a dataset from the MOMENTA

project is used, and for the validation the neutral and unstable cases obtained from the large eddy simulations (LESs) from the

companion paper are reused. The third section presents the derivation of the model. The fourth section shows the chosen

calibration methods and the fifth section presents the corresponding results. All these results are discussed in a sixth section,

followed by the conclusion.110
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2 The LESs datasets

2.1 Description of the LES code

The analytical model developed in this work is based on LESs datasets generated with the Meso-NH solver (Lac et al., 2018).

It is a finite volume and finite difference research code for ABL simulations where the Navier-Stokes equations and the energy

conservation equation are resolved on an Arakawa C-grid. This solver models the stability of the ABL with a buoyancy term in115

the momentum equation. The Coriolis force and large-scale forcing are also taken into account. The effect of the wind turbine

on the surrounding flow is modelled with an actuator line method, i.e. rotating source terms in the momentum equation.

To close the set of equations, the subgrid TKE equation is resolved, and all the subgrid quantities are written as a function of

this subgrid TKE, the resolved variables and a Deardorff mixing length. A grid nesting method allows having simultaneously

a vertical and horizontal mesh size of 1.5 m and 0.5 m in the wake region for the two datasets, and a domain large enough120

to compute the largest eddies of the atmosphere. The model and numerical parameters are described in more detail in the

companion paper.

2.2 Simulation setup

Two different LESs datasets are used in this work: the first one for creating and calibrating the model and the second one for

testing the model’s results. Inflow conditions of these datasets can be found in Table 1. For both datasets, only the wake mean125

streamwise velocity (Ux, written Ux in the following), and the streamwise turbulence (kx = u′u′) are computed. The proposed

model thus only deals with the streamwise velocity and turbulence.

The calibration dataset contains 6 simulations, with four different ABL stabilities and three different thrust values. The

simulated turbine is of 92 meters in diameter and hub height of 80 meters. The turbine’s data were obtained in the context of

the MOMENTA project (Jézéquel, 2023).130

To perform such simulations, a precursor without heat flux is first simulated in a domain of 19 km x 15 km (with a horizontal

resolution of 37.5m) during 25 hours to let the turbulence establish and the system to reach a quasi-steady-state. Then, a ground

heat flux is applied for 4 hours: 0W/m2, 30W/m2, 60W/m2, and 120W/m2 for cases ’Neutral’, ’Weakly unstable’, ’Unstable’

and ’Strongly unstable’ respectively. This allows to simulate three different levels of atmospheric unstability, starting from the

same neutral state. No stable case was simulated because of the induced veer (gradient of inflow wind direction) that leads to a135

deformed wake. The veer could have been modelled as in Abkar et al. (2018) but it would significantly complicate the present

derivations. Moreover, meandering and meandering turbulence are negligible in a stably stratified ABL (see companion paper)

and thus there is little interest in using the approach presented herein. Developing the model for veered cases is a challenge

that is out of the scope of this work.

After these two steps, the coarsest computational domain (horizontal resolution of 37.5 m) is ready: two grid nestings are140

then applied to reach a resolution of 1.5 m in the most refined domain. Then, 10 minutes of dynamics are used to let the flow

establish in the wake of the wind turbine, and the post-processing is performed on the following 50 minutes of dynamics. The
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Figure 1. Time series of the wake centre’s lateral (top) and vertical (bottom) coordinates with the ConstantFlux method and the pollutant

method. Weakly unstable case at x/D = 6 between 1000 and 2500 seconds.

data is sampled at 1.2 Hz, which is the approximate limit between resolved and subgrid TKE for these simulations (equivalent

to four times the mesh size).

The wind turbine rotational speed and pitch are set according to the controller’s database and the calculated upstream145

velocity. Since all the cases are computed at a similar inflow velocity, similar values of the thrust coefficient are obtained in the

simulations. To have the influence of the thrust coefficient on the model, two additional cases with a degraded thrust coefficient

are also computed, with the same inflow as the neutral case. To reduce the thrust, the pitch value is increased from 0 to 3 and

4.5 degrees respectively.

The second set of simulations, hereafter called validation dataset, is based on the neutral and unstable cases that are described150

in the companion paper. The simulated turbine is a modified version of the Vestas V27: it is a three-bladed rotor with a

diameter D = 27 m and a hub height of 32.1 m. The simulation methodology is quite similar as described in the paragraph

above, except that one additional nesting is required to reach the targeted mesh size. In the validation dataset, the velocity is

sampled at 1 Hz and the simulations last for 80 and 40 minutes for the neutral and unstable cases respectively. This was due to

benchmark requirements and computational limitations. A statistical convergence of our datasets is proposed in the appendix155

of the companion paper. Overall, it concluded that increasing the duration of simulation for the unstable case would improve

the reliability of the simulations

2.3 Wake tracking

For the validation simulations, the wake centre’s coordinates yc(x,t) and zc(x,t) are computed at each time step and each

downstream position with the Constant Flux wake tracking algorithm, which is described in the companion paper. To facilitate160
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the wake tracking, a Reference simulation is also run. It is a simulation with the same inflow and boundary conditions but

without the wind turbine. The corresponding velocity field noted Uref is thus representing a developing ABL without the

perturbations of a wind turbine.

Another method is here proposed to compute the unsteady wake centres in the calibration dataset. A passive scalar (similar

to a pollutant) is emitted at the rotor disk with a concentration value of 1 at each time step. This new variable is only driven165

by the advection scheme, in accordance with the passive tracer of the DWM theory, and impairing only marginally the code’s

performance. By supposing that this variable follows the wake, the unsteady wake centre is deduced from the centre of mass of

this pollutant at each downstream position. The results lead to a low-frequency behaviour similar to the ConstantFlux method

used in the companion paper but with fewer outliers (see Fig. 1). Since the post-process is more straightforward and the results

seem better, this method has been used for the calibration dataset.170

2.4 Inflow conditions

Table 1 shows the hub height velocity, thrust coefficients and turbulence intensities at hub height for each of the cases. The

directional turbulence intensities are defined as:

Ix,y,z =

√
kx,y,z

U∞,hub
(8)

and the global turbulence intensity is defined as:175

I =

√
1

3

(
I2x + I2y + I2z

)
(9)

Name U∞,hub[m s−1] CT [−] I[−] Ix[−] Iy[−] Iz[−]

Calibration

Neutral 7.0 0.68 0.088 0.106 0.086 0.069

Weakly unstable 7.3 0.67 0.098 0.106 0.101 0.085

Unstable 7.0 0.70 0.122 0.100 0.164 0.087

Strongly unstable 7.0 0.70 0.153 0.154 0.179 0.112

Pitch 3 7.0 0.51 0.091 0.109 0.089 0.071

Pitch 4.5 7.0 0.43 0.092 0.115 0.086 0.072

Validation
Neutral 8.3 0.79 0.093 0.114 0.087 0.072

Unstable 6.1 0.82 0.119 0.125 0.148 0.070
Table 1. List of LES cases

Figures 2 and 3 show the profiles of some inflow variables for the calibration and validation cases, respectively. The profiles

are taken 2.5 diameters upstream of the wind turbine and are averaged along the y direction (the direction transverse to the

wind turbine).
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Figure 2. Inflow conditions for the calibration cases. a) Mean velocity profile; b) Mean TKE profile; c) Mean kx-to-shear ratio profile. Solid

lines: LES results; dotted lines: fit with the Monin-Obukhov law

In the left panel is plotted the mean velocity. The calibration dataset (Fig. 2) has been built in order to have similar hub180

height velocities between the cases (around 7 m s-1) whereas the validation dataset comes from simulations that reproduced

the SWiFT benchmark, where the hub height velocities differed. In dotted lines are plotted the Monin-Obukhov profiles:

U(z) =
u∗
κ

(ln(z/z0)+ψ(z,LMO)) (10)

where κ= 0.41 is the von Karman constant and (Cheng et al., 2019):

ψ(z,LMO) =−2ln((1+xu)/2)− ln((1+x2u)/2)+2arctan(xu)−π/2 (11)185

and xu = (1− 15 · z/LMO)
0.25. Since z0 is known from the simulations (0.17 in the calibration dataset and 0.014 in the

validation dataset), the profiles are found by fitting Eq. 10 on the corresponding velocity profile, with parameters u∗ and LMO.

The results, in dotted lines, match well the inflow profiles, showing that it respects the Monin-Obukhov similarity theory around

the turbine’s height.

The middle panels of Figs 2 and 3 show the inflow TKE, defined as:190

k =
1

2
(kx + ky + kz) =

3

2
(I ·U∞,hub)

2 (12)

In the calibration dataset, the amount of TKE increases as the imposed heat flux increases. In the validation dataset, this is

not the case since the neutral case is at a higher velocity at hub height, but the TI of the unstable case is indeed higher than that

of the neutral case.

The right panels of Figs 2 and 3 show the modified mixing length l∗m,∞ upstream the wind turbine. This quantity will be195

discussed and used in Sec. 3 to compute the mixing length in the MFOR. Here, the value is computed as the ratio of turbulence

and shear:
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Figure 3. Inflow conditions for the validation cases. a) Mean velocity profile; b) Mean TKE profile; c) Mean kx-to-shear ratio profile. Solid

lines: LES results; dotted lines: fit with the Monin-Obukhov law

l∗m,∞ =

√
kx,∞
∂U∞

∂z

. (13)

However, in the unstable cases, the velocity profile becomes nearly constant above a given height, leading to low values of

∂U∞/∂z and thus very chaotic behaviour of l∗m,∞. To have a more reliable curve, the derivative of U is resolved analytically200

using Eq. 10:

∂U∞

∂z
=
u∗
κz

(1− 15z/LMO)
−0.25 (14)

with LMO and u∗ fitted from the velocity profile. The resulting curve, in dotted lines, gives a more useful quantity on the

turbulence-to-shear ratio, while still being on the order of magnitude of the directly computed ratio (in solid line).

3 Model derivation205

In this section, we derive an analytical model for the dominating terms of Eqs. 6 and 7. First, an analytical form is proposed

for the velocity deficit in the MFOR ∆Ux,MF , the turbulence in the MFOR kx,MF and the meandering distribution fc. Then,

some terms are neglected and the convolutions of Eqs. 6 and 7 are resolved analytically to get a model for the velocity deficit

and added turbulence in the FFOR. To help the reader, the main variable notations and subscripts used in this section and

afterwards are summarised in Table. 2.210

9



k km ka .x .am C

Turbulence
Meandering turbulence

i.e. term (III)

Rotor-added turbulence

i.e. term (IV)

x-component

of the vector

Analytical

model

Amplitude of

the velocity deficit

σ σf l∗m fc KMF

Velocity deficit

width in the MFOR

Variance of the

wake centre

Modified

mixing length

PDF of the

wake centres

Amplitude of the

turbulence in the MFOR
Table 2. Description of the most used notations in this part and the following

3.1 Independent modelling of the wake in the MFOR and meandering

3.1.1 Wake velocity deficit in the MFOR

Based on the literature (Bastankhah and Porté-Agel, 2014; Xie and Archer, 2014), the mean velocity deficit is modelled with

the long-established Gaussian velocity deficit (cf Eq. 1):

∆Ux,MF,am(x,y,z) = C(x)exp
(
− y2

2σ2
y(x)

− z2

2σ2
z(x)

)
(15)215

where subscript .am stands for "analytical model", C(x) is defined in Eq. 2 and σy,σz are the wake widths in the MFOR.

The overline is dropped because this analytical model is static. In the literature, it has been shown that double-Gaussian (Keane

et al., 2016) or super-Gaussian (Blondel and Cathelain, 2020) shapes provide more accurate results, but here the Gaussian

shape allows a straight-forward computation of the convolutions in our model and is still pertinent in the far wake. It will be

shown that this approximation leads to discrepancies in the near wake.220

3.1.2 Wake added turbulence in the MFOR

To model term (IV) or kx,a, one needs an analytical form for the turbulence in the MFOR kx,MF . It was first thought better

to model the added-turbulence in the MFOR, i.e. ∆kx,MF = kx,MF − kx,∞, in order to separate the rotor-added turbulence

∆kx,MF from the ambient turbulence. This procedure was done in the companion paper, however it leads to negative values of

∆kx,MF (in particular near the ground), i.e. smaller turbulence in the wake compared to the turbulence upstream of the wind225

turbine. This is not compatible with a model that predicts only increased turbulence in the wake of a turbine (as here or in

I&Q2018) and thus this approach has been abandoned.

The derivation of a model for kx,MF is not as straightforward as for ∆UMF because turbulence comes from the unsteadiness

of the flow whereas an analytical model is by definition steady. In the DWM, the Madsen formulation (Madsen et al., 2010) is

used to scale the velocity profile with an empirical function of the wake-generated shear. One could also assume self-similarity230

of the ∆kx,MF function and try to derive a model as it was done for the velocity in Bastankhah and Porté-Agel (2014). The

10



main issue here is that an analytical form of the model is needed in the FFOR, i.e. the convolution of fc,am with the chosen

shape function for ∆kx,MF,am must have an analytical solution, which is not trivial for the aforementioned models.

It is here proposed to assume that the turbulence in the MFOR is solely driven by wake-generated shear as in Madsen et al.

(2010). To relate the turbulence in the MFOR to mean gradients, two models for the velocity scale u0 are combined. In the first,235

it is assumed to be proportional to the square root of the TKE (Pope, 2000). However in the present work, the three-dimensional

TKE is not computed, so it is replaced with the axial turbulence kx:

u0 = C1/4
µ k1/2x . (16)

where Cµ is a constant and lm is the mixing length. In the second method, the velocity scale is defined from the norm of the

strain-rate tensor |S|:240

u0 = lm|S|

= lm ·

√(
∂Ux

∂x

)2

+

(
∂Uy

∂y

)2

+

(
∂Uz

∂z

)2

+
1

2

(
∂Ux

∂y
+
∂Uy

∂x

)2

+
1

2

(
∂Ux

∂z
+
∂Uz

∂x

)2

+
1

2

(
∂Uy

∂z
+
∂Uz

∂y

)2

(17)

From the literature (Iungo et al., 2017), it appears that in the wake of a wind turbine, the dominating term (in cylindrical

coordinates) is
∂U

∂r
. It is supposed herein that these results can be transposed in Cartesian coordinates and are applicable in the

MFOR. The velocity scale can thus be written as a function of the derivatives of the axial velocity.245

u0 = lm ·

√
1

2

(
∂Ux

∂y

)2

+
1

2

(
∂Ux

∂z

)2

(18)

Combining Eqs. 16 and 18 leads to:

kx,MF,am =

(
u0

C
1/4
µ

)2

=
l2m

2C
1/2
µ

·

[(
∂Ux,MF

∂y

)2

+

(
∂Ux,MF

∂z

)2
]

=
l2m

2C
1/2
µ

·

[(
−U∞(z)

∂∆UMF

∂y

)2

+

(
−U∞(z)

∂∆UMF

∂z
+(1−∆UMF )

∂U∞(z)

∂z

)2
]

(19)250

In Eq. 19, the last term (1−∆U∞)
∂U∞(z)

∂z
represents the produced turbulence due to the interaction between wake gener-

ated shear and atmospheric shear. It is this term that induces a maximum of turbulence at the top tip in cases of high atmospheric

shear such as neutral or stable ABLs. Even though an analytical form of this term can be found by assuming U∞(z) as a log

law or a power law, the convolution product with fc in Eq. 7 did not lead to any analytical solution.

11



It was thus decided to neglect shear in the formulation and to add the contribution of the inflow turbulence with a maximum255

function. This is a strong assumption that impacts the results (see Sect. 5), but allows to compute the total added turbulence:

(IV)am = kx,a,am =max(kx,∞,fc ∗ ∗kx,MF,am) (20)

with:

kx,MF,am = (U∞(z)l∗m)
2

[(
∂∆UMF,am

∂y

)2

+

(
∂∆UMF,am

∂z

)2
]

=KMF (x,z)

[(
y

σ2
y(x)

)2

+

(
z

σ2
z(x)

)2
]
exp

(
− y2

σ2
y(x)

− z2

σ2
z(x)

)
(21)260

where KMF = (U∞Cl
∗
m)2 and l∗m is the modified mixing length l∗m = lm/

√
2C

1/4
µ . In other words, the modified mixing

length is the ratio of the axial turbulence to the quadratic sum of the vertical and horizontal gradients of the axial velocity

deficit.
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Figure 4. Profiles of modified mixing length (turbulence to shear ratio) for the different simulations

Figure 4 shows the profiles of the modified mixing length in the wake normalized by the modified mixing length upstream

the turbine, at hub height: l∗m/l
∗
m,∞(zhub) where l∗m,∞ is defined in Eq. 13 and l∗m is computed as:265

l∗m =

√
kx,MF /U∞√(

∂∆Ux

∂y

)2

+

(
∂∆Ux

∂z

)2
(22)
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One can see that there are two distinct values: one inside the wake and one outside the wake. Inside the wake, the value is

fairly constant (except in the bottom of the wake where it increases chaotically, probably due to the effect of the ground). It

only seems to vary with the streamwise distance and thus it was chosen to assume that l∗m/l
∗
m,∞(zhub) is only dependent on x.

Theoretically, it could be possible to develop a model with two mixing lengths (one for the wake and another for the ambient270

turbulence) but with such an assumption, no analytical solution of Eq. 7 could be achieved.

Note that in Eq. 21, the error in the near-wake due to the Gaussian shape assumption for velocity deficit in the MFOR

propagates onto ∆kx,MF,am. Using a Gaussian instead of a super-Gaussian function leads to an underestimation of the wake-

generated shear and thus to a much weaker but more spread axial turbulence around the blade’s tips. Moreover, the model

does not account for the atmospheric-generated shear. This phenomenon, which leads to a smaller value of wake-generated275

turbulence at the bottom tip compared to the top tip, cannot be represented in our model. Finally, the model imposes that

kx,MF,am = 0 at the centre of the wake, a condition that is not fulfilled in the calibration dataset. Another possible improvement

would be to add the streamwise gradient ∂Ux/∂x in Eq. 18. Despite these flaws, this expression has been chosen since it has

an analytical solution of its convolution with the wake centre position distribution fc,am.

3.1.3 Wake meandering280

For the PDF of wake meandering, the central limit theorem leads to a Gaussian distribution (Braunbehrens and Segalini, 2019).

The distribution of the wake centre fc is non-axisymmetric and thus its variance σf is defined in both dimensions:

fc,am(x,y,z) =
1

2πσfy(x)σfz(x)
exp

(
− y2

2σ2
fy(x)

− z2

2σ2
fz(x)

)
(23)

3.2 Velocity in the FFOR

In the following, the dependency of the variables on coordinate x is omitted to lighten the equations.285

In Eq. 6, the velocity in the wake is written under its dimensional form whereas the model chosen in Eq. 15 is written under

the velocity deficit form. To relate the velocity to the velocity deficit, it is needed to assume that despite its dependency on z

due to the atmospheric shear, the upstream velocity U∞ can be considered as a constant when applying the 2D convolution

product with the wake centre distribution. For any function g(y,z), this simplification can be written:

fc,am(y,z) ∗ ∗(U∞(z) · g(y,z)) = U∞(z) · [fc,am(y,z) ∗ ∗g(y,z)] . (24)290

An analytical form of the term (I) can then be deduced from Eqs. 15 and 23:
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(I)am(y,z) = fc,am(y,z) ∗ ∗ [U∞(z)(1−∆UMF,am(y,z))]

= U∞(z)

(
1−

∫ ∫
∆UMF,am(y− yc,z− zc) · fc,am(yc,zc)dycdzc

)
= U∞(z)(1−∆UFF,am) (25)

Since it has been shown in the companion paper that term (II) of Eq. 6 is negligible, we do the approximation thatUx,FF,am =295

(I)am. The velocity deficit in the FFOR ∆UFF,am is thus the convolution product of two Gaussian functions. It is known that

the convolution product of two normalised Gaussian functions of variance σ2
a and σ2

b is a normalised Gaussian function of

variance σ2
a +σ2

b (Teitelbaum). Equation 25 can be written as the product of two convolution products, leading to:

∆Ux,FF,am = 2Cπσyσz

[∫
1√
2πσy

exp

(
− (y− yc)2

2σ2
y

)
1√

2πσfy
exp

(
− y2c
2σ2

fy

)
dyc

·
∫

1√
2πσz

exp

(
− (z− zc)2

2σ2
z

)
1√

2πσfz
exp

(
− z2c
2σ2

fz

)
dzc

]
300

= C

√
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

exp

(
− y2

2σ2
y +2σ2

fy

− z2

2σ2
z +2σ2

fz

)
(26)

Even though the reasoning of Braunbehrens and Segalini (2019) is different, it is here shown that their model (Eq. 4) can be

found by neglecting term (II) and assuming Eq. 24 as well as Gaussian shapes for the velocity deficit in the MFOR and the wake

centre’s distribution. This is still a Gaussian form i.e. Eq. 1 with a FFOR wake widths defined as σty,tz =
√
σ2
y,z +σ2

fy,fz , and

a maximum velocity deficit of:305

CFF = C

√
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

. (27)

To fulfill the conservation of momentum as in Eq. 2, one would need CFF = 1−
√
1−CT /(8σtyσtz/D2), which is not the

case here. Actually, with this methodology, the conservation of momentum can only be enforced in the MFOR or the FFOR.

This is the consequence of neglecting the term (II) in the velocity breakdown, however, the error induced is relatively low since

term (II) is negligible. Combining Eqs. 25 and 26 leads to our model for the velocity in the wake of a wind turbine:310

Ux,FF,am(y,z) = U∞(z)

(
1−C

√
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

exp

(
− y2

2σ2
y +2σ2

fy

− z2

2σ2
z +2σ2

fz

))
(28)

3.3 Model for the turbulence in the FFOR

For the turbulence, a model has been found for terms (III) (Eq. 30) and (IV) (Eq. 33). Even though the contribution of the three

cross-terms of Eq. 7 is not always negligible (see companion paper), the two modelled terms are predominant and the result
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of the model limited to these two terms can be compared to the turbulence in the FFOR. The total modelled turbulence is here315

computed as:

kx,am = kx,m,am + kx,a,am. (29)

3.3.1 Meandering term

With the same assumptions as for the term (I), it is possible to derive an analytical formulation for the term (III) of Eq. 7 i.e.

the turbulence induced by wake meandering. The assumption of Eq. 24 must again be used to get U2
∞ out of the convolution320

product and Eq. 26 is reused to compute the right-hand side of term (III): ÛMF

2

. On the left-hand side, there is a convolution

of the Gaussian function fc,am with ∆U2
x,MF,am, which is also a Gaussian function of widths

√
0.5σy and

√
0.5σz . It is thus

possible to use the fact that the convolution of two Gaussian functions is a Gaussian function (Teitelbaum).

(III)am = kx,m,am(y,z) =
[
fc,am ∗ ∗U2

x,MF,am

]
−U2

x,FF,am

= U2
∞(z)

∫ ∫
(1−∆Ux,MF,am(y− yc,z− zc))2 fc,am(yc,zc)dycdzc−U2

∞(z)(1−∆Ux,FF,am)
2325

= U2
∞(z)

∫ ∫
∆U2

x,MF,am(y− yc,z− zc)fc,am(yc,zc)dycdzc−U2
∞(z)∆U2

x,FF,am

= (CU∞(z))2

[√
σ2
y

σ2
y +2σ2

fy

√
σ2
z

σ2
z +2σ2

fz

exp

(
− y2

σ2
y +2σ2

fy

− z2

σ2
z +2σ2

fz

)

−
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

exp

(
− y2

σ2
y +σ2

fy

− z2

σ2
z +σ2

fz

)]
(30)

The shape of term (III) is thus not a double Gaussian, as it may be interpreted in the literature (Stein and Kaltenbach, 2019;

Ishihara and Qian, 2018), but rather Gaussian of width
√

0.5σ2 +σ2
f minus a thinner and less pronounced Gaussian of width330 √

0.5σ2 +0.5σ2
f . It can be verified that this expression is always larger than 0 i.e. the meandering only produces turbulence

and does not dissipate it.

3.3.2 Rotor-added turbulence term

Combining the chosen models for the wake meandering distribution and the added turbulence in the MFOR (Eqs. 21 and 23 )

in Eq. 20 leads to an analytical form of the axial rotor-added turbulence:335
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(IV)am(y,z) = kx,a,am(y,z) = max(kx,∞;kx,MF,am ∗ ∗fc,am)

= max

(
kx,∞;

KMF

2πσfyσfz

∫ ∫ [(
yc
σ2
y

)2

+

(
zc
σ2
z

)2
]
exp

(
− y

2
c

σ2
y

− z2c
σ2
z

)
exp

(
− (y− yc)2

2σ2
fy

− (z− zc)2

2σ2
fz

)
dycdzc

)

=max

(
kx,∞;

KMF

2πσfyσfz

[∫ (
yc
σ2
y

)2

exp

(
− y

2
c

σ2
y

− (y− yc)2

2σ2
fy

)
dyc

∫
exp

(
− z

2
c

σ2
z

− (z− zc)2

2σ2
fz

)
dzc

+

∫ (
zc
σ2
z

)2

exp

(
− z

2
c

σ2
z

− (z− zc)2

2σ2
fz

)
dzc

∫
exp

(
− y

2
c

σ2
y

− (y− yc)2

2σ2
fy

)
dyc

])
(31)

At this point, the added turbulence in the FFOR is the sum of two terms, that are identical if the coordinates y and z are340

swapped. It is the product of two convolutions: the first of f : y→ y2 exp(−y2/σ2
y) with a Gaussian function and the second of

two Gaussian functions. The first convolution product has been solved with a computer algebra tool (Scherfgen) and the other

has already been solved in Eq. 30. It gives:

∫ (
yc
σ2
y

)2

exp

(
− y

2
c

σ2
y

− (y− yc)2

2σ2
fy

)
dyc

∫
exp

(
− z

2
c

σ2
z

− (z− zc)2

2σ2
fz

)
dzc

=

√
2πσfy(σ

2
yy

2 +σ4
fyσ

2
y +2σ4

fy)

σy(σ2
y +2σ2

fy)
5/2

exp

(
− y2

σ2
y +σ2

fy

) √
2πσfzσz√
σ2
z +2σ2

fz

exp

(
− z2

σ2
z +2σ2

fz

)
345

=2πσfyσfz
σyσz√

σ2
y +2σ2

fy

√
σ2
z +2σ2

fz

(σ2
yy

2 +σ2
fyσ

2
y +2σ4

fy)

σ2
y(σ

2
y +2σ2

fy)
2

exp

(
− y2

σ2
y +σ2

fy

− z2

σ2
z +2σ2

fz

)
(32)

From Eq. 32, it remains to add the same quantity with y← z and z← y, factorise and simplify to deduce the model for

kx,a,am:

kx,a,am =max

[
kx,∞;KFF

(
y2σ2

y +σ2
yσ

2
fy +2σ4

fy

σ2
y(σ

2
y +2σ2

fy)
2

+
z2σ2

z +σ2
zσ

2
fz +2σ4

fz

σ2
z(σ

2
z +2σ2

fz)
2

)
exp

(
− y2

σ2
y +2σ2

fy

− z2

σ2
z +2σ2

fz

)]
(33)

with:350

KFF =
KMF√

1+2(σfy/σy)2
√
1+2(σfz/σz)2

. (34)

It can be noted that in the absence of meandering, i.e. for σfy = σfz = 0, the model retrieves its MFOR form (Eq. 21). As for

the terms (I) and (III), the expression of kx,a,am is based on a Gaussian velocity deficit hypothesis, even in the near wake where

the LES wake takes a shape closer to a top-hat function. The velocity gradient that is the source of the rotor-added turbulence

is thus lower and more spread in the model compared to the actual values. Another issue of the model is that it poorly takes355

into account shear, due to the assumptions of Eqs. 20 and 24 . Indeed, the only source of vertical asymmetry in Eq. 33 is U2
∞,

i.e. the velocity shear upstream of the turbine.
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4 Model’s calibration

The model’s equations are based on five variables: the wake widths in the MFOR σy and σz , the modified mixing length l∗m
and the standard deviations of the meandering distribution σfy and σfz . Each of these variables needs to be calibrated from360

the inflow conditions to have a usable model. To do so, the results from the calibration dataset are used. Two versions of the

wake meandering calibration: the ’base’ calibration, to use if the time series of the upstream velocities are known, and the

’engineering’ calibration if they are not.

4.1 Wake width in the MFOR

As described in Sec. 3, we assumed that the wake in the MFOR, follows a Gaussian shape function. Moreover, we here assumed365

that the wake is axisymmetric (σy = σz) thus reducing the number of parameters in the model from five to four. The width of

the wake in the MFOR is deduced from fitting the function of Eq. 35 on the velocity deficit ∆UMF through a non-linear least

squares method.

f(y,z,C0,y0,z0,σ) = C0 +C exp

(
− (y− y0)2

2σ2
− (z− z0)2

2σ2

)
(35)

C is fixed as a function of σ (Eq. 2 with σy = σz = σ), and the optimisation is run on parameters {C0,y0,z0,σ} where y0,z0370

are the mean wake centre, σ the wake width (the parameter of interest) and C0 is an offset to help the algorithm.
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Figure 5. Wake width in the MFOR for the different cases of the calibration dataset. Solid lines: results from the LES simulation (Eq. 35;

dotted lines: proposed calibration.

The resulting wake widths in the MFOR as a function of the downstream distance are plotted in solid lines in Fig. 5 for the

six cases of the calibration dataset. Excepted in the near wake, the wake width evolves linearly with the distance to the turbine.

Moreover, the greater the unstability (and thus the level of turbulence, cf Fig. 2), the greater the slope of this linear relation.

Finally, the simulations with degraded thrust seem to have the same slope as the neutral case, but with a different origin.375

For all these reasons, the chosen function for the calibration is the following:
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σ/D = (aI + b)
x

D
+ c
√
β (36)

where a, b and c are parameters to fit, I is the total turbulence intensity (Eq. 9) and β = 0.5
(
1+
√
1−Ct

)
/
√
1−Ct

(Bastankhah and Porté-Agel, 2014). A least square fit method on the six different curves allowed to compute the best values

of a, b and c (see Table. 3). Note that this fit is in the end very similar to what can be found in the literature (e.g. Fuertes380

et al. (2018)), except that the slope (parameter a) is smaller because the models of the literature implicitly assume that the

meandering is included in the wake expansion.

Parameter a [-] b [-] c [-]

Value 0.276 -0.00329 0.231
Table 3. Parameters for the wake width in the MFOR.

4.2 Modified mixing length

The modified mixing length l∗m in Eq. 33 directly drives the amount of turbulence added by the turbine. In Sect. 3, it was

shown that this variable in the upper part of the wake is independent of the simulation case when normalised with the upstream385

modified mixing length. Therefore, the evolution of l∗m/l
∗
m,∞ has been plotted in Fig. 6 and it shows an approximately linear

behaviour with the downstream distance.
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Figure 6. Normalised modified mixing length for the different cases of the calibration dataset.

In first approach, it is thus decided to fit the mixing length with a linear function of x/D:

l∗m = l∗m,∞

(
d
x

D
+ e
)

(37)

where l∗m,∞ is deduced from Eqs. 13 and 14, in which u∗ and LMO can be found from a fit of the inflow velocity profile. A390

least square fit method on the different curves from Fig. 6 is used to fit Eq. 37. The resulting parameters d and e can be found
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in Table. 4 and the corresponding fitted function is plotted in dashed black line in Fig. 6. The results are quite satisfying even

though all the curves are not perfectly superimposed.

Parameter d [-] e [-]

Value 0.0487 0.0486
Table 4. Parameters for the mixing length.

4.3 Wake meandering

The widths of the wake centre’s distribution σfy and σfz are computed as the standard deviations of the wake centre’s coordi-395

nate yc(x,t) and zc(x,t):

σfy(x) =

√
yc(x,t)′2 ; σfz(x) =

√
zc(x,t)′2 (38)

The resulting amount of meandering in the horizontal (top figure) and vertical direction (bottom figure) for the six cases of

the calibration dataset can be found in Fig. 7. The LES results are plotted in solid lines. Overall, the more unstable the case, the

more meandering is found. However, the meandering does not solely depend on the lateral turbulence intensity. In particular,400

the weakly unstable case has greater vertical meandering than the unstable case, despite having a lower Iz value (see Table. 1).

It is also worth noting that the reduction of the thrust coefficient have little to no effect on the meandering (all the neutral cases

are equivalent).

To model the amount of meandering, Braunbehrens and Segalini (2019) propose the following formula:

σfy,fz(x)
2 = 2ky,z

x/Uc∫
0

(
x

Uc
− ζ)Av,w(ζ)dζ (39)405

where Uc is an advection velocity and A is the autocorrelation function of the velocity (respectively the lateral and vertical

one). For each case, the results of Eq 39 are plotted in dashed line in Fig. 7 for Uc = 0.8U∞. This model for the amount of

meandering works fairly well, with the right order of magnitude in each case, and it predicts the different behaviour of the

vertical and lateral directions for the unstable and weakly unstable cases. However, such calibration for σfy and σfz is not

appropriate for analytical wake modelling because it requires time series of wind velocities at hub height whereas usually, only410

the mean values are available.

Therefore, we propose hereby (dotted lines in Fig. 7) an engineering-oriented solution to approximate the amount of me-

andering without access to the unsteady time series of velocities upstream of the turbine. In the first attempts to model the

meandering (Ainslie, 1988), it was proposed that the wake meandering should be a linear function of the inflow wind direc-

tion’s variance. However, more recent work (Doubrawa et al., 2018) showed that the amount of meandering decreases with415
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Figure 7. Normalised standard deviation of the wake centre from the LES (solid lines), results from the base calibration (dashed line) and

from the engineering calibration (dotted line).

the rotor size. Indeed, following the theory of the DWM model, only the eddies larger than the size of the rotor are energetic

enough to induce wake meandering. Thus the idea is to calibrate the amount of wake meandering only with eddies larger than

this size:

σfy =

√
kDy

U∞

x

D
(40)

and similarly for σfz . In Eq. 40, kDy is the lateral turbulence with size larger than the diameter of the turbine, i.e. the420

variance of the wind velocity averaged over a circle of two rotor diameters and centred at the hub. Note that the time variance

is performed after the spatial averaging.

The issue is that kDy and kDz are not known a priori, and since the stability of the ABL modifies the low-frequency range

of the turbulence spectrum, it is expected that the share of the turbulence with larger size than the rotor to the total turbulence

is dependent on the atmospheric stability. This can be observed in Fig. 8 where the ratio between the turbulence larger than a425

disk of diameter ddisk, kddisk
y,z to the total turbulence is computed for ky and kz for each case.

Figure 8 highlights two distinct behaviours, depending on the stability conditions: the unstable cases (orange and purple

curves) decrease much slower than the near neutral cases (red, grey, brown and blue), and this phenomenon is particularly

marked for the lateral turbulence. It shows that the unstable cases have (in proportion) more low-frequency (or large-size

eddies) than the near-neutral cases.430
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Even though a fully physical approach would require a measure of the stability and an in-depth study of the turbulence

spectrum in function of the ABL conditions, the objective here is to propose an analytical model easy to implement and use. It

is thus proposed to model the ratio kddisk
y /ky and kddisk

z /kz with an analytical function:

kdy/ky = exp(−ddisk/Γy)

kdz/kz = exp(−ddisk/Γz) (41)435

A least square fit has been used to determine the value of the parameter Γ. Two different fits were used in order to have one

result for unstable cases and one for near-neutral cases. The results are given in Table and the Eq. 41 is plotted in Figure. 8 in

black dotted and black dash-dotted lines for the neutral and unstable values, respectively.

Case Γy[m] Γz[m]

Neutral 56 37

Unstable 212 52
Table 5. Parameters for the large scale turbulence function.

Γ can be interpreted as a measure of the large-scale eddies of the atmosphere, even though it is not defined as the integral

length scale. The combination of Eqs. 40 and 41 with values from Table. 5 is plotted in dotted lines in Fig. 7. Even though the440

model cannot predict the non-linear behaviour in the far wake, the results remain quite good. Only the weakly unstable case

gives poor results, allegedly because it is at the edge between the near neutral and unstable case, and would necessitate a value

of Γ of his own.
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5 Results

In this section, we analyse the results of the new model described in the precedent sections. For the streamwise velocity, the445

model is described with Eq. 28 and for streamwise turbulence with the sum of Eqs. 30 and 33. This validation is done with the

two validation cases (see Table. 1), i.e. with the unstable and neutral SWiFT simulations. Three versions of the calibration of

σ, σfy , σfz and l∗m are shown:

– The ’base’ calibration is defined with Eqs. 36, 38 and 39 and values for a, b, c, d and e from Tables. 3 and 4. This cali-

bration makes more sense physically but requires the time series of the inflow velocities to determine the autocorrelation450

necessary to compute σf from Eq. 39. It is plotted in blue dashed lines in Figs. 9 to 12.

– The ’engineering’ calibration uses the same equations except for the wake meandering, where Eqs. 40 and 41 are used

instead of Eq. 38 and parameters Γ are taken from Table. 5. It is plotted in red dotted lines in Figs. 9 to 12.

– Finally, we also proposed the ’best’ version of the model. Knowing that the calibration produces errors, it seemed

interesting to see what would be the results of the ’best calibration possible’, i.e. with parameters σ, σfy , σfz and l∗m455

directly taken from the LES simulation of the SWiFT simulation (and not from the calibration deduced from the Sect.

4). Obviously, this version of the model cannot be used, but it is helpful to determine if the discrepancies between our

model and the LES come from the calibration or the construction of the model itself. It is plotted in orange dash-dotted

lines in Figs. 9 to 12.

Additionally, the reader will find in the following figures the results directly from Meso-NH (in black solid line) and the460

result from a widely used model of the I&Q2018 model (in purple dash-dot-dotted line), one of the few in the literature that

predict both profiles of mean streamwise velocity and streamwise turbulence.

5.1 Velocity field

The results for the streamwise velocity field in the FFOR can be found in Figs. 9 and 10 for the neutral and unstable cases,

respectively. The horizontal (top) and vertical (bottom) profiles of velocity are plotted for the reference LES, results from the465

literature, and the three versions of the aforementioned model’s calibration. The three columns are three different positions

downstream of the wind turbine: x/D = 2, x/D = 5 and x/D = 8.

Our model (with any calibration) behaves very similarly to the I&Q2018 model in the neutral case (Fig. 9), and both are

accurate compared to the LES data in black. The only discrepancy is in the near wake, where both models assume a Gaussian

shape whereas a super-Gaussian shape (Blondel and Cathelain, 2020) would be more appropriate. These overall good results470

confirm that the hypotheses made in Sect. 3 for the velocity in the MFOR and the wake centre distribution are good and that

meandering has been correctly computed.

In the unstable case (Fig. 10), the literature model underestimates the wake dissipation, whereas the proposed model is more

accurate. This is because the I&Q2018 model only uses CT and Ix as parameters. As shown in Table. 1, these values are very
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Figure 9. Results of the analytical velocity model for the different calibrations (blue dashed, red dotted and orange dash-dotted lines) in

the neutral case, compared to Meso-NH (in black solid line) and the I&Q2018 model (red dotted line). Lateral (top) and vertical (bottom)

profiles are plotted for different positions downstream.

similar in the neutral and unstable cases of the validation case, and thus the I&Q2018 results are very similar between the475

neutral and unstable cases. It cannot predict the increase of meandering under unstable ABL due to higher values of large-scale

turbulence in the lateral and vertical directions.

The proposed model is better on that matter, showing a larger wake expansion due to the higher predicted meandering

compared to the neutral case. It shows that the determination of the velocity deficit in non-neutral cases necessitates more

than only the total streamwise turbulence. In this case, one can note a discrepancy between the ’best version’ and the two480

calibrations of our model. It is due to an overestimation of the wake width in the MFOR for the unstable case (not shown here).

Indeed, the neutral and unstable cases have similar wake widths in the MFOR while having different total turbulence intensities

I (Table. 1), and therefore Eq. 36 gives accurate results for the neutral case but overestimates the MFOR wake width in the

unstable case. As a result, there is a compensation of error, where the calibration underestimates the velocity deficit whereas
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Figure 10. Results of the analytical velocity model for the different calibrations (blue dashed, red dotted and orange dash-dotted lines) in

the unstable case, compared to Meso-NH (in black solid line) and the I&Q2018 model (red dotted line). Lateral (top) and vertical (bottom)

profiles are plotted for different positions downstream.

the ’best’ version is supposed to slightly overestimate it, resulting in a very good match. Nevertheless, even without this error485

compensation, the ’best’ version still outperforms the literature model.

5.2 Turbulence field

With the same plotting convention as in Figs. 9 and 10, the profiles of turbulence in the horizontal and vertical directions are

plotted in Figs. 11 and 12 for the neutral and unstable cases, respectively.

In the neutral case (Fig. 11), the I&Q2018 model is performing remarkably well. It correctly predicts the location of the490

double peak in the horizontal direction and of the top tip peak in the vertical direction. The proposed model shows less good

results: despite the order of magnitude being accurate, the shape of the function is not, and the top-tip maximum is not correctly

positioned. Since the calibrations do not significantly differ from the ’best version’ of the model, this is attributed to modelling
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Figure 11. Results of the analytical streamwise turbulence model for the different calibrations (blue dashed, red dotted and orange dash-

dotted lines) in the neutral case, compared to Meso-NH (in black solid line) and the I&Q2018 model (red dotted line). Lateral (top) and

vertical (bottom) profiles are plotted for different positions downstream.

errors, and not to the calibration. The authors suggest that this deviation originates from the omission of shear in the modeling

of rotor-added turbulence, as described in Equation 33.495

The unstable case shows the main shortcomings of the I&Q2018 model and the added value of our model. As shown

previously, the I&Q2018 model gives similar results between the unstable and neutral SWiFT cases because they have similar

inflow Ix and CT values. However, the Meso-NH simulations show significant differences, in particular the fact that around

x= 5D, the turbulence profile is unimodal in the unstable case and bimodal in the neutral case. This difference cannot be

predicted by the I&Q2018 model as it assumes always a bimodal shape with a maximum at the top tip. However, this change500

of shape can be predicted by our model since both Eqs. 30 and 33 are bimodal when σ >> σf and unimodal when σ << σf .

Except for the upstream turbulence profiles, the inflow conditions used in the I&Q2018 are very similar between the neutral

and unstable cases. Consequently, the purple profiles are alike in Figs. 11 and 12 whereas the stronger meandering in the

unstable case leads to a Gaussian-like turbulence profile, even in the vertical direction. The maximum turbulence is thus no
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Figure 12. Results of the analytical streamwise turbulence model for the different calibrations (blue dashed, red dotted and orange dash-

dotted lines) in the unstable case, compared to Meso-NH (in black solid line) and the I&Q2018 model (red dotted line). Lateral (top) and

vertical (bottom) profiles are plotted for different positions downstream.

longer located at the top tip but rather at hub height. This property is well-predicted by our model but not by the I&Q2018505

model, which does not take meandering into account, and predicts quasi-identical behaviours between the neutral and unstable

cases. As shown in Figs. 5 and 7, the amount of meandering starts lower but grows faster than the wake width in the MFOR, in

particular in unstable conditions. Hence, one can expect that a bimodal shape in the near wake and an unimodal shape in the

far wake, as seen in Figs. 11 and 12.

However, the calibration of our model leads to an overestimation of the streamwise turbulence, in particular in the near wake.510

Since there are not many differences between the basic and engineering calibrations, it is not attributed to the meandering

calibration (these two calibrations only differ by the meandering modelling), but rather to the overestimated σ in the MFOR, as

well as an overestimated l∗m. When computed directly from the simulation, the values of l∗m are very similar between the neutral

and unstable cases, whereas the values of l∗m,∞ are much greater in the unstable case (see Fig. 3). Therefore, the value of l∗m is

overestimated by the model, leading to an overestimation of the rotor-added turbulence, and thus to the total turbulence.515

26



The ’best version’ of the model gives interesting results, showing that if a better calibration was achieved, in particular for

the modified mixing length, the results of the model would be better. This question will be further detailed in the next section.

6 Discussion

The previous section showed the results of the model developed in this paper. It is quite good for the streamwise velocity field

but can be improved for the turbulence, where the fully empirical model of Ishihara and Qian (2018) shows overall better520

results in neutral cases but has shortcomings in unstable cases. However, since it is physically-based, we know the assumptions

of the present model and thus have clear possibilities for improvements. The main ones known by the authors are listed below.

Moreover, this work shows that the modification of the velocity and turbulence fields when the ABL stability is modified

(and not the Ix or CT ) can be predicted. This is a crucial point, as future applications of analytical models such as digital

twins will require an estimation of the wake velocity and turbulence over small time-lapses and not a yearly average like AEP525

calculations.

The authors want to emphasise that the presented work is a first step toward a fully physically-based model for turbulence

profiles that depend on atmospheric stability. In the companion paper, it was shown that the turbulence in the wake of a wind

turbine is the sum of several terms, and here we presented a methodology to model analytically the most important of these

terms. Even though a fully usable calibration is proposed for anyone who would like to test the model, the main purpose of this530

work is to demonstrate how the rotor-added turbulence and meandering turbulence can be modelled from simple functions.

6.1 Calibration improvement

In Figs. 9 to 12, there are discrepancies between the ’best version’ of the model and our proposed calibrations. This is par-

ticularly true for turbulence, and it is attributed to the calibration of l∗m. Contrarily to σ and σf which can be computed on a

wake no matter what, our computation of the modified mixing length l∗m makes sense only if it is assumed that the rotor-added535

turbulence only comes from the wake shear. Additionally, the vertical velocity gradient of the ABL ∂U∞/∂z is voluntarily

omitted in Eq. 20.

On one hand, all of these assumptions make the measure of l∗m a hardly reliable variable. On the other hand, our model is

strongly dependent on this parameter. Indeed, the rotor-added turbulence is proportional to the square of l∗m. Therefore, a small

over- or underestimation of l∗m is likely to happen and it leads to large differences. In Fig. 13 is shown the effect of multiplying540

parameter d of the mixing length (Table. 4) by a factor 0.8 (red dotted line), 1.2 (orange dash-dotted line) and 1.5 (purple

dash-dot-dotted line) for the ’basic’ calibration, in the neutral case. It results in large differences from one result to another,

showing that even small differences in l∗m can drastically change the conclusions.
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Figure 13. Results of the axial turbulence analytical velocity model in the neutral case, for different values of parameter d in the calibration

of l∗m.

6.2 Modelisation improvements

Besides a better calibration, the model could benefit from conceptual improvements. Indeed, the ’best version’ of the model545

(orange curve in Figs. 11 and 12) does not match the LES results. In other words, even with a ’perfect’ calibration, the model

still misses some features of the turbulence in the wake.

At several points of the reasoning, the atmospheric shear, i.e. the dependence of U∞ with z is neglected (Eqs. 24 and 20).

The first improvement that comes to mind is to model the interaction between atmospheric and wake shear. By doing so, it

would be possible to have the reduction of shear near the ground and an increase of shear at the top tip, leading to a smaller550

value of turbulence at the bottom tip compared to the top tip, as observed in the LES datasets and modelled in the I&Q2018

model. In the model under its current form, the shear is only accounted for through U2
∞ in factor of km,am and ka,am. This

small contribution is compensated by the upstream turbulence k∞ that is larger at the bottom than at the top, leading to almost

symmetric vertical profiles for the model whereas the LES profiles.
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A second improvement that could be done concerns the near wake. As mentioned in Sect. 5, instead of using a simple555

Gaussian function, a super-Gaussian function would be more accurate. This generic function takes a top-hat form in the near

wake and progressively transitions to a Gaussian function as it travels downstream. It was shown in Blondel and Cathelain

(2020) that it gives more accurate results in the near wake. Such a function would not only improve the velocity model but also

the meandering and rotor-added turbulence terms, which are built upon the velocity model. The latter in particular is a function

of the spatial derivative of ∆U : using the Gaussian function instead of the super-Gaussian function as done in this work thus560

leading to an underestimation of the shear at the edge of the turbine.

For both of these improvements, some solutions were tried: not neglecting the ∂U∞/∂z in the derivation of the rotor added

turbulence and using a super-Gaussian function instead of a Gaussian for the velocity in the MFOR. In both cases, no analytical

solution for the models was reached. If such a fully-analytical resolution is indeed impossible, an approximated form (for

instance based on LES results) could be proposed in the future.565

Finally, modelling the additional terms of Eq. 7, in particular the covariance term (V) could further improve the model. It

was shown in the companion paper that this term can represent about 10% of the total turbulence in the wake and redistributes

the turbulence vertically. Given the order of magnitude, this is of lesser importance than the points aforementioned, but would

also improve the results, or at least the physical accuracy of the model.

7 Conclusions570

This work is the second part of a two-step study that aims at modelling the turbulence in the wake of a wind turbine based

on the meandering phenomenon. In the companion paper, the velocity and turbulence in the FFOR were broken down into

different terms, some of which were shown to be negligible. In the present work, an analytical model is proposed for the

dominating terms of the velocity and turbulence breakdowns, i.e. the meandering turbulence and the rotor-added turbulence.

The originality of this work is that it allows modelling independently the effects of meandering (and thus of the ABL stability)575

and the wake expansion and that it gives the whole turbulence profile rather than only the maximum value. For the velocity, it

writes:

Ux,am(y,z) = U∞(z)

(
1−C

√
σ2
y

σ2
y +σ2

fy

σ2
z

σ2
z +σ2

fz

exp

(
− y2

2σ2
y +2σ2
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− z2

2σ2
z +2σ2

fz
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(42)

and for the turbulence:
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(43)

whereC = 1−
√
1−CT /(8σyσz/D2),CT is the thrust coefficient,D is the turbine diameter, kx,∞ and U∞ are the variance

and mean values of the upstream axial velocity. The model’s parameters are the wake widths σy,σz , the amount of meandering

σfy,σfz and the modified mixing length l∗m. Two calibrations of these parameters are proposed in Table. 6: the first one (’base’585

calibration) can be used if time series of the wind velocity are available and the second one (’engineering’ calibration) if they

are not. In this table, Aϕ is the autocorrelation of ϕ, Uc = 0.8U∞ and l∗m,∞ is found by fitting the inflow velocity profile (Eq.

14). The expressions of velocity and added turbulence in the MFOR used to build Eqs. 42 and 43 can also be used as inputs to

the DWM: combined with a synthetic turbulence generation, the unsteady effects of meandering can be modelled.

The model has been tested on two LESs simulations of a single wind turbine wake under a neutral and unstable atmosphere.590

For the velocity, the results are satisfactory, either in the vertical or lateral direction. The model performs better than the model

from Ishihara and Qian (2018) in the unstable case as it predicts correctly the increased dissipation due to the increase of

meandering. For the turbulence profiles, however, the results are not as good. Since the atmospheric shear was neglected in

several steps of the model, the maximum turbulence at the top tip in the neutral case could not be predicted. In the unstable

case, the modified mixing length l∗m was overestimated and since the model is very sensitive to this parameter, it resulted in too595

large values of added turbulence. However, the model of Ishihara and Qian (2018) does not predict correctly the turbulence in

the unstable case either. In particular, it still predicts a bimodal shape with a maximum at the top tip in all the wake, whereas

the proposed model successfully transitions from a bimodal to an unimodal shape, according to the LES results.

Calibration σy/D = σz/D = σ/D l∗m σfy/D σfz/D

Base (aI + b)
x

D
+ c

√
β l∗m,∞

(
d
x

D
+ e

) √
2ky

∫ x/Uc

0
(
x

Uc
− ζ)Av(ζ)dζ

√
2kz

∫ x/Uc

0
(
x

Uc
− ζ)Aw(ζ)dζ

Engineering (aI + b)
x

D
+ c

√
β l∗m,∞

(
d
x

D
+ e

) √
ky exp(−D/Γy)

U∞

x

D

√
ky exp(−D/Γz)

U∞

x

D

a b c d e Γy Γz

Value 0.276 -0.00329 0.231 0.0487 0.0486
Neutral: 56m

Unstable: 212m

Neutral: 37m

Unstable: 52m
Table 6. Calibration’s parameters of the model

This is the first step toward a fully analytical, physically-based model for turbulence and velocity profiles in the wake of

a wind turbine that takes into account atmospheric stability. For future works, the treatment of shear must be improved to600
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model more realistically vertical turbulence profiles. The MFOR velocity deficit function could be replaced by a more accurate

function in the near wake to improve the model’s results in this region. It would also be interesting to derive an analytical

model for the other terms of the turbulence breakdown.

Finally, this model can currently only be used for one turbine, as it predicts only the streamwise velocity and turbulence, but

necessitates the upstream lateral and vertical turbulence. For the model to be usable for multi-turbines, an expression for every605

term of the Reynolds-stress tensor (or at least the diagonal terms to get the total TKE) would be needed, which implies a model

for the lateral and vertical velocities Uy and Uz . This also implies more advanced studies of wake meandering from a turbine

working in waked conditions, as most of the wake meandering studies are performed in freestream conditions.
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