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Abstract. The optimal control problem for flight trajectories for Fly-Gen Airborne Wind Energy Systems (AWES) is a crucial

research topic for the field, as suboptimal paths can lead to a drastic reduction in power production. One of the novelties

of the present work is the expression of the optimal control problem in the frequency domain through a Harmonic Balance

formulation. This allows to potentially reduce the problem size by solving only for the main harmonics and to implicitly

impose periodicity of the solution. The trajectory is described by the Fourier coefficients of the dynamics (elevation and5

azimuth angles) and of the control inputs (on-board wind turbines thrust and AWES roll angle). To isolate the effects of

each physical phenomenon, optimal trajectories are presented with an increasing level of physical representation from the

most idealized case: i) If the mean thrust power (mechanical power linked to the dynamics) is considered as the objective

function, optimal trajectories are characterized by a constant AWES velocity over the loop and a circular shape. This is done

by converting all the gravitational potential energy into electrical energy. At low wind speed, on-board wind turbines are then10

used as propellers in the ascendant part of the loop; ii) If the mean shaft power (mechanical power after momentum losses) is

the objective function, a part of the potential energy is converted into kinetic and the rest into electrical energy. Therefore, the

AWES velocity fluctuates over the loop; iii) If the mean electrical power is considered as the objective function, the on-board

wind turbines are never used as propellers because of the power conversion efficiency. Optimal trajectories for case ii) and iii)

have a circular shape squashed along the vertical direction. The optimal control inputs can be generally modelled with one15

harmonic for the on-board wind turbines thrust and two for AWES roll angle without a significant loss of power, demonstrating

that the absence of high-frequency control is not detrimental to the power generated by Fly-Gen AWES.

1 Introduction

Airborne Wind Energy (AWE) is the branch of wind energy which aims at harvesting energy from the wind using airborne

systems. Airborne Wind Energy Systems can be classified according to the flight operations, which are linked to the power20

generation technique. The flight operations can be divided into crosswind, tether-aligned and rotational, as discussed by Ver-

million et al. (2021). Electrical power can be generated by a fixed or a moving ground station or, alternatively, it can be directly

generated on-board and transmitted to the ground through the tether. The wing type, soft or fixed, additionally classifies the
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AWES. This paper focuses of AWES based on a fixed-wing with on-board generation, known as Fly-Gen AWES. However,

the methods developed can be applied to other AWE architectures, after an appropriate rework of the dynamic models. These25

methods are suitable for investigating the optimal trajectories of AWES and, especially when applied to low fidelity models,

for understanding their physical characteristics. The interpretation of the physical characteristics of optimal trajectories and the

analysis of how they are influenced by parameters describing the system and its operation is the main goal of this work. With

this aim, solutions are compared with analytical solutions coming from first-principle models whenever possible.

The first analytical power equation of crosswind AWES was derived by Loyd (1980), and additional refinements, such as30

the one proposed by Trevisi et al. (2020a), made an effort to modify analytic equations to include gravitational and centrifugal

effects. This kind of analytical models can be used to study how power and other relevant trends approximately scale with

design parameters. However, they typically neglect the system dynamics and its effect on power generation. These effects

can be studied with dynamical models, ranging from low to high fidelity. Typically, low- to mid-fidelity models are used

to investigate optimal trajectories of AWE. Low-fidelity dynamic models are characterized by multiple assumptions, which35

simplify the models, and by the low computational cost. The quasi-steady model (van der Vlugt et al. (2019)) assumes the kite

as a point mass in steady state for each point of the loop. This model is validated with experimental data (Schelbergen and

Schmehl (2020)) and it is considered accurate for soft kites, where the inertia is low and the AWES quickly reaches the steady

state. A similar approach is considered while deriving the Unicycle model (Fagiano et al. (2014); Vermillion et al. (2021)).

Also this model, based on a point mass, is developed for soft-wing AWES and computes the velocity vector via quasi-steady40

flight equations. The kite orientation is found by a turning law that is derived from lateral force equilibrium and is validated

through a number of experiments. The Unifoil model (Cobb et al. (2020)) is derived by modification of the Unicycle model in

order to be applied to fixed-wing AWES. Indeed, the quasi-steady assumption is removed and the turning maneuvers modelled

with a yaw dynamic equation.

Higher fidelity, but still computationally efficient, dynamic models are developed by Sánchez-Arriaga et al. (2017, 2019);45

Sánchez-Arriaga and Serrano-Iglesias (2021) as a part of the Lagrangian Kite Flight Simulators (LAKSA) package based

on minimal coordinates, and by Gros and Diehl (2013) to study the dynamics of multiple AWES configurations. Moreover,

thorough Newtonian dynamic models are used to compute reference flight paths and the consequent flight path control for

soft-wing AWES (Fechner et al. (2015); Fechner and Schmehl (2016)) and for fixed-wing AWES (Licitra et al. (2019); Malz

et al. (2019); Eijkelhof and Schmehl (2022)).50

The dynamic models just introduced are particularly suitable to be used within optimal control studies for their computa-

tional inexpensiveness and for the reduced number of nonlinearities compared to even higher fidelity codes, such as kiteFAST

(Jonkman et al. (2018)). The Unicycle and Unifoil models, introduced earlier, are mainly used to compute reference flight

paths and for flight path control development (Cobb et al. (2020); Fernandes et al. (2021)). To ease the deployment of optimal

control problems for AWE, awebox (awebox) is developed and used, for instance by Leuthold et al. (2018), Haas et al. (2019)55

and De Schutter et al. (2019), to solve optimal control problems. awebox solves optimal control problems in time, imposing

periodicity constraints. A similar optimal control problem is studied by Horn et al. (2013), Malz et al. (2020a) and Malz et al.

(2020b), where the optimal trajectory is found in time using a discretization by direct collocation and a homotopy strategy
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based on the relaxation of the dynamic constraints (Gros et al. (2013)). Licitra et al. (2019) solved an optimal control problem

with an experimentally validated dynamic model of a Ground-Gen AWES. They find that, under some prescribed constraints,60

circular and figure of eight trajectories produce similar mean power and that closed-loop control enhance robustness but de-

creases power production of about 10 %. Control in all operation phases is studied by Rapp et al. (2019) and Todeschini et al.

(2021): the present work can be understood as a study of the guidance (or the reference trajectory) used during the power

generation phase of their study.

Pasquinelli (2021) investigates the power losses in a circular trajectory with a dynamical quasi-analytical model. He finds65

that the causes of power losses are mainly two: the kiteAWES span non-perpendicularity with respect to the incoming wind

during the motion and the AWES speed fluctuation over the loop. Makani team (Tucker (2020)) studies the flight trajectories

of Fly-Gen AWES with a simplified quasi-analytical approach, aiming at describing their physical characteristics. They run

their flight simulator for different trajectories and production strategies to derive analytical expressions, which can describe the

consequences of different operational choices. Their production strategy at low wind speed is to convert part of the potential70

energy into kinetic and part into electrical, when the AWES moves downward. To reduce the potential energy exchange, they

suggest to squash the trajectories along the vertical direction. Moreover, they explain that using electrical power to push the

AWES upward is drastically decreasing the overall power production, as power needs to be converted from mechanical to

electrical and again from electrical to mechanical, so that the related efficiencies are counted twice. They, in accord with

the study for Ground-Gen by Stuyts et al. (2015), conclude that the electrical conversion losses should be considered when75

deciding on the production strategy. Following these conclusions, the present work also investigates the influence of the power

generation efficiencies on the optimal trajectories.

As the aim of this work is to interpret optimal trajectories in a physical way, a low-fidelity dynamic model, similar to

the one proposed by Fernandes et al. (2021) (reformulated for Fly-Gen AWES), is selected. Instead of solving the dynamics

and the optimal control problem in time, the present approach models the problem in the frequency domain, making use of a80

Harmonic Balance method, which expands the periodic solution as a Fourier series (Lau et al. (1982); Pierre and Dowell (1985);

Dimitriadis (2017)). Working with the Fourier coefficients and not with the time series themselves allows to potentially reduce

the problem size significantly depending on the problem at hand reduce the problem size significantly, to look for periodic

solutions implicitly and to study the solution in an intuitive way by looking at the contribution of the different harmonics. To

the best of the authors’ knowledge, this is the first work on AWES where an optimal control problem aided by a Harmonic85

Balance methodology is formulated.

Even though the frequency-domain formulation can be used for any periodic flight trajectories (i.e. circular and figure of

eight), only circular trajectories are here analyzed to limit the paper scope and length. Figure of eight trajectories are intended

to be analyzed and intensively compared with circular trajectories in a future work.

The paper is organized as follows: in Sect. 2 the flight dynamic model, the Harmonic Balance and the optimal control90

statement are introduced. In Sect. 3, the main results from steady state analytical models are recalled from literature, together

with the introduction of some key non-dimensional numbers used later in the analyses. In Sect. 4, the solution obtained with

the Harmonic Balance formulation is validated against the time integration. In Sect. 5, optimal control problems with constant
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wind inflow and no constraints on the mean elevation angle is analyzed. This extreme idealization allows for the understanding

of some optimal trajectory characteristics which are also present in more realistic cases. Section 6 focuses on the results of a95

more realistic optimal control problem. Indeed, the wind shear and a constraint on the minimum elevation angle are included

in the analyses. Finally, in Sect. 7 the results are discussed and the main conclusions summarized.

2 Methodology

2.1 Flight Dynamic Model

Two coordinate systems (Figure 1a) are defined to derive the equations of motion. The ground coordinate system (denoted by100

FG) is inertial and centered at the ground station: ex points downwind, ez toward the Zenith and ey completes the right-handed

frame. For convenience, spherical coordinates are used to describe the position of the airborne unit with Lt the tether length, ϕ

the azimuth angle and β the elevation angle. The spherical reference frame (denoted by FS) is unequivocally defined at every

position with the origin at the AWES center of mass, er pointing outward the sphere in the radial direction, eϕ normal to er

and contained on a plane parallel to x− y and eβ = er × eϕ. The position p, velocity v and acceleration a projected into the105

spherical reference frame FS are

p= Lter,

v = Ltϕ̇cosβeϕ+Ltβ̇eβ ,

a=
(
−Ltϕ̇2 cos2β−Ltβ

2
)
er +(Ltϕ̈cosβ− 2Ltϕ̇β̇ sinβ)eϕ+

(
Ltβ

2 sinβ cosβ+Ltβ̈
)
eβ .

(1)

The wind velocity is in the positive x-axis direction of FG and projected into the spherical reference frame is

vw = vw (cosϕcosβer − sinϕeϕ− cosϕsinβeβ) , vw(h) = vw,0

(
h

h0

)αs

= vw,0

(
Lt
h0

sinβ

)αs

, (2)

where the wind speed vw as function of the altitude h is modelled with an exponential law: vw,0 is the reference wind speed at110

the reference altitude h0 and αs is the wind shear exponent. The relative speed between the AWES and the wind is

vr = v−vw. (3)

To describe the AWES attitude, a non slideslip velocity constraint is included in the modelling. Indeed, the wing operates

at the highest performance under this condition. To impose this constraint implicitly, the unit vector e1 is defined to point the

opposite direction of the relative wind speed115

e1 =− vr
|vr|

. (4)

The spanwise unit vector s (with origin at the center of mass and pointing in the right-wing span direction) is defined

perpendicular to e1 with the procedure illustrated in Fig. 1b. A second vector e3 is defined as a unit vector a plane parallel to

x− z plane with elevation βs (and negative sign)

e3 =−(ex cos(βs)+ ez sin(βs)), ex = cosϕcosβer − sinϕeϕ− cosϕsinβeβ , ez = sinβer +cosβeβ . (5)120
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Figure 1. (a) Ground reference frame FG (ex− ey − ez) and spherical reference frame FS (er − eϕ− eβ) and (b) sketch for the spanwise

unit vector s definition.

Note that e3 points upwind when βs = 0. The unit vector e2 is then defined as

e2 =
e3 × e1
|e3 × e1|

, (6)

where |e3×e1| can take values smaller than one because e3 and e1 are not defined to be perpendicular in general. In this way,

e2 is perpendicular to the plane e3-e1. Rodrigues’ formula is then used to define s through a rotation of ψ around e1, starting

from e2125

s= e2 cosψ+(e1 × e2)sinψ+ e1 (e1 · e2)(1− cosψ). (7)

With this formulation, s is defined to be always perpendicular to the relative wind and its components are defined by a unique

angle ψ, called hereafter roll angle. When ψ = 0, s is perpendicular to e3.

The aerodynamic lift L and the drag D take the standard form

L=
1

2
ρACL |vr|vr × s, D=

1

2
ρACD |vr|vr, (8)130

where ρ is the air density, A is the wing area and the lift and drag coefficients CL and CD are considered constant. The drag

coefficient CD includes the contribution from the tether drag (Trevisi et al. (2020a)). The gravitational force Fg and the tether

force T are

Fg =−mg(sinβer +cosβeβ), T=−Ter, (9)
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where m is the AWES mass, g the gravitational acceleration and T the norm absolute value of the tether force. The thrust135

produced by the on-board wind turbines Dt is expressed as a linear function of the aerodynamic drag with gain γ

Dt = γD. (10)

The dynamic equations of motion in compact form read

ma= L+D+Dt+Fg +T, (11)

recalling that a is given by Eq. 1.140

As the objectives of the optimal control problems are linked to the power production, three different power quantities are

defined. The thrust power Pt (i.e. the power linked to the AWES dynamics) is estimated as a dot product of Dt and the relative

velocity

Pt =Dt ·vr. (12)

The shaft power Ps (i.e. the mechanical power that can be converted to electrical power) is modelled using 1D momentum145

theory (actuator disc) as

Ps = (1− a)Pt =

(
1

2
+

1

2

√
1− γCD

A

At

)
Pt, (13)

where the induction a is found by setting the thrust given by momentum theory1 equal to Dt, as in Trevisi et al. (2020b), and

At is the total turbine area.

Finally, the electrical power exchanged with the grid P takes into account the generator and transmission efficiency ηel150

P =

Ps− (1− ηel)Ps for γ ≥ 0

Ps+(1− ηel)Ps for γ < 0.
(14)

When power is generated (γ > 0), the electrical power distributed to the grid P is lower than the shaft power Ps because

of electrical efficiencies. When power from the grid is used, the electrical power requested to the grid P is instead higher in

absolute value compared to the shaft power Ps. To model the discontinuity in a continuous optimization framework, the logistic

function is used155

P = Ps−
(
1− e−fγ

1+ e−fγ

)
(1− ηel)Ps, (15)

where f is taken equal to 100.

1Td = 1
2
ρAt(4a(1− a)) |vr|vr
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2.2 Frequency Domain Formulation

Frequency domain formulations may present clear advantages when solving for periodic solutions of dynamic and control

problems. They have the capability of solving for both stable and unstable (unlike time integration methods) branches of160

periodic solutions in an efficient way. Moreover, they potentially use less variables to describe the same problems. Since the

problem of optimal trajectories for AWES has a periodic nature, the flight dynamic model just introduced is expressed in the

frequency domain. The Harmonic Balance methodology is then used to transform the differential equations of motion into a set

of nonlinear algebraic equations (Dimitriadis (2017)). The equations of motion (Eq. 11) can be written as a set of second-order

nonlinear differential equations in the form165

f(x, ẋ, ẍ,u) = 0, x=
[
β(t), ϕ(t)

]T
, u=

[
ψ(t), γ(t)

]T
, (16)

where x is the state vector and u is the control vector. By assuming that Eq. 16 accepts periodic solutions, every variable of the

state vector is expanded as a Fourier series of order Nx

x(t)≈ X0

2
+

Nx∑
k=1

Xk,s sin(kωt)+Xk,c cos(kωt) , X=
[
X0, X1,s, X2,s, ...X1,c, X2,c, ...

]T
, (17)

with ω =
2π

T
being the fundamental frequency of the motion and T the period. Alternatively, the state vector can be expressed170

as

x(t)≈ A0

2
+

Nx∑
k=1

Ak cos(kωt− θk) , A=
[
A0, A1, ...

]T
, θ =

[
θ1, θ2, ...

]T
, (18)

where

A0 =X0, Ak =
√
X2
k,s+X2

k,c, θk = arctan

(
Xk,s

Xk,c

)
. (19)

The first and second time derivatives of the state vector can be found analytically175

ẋ(t)≈
Nx∑
k=1

kω (Xk,s cos(kωt)−Xk,c sin(kωt)) , ẍ(t)≈−
Nx∑
k=1

(kω)2 (Xk,s sin(kωt)+Xk,c cos(kωt)) . (20)

Similarly, the control inputs, assumed to be periodic, can also be expressed as a Fourier series of order Nu

u(t)≈ U0

2
+

Nu∑
k=1

Uk,s sin(kωt)+Uk,c cos(kωt) , U=
[
U0, U1,s, U2,s, ...U1,c, U2,c, ...

]T
, (21)

where Nu <Nx. By introducing Eqs. 17, 20 and 21 into Eq. 16, the equations of motion can be expanded as a Fourier series

of order Nx180

f(Xβ ,Xϕ,Uψ,Uγ ,ω, t)≈
F0

2
+

Nx∑
k=1

Fk,s sin(kωt)+Fk,c cos(kωt) = 0, F=
[
F0, F1,s, F2,s, ...F1,c, F2,c, ...

]T
. (22)

7



The Fourier coefficients of the equations of motion are found numerically by applying the Fourier coefficient definition to the

time series, which should have a minimum size of 2Nx+1. A Galerking methodology is then applied by pre-multiplying Eq. 22

by 1, sin(kωt), cos(kωt) and subsequently integrating the resulting equation over one period. The result is a set of 2×(2Nx+1)

nonlinear algebraic equations as a consequence of the orthogonality properties of the selected basis of trigonometric functions185

FR(Xβ ,Xϕ,Uψ,Uγ ,ω)=
[
F0, F1,s, F2,s, ...F1,c, F2,c, ...

]T
= 0, (23)

which can be understood as the residuals of the equations of motion expressed in the frequency domain. For given periodic

control inputs and a given fundamental frequency, the periodic solution can be found by looking for the Fourier coefficients

[Xβ ;Xϕ] of the dynamics which solve Eq. 23.

2.3 Optimal Control Problem (OCP)190

In this work, the frequency-domain formulation is included within an optimal control problem (OCP). A generic optimization

problem can be written as

X ∗ = arg
(
min
X

obj(X )
)
,

s.t.: lb≤X ≤ ub

g(X )≤ 0

h(X ) = 0,

(24)

where X are the unknown optimization variables, X ∗ their optimal values, obj the objective function, lb and ub the lower and

upper bounds of X , g the inequality and h the equality constraints. In the present formulation, the optimization variables are195

the Fourier coefficients of the state variables, of the control inputs and the fundamental frequency

X = [Xβ ;Xϕ;Uψ;Uγ ;ω] . (25)

The negative value of the mean thrust power P̂t (Eq. 12), shaft power P̂s (Eq. 13) or electric power P̂ (Eq. 15) over the loop

is taken as objective function, where the symbol .̂ stands for the mean value over the loop. The equality constraints are the

aggregation of the residuals of the equation of motion in the frequency domain FR (Eq. 23) and additional physical constraints200

Rr in the frequency domain (e.g. certain quantities can be imposed to be constant over the loop)

h(X ) = [FR(X );Rr(X )] = 0. (26)

Inequality constraints g, expressed in the time domain, can also be included in the problem (e.g. the minimum elevation

angle over the loop can be bounded). A graphical representation of the OCP setup is given in Figure 2. One of the advantages

of the frequency formulation is that tThe derivatives of flight dynamic model with respect to the optimization variables can be205

taken analytically and provided to the solver, allowing for a deep and fast convergence of the solution. The OCP is implemented

in MATLAB® environment and solved with the interior-point algorithm implemented in fmincon. As the chosen optimization

algorithm (gradient-based) can only look for local optima, the initial guess may influence the solution. In this work, the initial
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Xϕ
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– Compute power P (t) and mean power P̂

– Evaluate the residual of the equations of motion fR(t)

– Evaluate additional physical constraints r(t) and g(t)

– obj =−P̂

– g = g(tω)

– h= [FR(ω);Rr(ω)]

Optimizer

to time to freq.

Figure 2. Graphical representation of the optimal control problem setup.

guesses are taken to be circular trajectories, leading to circular shaped optimal trajectories. Figure of eight trajectories can be

implemented as initial guesses, which may lead to figure of eight shaped optimal trajectories. A detailed comparison between210

these two trajectory types is left for future works. The OCPs are solved on an Intel Core i7-9700 3.0 Ghz, 16GB RAM. The

computation times of the presented examples require from a few seconds to tens of seconds. For example, OCP A in Section 6

takes approximately 25 s, OCP B approximately 12 s.

3 Steady State Model

To compare the results of the optimal control problem with idealized analytical expressions, the main results from a refined215

version of the Loyd power equation (Loyd (1980)) are here briefly recalled. The thrust power equation, with the assumption of

linear crosswind motion (Trevisi et al. (2020b)) is

Pt,L =
1

2
ρ A v3w γ

CL
G

(
1+

(
G

1+ γ

)2
)3/2

=
1

2
ρ A v3w γ

CL
G

(
1+G2

t

)3/2
, (27)

where the system glide ratio (including tether drag) is G= CL

CD
and, for readability, a modified glide ratio is defined as Gt =

CL

CD(1+γ) by including the drag of the on-board propellers. The shaft power takes into account the on-board wind turbine220

induction a

Ps,L = (1− a)Pt,L =

(
1

2
+

1

2

√
1− γCD

A

At

)
Pt,L. (28)

Finally, the power generated and sent to the grid takes into account the efficiencies of the electrical conversion,

PL = ηelPs,L = ηel

(
1

2
+

1

2

√
1− γCD

A

At

)
1

2
ρ A v3w γ

CL
G

(
1+G2

t

)3/2
. (29)
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For high G, the power equation simplifies to225

PL ≈ 1

2
ρ A v3w CL G

2 ηel

(
1

2
+

1

2

√
1− γCD

A

At

)
γ

(1+ γ)3
. (30)

For this expression, the value of γ which maximizes the power is only a function of the non-dimensional quantity CD A
At

. In

Figure 3a, the electrical power PL, normalized with the electrical power at CD A
At

= 0, is plotted as a function of γ and CD A
At

.

For increasing values of CD A
At

, the values of γ which maximizes power production decreases. The maximum normalized

power as a function of CD A
At

is shown in Fig. 3b, highlighting that the analytical expression predicts a decrease in power230

production for increasing CD A
At

.

(a)

0 1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 3. (a) Normalized power PL

PL(CD
A
At

=0)
as a function of CD A

At
and γ and (b) its maximum value as a function of CD A

At
for high

glide ratios G.

The tether force can be evaluated as

TL =
1

2
ρ A v2w

CL
Gt

(
1+G2

t

)3/2
. (31)

Trevisi et al. (2020a) showed that for high G, neglecting gravity and with constant incoming wind, it exists an opening angle

Φ̃ (angle swept by the AWES during the circular trajectory, see Fig. 4) which erases the power losses due to centrifugal forces235

and that it is only a function of the non-dimensional mass parameter

M =
m

1
2ρACLLt

. (32)

In this idealized case, the turning radius is R= Lt sinΦ̃ and the revolution period is

TL=
2πR

vL
=

2πR

vwGt
, (33)

where vL is norm of the AWES velocity.240

In addition to the non-dimensional mass parameter, the Froude number, which weights the fluid inertial forces to gravity

forces, is used in this work

Fr =

√
v2w
g ·Lt

, (34)
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where the reference velocity is the wind velocity and the reference length is the tether length. By combining the previously

introduced non-dimensional parameters, the gravity ratio Gr is defined as245

Gr =
M

F 2
rG

2
t

=
mg

1
2ρACLv

2
wG

2
t

, (35)

which represents the ratio between gravitational force and aerodynamic lift, similarly to the one introduced in Pasquinelli

(2021).

In the following sections, the results will be generalized as a function of the non-dimensional parameters just introduced.

Input parameters from Makani MX2 design (Tucker (2020)) will be used as reference values to present the results (Tab. 1).250

Table 1. Reference values for the examples (Values from the Makani MX2 description Tucker (2020)), associated non-dimensional parameters

and quantities evaluated with the steady state model for γ maximizing Eq. 29.

m 2000 kg A 54 m2 At 35 m2 Lt 300 m CL 1.8 CD 0.15

ηel 0.8 ρ 1.225 kg m−3 g 9.81 m s−2 vw 6 m s−1

G 12 M 0.1120 CD
A
At

0.231 γ 0.488 a 0.029 Gt 8.06

Fr 0.1106 Gr 0.1408 PL 218.0 kW TL 142.6 kN vL 48.4 m s−1 TL 12.6 s

4 Validation of the Frequency-Domain Formulation against Time Integration

To make sure the frequency-domain formulation is well implemented and finds solutions which respect the equations of motion,

they are compared with the solution coming from a time integration scheme. The model described in Sect. 2.1 is solved with

the MATLAB® ode45 integration scheme. After solving the periodic solution with the Harmonic Balance methodology, the

Fourier coefficients of the state and control vector are retrieved. The state vector at t= 0 is used as an initial condition for255

the numerical integration. The control inputs must be computed from their Fourier series at every step of the integration. In

Appendix A, a comparison for a circular and a figure of eight trajectory is shown. The solution of the dynamics, represented

by the azimuth and elevation, for the two cases is equivalent demonstrating that the frequency-domain formulation is accurate

enough to be used in the present optimal control problem framework.

5 Optimal Control Problems with Constant Inflow and no Elevation Angle Constraints260

As the analysis is limited to circular trajectories, a cylindrical reference frame FC , similar to the one employed in Trevisi et al.

(2020a), Trevisi et al. (2021) and Pasquinelli (2021), is used to present the results. A graphical representation of FC is given

in Figure 4. The longitudinal axis of FC is aligned with the mean elevation angle β̂. The angle βm denotes the minimum

elevation angle and Φ the opening angle. The angular position of the AWES is defined by α and when α= 0 the kiteAWES

moves upward (i.e. α̇ > 0).265
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To increase complexity incrementally, the optimal control problems (OCPs) are modified from the most idealized case to a

realistic one. For the idealized cases analyzed in this section, uniform incoming wind speed (αs = 0) and no minimum elevation

angle constraints are considered. In this section, βs (Eq. 5) is set equal to zero, such that e3 points upwind. In this way, when

the roll is equal to zero (ψ = 0◦), the span direction is perpendicular to the incoming wind.
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Figure 4. Cylindrical reference system FC used to analyze circular trajectories.

5.1 Optimizing for the Mean Electrical Power in absence of Gravity270

For the most idealized case, the gravity is null g = 0, such that Fr →∞ and Gr = 0. The objective function is taken as the

mean electrical power, given in Eq. 15. By solving the OCP for the example (Table 1), it is found that the solution has constant

values over the trajectory and the average power output is equal to the one evaluated with the analytical expression in Eq. 29.

Figure 5a shows the evolution of β and ϕ, highlighting that the solution is a circle. Due to the constant values of the solution,

quantities such as tether force along the axial symmetry axis, γ, AWES velocity and others can be found with the formulation275

assuming a crosswind straight motion, as Sect. 3.

For the solution to be optimal, it is found that the AWES span is perpendicular to the wind speed, or, in analytical terms, that

ψ = 0. Figure 5b shows the optimal opening angle Φ∗ as a function of a modified non-dimensional mass parameter Mt found

by solving a number of OCPs with different G (G ∈ [10 30]), M (M ∈ [0.025 0.15]) and CD A
At

(CD A
At

∈ [0 0.4]).

The values of Φ∗ can be accurately described by280

Φ̃ = arccos

(
−Mt

2
+

√
M2
t +4

2

)
, Mt =

M

1+ 1
G2

t

, (36)

which for high glide ratios coincides with the analytical formulation given in Trevisi et al. (2020a).
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Figure 5. (a) Optimal trajectory and (b) optimal opening angles Φ∗ (x) found by solving multiple OCPs and analytical expression (-) as a

function of the modified non-dimensional mass parameter Mt.

5.2 Optimizing for the Mean Thrust Power considering Gravity

Gravity is now included in the modelling and the objective function is taken as the mean thrust power P̂t (Eq. 12). The results

of two slightly different OCPs are shown for the sake of understanding the results and they are summarized in Table 2. In OCP285

A, the control inputs are modelled with 5 harmonics. In OCP B, the time series of the control input ψ is modelled as a constant

and only one harmonic is used for the control input γ. Additionally, the norm absolute value of the AWES velocity v = |v| is

imposed to be constant (additional equality constraint). As the control inputs act up to the first harmonic, this constraint is set

by imposing the first Fourier coefficients of the AWES velocity to zero (R= [V1,s;V1,c]), while no constraints are imposed

on the higher-order harmonics. In Table 2, the mean thrust power (objective function) is also reported and compared with the290

analytical formulation (Eq. 27). The objective function of the two OCPs is almost the same, showing that the two problems are

basically equivalent.

Table 2. Settings of the two optimal control problems maximizing the mean thrust power considering gravity. V1,s and V1,c are the first

Fourier coefficients of the norm of the AWES velocity v.

OCP Nx Nγ Nψ size ovX R additional constr. size h P̂t (kW) T (s)

A 10 5 5 65 - 42 285.4 12.8

B 10 1 0 47 [V1,s;V1,c]|vk|= const 44 284.5 12.7

L analytical model 280.4 12.8

By solving the OCPs, it is found that the optimal solutions have a negative mean elevation of β̂A ≈−8.2 ◦ and β̂B ≈−7.8 ◦.

The trajectories, shown in Figure 6a, have a circular shape (a circle with radius Φ̃ is marked as −.), but it is not any more a

perfect circle. Figure 6b shows the trends of the control input ψ as a function of α (see Figure 4 for definition). For OCP A,295

it fluctuates with small amplitude about the mean value, which is close to zero. For this reason, it is modelled as a constant
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in OCP B. The optimal constant value is also close to zero, meaning that the AWES span is perpendicular to the wind speed

direction. Since the two OCPs present similar optimal values of power, it is found that the optimal solutions are not sensitive

to the fluctuations of the roll angle ψ.
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Figure 6. (a) Optimal trajectory for OCP A (-), B (- -) and a circle with radius Φ̃ (−.) and (b) optimal ψ as a function of the angular position.

Figure 7a shows the evolution of γ as a function of α. The mean values for the two OCPs are close to the value maximizing300

Eq. 27, denoted in figure as γL. γ takes values higher than the mean in the descending leg of the loop and negative values in the

ascendant leg. This means that in the ascendant leg the on-board wind turbines are operated as propellers. Figure 7b shows the

norm absolute value of the optimal AWES velocity v for the two OCPs. In OCP B, this value is constrained to be a constant by

imposing null only its first harmonic. Since it is not possible to impose constraints at frequencies where the control (γ and ψ) is

not acting, higher-order harmonics are not constrained. The mean values of v are similar the one predicted by the steady model.305

Since the fluctuations for OCP A are small compared to the mean magnitude of the absolute value, the influence of the velocity

fluctuations on the overall performances is investigated in OCP B, showing that they impact weakly the optimal solution. As

the two OCPs problems are basically equivalent, it is found that optimal trajectories are characterized by a constant velocity of

the AWES.
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Figure 7. (a) Optimal γ and (b) norm absolute value of the optimal AWES velocity v as a function of the angular position.
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Figure 8a shows the magnitude of the tether force for the two cases. As it scales with the relative wind speed squared, also310

the tether force has an almost constant trend (the fluctuations are small compared to the mean). To compare the two OCPs and

draw some conclusions, the power output, shown in Figure 8b, is to be analyzed. The mean thrust power output for the two

OCPs is slightly higher than Pt,L. This is due to a non linear effect induced by the combination of gravity and mean elevation

angle different from zero as compared to the idealized case. Indeed, for negative mean elevation, the combination leads to an

increase of mean thrust power, while the opposite occurs in case of positive mean elevation. As the effects on power is almost315

negligible and it does not primarily impact the main outcomes of this paper, a detailed explanation of this phenomenon is here

avoided, but the reader can find more details in Pasquinelli (2021). The theoretical thrust power, given in Eq. 27, is derived

neglecting gravity. However, it approximates well the power output obtained through the OPCOCP, which includes gravity.

As the two analyzed OCPs are almost equivalent, the optimal trajectories are characterized by the perpendicularity of the

AWES span with respect to the wind (ψ = 0) and a constant AWES velocity. In order to keep the AWES velocity constant over320

the loop, the on-board wind turbines balance the action of the gravitational force. In the descendent leg, the on-board wind

turbines harvest the gravitational potential energy and in the ascendant leg, that power is given back to the system.

Following these considerations, the power trend, as shown in Figure 8b, can then be approximated as

Pt(α)≈ Pt,L+mgFg ·v ≈ Pt,L−mgvwGt cosα. (37)
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Figure 8. (a) Tether force T and (b) optimal thrust power production and consumption Pt as a function of the angular position.

The on-board wind turbines thrust can be approximated with Dt ≈ (γ̂+Aγ,1 cos(α−θγ,1))D, where D is constant because325

the AWES velocity is found to be constant and from Fig. 7a it is found that θγ,1 ≈ 180◦. As the thrust power can be written as

the product of Dt and the relative wind speed vr (Eq. 12), the amplitude of the first Fourier coefficient of γ, considering Eq.

37, can be approximated by

Aγ,1 ≈
mgFg ·v

−cosαD ·vr
≈ mg

1
2ρACDv

2
wG

2
t

=GrG. (38)

Figure 9a shows the comparison of Aγ,1 found numerically by running the OCP (with the settings of OCP B) for differ-330

ent combination of M (M ∈ [0.025 0.15]), G (G ∈ [10 30]) and Fr (Fr ∈ [0.1 0.2]) and the analytical approximation given
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in Eq. 38. Figure 9b shows the first Fourier coefficient of elevation β and azimuth ϕ as a function of the non-dimensional

parameter Mt, as they represent the width and height of the trajectory. The analytical expression given in Eq. 36 is still a good

approximation of the optimal trajectory shape.
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Figure 9. (a) Amplitude of the first Fourier coefficient of γ (x) found by solving multiple OCPs and analytical approximation (-) as a function

of GrG and (b) first Fourier coefficient of elevation β and azimuth ϕ (x) found by solving multiple OCPs and analytical expression (-) as a

function of the modified non-dimensional mass parameter Mt.

5.3 Optimizing for the Mean Shaft Power considering Gravity335

In this section, the on-board wind turbine induction is included in the power evaluation and the mean shaft power P̂s is

considered as objective function. To present the results, two different OCPs are introduced (Table 3). The mean shaft power for

OCP A and B is almost identical, highlighting that one harmonic to model the productive drag and two for the roll are enough.

The power for the analytical case is found by maximizing Eq. 28 with respect to γ. The figures in this section refer to OCP B.

Table 3. Settings of the two optimal control problems maximizing the mean shaft power considering gravity.

OCP Nx Nγ Nψ size ovX size h P̂s (kW) T (s)

A 10 5 5 65 42 248.6 11.8

B 10 1 2 51 42 248.5 11.8

L analytical model 272.5 12.6

Figure 10a shows the trajectory in the β−ϕ plane. The trajectory deviates from a circular shape, especially along the β axis,340

and has a mean elevation angle of β̂B =−5.5◦, higher than for the case without induction. Figure 10b shows the roll angle

as a function of the angular position in the loop. Even in this case with induction, the fluctuations are relatively small. When

the AWES increases the turning radius (approximately between −90◦ < α < 0◦ and 90◦ < α <−180◦ (see Fig. 10a), the roll

decreases.
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Figure 10. (a) Optimal trajectory (−) and a circle with radius Φ̃ (-.) and (b) optimal ψ (blue line) and its mean (red line) as a function of the

angular position.

Figure 11a shows γ as a function of the angular position. The mean value is smaller compared to the value maximizing Eq.345

28. By comparing the trends with Figure 7a, it is clear that the fluctuations of γ are lower than in the case without induction.

The on-board wind turbine induction has a similar trend to γ, as they are linked through the expression in Eq. 28. When γ takes

negative values -in the ascendant leg- the on-board wind turbines are operated as propellers and the induction is negative. In

the descendent leg, γ takes values larger than the mean and so does the induction. Higher values of induction result in a lower

ratio between shaft power, which is the power the optimizer maximizes, and thrust power, which is the power directly linked350

to the dynamics. Therefore, high values of γ are not beneficial for the shaft power production.

In Figure 11b, the AWES velocity is shown, highlighting that it fluctuates over the loop. When maximizing the mean thrust

power (Sect. 5.2), the optimal AWES velocity over the loop was found to be constant. Here, it is optimal to convert part of the

potential energy into electrical and part into kinetic energy, letting the velocity fluctuate over the loop.
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Figure 11. (a) Optimal γ and (b) norm module of the optimal AWES velocity v as a function of the angular position.

To conclude the analysis of the example, Figure 12a shows the shaft and the thrust power. As anticipated, when γ takes355

higher values than the mean, the induction grows and the ratio between shaft and thrust power decreases consequently.
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In Figure 3 the dependence of the analytical expression of the shaft power on CD A
At

is shown. In Figure 12b, the dependence

of the optimal mean shaft power is analyzed as a function of the same non-dimensional coefficient for three different Froude

numbers (i.e. three wind speeds). In the current example, Fr = 0.1 corresponds to vw = 5.4 m s−1, Fr = 0.15 corresponds

to vw = 8.1 m s−1 and Fr = 0.2 corresponds to vw = 10.8 m s−1. For increasing Froude number, the solution gets closer to360

the analytical formulation because the power fluctuations gradually lose impact on the mean power production. Indeed, the

aerodynamic forces become dominant with respect to the gravitational force.
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Figure 12. (a) Optimal shaft power production and consumption Ps and thrust power Pt as a function of the angular position and (b) optimal

shaft power production normalized with the analytical expression of thrust power as a function of CD A
At

.

In Sect. 5.2, it was found that the amplitude of the first Fourier coefficient of γ for CD A
At

= 0 (i.e., optimizing for the thrust

power) can be approximated byAγ,1 ≈GrG. In Figure 13a, the trends of Aγ,1

GrG
, being γ modeled with a single harmonic, for the

three investigated Froude numbers, are shown as a function of CD A
At

. For CD A
At

→ 0, trends are close to 1. For increasing Fr,365

the curves collapse to a unique curve. In particular, at CD A
At

= 0.23, which is the value for the example, the ratio Aγ,1

GrG
→ 0.54

for increasing Fr. For increasing values of CD A
At

, the ratio Aγ,1

GrG
tends to zero, highlighting the fact that a less fluctuating value

of γ over the loop is beneficial. The plot shows also the value of γ̂ as a function of CD A
At

, highlighting that for increasing Fr

the trends collapse to the value maximizing Eq. 28, indicated as γL.

Finally, Figure 13b shows the ratio of the first Fourier coefficient of the elevation angle β and the azimuth angle ϕ with the370

opening angle Φ̃ evaluated with Eq. 36. For CD A
At

→ 0, values are close to 1, as noted in Figure 9b. As CD A
At

increases, the

values ofAβ,1 decrease more thanAϕ,1, showing that optimal trajectory does not have any more a circular shape and the height

decreases more than the width. This effect is visible also in the example, in Figure 10a. At low Froude numbers (i.e. low wind

speeds) this effect is more evident.

5.4 Optimizing for the Mean Electrical Power considering Gravity375

In this section, the electrical efficiency is included into the optimal control problem and the mean electrical power is considered

as objective function. Two OCPs, whose characteristics are given in Table 4, are introduced to present results. The power for
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Figure 13. (a) Optimal values of γ̂ andAγ,1, normalized withGrG, and (b) optimal values ofAβ,1 andAϕ,1, normalized with the analytical

expression of the opening angle Φ̃, as a function of CD A
At

for different Froude numbers.

OCP A and B is almost identical, highlighting that one harmonic to model the productive drag and two for the roll are enough.

The power for the analytical case is found by maximizing Eq. 29 with respect to γ.

Table 4. Settings of the two optimal control problems maximizing the mean electrical power considering gravity.

OCP Nx Nγ Nψ size ovX size h P̂ (kW) T (s)

A 10 5 5 65 42 196.5 11.5

B 10 1 2 51 42 194.2 11.4

L analytical model 218.0 12.6

Figure 14a shows the trajectory in the β−ϕ plane. The trajectories deviate from the circular trajectory with opening angle380

Φ̃ (Eq. 36), especially along the β axis, and have a mean elevation angle of β̂A =−5.1◦ and β̂B =−4.9◦. Figure 14b shows

the roll angle as a function of the angular position in the loop. As in the case maximizing mean shaft power, the fluctuations

are relatively small.
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Figure 14. (a) Optimal trajectory for OCP A (-), B (- -) and a circle with radius Φ̃ (-.) and (b) optimal ψ as a function of the angular position.
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Figure 15a shows γ as a function of the angular position. In OCP A, the time evolution of γ is modelled with 5 harmonics.

In the ascendant leg, γ takes null values meaning that the power is neither spent neither consumed. Indeed, spending power385

drastically reduce the overall power production because of the conversion efficiency from electrical to thrust power. This is

also highlighted by Tucker (2020). In OCP B, the time evolution of γ is modelled with just one harmonic. The trend is however

similar to OCP A, with the minimum value being slightly negative. This means that Aγ,1 is similar to γ̂.

Figure 15b shows the norm module of the AWES velocity over the loop, showing that the trend is similar for the two OCPs

and, as noted in Sect. 5.3, it is optimal to convert part of the potential energy into electrical and part into kinetic energy.
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Figure 15. (a) Optimal γ and (b) norm module of the optimal AWES velocity v as a function of the angular position.
390

The electrical power as a function of the angular position is shown in Figure 16a. As expected when analyzing the trend

of γ, the electrical power is null in the ascendant leg and larger than the mean in the descending part. In OCP B, the mean

power is slightly lower than in OCP A but the power fluctuations are lower, which could be beneficial from a grid and power

smoothing perspective. Due to the electrical efficiency, the wind turbines are not used as propellers anymore. The results is an

even more squashed trajectory (Figure 14a) with respect to the previous Sect. 5.3 (Figure 10a) to partially limit the potential395

energy exchange into kinetic and so the kiteAWES speed fluctuation.

One could try to investigate how the optimal values evolve for an increasing wind speed. Figure 16b shows the mean value

of γ and its first Fourier coefficient Aγ,1 as a function of GrG (see Eq. 35 for definition) for OCP B. As noted when analyzing

Figure 15a, at vw = 6 m s−1 Aγ,1 is slightly larger than γ̂. As wind speed increases up to approximately 8.5 m s−1, Aγ,1

keeps being similar to γ̂, meaning that the minimum value of γ is close to zero and so is power (Pmin ≈ 0). If the wind speed400

increases again, Aγ,1 gets lower than γ̂, meaning that power is always generated over the loop (Pmin > 0). The main effect of

the electrical efficiency on the OCP is to prevent the on-board wind turbines to be operated as propellers. Therefore, when the

value of Aγ,1 which maximizes the shaft power Ps is larger than γ̂, results are expected to be modified with respect to Sect.

5.3. Instead, when Aγ,1 is lower than γ̂ trends are expected to be equal to the analyses in Sect. 5.3. Indeed, when analyzing

Figure 16b, it is found that Aγ,1

GrG
→ 0.54 for high Fr. This means that for low GrG, the first Fourier coefficient of γ can be405

approximated with Aγ,1 ≈ 0.54GrG, as shown in Figure 16b.

In Figure 17a, the mean power normalized with the power evaluated with Eq. 29 is shown as a function of GrG for a case

with ηel = 1, which is equivalent to the case in Sect. 5.3, and for a case with ηel = 0.8, as in this section. The two curves for
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Figure 16. (a) Optimal electrical power production as a function of the angular position and (b) optimal values of γ̂ and Aγ,1 as a function

of GrG.

wind speed lower than 8.5 m s−1 diverges. A low electrical efficiency ηel not only decreases the power output as in Eq. 29, but

also decreases the efficiency with respect to the analytical approximation due to its effect on the dynamics.410

To conclude, Figure 17b shows the evolution of the first Fourier coefficient of the elevation angle Aβ,1 and of the azimuth

Aϕ,1 as a function of GrG. For high wind speed (i.e. low GrG), their value is similar to the approximation given in Eq. 36. As

GrG increases, for ηel = 1,Aϕ,1 stays almost constant whileAβ,1 decreases. SmallerAβ,1 means smaller vertical height, which

results in lower potential energy converted into electrical and kinetic energy over the loop. For ηel = 0.8 after vw = 8.5 m s−1,

both Fourier coefficients decrease rapidly meaning that smaller loops are performed. Smaller loops are therefore beneficial at415

low wind speed as they decrease the energy fluctuations.
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Figure 17. (a) Normalized electrical power for a case with ηel = 0.8 (-) and ηel = 1 (- -) and (b) optimal values ofAβ,1 andAϕ,1 normalized

with the analytical expression of the opening angle Φ̃ for a case with ηel = 0.8 (-) and ηel = 1 (- -) as a function of GrG.

6 Optimal Control Problem considering Gravity, Wind Shear and Elevation Constraint

In this section, the wind shear is included in the problem. The reference altitude is taken h0 = 100 m, the wind shear exponent

αs = 0.2 and the reference wind speed vw,0 = 6 m s−1. To make the problem more realistic, a constraint on the minimum
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Figure 18. (a) Optimal trajectory for case A (-), B (- -) and a circle with radius Φ (-.) and mean elevation angle arctan
√
αs and (b) optimal

ψ as a function of the angular position.

elevation angle of βm = 10◦ (which is equivalent to a constraint on the minimum flight altitude) is included. The value of420

βs needed to compute e3 and then the spanwise unit vector s (Eq. 5) is taken as the mean elevation angle βs = β̂. With this

definition, the case of no roll (ψ = 0) is obtained when the wing span is in the plane perpendicular to the mean elevation angle,

as in Trevisi et al. (2021).

Two OCPs are solved and they are summarized in Table 5. OCP A features 5 harmonics to model the control inputs, while

OCP B has one harmonic to model the on-board wind turbine thrust and two for the roll, as in the previous sections. The two425

optimizations have similar mean electric power outputs, meaning that they are almost equivalent.

Table 5. Settings of the two optimal control problems maximizing the mean power considering gravity and wind shear.

Case Nx Nγ Nψ size ovX size h P̂ (kW) T (s)

A 10 5 5 65 42 115.3 11.5

B 10 1 2 51 42 113.3 11.4

Figure 18a shows the trajectory for OCP A and B and compare it with a circle of radius Φ̃ centered at an elevation of

β̂ = arctan
√
αs, as this formulation identifies the elevation of the center of the wind power window (Argatov et al. (2011)).

As for the cases analyzed in Sect. 5.3 and 5.4, the trajectory is squashed along the vertical direction. The constraint on the

minimum elevation angle is not used, as the trajectory of both cases is always strictly higher than βm = 10◦. The roll angle ψ430

is shown in Figure 18b. In LT-GliDe (Trevisi et al. (2021)) the flight stability of AWES is studied by linearizing the equations

of motion with respect to a fictitious steady state condition, where the AWES moves in a circular trajectory with a constant

velocity. This steady state is characterized by the kiteAWES span being perpendicular to the mean elevation angle direction.

In this section, this condition is identified by ψ = 0. The roll fluctuations, shown in Figure 18b, are limited in amplitude and

might be considered within the linear bounds of the linearization validity of LT-GliDe. More analyses to prove this will be435

carried out in future works.
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Figure 19a shows the evolution of the on-board wind turbines thrust as a function of the angular position for the two cases.

The trends are similar to the analyses in Sect. 5.4. It is optimal to use the on-board wind turbines only to generate power

and not as propellers. Even if the trends of γ for OCP A and B are quite different, the overall power production is similar,

meaning that power production is not sensitive to harmonics of γ higher than one. Figure 19b shows the wind speed that the440

AWES encounters over the loop due to the wind shear. Clearly, at the top of the loop (α= 90◦), the wind speed is the highest,

sweeping approximately 1.5 m s−1 over the trajectory. In this section, the mean wind speed over the loop is used to evaluate

the Froude number Fr (Eq. 34) and consequently the gravity ratio Gr (Eq. 35). These numbers will be used later in this section

to generalize results.
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Figure 19. (a) Optimal γ and (b) wind velocity as a function of the angular position.

Figure 20a shows the AWES velocity as a function of the angular position. As discussed in the previous sections, in the445

descending leg the AWES convert the potential energy into electrical, producing power, and kinetic energy, accelerating. In

the climbing leg instead electrical power is not spent and kinetic energy is transformed into potential. Figure20b shows the

power production as a function of the angular position. When looking at power and tether force (not shown here as it follows

the AWES velocity trend squared) to characterize the operations of a real system, the maximum power and the maximum and

minimum tether force would be constrained not to exceed some given values. To properly include these constraints, additional450

control inputs, useful to model the de-powering of the AWES (e.g. the lift coefficient), shall be considered in the analysis.
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Figure 20. (a) Norm of the optimal AWES velocity v and (b) optimal power production P as function of the angular position.
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As carried out in the previous section, trends are studied as a function of the Froude number for the optimal control problem

B. Figure 21a shows the dependence of γ̂ andAγ,1 as a function ofGrG. γ̂ decreases whenGrG increases (i.e., the wind speed

decreases). At low wind speed, γ̂ takes low values so that the AWES speed over the loop is higher, which is beneficial to stay

airborne. Aγ,1 for low GrG has a linear trend, as noted in Sect. 5.4. When Aγ,1 is equal to γ̂, the minimum power production455

over the loop is null. For lower wind speeds (i.e., higherGrG), it is not optimal anymore to increaseAγ,1 because the on-board

wind turbines would be used as propellers with a high penalty on the mean power production. To conclude, Figure 21b shows

the ratio of the first Fourier coefficient of β and ϕ with respect to the analytical expression of the opening angle Φ̃ for a case

maximizing electrical power (ηel = 0.8) and shaft power (ηel = 1). After the cusp in Figure 21a, the two trends diverge and for

ηel = 0.8 smaller loops are optimal so that the exchange of potential energy over the loop is reduced.460
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Figure 21. (a) Optimal values of γ̂ and Aγ,1 and (b) optimal values of Aβ,1 and Aϕ,1 normalized with the analytical expression of the

opening angle Φ̃ for a case with ηel = 0.8 (-) and ηel = 1 (- -) as a function of GrG.

7 Conclusions and Discussion

In this work, a novel methodology to study optimal trajectories for Fly-Gen AWES is introduced. The chosen low-fidelity

dynamic model is characterized by two degrees of freedom (the AWES is modelled as a point mass with constant tether

length) and two control inputs. The degrees of freedom are the elevation and the azimuth angle. The control inputs are the

roll angle, defined as the rotation around the relative velocity direction, and the on-board wind turbines thrust coefficient.465

An Optimal Control Problem is formulated in the frequency domain through a Harmonic Balance method. Working with the

Fourier coefficients of the time series, instead of the time series themselves, allows to potentially reduce the problem size, to

implicitly impose periodicity and to gain an intuitive understanding of the results by analyzing the harmonic contributions.

Moreover, the analytical gradient of the objective function and the constraints with respect to the optimization variables can be

provided to the solver, allowing for a deep and fast convergence of the optimal solutions.470

The MX2 design from Tucker (2020) is taken as a reference AWES to introduce the results. To isolate the effects of each

physical phenomenon, results are presented with an increasing level of complexity from the most idealized case and they are

compared with analytical solutions from literature, whenever possible. A set of idealized case studies with no constraint on
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the minimum elevation angle and uniform wind inflow are initially studied. If gravity is neglected, the solution is steady and it

can be described by analytical expressions. If gravity is considered, three different optimal control problems, characterized by475

three different objective functions, are solved:

i) If the mean thrust power (mechanical power neglecting on-board wind turbines induction) is the objective function, the

optimal trajectories are circular, have a constant AWES velocity and the wing span is perpendicular to the incoming wind. To

obtain this condition, all the potential energy is converted into electrical by the on-board wind turbines. At low wind speed,

on-board wind turbines are then used as propellers in the ascendant part of the loop. The optimal power, the trajectory shape480

and the production strategy can be accurately approximated with analytical expressions;

ii) If the mean shaft power (mechanical power considering on-board wind turbines induction) is the objective function, the

potential energy, in the descending leg, is partially converted into electrical and partially into kinetic energy. This is because

the power conversion penalizes solutions with high on-board wind turbines induction. Therefore, the velocity fluctuates over

the loop and the trajectories are squashed along the vertical direction to decrease the potential energy exchange;485

iii) If the mean power electrical provided to the grid is the objective function (i.e. the electrical efficiency is included), the

on-board wind turbines never operate as propellers. If operated as propellers, power would be converted from mechanical

into electrical while descending and from electrical into mechanical while ascending, leading to large power losses due to the

electrical efficiency. This effect is found only at low wind speed, when propelling the AWES in the climbing leg maximizes the

mean shaft power. Past a given wind speed, using the on-board wind turbines as propellers does not maximize the mean shaft490

power and the influence of the electrical efficiency on the production strategy vanishes.

When the wind shear and a constraint on the minimum elevation angle are included in the optimal control problem for

maximizing the electrical power, trends are similar to what found in the case with uniform inflow. Therefore, the power

production strategy does not heavily depend on the wind shear. For the analyzed example, the constraint on the minimum

elevation angle is not active.495

For all the analyzed cases, additional analytical approximations characterizing the solution are introduced. These approxi-

mations are found by modelling the control inputs with the lowest number of harmonics. The on-board wind turbines thrust

can be modelled with just one harmonic and the roll with two harmonics without loss of generality of the results.

The results of this work align with the discussions in Tucker (2020). Moreover, the results presented in this work have a

strong mathematical foundation, as the trajectory and the control inputs are found by solving optimal control problems. These500

methods are planned to be applied, with appropriate modifications, to other AWE architectures and to other trajectory types.

A comparison between circular and figure of eight trajectories is foreseen. Finally, the physical understanding and methods

proposed here are envisaged to be incorporated into the design, analysis and optimization framework T-Glide (Trevisi et al.

(2022)), with the aim of improving the power estimation and including an optimal control module.
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Nomenclature505

Latin Symbols
A Wing area
Aβ,1 Amplitude of the first Fourier harmonic of β
Aγ,1 Amplitude of the first Fourier harmonic of γ
Aϕ,1 Amplitude of the first Fourier harmonic of ϕ510

At Total on-board wind turbines area
a On-board wind turbines induction
CD Drag coefficient
CL Lift coefficient
Fg Gravitational force515

Fr Froude number
G System glide ratio
Gr Gravity ratio
Gt Modified system glide ratio
g Inequality constraints520

g Gravitational acceleration
h Equality constraints
Lt Tether length
M Non dimensional mass parameter
Mt Modified non dimensional mass parameter525

m AWES mass
Nγ Order of the Fourier series of the control input γ
Nψ Order of the Fourier series of the control input ψ
Nx Order of the Fourier series of the state variables
P Electrical power530

Ps Shaft power
Pt Thrust power
R Additional equality constraints in the frequency domain
T Norm of the tether force
v AWES velocity535

v Norm of the AWES velocity
vr Relative wind speed
vw Norm of the wind velocity
Greek Symbols
α Angular position in the loop540

β Elevation angle
ηel Electrical conversion efficiency
γ On-board wind turbines factor
ω Revolution frequency
Φ Opening angle of the trajectory545

ϕ Azimuth angle
ψ Roll angle
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ρ Air density
T Revolution period
X Optimization variables550

Symbols
·̂ Mean value
·L Quantity evaluated with the Steady State (Loyd) model

Appendix A: Figures of Comparison between Frequency-Domain Formulation and Time Integration
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Figure A1. (a) Azimuth and elevation of the trajectory found with the harmonic balance method and the time integration scheme for a

circular shaped trajectory and (b) time series of the control inputs provided to the harmonic balance method and the time integration scheme

for a circular shaped trajectory.
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Figure A2. (a) Azimuth and elevation of the trajectory found with the harmonic balance method and the time integration scheme for a figure

of eight shaped trajectory and (b) time series of the control inputs provided to the harmonic balance method and the time integration scheme

for a figure of eight shaped trajectory.
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