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We would like to thank the two reviewers for undertaking the job of reviewing our work. The suggestions
are much appreciated and have contributed to the value as well as the clarity of the paper. Below you find
copies of the reviewers comments and our answers (blue color), while an additional document is provided
that highlights all modifications of the paper with respect to the initial submitted version.

Reviewer 1

This paper discusses the use of an Algebraic Reynolds Stress Model for the simulation of wind turbine wakes.
The paper validates the model for some simpler test cases before considering the wake and multiple wake
cases. The paper is well written and technically correct. The turbulence model being considered is actually
fairly simple, but every application goes through this sort of evolution to more complex turbulence models,
and it is useful for the applications to know what the turbulence model cost and accuracy trade-offs are for
their particular application.

Specific comments:

1. Line 86: This a somewhat odd description of k-omega vs k-epslon. The SST k-omega model is a
fixed-up version that is a blend of k-epsilon and k-omega and that gets most of the advantages of each.

We agree and have changed the sentence to ”This paper focuses on the k–ε model, because it is
traditionally used for atmospheric flows (e.g., Crespo et al., 1985; Richards and Hoxey, 1993; Sørensen,
1995), but the widely used k–ω model could as well have been used.”

2. Line 119: “In the freestream of a neutral ASL, fP = 1,”: It looks like it = 2*f0 , not 1.

It is actually equal to 1. Proof: In the freestream, we have σ/σ̃ = 1 by definition. Inserting this into
Eq. (7):

fP =
2f0

1 +
√

1 + 4f0(f0 − 1)(σ/σ̃)2
(1)

=
2f0

1 +
√

1 + 4f0(f0 − 1)
(2)

=
2f0

1 +
√

(2f0 − 1)2
(3)

= 1 (4)

3. Table 1: The Ce2 value is the “old fashioned” and too high value. The Ce1 is far too small (should be
close to 1.5 to get lengthscales right), and this is probably why Cµ is far too small. When this model
fails later is it because of the linear eddy viscosity assumption, or because of the poor model constants?
Table 2 has much better (more modern) model constants.

For atmospheric applications there is indeed some controversy about the choice of either the ”far too
small” Cµ = 0.03 (Table 1) or the more accepted value of the turbulence community Cµ = 0.09 (Table
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2), see discussions by Bottema (1997) and Richards and Norris (2011), which were also cited just before
Table 1. The k-ε-fP model was calibrated by van der Laan (2014) with the model constants from Table
1, which is why these were also used in the current paper. In Fig. 14 and 15, we also simulated the
single wake case using the standard k-ε model with the ”modern” model constants from Table 2, but it
only gave a marginal improvement over the standard k-ε model with the model constants from Table
1. Also, no matter the choice of model constants the linear EVMs will never be able to fully predict
anisotropy or secondary motions.

4. Line 160: “ensures good model predictions in nonequilibrium conditions”: Equilibrium means different
things to different turbulence modelers. All ARSM are assuming a form of equilibrium. They are
assuming that the turbulence anisotropy instantly responds to the mean flow (is in equilibrium with
the mean flow). Non-equilibrium is captured by a full RST model (solving a transport model for
the Reynolds stress anisotropy with a time derivative and an advection term). An example of non-
equilibrium turbulence (for many modelers) is a stagnation point or boundary layer separation point
(on an airfoil). Where the strain is zero, and the turbulence anisotropy is non-zero (because it is
advected or diffused there).

We have clarified the meaning of ”non-equilibrium” in Line 160 by adding ”for P/ε > 1”. Also in the
introduction we have now added ”non-equilibrium conditions (where TKE production does not balance
dissipation of TKE)”.

5. Line 200: “was later abounded for” change to abandoned

Yes, thanks for catching this typo.

6. Section 2.4 (or a new section) maybe should discuss the boundary conditions. The k-epsilon system
presented doesn’t work properly near a solid surface. Also how are k and epsilon specified at inlets?
K can never be zero - or the model fails.

References to Sørensen et al. (2007); Sørensen (1995) have been added to Section 2.4, which can be
consulted for details on the numerical implementation/formulation of the different types of boundary
conditions in EllipSys3D. Indeed the standard k-ε model fails, when integrating all the way to the wall,
which is why we use the aerodynamic rough wall (Sørensen et al., 2007). The inlet BC is only used for
the wake simulations, where k and ε are set using the log-law profiles from Eq. (22), see Section 4.1.

7. Section 3.1: This test case reveals very little. The constants in the models were explicitly chosen to fit
this test case.

There is a distinction between ”validation” (the process of assessing a model’s accuracy) and ”verifi-
cation” (the process of ensuring the correct implementation of the model), see Réthoré et al. (2014).
Both reviewers have used ”validation” for describing Section 3, but it is primarily intended as a ver-
ification section, hence the section name ”verification cases”. Indeed in the context of validation the
homogeneous shear flow case reveals little, however in the context of verification it is a valuable case
to confirm the correct implementation of the EARSM. This distinction has now been clarified at the
beginning of Section 3.

8. Table 3 can be deceptive. The goal of these models is to predict the mean flow well, not the anisotropy.
Only the accuracy of the divergence of the anisotropy really matters. LES models, function similarly.
They predict the unresolved stresses terribly, but the resolved flow reasonably (because their divergence
is roughly correct). Figure 4 confirms this understanding. Only a13 really matters and the most recent
constants have been tuned to get that stress correct at the expense of the stresses that don’t matter.

Indeed we also realize during this study that if the goal is to predict the correct Ui field, the shear
stress and its divergence are the most important components - although this might be well known in
the turbulence community, we believe that it is less known in the wind energy community and have
therefore quantified it further in a follow-up brief communication, which is also currently in discussion
(https://doi.org/10.5194/wes-2022-56). If a secondary goal of the model is to also be able to
predict anisotropy, second order statistics (for example TI) and secondary motions, then it is also
important to be able to predict the other components of aij . If a more general diffusion model is used
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(not used in the current study), e.g., the Daly-Harlow model, then the vertical normal component, a33,
is also important, because it enters directly in the diffusion terms of the k and ε equations, see Wallin
and Johansson (2000). We believe that Table 3 is still useful for verification purposes, see answer to 7.

General comments

The Gaussian shape of the axisymmetric turbulent wake can be obtained by using similarity theory and
assuming an eddy viscosity that is constant across the wake (but varies in the streamwise direction). This
knowledge can provide a strong hint as to why a model works in a wake and why it doesn’t (does it produce
near-constant eddy viscosity). The ARSM results are quite bad for the wake velocity given that a Prandtl
mixing length model (eddy-viscosity = constant * wake width * velocity deficit) works better.

There is an old axisymmetric vs planar jet modeling problem (Durbin text book probably has it). Few
models can predict both cases well. Is it possible you have an ARSM tuned for planar shear flows that now
struggles in the axisymmetric wakes you actually want to model.

The derivation of the self-similar axisymmetric turbulent wake assumes (i) x/D ≫ 1 (so that the geometry
of the object is ”forgotten” and the thin-shear layer equation can be used) (ii) that no wall is present (so
that inflow is uniform) and (iii) that the eddy viscosity is constant in the wake. While the self-similar model
is very elegant, the assumptions stated above limit its range of applicability, which motivates the use of the
less elegant, but more general CFD methods.

It is an interesting analogy and whether an equivalent problem exist with axisymmetric vs. plane wake
is unbenownst to us; the authors have not simulated jet flows with the EARSM, but other axisymmetric
problems has been investigated with success, e.g., the rotating pipe flow (Wallin and Johansson, 2000) and
the decaying vortex Wallin (2000).
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Reviewer 2

General comments

This paper presents a thorough assessment of a non-linear eddy viscosity model for RANS wind farm sim-
ulations. The scope is well-defined and very relevant in the context of CFD models for wind farm flows
since there are significant flaws in traditional two-equation turbulence closures with linear eddy viscosity
to model wakes. The literature is fairly reviewed and adequate credit is given to previous research work
done on this topic. The model’s equations are described with a great level of detail and seem accurate. A
possible source of confusion for the reader may be the terminology used to describe the 2D and 3D EARSM
which seems to overlap with the 1D and 3D flow simulations. It should be clarified in Section 2 that both
2D and 3D turbulent closures can be applied to three-dimensional turbulence. The validation through the
three idealized flow cases is quite interesting and the reviewer appreciated the effort devoted to this section,
which is useful to strengthen the arguments of the paper. The results are discussed thoroughly and with
commendable intellectual honesty even in the cases where there is not a clear improvement provided by the
new model. The paper shall be accepted with minor revisions according to the reviewer, as indicated in the
main and specific comments provided below.

We acknowledge that the terminology can be confusing, but chose to use it to be consistent with previous
litterature (Hellsten and Wallin, 2009; Lazeroms et al., 2013; Wallin and Johansson, 2000; Želi et al., 2019).
In Section 2.3 (just before presenting the 2D and 3D models), we already tried to clear up this possible
confusion: ”It is important to stress that the 2D model is fully general and invariant and can be used for
simulation of 3D mean flows as noted by Hellsten and Wallin (2009); this has for example also been commonly
done with the EARSM of Gatski and Speziale (1993)”.

Main comments

• Explicitly state the additional computational time compared to the other models, even just for the
single wake case.

Adopted. The computational overhead of the EARSM was found to be negligible compared to the
k-ε/k-ε-fP models and EARSM was even found to converge faster for some cases. For the single wake
case the timings of all the simulations (except the LES) shown in Fig. 14 were for example within
±5% of each other; this has been added to the conclusion. However, it should be said that each model
was only run once, which could lead to some error of the estimate, since the code was run on a HPC,
where timings sometimes vary for the exactly same simulation. Also the scaling of the model has not
been investigated. The focus of the current paper has more been on ”proof-of-concept” rather than
numerical efficiency.

• Provide the boundary conditions used for the wind turbine row simulations in Section 5. This is a
tricky setup since the boundaries of the domain are very close to the rotors and no symmetry seems
to apply at the upper boundary due to the staggered layout.

Adopted. We realize that the setup for the aligned row case was not described sufficiently and that
Fig. 20 might confuse the reader: We did not simulate the full staggered wind farm, but only a row of
8 turbines. Also we extended the domain, so that the boundaries were very far from the rotors. The
top BC is an inlet, not a symmetry BC. All of these points have been clarified and we have chosen to
show the domain of our aligned row RANS simulation instead of the TotalControl layout in Fig. 20 to
avoid further confusion.

• Remove Appendix B; although it may be true that the LES may be able to capture better the wake
meandering induced by the larger incoming eddies, the Gaussian convolution method seems weak since
it includes all the lateral turbulent fluctuations as wind direction variations. A well-known rule of
thumb states that just eddies larger than 2 rotor diameters induce wake meandering, so using σ2

v as
the total “meandering energy” seems an overestimation. Furthermore, the wake is moved as a rigid
body according to equation C3, which would imply a perfectly frozen turbulence, which is not realistic
since smaller eddies decay way faster than the full wake length. Considering the limited improvement
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seen in Fig. C3 and the fundamental questions that this appendix may arise, it is suggested to remove
it and mention the possible lack of wake meandering as a cause of the top-hat profiles.

From the above description, it seems the reviewer means ”Appendix C” not ”Appendix B”. Very
useful comments, which has led us to re-write Appendix C completely and to emphasize that it is just
an qualitative analysis to estimate the order of magnitude of the effect of wind direction variations.
With regard to the ”meandering energy”, we expect that using the whole of σ2

y only gives a small
overprediction, because most of the variance comes from the large eddies, which as the reviewer points
out are the ones responsible for meandering. A larger overprediction of the time-averaged meandering
could be expected from the second point made by the reviewer (the assumption of ”frozen turbulence”
or ”rigid wake movement” implied by eq. C3). To counteract this, we have now also included a model
with quadratic filter width development, which indeed improves the results as compared with LES.
In summary, Appendix C shows in a simple manner that the lack of meandering can explain the top-
hat shaped wake profile of a steady RANS model, hence its relevance and why we believe it is worth
keeping.

Specific comments

1. Line 4: please use “alleviate” instead of “aid” when referring to deficiencies.

Adopted.

2. Lines 39-40, “Linear...applications”: please add a reference to support this statement.

Have added a few recent papers as examples of the statement.

3. Line 56: Please consider “is chosen in this work” instead of “preferred” to limit the generality of this
statement.

Adopted.

4. Lines 86-87, “This paper...flows”: please add a reference to support this statement.

Per reviewer 1’s comment, this sentence has been changed and we have at the same time included some
references.

5. Lines 97-100, “The more...Ωij ”: this statement is not clear since also the standard model solved the
transport equations of k and ε.

The EARSM depends on Sij ≡ 1
2
k
ε

(
∂Ui

∂xj
+

∂Uj

∂xi

)
, hence we still need to solve the k and ε transport

equations when using EARSM to obtain k/ε. The sentence has been extended to clarify this.

6. Line 124: Please define “RDT”.

Adopted as ”rapid distortion theory (RDT)”. It refers to the situation where S k
ε ≫ 1.

7. Line 200: was “abandoned” intended instead of “abounded”?

Yes, indeed this typo was also pointed out by reviewer 1.

8. Line 201: the formulation of the production cannot be derived readily, please provide derivation (in
appendix) or reference.

The expression is found frequently in turbulence litterature, e.g., (Girimaji, 1996; Taulbee, 1992; Wallin
and Johansson, 2000). It is valid for all turbulence models and is derived as:

P
ε

=
−u′

iu
′
j
∂Ui

∂xj

ε
(5)

=
−
(
aijk + 2

3kδij
)

ε
k (Sij +Ωij)

ε
(6)

= −aij(Sij +Ωij) (7)

= −aijSij (8)
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The third equality is because Sij and Ωij are traceless. The fourth equality is because aij is symmetric
and Ωij is anti-symmetric (the doubly contraction of such two tensors is zero, see Pope (2000) appendix
B). The sentence has been extended with a reference.

9. Lines 246-249, “In principle...code”: this statement is unclear and unnecessary. Please clarify or
remove.

We believe that the sentence is necessary, because it explains why we use a finite-volume grid (Fig.
4), which might appear strange for readers familiar with homogeneous shear flow - they would most
probably not use finite-volume: There is no space dependence for homogenoeus shear flow (it has zero
space dimensions, hence ”0D”, and only depends on time), so the system of PDEs transform into a set
of ODEs, which could be integrated forward in time without space discretization. For example Taulbee
(1992) follows the latter approach for his homogenous shear flow simulation and a reference has been
added to this.

10. Line 300: The fact that the log law profiles hold for z < 0.3Lz agrees with [Pope S., Turbulent Flows,
2000], which could be cited.

Adopted.

11. Lines 361-376: At the end of this discussion, it is not clear which values are utilized for the simulations.
Please state the value of the tuning constants clearly.

Adopted.

12. Line 504: the Boussinesq’s closure leads to a Reynolds stress tensor that is inherently isotropic only for
the 2 diagonal terms uiui =

2
3k, but not for the off-diagonal (shear stress) terms, which can produce

different 3 eigenvalues. It is recommended to remove “by definition of the Boussinesq’s closure”.

We wrote ”almost completely isotropic” instead of ”isotropic” for this very reason and it can for example
also be seen in Fig. 13 that the Boussinesq hypothesis does not give perfectly isotropic freestream
turbulence (although it is quite close to x3c). Indeed the three eigenvalues of aij in the freestream with
the Boussinesq hypothesis are

√
Cµ, 0 and −

√
Cµ (to be exactly isotropic all eigenvalues of aij should

equal 0). We have reformulated the sentence to emphasize that it is not exactly isotropic.

13. Line 554: Please clarify “behave sensible”.

Adopted.

14. Appendix seems not to be cited in the manuscript.

We presume that the reviewer refers to Appendix A. The appendix is now cited in the beginning of
section 4.

15. Line 591: Does the expression “rolling average” mean that the RANS profiles are “convoluted” using
the pdf of the wake centers in Fig. C2?

Yes, we now use ”convolution” instead and define convolution with an equation. The whole of Appendix
C has been completely re-written, see main comment 3.

Own improvements

• Several sentences (mostly in the introduction and conclusion) have been slightly reformulated for either
clarification or more correct english usage. See the difference document for these changes.

• Added to the discussion regarding Cµ that Cµ = 0.052 is used byWAsP-CFD, which is a code commonly
used by the industry for wind resource estimation (https://www.wasp.dk/waspcfd).

• It was mentioned several places that a row of ten turbines was simulated, while it was really only eight
turbines.
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Abstract. Reynolds-averaged Navier-Stokes (RANS) simulations of wind turbine wakes are usually conducted with two-

equation turbulence models based on the Boussinesq hypothesis, which
:
;
:::::
these are simple and robust,

:
but lack the capability

of predicting various turbulence phenomena. Using the explicit algebraic Reynolds stress model (EARSM) of Wallin and

Johansson (2000) can aid
:::::::
alleviate some of these deficiencies, while still being numerical robust and only slightly more com-

putationally expensive than the traditional two-equation models. The model implementation is verified with the homogeneous5

shear flow, half-channel flow and square duct flow cases, and subsequently full 3D wake simulations are run and analyzed. The

results are compared with reference large eddy simulation (LES) data, which shows that the EARSM especially improves the

prediction of turbulence anisotropy and turbulence intensity
:
, but that it also predicts less Gaussian shaped wake profiles with

the standard settings of the model
::::
wake

::::::
profile

::::::
shapes.

1 Introduction10

As wind farms increase in size and number of turbines, increasingly more attention should be given to the study of wind

turbine wakes
:
, as they can account for a relatively large power production decrease. Simple engineering models, e.g.,

::::
such

::
as

the classic Jensen (1983) model, the "new-classic" Bastankhah and Porté-Agel (2014) model,
:
or the more recent Ishiara model

(Ishihara and Qian, 2018), can be used to model the flow through a wind farm on a regular laptop in a matter of seconds.

However, they all have in common that
::::
share

:::::
some

::::::::
common

::::::::::
weaknesses:

:
they are based on rather strict flow assumptions,15

need empirical tuning parametersand
:::::::::
empirically

:::::
tuned

::::::::::
parameters,

:::
and

::::::
require

:
a superposition model for overlapping wakes.

The
:
A

:
wind turbine wake is complex since it is a a

::::::::
complex three-dimensional , swirling flow

:::::::
swirling

::::
flow,

:
and its devel-

opment is governed by turbulence
:::::::
turbulent

:
mixing, which is strongly influenced by density stratification in the atmospheric

surface layer (ASL
::::::::
boundary

::::
layer

:::::
(ABL) and the interaction between the ASL and the turbulent wake

::::
ABL

:::
and

:::
the

:::::
wake

::::
itself.

To model a more physical
::::::::
physically correct wind farm flow we therefore solve the set of Navier-Stokes equations, which in20

essence is
::
are

:
a reformulation of Newton’s second lawand

:
,
:::::
along

::::
with

:
conservation of mass. The process of discretizing and

solving these equations on computers is known as computational fluid dynamics (CFD). Unfortunately, the Reynolds number

of atmospheric flows is so large
::::::::::::::::::::::::::::::::::::
(106–108 or more, see e.g. Wyngaard, 2010), that it is unfeasible to conduct direct numerical

simulations (DNSs) , even for
:::::::::
simulation

::::::
(DNS)

::
for

:::::
even a single wind turbine wake. Instead large eddy simulation (LES),
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i.e., the simulation of the spatially-filtered Navier-Stokes equations, have
:::
has been performed by several

::::::::
numerous groups25

in the last decade, see review by Breton et al. (2017). Even though the rotor geometry is reduced to an actuator disk (AD)

or an actuator line (AL) model, these simulations require a vast amount of CPU hours on modern high-performance com-

puting (HPC) clusters, again even for a single wind turbine wake. A much faster simulation can be conducted by solving the

Reynolds-averaged Navier-Stokes (RANS) equations instead, but this type of ;
::::::::
however,

::
in

:::::::
contrast

::::
with

:::::
LES,

::::::
which

:::::
needs

::::
only

::
to

:::::::::::
parameterize

:::::::
turbulent

::::::::::
fluctuations

::
at

:::
the

:::::::
smallest

:::::::::::
(unresolved)

::::::
scales,

::::::
RANS simulation relies heavily on the quality30

of the turbulence model because all turbulence scalesare modeled
::
it

::::
must

::::::
model

::::::::::
fluctuations

:::::
across

:::
all

::::::::
simulated

::::::
scales. For

example, the standard two-equation k–ε model of Launder and Spalding (1974) was shown by Réthoré (2009) to perform

poorly for simulation of wind turbine wakes in terms of wake recovery predictionand having ,
::::
and

::::
also

:::::::::
generating unphysical

Reynolds stresses in the vicinity of the turbine ,
:
(i.e., being unrealizable

::::::::::
unrealizable

:::::::::
turbulence). This is not unexpected since

it was originally developed for simple free shear and boundary-layer flows, e.g.,
:
flat plate, pipe, plane jet and cavity flows35

(Launder and Spalding, 1974). The standard k–ε model is considered to be a linear eddy viscosity model (EVM), because the

anisotropy tensor, aij ≡
u′
iu

′
j

k − 2
3δij (

:::::
where

:
u′
iu

′
j is the Reynolds stress tensor, k is the turbulent kinetic energy (TKE) and δij

is the Kronecker delta tensor), is linearly proportional to the normalized strain rate tensor through the Boussinesq hypothesis

(Boussinesq, 1897), see also Eq. (5). A modified model coined the "k–ε–fP " model was developed and calibrated specifically

for atmospheric wind farm flows by van der Laan (2014) and it showed much improvement over the standard k–ε model. It40

is essentially equivalent to the first order model of the non-linear eddy viscosity model (NLEVM) of Apsley and Leschziner

(1998).

Linear EVMs based on the Boussinesq hypothesis, e.g., mixing-length, k–ε, k–ω, etc., are the de-facto standard for turbulence

modeling
:::::
RANS

:
in many fields of research including wind energy applications

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Bleeg et al., 2018; Hornshøj-Møller et al., 2021; Heinz et al., 2021; Dicholkar et al., 2022; Letizia and Iungo, 2022)

. They are simple to implement and numerical robust but have a drawback in terms of physical correctness -
:
–
:
the example of45

wake recovery has already been mentioned earlier
:
, and one can also quickly derive that the Reynolds stresses become unreal-

izable for large normalized strain rates in general, see Fig.
:
2. Full Reynolds stress modeling (RSM), where a transport equation

for each of the six unique Reynolds stress components is solved, was conducted by Launder et al. (1975) and this approach

leads to more physical predictions, because one avoids the use of the quite limiting Boussinesq hypothesis, and hence the

production of turbulence needs no further modelling, which is a major improvement. The drawback of this method is that it is50

more computationally expensive and, perhaps more importantly, less numerically stable. Rodi (1976) deployed the weak equi-

librium approximation (WEA) to the RSM equations, which transforms the set of differential equations into a set of algebraic

equations, while still retaining most of the physical behavior of the RSM. This approach is known as the algebraic Reynolds

stress model (ARSM) and it can be formulated as a tensor equation for the anisotropy tensor, but unfortunately it is a non-linear

implicit equation with multiple solutions, which is also prone to numerical stability issues. Pope (1975) simplified the ARSM55

by using the Cayley-Hamilton theorem and obtained the first explicit algebraic Reynolds stress model (EARSM) for the case of

2D flow, which as the name suggests is an explicit , algebraic relation for
::::::::
algebraic

::::::
relation

::::::::
between the Reynolds stress tensor

(or equivalently the anisotropy tensor) given
:::
and the normalized strain rate and rotation rate tensors. Different generalizations

to 3D were
::::::::::::::
three-dimensional

:::::::::::::
generalizations

:::::
were

:::::::::::
subsequently made by Taulbee (1992), Gatski and Speziale (1993), and

2



Wallin and Johansson (2000), which differ in the constants and more importantly in the way they treat the non-linearity of60

the ARSM. The Wallin and Johansson (2000) EARSM (
:::::::
hereafter

:
WJ-EARSM) is preferred

:::::
chosen

:::
for

::::
this

::::
work, because it

is based on the concept of self-consistency (meaning that the explicit solution of aij satisfies the non-linear ARSM tensor

equation exactly in 2D mean flows and approximately in 3D mean flows) and is only slightly more computationally expensive

compared to a standard k–ε model. The self-consistent solution was independently formulated by Girimaji (1996), Ying and

Canuto (1996) and Johansson and Wallin (1996), and facilitates a consistent solution in non-equilibrium conditions
::::::
(where65

::::
TKE

:::::::::
production

::::
does

:::
not

:::::::
balance

:::::::::
dissipation

::
of

:::::
TKE).

It appears that only Gómez-Elvira et al. (2005) and van der Laan (2014) have attempted using
::
to

:::
use

:
EARSM for RANS

simulations of wind turbine wakes. Many other research areas have however used the WJ-EARSM successfully (e.g., airfoil

flow (Franke et al., 2005), vortex generators (Jirásek, 2005), stirred tanks (Feng et al., 2012), Kaplan turbines (Javadi and

Nilsson, 2017) and high-speed trains (Munoz-Paniagua et al., 2017)), so it seems that there exist an untapped potential
:::::
exists70

in turbulence modeling for wind energy applications. Gómez-Elvira et al. (2005) deployed the Taulbee (1992) model in a

parabolic RANS setup, which is fast to execute but lacks physical features , e.g.,
:::
such

:::
as the upstream induction zone. van der

Laan (2014) tested the Taulbee (1992), Gatski and Speziale (1993) and Apsley and Leschziner (1998) models in the elliptic

RANS solver EllipSys3D (Sørensen, 1995) but found that they were more numerically unstable compared to the standard k–ε

model.75

The EARSM framework of Wallin and Johansson (2000) has been further exploited by including the strong coupling with

density stratification present in the ASL
::::
ABL

:
(Lazeroms et al., 2013) capturing the effect of both stable and convective

atmospheric boundary layers (ABLs )
::::
ABLs

:
(Lazeroms et al., 2016; Želi et al., 2020, 2021). In this paper, we will restrict

the study to neutral ASLs
::
the

::::::
neutral

:::::::::::
atmospheric

::::::
surface

:::::
layer

:::::
(ASL,

:::
i.e.,

:::
the

:::::
lower

::::
part

::
of

:::
the

:::::
ABL)

:
leaving stratified condi-

tions for upcoming studies.80

Section 2 describes the turbulence model formulations. In Section 3, we verify our implementation of the WJ-EARSM using

several canonical flowcases and finally in Sections 4 and 5, it is applied to simulations of wind turbine wakes in the neutral

ASL.

2 Turbulence modeling

The turbulence models utilized in this paper assume incompressible, non-stratified flow, no system rotation (no Coriolis or85

centrifugal contributions), isotropic dissipation of TKE and high Reynolds number flow.

2.1 The standard k–ε model (Launder and Sharma, 1974)

The Boussinesq hypothesis is used to obtain the Reynolds stresses

u′
iu

′
j =−νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
+

2

3
kδij , (1)

3



which are needed to close the momentum equations (the equations for the mean velocity vector, Ui). The eddy viscosity in a90

linear EVM is defined as νt = Cµ
k2

ε and transport equations are used to obtain TKE, k, and dissipation of TKE, ε:

∂k

∂t
+Uj

∂k

∂xj
=−u′

iu
′
j

∂Ui

∂xj︸ ︷︷ ︸
P

−ε+
∂

∂xj

(
νt
σk

∂k

∂xj

)
︸ ︷︷ ︸

D(k)

, (2)

∂ε

∂t
+Uj

∂ε

∂xj
= (Cε1P −Cε2ε)

ε

k
+

∂

∂xj

(
νt
σε

∂ε

∂xj

)
︸ ︷︷ ︸

D(ε)

. (3)

This paper focuses on the k–ε model, because it is usually preferred
::::::::::
traditionally

::::
used

:
for atmospheric flows , while

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Crespo et al., 1985; Richards and Hoxey, 1993; Sørensen, 1995)

:
,
:::
but

:::
the

::::::
widely

::::
used k–ω models are more popular for engineering flows

:::::
model

:::::
could

::
as

::::
well

:::::
have

::::
been

::::
used. They can both95

be categorised as linear EVMs, because they use the Boussinesq hypothesis to obtain the Reynolds stresses. Several empirical

constants are also present for both models
:
,
::::::
though

:::
they

:::
are

::::::
related

::
to

::::
each

:::::
other

:::::::::::::::::::::::
(Sogachev and Kelly, 2012); for the k–ε model

there are Cµ, σk, Cε1, Cε2 and σε (see review by Weaver and Mišković (2021) for the most popular sets of constants used in

the past). We shall use different sets of constants throughout the paper and will remark the choice at each usage of the k–ε

model.100

To simplify the Boussinesq hypothesis, Eq. (1), we can use the anisotropy tensor also mentioned in the introduction:

a = aij ≡
u′
iu

′
j

k
− 2

3
δij . (4)

It is dimensionless, symmetric and traceless, and Eq. (1) can then be re-written as:

aij =−2CµSij (linear EVM), (5)

where S = Sij ≡ 1
2
k
ε

(
∂Ui

∂xj
+

∂Uj

∂xi

)
is the normalized strain rate tensor. The k–ε model is independent of the normalized rota-105

tion rate tensor, Ω=Ωij ≡ 1
2
k
ε

(
∂Ui

∂xj
− ∂Uj

∂xi

)
, hence it will be unable to predict turbulence effects associated with rotation or

curvature, e.g., damping/enhancement of turbulence in rotating homogeneous shear flow (Wallin and Johansson, 2002). The

more advanced EARSMs to be discussed next, also need to solve the k and ε transport equations, because they depend on Sij

and Ωij:
,
:::
and

:::::
hence

:::::::
depend

::
on

:::
the

:::::::::
turbulence

::::
time

::::
scale

::::
k/ε. The key difference between these more advanced models and the

standard k–ε closure is that the Boussinesq hypothesis is replaced by a more general constitutive relation.110

Finally, it can be noted that the time derivative is retained in the transport equations, Eq. (2)-(3), to allow for unsteady RANS

(URANS) simulations, e.g., homogeneous shear flow. URANS is generally only advisable , when there is a clear separation

between the time scale of the turbulence and the mean unsteadiness , see for example Wallin (2000)
::::::::::::::::::
(see e.g. Wallin, 2000), and

should therefore be used with care.
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2.2 The k–ε–fP model115

The k–ε–fP model by van der Laan (2014) is equivalent to the first order model of Apsley and Leschziner (1998), except for

a re-tuning of the model coefficients. To summarize:

aij =−2CµfP︸ ︷︷ ︸
Ceff

µ

Sij (k-ε-fP model). (6)

Compared with the Boussisnesq hypothesis, Eq. (5), we see that the only difference is that the k–ε–fP model uses a variable

or "effective" Ceff
µ , which is flow dependent and thereby makes aij non-linear in the velocity gradient tensor; however, the120

k–ε–fP model is still referred to as a "linear EVM", e.g. van der Laan (2014), because the direction of aij is aligned with Sij

and not any other higher order tensors. The fP function is:

fP =
2f0

1+
√
1+4f0(f0 − 1)(σ/σ̃)2

, σ ≡ k

ε

√(
∂Ui

∂xj

)2

=
√

IIS − IIΩ , f0 = 1+
1

CR − 1
. (7)

In the above equation σ is the "shear parameter", which can re-written using velocity gradient tensor invariants, see Eq. (14),

while σ̃ is the shear parameter of the freestream calibration flow. Instead of using DNS channel flow data for the calibration,125

as was done by Apsley and Leschziner (1998), van der Laan (2014) chose to calibrate with a neutral ASL
::::::::::
(logarithmic

:::::
wind

::::::
profile), which simply gives σ̃ = C

−1/2
µ . Finally, van der Laan (2014) took the Rotta constant as a free parameter and tuned it

to CR = 4.5 using LES data of wake velocity and TI (pressure-strain data was not used) extracted from eight different wind

turbine wake cases.

In the freestream of a neutral ASL, fP = 1, so it reduces to the standard k–ε model, while fP < 1 in regions with rapid strain130

compared to the turbulence time scale (i.e., large normalized velocity gradients), hence attenuating mixing in the wake shear

layers and improving predictions of wind turbine wakes as found by van der Laan (2014). The fP correction reduces mainly

the turbulence length scale (but also the turbulence velocity scale) in the near wake, and can therefore be interpreted as a local

turbulence length scale limiter, as discussed in
::
by van der Laan and Andersen (2018). In fact, the damping introduced through

fP will preserve realizability for rapid shear , e.g
:::::
(large

:::::::::
normalized

:::::::
velocity

:::::::::
gradient),

::
i.e. in the RDT limit a12 >−1, while135

::::
rapid

::::::::
distortion

::::::
theory

::::::
(RDT)

::::
limit

::
it

:::
will

::::::
predict

:::::::::
a13 >−1,

:::::::
whereas

:
the standard k–ε model will become unrealizable

:::::
would

::::::
predict

::::::::
a13 <−1

:::::::::::
(unrealizable

:::::::::
turbulence), see Fig. 2.

Table 1 summarizes the model constants of the k–ε–fP model, where one can notice that Cµ = 0.03 is used instead of the

established value of Cµ = 0.09, e.g., Launder and Spalding (1974). Several measurements of flat terrain, atmospheric flows,

e.g., Panofsky and Dutton (1984), points to a lower Cµ and Bottema (1997) argues that this is due to "inactive" low frequency140

atmospheric turbulence, see also discussion by Richards and Norris (2011).
::
As

::
a

::::::::::
compromise

:::::::::::::::::::::::
Cµ =

√
0.09 · 0.03≈ 0.052

::
is

::::
used

::
in

::::::::::
WAsP-CFD

:::::::::::::::
(Bechmann, 2016)

:
.
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Cε,1 Cε,2 σk σε Cµ κ CR

1.21 1.92 1.00 1.30 0.03 0.4 4.5
Table 1. Model constants for the k–ε–fP model as recommended by Sørensen (1995) and van der Laan (2014). Referred to later as "ABL

coefs".

2.3 Wallin and Johansson (2000) EARSM

The EARS model of Wallin and Johansson (2000) is derived from the ARSM of Rodi (1976) and therefore inherits the con-

stants, c1 and c2, which are the Rotta coefficient and rapid pressure-strain coefficient of the Launder et al. (1975) model,145

respectively. The particular choice c2 = 5/9 reduces the model expressions significantly and will be adopted in this study.

This choice is also supported by the DNSs of Shabbir and Shih (1993). Moreover, we will only consider the incompressible,

high-Re version (without near-wall corrections) due to the high Reynolds number and the use of rough wall function boundary

conditions at the ground in the considered flow cases of this paper. Additionally, we will make comparisons between the 2D

and 3D models. It is important to stress that the 2D model is fully general and invariant and can be used for simulation of 3D150

mean flows as noted by Hellsten and Wallin (2009); this has for example also been commonly done with the EARSM of Gatski

and Speziale (1993). Another important point to mention again is that all EARSMs are based on combinations of Sij and Ωij

(which depend on the turbulence time scale, τ = k/ε) so one still needs to solve either the k–ε model (used in this paper), k–ω

model (used by Wallin and Johansson (2000)) or some other combination for obtaining the turbulence time scale.

2.3.1 2D WJ-EARSM155

Using the complete two-dimensional tensor basis for the anisotropy tensor (Pope, 1975), an exact self-consistent 2D EARSM

was found independently by Johansson and Wallin (1996), Girimaji (1996) and Ying and Canuto (1996). It was more thor-

oughly elaborated and tested by Wallin and Johansson (2000), where derivation details also can be found. Without loss of

generality, and for the reason of numerical implementation, the anisotropy is split into linear and "extra" terms:

aij =−2Ceff
µ Sij + a(ex)

ij , (8)160

where

Ceff
µ =−1

2
β1 , a(ex)

ij = β4 (SikΩkj −ΩikSkj) . (9)

The tensor coefficients are:

β1 =−6

5

N

N2 − 2IIΩ
, (10)

β4 =−6

5

1

N2 − 2IIΩ
, (11)165
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while N is the real and positive root of a cubic polynomial related to the non-linearity of the EARSM:

N =


c′1
3 +

(
P1 +

√
P2

)1/3
+sign

(
P1 −

√
P2

)
|P1 −

√
P2|1/3, P2 ≥ 0

c′1
3 +2

(
P 2
1 −P2

)1/6
+cos

(
1
3

(
P1√

P 2
1 −P2

))
, P2 < 0

(12)

P1 =

(
1

27
c′21 +

9

20
IIS − 2

3
IIΩ

)
c′1 , P2 = P 2

1 −
(
1

9
c′21 +

9

10
IIS +

2

3
IIΩ

)3

, c′1 =
9

4
(c1 − 1). (13)

The model only depends on the first two velocity gradient tensor invariants:

IIS ≡ SijSji, IIΩ ≡ ΩijΩji. (14)170

The solution procedure will be more thoroughly described in Sect. 2.4, but one can just notice that given Sij and Ωij , there

is a closed and explicit solution of aij . Since N , Eq. (12), is an exact solution of the underlying cubic polynomial problem,

then aij is an exact solution of the ARSM, hence it is a self-consistent EARSM, which ensures good model predictions in non-

equilibrium conditions
:::
for

:::::::
P/ε > 1. We suspect that the treatment of the EARSM non-linearity by Taulbee (1992); Gatski and Speziale (1993); Apsley and Leschziner (1998)

::::::::::::
Taulbee (1992)

:
,
::::::::::::::::::::::
Gatski and Speziale (1993)

:::
and

:::::::::::::::::::::::::
Apsley and Leschziner (1998) is one of the main causes for the numerical in-175

stability when these EARSMs/NLEVMs are employed to model wind turbine wakes (van der Laan, 2014).

Cε,1 Cε,2 σk σε κ c1 c2

1.44 1.82 1.00 1.30 0.38 1.8 5
9

Table 2. Model constants for the WJ-EARSM as recommended by Želi et al. (2020). Referred to later as "Zeli coefs".

Cµ is not an input parameter but output as a result of applying the WJ-EARSM, see Eq. (9). However, one still needs it

for the rough wall boundary condition (BC) used in our code and for the diffusion terms in the k and ε transport equations in

our implementation; here we shall use Cµ = 0.087, which is the equilibrium value (the value obtained by fixing P/ε= 1 and

considering the log-layer relations) with the current set of constants in Table 2, see Sect. 4.1. Also note that κ= 0.38 is not an180

input parameter, but is calculated from the other model constants in order to satisfy the log-layer balance, see Eq. (23).

2.3.2 3D WJ-EARSM

The 3D model is derived in an analogous way as the 2D model (Wallin and Johansson, 2000) but with the complete three-

dimensional tensor representation of aij , which gives:

aij =−2Ceff
µ Sij + a(ex)

ij , (15)185

with

Ceff
µ =−1

2
(β1 + IIΩβ6) , a(ex)

ij = β3T3 +β4T4 +β6 (T6 − IIΩSij)+β9T9. (16)

The tensor coefficients and basis tensors are:

7



β1 =−N(2N2−7IIΩ)
Q

β3 =− 12N−1IV
Q

β4 =− 2(N2−2IIΩ)
Q

β6 =− 6N
Q

β9 =
6
Q

T3 =Ω2 − 1
3IIΩI

T4 = SΩ−ΩS

T6 = SΩ2 +Ω2S− 2
3IV I

T9 =ΩSΩ2 −Ω2SΩ

,

where190

Q=
5

6
(N2 − 2IIΩ)(2N

2 − IIΩ), (17)

IV = SijΩjkΩki. (18)

Unfortunately, there does not exist an analytical solution for N in the 3D model; therefore the cubic N solution from 2D,

Eq. (12), is used, hence the 3D model is not exactly self-consistent, but the cubic N solution is however still a quite good

approximation in many cases. The same model constants are also used, see Table 2.195

One can show that the 3D model reduces to the 2D model in 2D coplanar mean flows, where T6 − IIΩS = 0, IV = 0 and

T9 =− 1
2IIΩT4 are valid.

2.4 Implementation details

The flow cases are simulated with EllipSys3D, which is a finite-volume CFD solver developed and described in detail by

Michelsen (1992) and Sørensen (1995). The solver already has implementations of the standard k–ε model and the k–ε–fP200

model (van der Laan, 2014), so the following focuses on the implementation of the WJ-EARSM. As emphasized in the previous

sections, both the 2D and 3D models can be written in the same form, see Eq. 8 and 15 (although with different expressions

for Ceff
µ and a

(ex)
ij ). The splitting of the anisotropy tensor into a linear and an extra part makes the implementation relatively

straightforward in codes that already have a k–ε model implemented as also noted in Appendix A of Wallin and Johansson

(2000); for the momentum equations, simply use νefft = Ceff
µ

k2

ε instead of νt = Cµ
k2

ε and add −∂a(ex)
ij k

∂xj
as a source term:205

−
∂u′

iu
′
j

∂xj
=−

∂
(
aijk+

2
3kδij

)
∂xj

=
∂2Ceff

µ kSij

∂xj︸ ︷︷ ︸
Treat implicit

−
∂a(ex)

ij k

∂xj︸ ︷︷ ︸
Treat explicit

−
∂ 2

3kδij

∂xj︸ ︷︷ ︸
Absorb into pressure

. (19)

For numerical stability, it is recommended to include the first term in the system matrix and the second term in the source

vector (i.e., treat the terms implicit and explicit, respectively). The third term is isotropic and can be absorbed into a modified

pressure.

In the k and ε transport equations, we use the standard νt in the diffusion terms (D(k) and D(ε) in Eq. (2)-(3)), since these are210

calibrated using the standard model. This practice is also used by Apsley and Leschziner (1998), Myllerup (2000) and Menter

et al. (2009). In the original paper of Wallin and Johansson (2000), it was proposed to use the Daly-Harlow diffusion model, or

an eddy-diffusion model with the effective νeff
t , which was later abounded

:::::::::
abandoned for the standard eddy-diffusivity model

8



, see e.g. Menter et al. (2012)
:::::::::::::::::::::::
(see e.g. Menter et al., 2012). The TKE production is calculated consistently as P =−εaikSki

with the full anisotropy tensor;
:::
this

:::::::::
expression

::
is

::
in

:::
fact

:::::
valid

::
for

:::
all

:::::::::
turbulence

::::::
models

:::::::::::::::::::::::::::::::::::::
(see for example Wallin and Johansson, 2000)215

.

A segregated solver (i.e., solving
::
the

:
U -mom’m eq., then V -mom’m eq., then W -mom’m eq., etc.) is used in EllipSys and

the same
::::
shear

:::::::::
production P is used in both turbulence transport equations; an overview of the procedure is sketched in Fig. 1.

:::
The

::::::::
boundary

:::::::::
conditions

:::
for

::::
each

:::::::
variable

::::::
depend

:::
on

:::
the

::::
type

::
of

::::::::
boundary

::::::
(rough

::::
wall,

:::::
inlet,

:::::
outlet,

::::::
cyclic

::
or

:::::::::
symmetric)

::::
and

::
the

:::::::::::::
implementation

:::
of

::::
these

::
in

::::::::::
EllipSys3D

:::
are

::::::::
described

:::
by

::::::::::::::::::::::::::::::::
Sørensen (1995); Sørensen et al. (2007).

:
220

Figure 1. Segregated solver procedure for WJ-EARSM in EllipSys3D. Note, P is the mean pressure, while P is the TKE shear production.

The 1D version of EllipSys3D, EllipSys1D (van der Laan and Sørensen, 2017), is used for the 1D verification cases in

Section 3. Its code structure is very similar to EllipSys3D’s, but it has no W -momentum equation (W = 0), no pressure

correction equation (∂/∂x= ∂/∂y = 0, so continuity is ensured already) and it is written using 1D simplifications (mean

variations only in time and z-direction), which makes it possible to run 1D simulations, or so called "single-column models",

on a regular laptop in a few seconds.225

For both EllipSys1D and EllipSys3D, the procedure of calling the WJ-EARSM is as such:

1. Use most recent solution of momentum and turbulence transport equations to calculate the normalized strain rate and

rotation rate tensors, Sij and Ωij .

2. Calculate tensors and invariants.

9



3. Calculate N .230

4. Calculate coefficients, β1, . . . ,β10.

5. Calculate anisotropy tensor, aij .

6. Calculate TKE shear production, P =−εaikSki.

7. Calculate Ceff
µ and a(ex)

ij .

3 Verification cases235

As is clear from the previous section, the expressions in the WJ-EARSM are considerably longer compared to the ones of the

k–ε and k–ε–fP models. Three canonical flows (homogeneous shear flow, half-channel flow and square duct flow) are therefore

used as verification cases to gain confidence in the numerical implementation
::::::::::
(verification

::
is
:::
the

:::::::
process

::
of

::::::::
ensuring

::::::
correct

:::::::::::::
implementation,

:::::::
whereas

:::::::::
validation

::
is

:::
the

:::::::
process

::
of

:::::::
assesing

::
a
:::::::
model’s

::::::::
accurracy,

::::
see

:::::::::::::::::
(Réthoré et al., 2014)

:
); full 3D wind

turbine wake simulations will first be considered in Sect. 4. The first two cases can be simulated in a 1D setup, which make240

them ideal for initial testing, while the last case needs to be simulated in 3D due to the phenomenon of secondary motions. A

:::
For

:::
the

:::::
latter,

:
a
:
quasi-2D setup - homogeneous in the streamwise direction - would be possible, but a fully 3D setup is chosen

for verification of the 3D implementation. All cases are compared to either analytic expressions or DNS data to verify correct

behavior of the implementation.

Even before running the verification cases, we consider the general class of "simple shear flows" (aka. 1D parallel flows),245

where the normalized strain rate and rotation rate tensors are:

Ssimple =


0 0 S13

0 0 0

S13 0 0

 , Ωsimple =


0 0 S13

0 0 0

−S13 0 0

 . (20)

Prescribing S13 enables us to evaluate the turbulence models analytically and obtain the anisotropy tensor, aij . The a13 com-

ponent is shown in Fig. 2 and from the Cauchy-Schwarz inequality one can show generally that −1≤ a13 ≤ 1; if a turbulence

model violates this, then it predicts "unrealizable" turbulence, meaning unphysical turbulence. For large S13, the k–ε model250

leads to unrealizable turbulence, while both the k–ε–fP model and WJ-EARSM (the 2D and 3D WJ-EARSMs are identical in

1D) are realizable even for large S13. This is very desirable because large normalized velocity gradients are typically encoun-

tered in regions of non-equilibrium turbulence, e.g., in the vicinity of the rotor and in the wake shear layers. Indeed Réthoré

(2009) noted large regions of unrealizable turbulence near the wind turbine, when using the standard k–ε model. Also note

that the k–ε–fP model (using Cµ = 0.03) predicts a similar a13 as the WJ-EARSM solution for large strains, while the main255

difference between the models is found for small strains.
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Figure 2. Analytical off-diagonal anisotropy in simple shear flow.

3.1 Homogeneous shear flow

Homogeneous shear flow (see review by Pope (2000), p.154-157) has a simple setup, but can be challenging to simulate and

is conceptually a strange case. The momentum equations are not solved and instead a constant velocity gradient is artificially

fixed at all times, see Figure 3. This is, indeed, rather unphysical since the velocity gradient should gradually decrease as260

turbulence is created until the velocity gradient eventually becomes zero and turbulence dies out. Nevertheless, homogeneous

shear flow constitutes an interesting test case, because it only involves the solution of the turbulence transport equations and

turbulence closure, hence it is a "pure" test of the turbulence model. Moreover, free shear layers can locally be approximated

with homogeneous shear. Only EllipSys1D is used for this case.
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Figure 3. Mesh and the prescribed velocity profile in EllipSys1D for the homogeneous shear flow case.

In principle, homogeneous shear flow is an unsteady 0D case; the turbulence evolves identically at all positions in space,265

hence there is actually no need for a spatial discretization as shown in Fig. 3 (one could simply integrate the k and ε equations

forward in time, given an initial turbulent state,
:::
as

::::
done

:::
by

:::
for

:::::::
example

:::::::::::::
Taulbee (1992)), but this extra complexity is chosen

for the present case, since the goal is to verify the turbulence model implemented in a finite-volume CFD code. In practice this

means that BCs need to be set at the top and bottom of the domain: a fixed velocity, U , is used as illustrated in Fig. 3, while

symmetry BCs are used for k and ε. The implicit Euler scheme is used for time integration, while the second-order central270

scheme is used for diffusive terms.

The simulation parameters used are:

• Height of domain, Lz = 100 m. Uniformly spacing and 10 finite-volume cells used (if ghost cells are counted in, there

are 12 cells), hence grid spacing is ∆z = 10 m.

• Fixed velocity profile, U(z) = Sz, where S = 0.1 s−1. This gives U(z = 0) = 0 and U(Lz) = 10 m/s.275

• Normalized timestep, ∆t∗ ≡∆tS = 0.1 (in physical time ∆t= 1 s). Ten subiteratons per timestep are used and the total

normalized simulation time is t∗ = 80 (in physical time t= 800 s).

• Initial turbulent state, S k
ε = 3.4 at t∗ = 0. This non-dimensional quantity determines the evolution of the non-dimensional

metrics, i.e., anisotropy components, production-to-dissipation ratio, etc. It is same initial turbulent state as used in the
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homogeneous shear flow simulations by Bardina et al. (1983), Gatski and Speziale (1993), Girimaji (1996) and Wallin280

and Johansson (2002).

• The RANS model equations are here independent of ρ and ν because no momentum equation is solved and the diffusion

terms in the k and ε equations (D(k) and D(ε) in Eq. (2-3)) will be zero.

A nice feature of homogeneous shear flow for verification purposes is that it evolves to an asymptotic state and that an

analytic solution exists for this state, e.g., the asymptotic production-to-dissipation ratio can be derived to be (see for example,285

Gatski and Speziale, 1993):

P
ε
=

1−Cε,2

1−Cε,1
(asymptotic limit t→∞). (21)

In 1D parallel flows, P/ε=−2a13S13 and this gives a second equation for P/ε. By inserting the expression for a13 (the

expression differs depending on the turbulence model), one can isolate and obtain a value for S13 =
1
2
k
εS. This value can then

be used to obtain Sij and Ωij and hence the anistropy tensor. The asymptotic formulas are summarized in Table 3, where290

one can note that the asymptotic WJ-EARSM formulas only depend on Cε1 and Cε2, while the k–ε formulas additionally

depend on Cµ. Figure 4 shows the time evolution of the WJ-EARSM as well as the theoretical asymptotic values for three

common sets of coefficients (Cε1,Cε2). All simulations indeed go to the analytical asymptote, which gives some confidence

in the implementation of the WJ-EARSM. For validation purposes we also include some LES (Bardina et al., 1983) and

experimental (Tavoularis and Corrsin, 1981) data in Fig. 4, which show that the Zeli constants perform better for all quantities295

except a11. The choice of c2 = 5/9 makes a22 = 0 for all simulations.

k–ε WJ-EARSM
P
ε Eq. (21) Eq. (21)

S13
1
2C

−1/2
µ

√
P
ε : :

N
(

12
5

N
P
ε

− 4
)−1/2

S k
ε 2S13 2S13

a13 −2CµS13 β1T
(1)
13

a11 0 β1T
(4)
33

a22 0 0

a33 0 -a11
Table 3. Analytic, asymptotic homogeneous shear flow formulas. In homogeneous shear flow, S13 = S31 =Ω13 =−Ω31, while all other

components are 0. When P
ε

is known, one can use the direct definition of N ≡ c′1+
9
4

P
ε

instead of Eq. (12), see Wallin and Johansson (2000).
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Figure 4. Simulation of homogeneous shear flow with WJ-EARSM (full line) and the model’s analytical asymptotic values (dashed lines)

with different sets of constants. The simulation data is extracted at z/Lz = 0.45, but the evolution is identical at all grid points.

3.2 Half-channel flow

The second reference flow is the fully developed, steady-state half-channel flow, aka. pressure driven boundary layer (PDBL)

flow, and can be solved in 1D using a grid as sketched in Fig.
:
5. The lower BC is a rough wall implemented as in Sørensen et al.

(2007), while the upper BC uses symmetry, hence turbulence now depends on
:::
the z-coordinate contrary to in the homogeneous300

shear flow case. The flow is driven by a constant streamwise pressure gradient force, which is an input parameter for the

14



simulation (if one does not use such a forcing, then the rough wall will extract momentum from the flow and the velocity

eventually becomes zero throughout the domain).

Figure 5. Half-channel EllipSys1D setup. The sketch to the right shows convention of coordinate system used for rough wall simulations.

The input parameters for the simulations are:

• The domain height, Lz = 6000 m.305

• Aerodynamic roughness height, z0 = 0.03 m.

• First cell height, ∆z = 0.10 m.

• 192 cells (+ 2 ghost cells) and the grid is stretched using the hyperbolic tangent function (Thompson et al., 1985).

• The streamwise pressure gradient force per unit mass, Fp = 1.5 · 10−5 m/s2. One can show that the squared friction

velocity then becomes, u2
∗ ≡−u′w′

s = FpLz = 0.09 m/s.310

• The flow is independent of ν because a rough wall BC is used and the flow is fully turbulent, hence ν ≪ νt.

The region in the lower part of the domain is known as the "log-layer", which is characterized by equilibrium turbulence,

i.e., P
ε ≈ 1. As in the homogeneous shear flow case, we can use this ratio to obtain analytical results for shear and anisotropy,

see Table 4.
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k–ε WJ-EARSM
P
ε 1 1

S13
1
2C

−1/2
µ

√
P
ε N

(
12
5

N
P
ε

− 4
)−1/2

a13 −2CµS13 β1T
(1)
13

a11 0 β1T
(4)
33

a22 0 0

a33 0 -a11
Table 4. Analytical values in the log-layer of the half-channel flow.

The flow profiles with the analytical log-layer values are plotted in Fig.
:
6. Both sets of model constants, Table 1 and 2, are315

used for the k–ε model, which explains the different U -profiles. A spike in the k-profiles is seen near the wall, which is a well

known problem, see Blocken et al. (2007), but the value of k(z ≈ 0) is nevertheless close to the equilibrium value keq =
u2
∗

C
1/2
µ

for both models (again reminding that Cµ differs between the two sets of model constants, compare Table 1 and 2). The

kinematic wall shear stress, u′w′(z = 0), is close to −u2
∗ for both models confirming that the pressure gradient force is applied

correctly and the respective analytical log-layer solutions are also approximately obtained for both models at z/Lz < 0.3
::
in320

:::::::::
accordance

::::
with

:::::::::::
Pope (2000). One can notice that a feature of the WJ-EARSM is that the normal streamwise and vertical

anisotropies are non-zero; this means u′u′ > v′v′ = 2
3k > w′w′. This behavior is also seen in the neutral ASL (Panofsky and

Dutton, 1984), which we return to in Sect. 4.
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Figure 6. Half-channel simulation results (full lines) and analytical log-layer solutions (dashed lines).

3.3 Square duct flow

The square duct geometry and boundary conditions are shown in Fig. 7. Similar to the half-channel flow, the flow is driven by325

a streamwise pressure gradient, but the difference is that the duct flow has walls on all four sides. Due to symmetry, we only

simulate the lower left quadrant of the duct. As this paper focuses on high-Re turbulence models, we choose to model the walls

as rough walls instead of smooth walls, which are traditionally used in square duct flow simulations.
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Although, the fully developed square duct flow might appear as a 2D problem, it in fact features a full 3D flow field, due to

the secondary corner flows, also sketched in Fig. 7, which were first observed experimentally by Nikuradse (1930) and later330

with DNS by Gavrilakis (1992). The secondary motions are only on the order of V
U ∼ W

U ∼O(10−2) but still have a notable

effect on the bulk flow as they transport momentum from the center of the duct toward the corners. Perhaps the most interesting

aspect of square duct flow from a turbulence modeling perspective is that linear EVMs are unable to predict the secondary

corner flows, because the secondary motions are caused by the normal anisotropy components, which are zero in linear EVMs

for fully developed flow, see Eq. (5) and discussions by Menter et al. (2009); Emory et al. (2013). However more sophisticated335

turbulence models such as EARSM and uncertainty quantification models (Emory et al., 2013) are able to predict this physical

phenomenon.

Figure 7. Square duct geometry and a cross-section showing the secondary corner flows. Sketch made with inspiration from Wu et al. (2016).

In this paper, we simulate a fully turbulent square duct flow (high-Re) with rough wall BCs, hence the flow is independent

of ν similar to the half-channel flow. Currently, the DNS of Pirozzoli et al. (2018) is the most turbulent DNS available (Reτ ≡
⟨u∗⟩h

ν = 1055), so this is chosen for reference, although it uses smooth walls and might not correspond exactly to our high-Re340

case. For this reason the RANS and DNS should not be compared directly, but the DNS will at least show typical characteristics

and the order of magnitude to be expected. The parameters for the RANS simulation are given in Table 5 and a rectilinear

32x64x64 grid is used, which is stretched towards the walls to obtain a first wall-adjacent cell height on the order of the

roughness length (no stretching used in streamwise direction).

18



h [m] Lx/h [-] z0/h [-] ⟨u∗⟩ [m s−1]

640 4 7.81 · 10−5 1.24 · 10−2

Table 5. Parameters used for simulation of square duct flow in EllipSys3D. The brackets ⟨⟩ signifiy the average over the wall.

The streamwise and vertical velocity (U and V components) are shown in Fig. 8, which show that the 2D WJ-EARSM is345

indeed capable of predicting secondary flows similar to the DNS of Pirozzoli et al. (2018). Both Fig. 8 and 9 clearly shows

::::
show

:
that the prediction of the secondary flow is necessary to capture the correct shape of the U -distribution. In contrast, the

standard k–ε model predicts zero vertical velocity and therefore no secondary flow.
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Figure 8. Streamwise (first row) and vertical (second row) velocity contours in the lower left quadrant of the square duct. Normalized by the

bulk velocity, Ubulk = 1
A

∫
UdA.

The 3D WJ-EARSM performed similar as the 2D WJ-EARSM, although with a slightly weaker secondary flow, which can

be seen in Fig. 9, where the velocity profiles are extracted on the corner bisector line (the diagonal line). Both WJ-EARSMs350

predict similar profiles to the DNS, although without the near corner peak, which according to Pirozzoli et al. (2018) is caused

by scale separation (this phenomena only occurs at higher Reτ and is thus not visible in the earlier DNSs by Gavrilakis (1992)

and Huser and Biringen (1993)) and this effect is not captured by RANS.
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Figure 9. Streamwise velocity (a) and vertical velocity (b) on the corner bisector line. Results extracted at x/Lx = 0.5.

This concludes the verification studies, where the WJ-EARSM has been seen to give expected results for three canonical

flows. Furthermore, the last case of square duct flow clearly demonstrates that EARS models are able to predict physical355

phenomena that two-equation models based on the linear Boussinesq hypothesis cannot do.

4 Single wind turbine wake

This section concerns the application of the EARS model to a single wind turbine wake. The numerical CFD setup is similar

to that used in many previous RANS studies, e.g., van der Laan (2014); van der Laan et al. (2021); Baungaard et al. (2022):

the RANS equations are solved using the SIMPLE method using a modified Rhie–Chow algorithm (Troldborg et al., 2015),360

while the convective terms are discretized with the QUICK scheme, see more details in Sørensen (1995). To model the wind

turbine, an AD with uniform distribution of forces is used (the thrust forces are fixed and no tangential forces are present),

and the forces are transferred to the rectilinear flow domain with the intersectional method of Réthoré et al. (2014). The flow

domain has a finely resolved "wake domain" in the center with uniform spacing of D/8, and the grid is stretched outwards in

all directions from this using the hyperbolic tangent method of Thompson et al. (1985), see Fig. 10.
::
A

:::
grid

:::::::::::
convergence

:::::
study365

:::
was

:::::
made

::
to

:::::::
confirm

:::
that

::::
this

:::
grid

:::::::::
resolution

::
is

:::
also

:::::::
suitable

:::
for

:::
the

:::::
EARS

:::::::::
turbulence

::::::
model,

:::
see

:::::::::
Appendix

::
A.

:

The case simulated is similar to the case used by Hornshøj-Møller et al. (2021), namely a single V80 turbine subject to

neutral inflow, see Table 6. The authors of the aforementioned study have provided LES data to us, which will be used as a

reference in the following. It should be noted that their RANS simulations use ASL inflow (like we shall also use for our RANS

simulations), while their LES is based on PDBL inflow. Although there will be differences between ASL and PDBL inflow,370

the latter is likely a good approximation of the former in the lower part of the domain, but its bias on wake simulations could

be a subject for future studies.
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Figure 10. Flow domain (a), finely resolved wake domain (b), xy-cut at hub height (c) and xz-cut at centerline (d). Every fourth cell is

displayed in (c,d) and green arrows show velocity profile (not to scale).

Inflow Turbine

Uref [m/s] Iref [%] Atmospheric model D [m] zref [m] Force distribution Tangential forces CT [-] Control

8.0 5.7 Neutral ASL 80 70 Uniform No 0.77 CT fixed
Table 6. Simulation parameters for the single wake V80 case. Note, that the LES uses neutral PDBL for the atmospheric model.

4.1 Inflow

The neutral ASL inflow profile (Panofsky and Dutton, 1984) is prescribed at the inlet BC and top of the domain:

U(z) =
u∗

κ
ln(z/z0)

 z

z0
::

 , k(z) =
u2
∗√
Cµ

, ε(z) =
u3
∗

κz
. (22)375

This type of inflow is routinely used in wind energy applications, and for a wake simulation it can be adopted to give a desired

hub height velocity, Uref , and hub height turbulence intensity (TI), Iref , by adjusting u∗ and z0 (van der Laan et al., 2015b).

21



One could alternatively adjust Cµ instead of z0 to obtain a desired Iref , but this was shown by van der Laan (2014) to give

inconsistent results with the k–ε-fP model and NLEVMs, so this practice is not recommended. Although the adjusted u∗ and

z0 do not correspond to the physical values at the site, it is of higher priority to have the correct Uref (and thereby correct thrust380

coefficient) and Iref .

In the freestream, the neutral ASL profiles, Eq. (22), should satisfy Dk/Dt= 0 and Dε/Dt= 0 to be in balance and mitigate

development of the inflow profiles in the streamwise direction. There will inevitably be a slight development, see Blocken et al.

(2007), and for this reason a long domain is used to ensure fully developed profiles at the entrance of the wake domain. To

satisfy the balance criteria, the turbulence constants should follow the relation (Richards and Hoxey, 1993):385

Cε,1 = Cε,2 −
κ2√
Cµσε

. (23)

Indeed, both sets of constants in Table 1 and 2 satisfy Eq. (23).

In the neutral ASL, we have P/ε= 1, similar to the log-layer of the half-channel flow but at all heights. By utilising the

WJ-EARSM the equilibrium relations between the c1 constant and various other variables, as shown in Fig. 11, can be derived

analytically. For example, the standard value of c1 = 1.8, which is used in this paper, gives Cµ = 0.087 (the "equilibrium value"390

mentioned in Sect. 2.3.1). A closer agreement of the velocity standard deviation ratios, σv/σu and σw/σu, is seen with the

WJ-EARSM, when benchmarking against the ASL ratios of Panofsky and Dutton (1984); the k–ε and k–ε–fP models have

σv/σu = σw/σu = 1, while the WJ-EARSM has σv/σu = 0.85 and σw/σu = 0.68 for c1 = 1.8. In fact, the WJ-EARSM is

underpredicting the streamwise fluctuations due to the simplification introduced by setting c2 = 5/9 (this is also the case for

half-channel flow, see Wallin and Johansson (2000)), resulting in the observed overprediction of the σv/σu and σw/σu ratios.395

Other c1 values (three other choices than the standard value are marked with dots in Fig. 11) will enhance/decrease the ASL

anisotropy, see details in Appendix B,
:::
but

:::
for

:::
the

::::::
present

::::::::::
simulations

:::
the

:::::::
standard

::::::
model

::::::::::
coefficients

::
of

:::::
Table

:
2
::::
will

::
be

::::
used.
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Figure 11. WJ-EARSM dependence on c1 in the neutral ASL (P/ε= 1).

The inflow profiles of the LES and RANS simulations are shown in Fig. 12. Since the k–ε and k–ε–fP models are identical

in the freestream, which is also true for the 2D and 3D WJ-EARSMs, then only one of the other is shown in the figure. The

LES is a driven with a streamwise pressure gradient and thus differs in the stress profiles compared to the pure ASL profiles400

used in our RANS, but Uref and Iref do match. As in the half-channel case, the velocity shear differs due to the different κ

and Cµ used in the k–ε–fP model and WJ-EARSM, and the stress profiles are also different between the two because of the

anisotropic nature of WJ-EARSM. In terms of turbulence anisotropy, quantified as the distribution of TKE between the normal

stress components in Fig. 12, the WJ-EARSM is clearly closer to the LES data as was also expected from the analytical results

in Fig. 11.405
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Figure 12. Inflow profiles for the single wake V80 case.

Eigendecomposition of the Reynolds stress tensors can be used to describe the turbulence state through its three real eigen-

values, which describe the fluctuations in the three orthogonal, principal directions. Several techniques (e.g., eigenvalue map,

invariant map, Barycentric map and Lumley triangle) combine the eigenvalues and visualize them with 2D maps; in Fig. 13

the Barycentric map is used with the RGB color scheme of Emory and Iaccarino (2014). Both RANS models use ASL inflow,

hence the turbulence state is the same at all heights, whereas the LES state varies with height due to its PDBL inflow. The410

k–ε–fP turbulence is mostly isotropic (the x3c corner) as is expected for all Boussinesq-type models because normal stresses

are u′
αu

′
α = 2

3k, whereas the WJ-EARSM turbulence is perturbed more towards 2D turbulence (the line connecting x2c and

x1c) and thereby closer to LES turbulence.
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Figure 13. RGB-colored Barycentric triangleand
:
,
::::
with

:
RANS/LES inflow data colored

:::::
shaded

:
by height(;

:
white lines

:
at

::::
right

:
mark

zref −R
::::::::
(zref −R), zref and zref +R

::::::::
(zref +R), respectively).

4.2 Velocity and turbulence intensity

Wake data in form of velocity and TI contours at hub height and profiles at three downstream positions are shown in Fig. 14-415

15. In addition to the 2D WJ-EARSM, results using the 3D WJ-EARSM with/without tangential AD forces are also shown in

Fig.15, and the first conclusion to draw from this is that the 2D and 3D versions of the WJ-EARSM give similar wake profiles

and we will therefore focus on the simpler 2D WJ-EARSM in the following. A simple diffusion correction to the WJ-EARSM

was suggested by Wallin and Johansson (2000) to correct the model in regions with low normalized velocity gradients (e.g.,

at the top of the half-channel), but it only has a small effect on velocity deficit and TI as seen in Fig. 15, so it will not be420

considered in the following discussions. Finally, results of the standard k–ε model are also shown in Fig. 15 to show its overly

diffusive behaviour.

Overall the wake velocity contours in Fig. 14 appear similar, while the TI contours of the WJ-EARSM are improved over

the k–ε–fP model; however similar to the k–ε–fP model it still fails to predict the TI delay in the near wake seen in the LES,

which is also clearly visible in the disk-averaged TI recovery profiles in Fig. 16b. Also, there is a TI induction zone in both425

RANS simulations, which is not present in the LES; these two effects seem to be a general issue of k–ε based RANS models

as this was also observed with the standard k–ε, realizable k–ε and RNG k–ε models by Hornshøj-Møller et al. (2021).
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Considering the wake profiles in Fig. 15, it is clear that WJ-EARSM produces more "top-hat shaped" profiles similar to

the classic Jensen model (Jensen, 1983). This has also been seen with other EARSMs (van der Laan, 2014) and with full

differential RSMs (Cabezón et al., 2011; Tian et al., 2019). One can either apply the previously mentioned diffusion correction430

or increase the c1 constant to obtain a more Gaussian shaped profile for the WJ-EARSM, but the latter is not recommended as

it will deteriorate the ASL anisotropy, see Appendix B. Another view is that the top-hat shaped profile is a consequence of not

taken various physical phenomena into account, e.g., large scale atmospheric turbulence and wake instabilities, and by applying

a unidirectional wind direction applied in our idealized RANS setup (in the transient LES there will be a varying instantaneous

wind direction throughout the simulation). These type of effects could be interpreted as a Gaussian filter on the wake profiles,435

see discussion in Appendix C. Note that the k–ε–fP model already accounts for at least the wind direction effect as it has been

calibrated with LES that includes a wind direction distribution (van der Laan, 2014) and that it could be recalibrated to obtain

a better match with the velocity deficit of the present LES case (since the latter LES was simulated with a different solver and

AD implementation).

Lastly, we want to emphasize that the turbulence model is not the only responsible for the wake results: the same turbulence440

model applied for the same case but with different codes/solvers can yield significantly different results, as can be seen in the

comparison of the k–ε–fP results in Fig. 16. This reminds us to be careful with general conclusions on which is the better

turbulence model.
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Figure 14. Streamwise velocity (upper row) and TI (lower row) contours at hub height for the single wake V80 case. Full lines mark ADs,

while dashed lines mark where wake profiles are extracted.
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Figure 15. Streamwise velocity (upper row) and TI (lower row) profiles extracted at various donwstream positions for the single wake V80

case.
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Figure 16. Disk-averaged streamwise velocity and TI for the single wake V80 case.

4.3 Stresses

For more insights on the wake mixing and turbulence, we now turn to the second order statistics of turbulence, namely the445

individual Reynolds stress components. The normal components are shown in Fig. 17, which shows that the WJ-EARSM

correctly dampens the lateral and vertical components, which are else overestimated severely by the k–ε–fP model due to its

Boussinesq closure. This also explains the lower TI of the WJ-EARSM in Fig. 14-16 as the TI is composed by the sum of the

normal components. On the other hand, the normal stress contours seem too elongated in the streamwise direction with the

WJ-EARSM, for example the low u′u′ core in the center of the wake in Fig. 17b extends too far downstream compared to the450

LES data in Fig. 17c, which is possibly connected with the decreased turbulence mixing also causing the top-hat profiles of

wake deficit shown in Fig. 15. Increasing the c1 constant will alleviate this specific issue, see Appendix B.

28



2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y/D [-]
(a) u ′u ′

k-ε-fP
(b) u ′u ′

2D WJ-EARSM
(c) u ′u ′

LES

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y/D [-]
(d) v ′v ′ (e) v ′v ′ (f) v ′v ′

0 2 4 6 8
x/D [-]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y/D [-]
(g) w ′w ′

0 2 4 6 8
x/D [-]

(h) w ′w ′

0 2 4 6 8
x/D [-]

(i) w ′w ′

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

u ′αu
′
α

kref
 [-]

Figure 17. Normal stresses at hub height for the single wake V80 case.

Transport of U -momentum by turbulence, −∂u′uj/∂xj , from the ambient high speed surroundings to the low speed wake

region is mainly determined by the cross
::::::::::
off-diagonal components of the Reynolds stress tensor, u′v′ and u′w′, i.e., the lateral

and vertical turbulent fluxes of U , respectively, which are shown as contours in Fig. 18. Both are larger in absolute magnitude455

for the k–ε–fP model compared to WJ-EARSM, leading to larger gradients of the stresses and explaining the increased wake

recovery of the former, but when comparing to the LES data, it can be noticed that the magnitude of u′w′ is overestimated,

hence the overestimated wake recovery of the k–ε–fP model in Fig. 16. On the other hand, the WJ-EARSM underestimates the

magnitude of the fluxes, especially notable in the u′v′ contours, hence the slight underestimation of wake recovery compared

to LES in Fig. 16.460

To conclude, we see some advantages but also disadvantages with using WJ-EARSM over the k–ε–fP model for prediction

of the Reynolds stresses, which also have direct consequences for the prediction of the velocity deficit and turbulence intensity.
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Figure 18. Lateral U -momentum flux at hub height xy-plane (upper row) and vertical U -momentum flux at the center xz-plane (lower row)

for the single wake V80 case.

4.4 Turbulence state

In the inflow section, Sect. 4.1, it was shown that the turbulence state of the freestream turbulence was mainly isotropic in the

k–ε–fP model, while both the WJ-EARSM and LES data were more perturbed towards 2D turbulence (the lower edge in the465

Barycentric triangle). This is also seen in RGB-colored xy-plane at hub height in Fig. 19, where one can see that the ambient

flow of the k–ε–fP model is predominantly colored blue and hence isotropic. As also alluded in Sect. 4.1 the ambient WJ-

EARSM turbulence is more oblate (left edge of Barycentric triangle), while the LES is more prolate (right edge of Barycentric

triangle), hence the green and purple coloring, respectively, of the ambient flow in Fig. 19. In the wake shear layers, both

RANS models predict perturbations towards 2D turbulence, while LES is more perturbed towards 1D turbulence (the x1c470

corner). These observations fit with the increase of u′u′ and strong damping of v′v′ and w′w′ in the LES shown in Fig. 17.

To improve the prediction of the turbulence state, we therefore suspect that normal stress predictions are essential, especially

the ratios of those - the WJ-EARSM definitely has some improvement from the overly isotropic k–ε–fP model but does not

capture the completely right ratio between normal stresses. We note that a resolution of 20 cells per diameter was used in the

reference LES, which might be sufficient for first order statistics and shear stresses, but could bias the normal stresses and475

therefore also the turbulence state.
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Figure 19. RGB-colored turbulence componentiality at hub height for the single wake V80 case.

5 Aligned row of wind turbines

To test the WJ-EARSM in a wind farm scenario, we simulate the lower row in the TotalControl rot90 reference wind farm,

which consists of ten
::::
eight

:
aligned wind turbines with 5D inter-spacing, see Fig. ??

::
20. The DTU-10MW turbines of the wind

farm are modeled with the scaling AD method with 1D momentum control van der Laan et al. (2015a) and including tangential480

forces (hence there will be wake swirl), and the thrust, rotational speed and power curves are taken from the DTU-10MW report

(Bak et al., 2013). We compare the results with LES conducted at KU Leuven (the "PDk90 case", Sood and Meyers (2020)),

where the turbines were modeled with an actuator surface (AS) model coupled to an aeroelastic code, hence the LES and

RANS are not directly comparable but nevertheless gives a reference to compare against. Due to the natural streaks appearing

in LES, we choose to calculate Uref and Iref with planar averages of the LES data in a
::
the

:
region upstream of the lower row (see485

Fig. ??) rather than using the time-averaged precursor profiles. The overview of the simulation parameters are given in Table 7.

The numerical setup of the RANS simulation is identical to the one used for the single wake case, except that tangential forces

and non-uniform thrust forces are applied on the AD, the domain is scaled with the new rotor diameter and the wake region is

extended to encompass all ten
::::
eight

:
turbines.
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Figure 20. Layout
::
A

:::::
xy-cut of the TotalControl rot90 reference wind farm (Andersen and Troldborg, 2020). We simulate the flow in the

lower row in this paper
::::::
domain

:::
with

:::::
every

:::::
eighth

:::
cell

:::::
shown (black box

:
a) and calculate Uref and Iref with planar averages of the LES data

in an area in front
:
a
:::
3D

::::
view of the row

::::
wake

::::::
domain (purple box

:
b)

::
for

:::
the

::::::
aligned

:::
row

::::
case.

::::
The

:::
size

::
of

:::
the

::::::
domain

::
is

:::::::::::
Lx/D = 104,

:::::::::
Ly/D = 60

:::
and

:::::::::
Lz/D = 25.

::
A
:::::
rough

:::
wall

:::
BC

:::
and

::
an

::::
inlet

:::
BC

:::
are

:::
used

:::
for

:::
the

::::
lower

:::
and

:::::
upper

::::
BCs,

:::::::::
respectively.

Inflow Turbine

Uref [m/s] Iref [%] Atmospheric model D [m] zref [m] Force distribution Tangential forces Control

9.8 4.5 Neutral ASL 178.3 119 Scaling Yes 1D momentum method
Table 7. Simulation parameters for the aligned row case TotalControl case. The AD scaling and 1D mom’m control methods are described

in detail by van der Laan et al. (2015a).

The velocity contours in Fig. 21 show that both the k–ε–fP model and WJ-EARSM qualitatively share some of the same490

flow features as the LES, e.g., a faster wake recovery is seen on the left side of the first wake (seen from upstream) because

of the combined effect of wind shear and wake rotation (aka. swirl) and they predict the largest wake deficit in the second

wake. Neither of these effects are predicted by the standard k–ε model, but it can capture other phenomena as for example the

induction zones and the expanding wake tube surrounding the whole row. Fig. 23a shows the streamwise velocity along the

axial line of the ADs and shows that the WJ-EARSM is closer to the LES in the near wake of each turbine, while the k–ε and495

k–ε–fP models are better at the far wake of each turbine. The RANS models become more similar further down in the row

and the recovery behind the last turbine (aka. the wind farm recovery) is very similar. In van der Laan et al. (2015c), a similar

observation was made when comparing the standard k–ε and k–ε–fP models for wind farm cases since the difference between

both turbulence models reduces with increased levels of turbulence.

The turbulence intensity contours in Fig. 22 show more pronounced differences between the models, e.g., the LES has peaks500

of TI in the wake shear layers, whereas the RANS models have TI more evenly distributed over the wake. As was also seen
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and discussed in the V80 case, there is no induction zone of TI for the LES and the development of TI is delayed. Again also

the WJ-EARSM has lower TI compared to the k–ε and k–ε–fP models and is in better agreement with the LES.

In conclusion, the WJ-EARSM appears numerically stable and well-behaved (e.g., no monotonic decreasing velocity deficit

or other unphysical effects) for interacting wakes, and as in the single wake case, there are both some improvements and some505

less desirable effects of the model over the k–ε–fP model.
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Figure 21. Streamwise velocity contour at hub height for the aligned row TotalControl case.
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Figure 22. TI contour at hub height for the aligned row TotalControl case.
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Figure 23. Streamwise velocity and turbulence intensity at the axial line going through the AD centers for the aligned row TotalControl case.

6 Conclusions

In this paper , we have implemented and applied
::::
This

:::::
paper

:::::::::
documents

:::
and

:::::::
explains

:::
our

:::::::::::::
implementation

::::
and

:::::::::
application

::
of

:
an

EARSM (Wallin and Johansson, 2000) as a turbulence model for RANS simulations of wind turbine wakes,
:
in the neutral ASL.

To our knowledge, EARSM is rarely , if ever ,
:
–
::
if
::::
ever

::
– used in the wind energy community, ;

:
but we show that it is actually510

relatively straightforward to implement in CFD codes with already implemented
:::
that

::::::
already

:::::::
employ two-equation turbulence

models,
:
and importantly that it

:::
the

::::::::::
WJ-EARSM

:
also appears to be numerically stable for wake simulations. Previous attempts

by van der Laan (2014) of applying EARSMs (Taulbee (1992), Gatski and Speziale (1993) and Apsley and Leschziner (1998)

models) for wake simulations showed problems with numerical stability, even for single wake cases, but this appears to not be

an issue for the EARSM of Wallin and Johansson (2000). The reason for the better numerical behaviour most likely lies in the515

self-consistent formulation of particular importance in regions with rapid shear, hence preserving physical realizability.

Three canonical flow cases, homogeneous shear flow, half-channel flow and square duct flow, were used to verify the imple-

mentation of the model and also showcased some of the advantages with an EARSM over traditional linear EVMs, namely the

prediction of freestream turbulence anisotropy and secondary flow phenomena. All three cases have either analytical asymp-

totes or DNS data to compare against and are easy to setup, which makes them ideal for verification purposes.520

For neutral ASL inflow we show that there is a delicate relationship between the turbulence constants that needs to be fulfilled

to ensure a non-developing freestream solution,
:
and that it also dictates the amount of freestream turbulence anisotropy. It

should be noted that this balance of constants is also important for numerical robustness. Comparing the RANS inflow with

reference LES data shows that the WJ-EARSM is capable of predicting similar freestream anisotropy, whereas the turbulence of

the k–ε–fP model is almost completely isotropic
:::::
nearly

::::::::
isotropic

::::::::
(although

:::
not

:::::::
exactly) by definition of its Boussinesq closure.525

This is also clear from the eigendecomposition of the Reynolds stress tensor, which is
::::
was visualized with the Barycentric map

technique.
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A single wake case was first considered
:::::::::
considered

::::
first,

:
and it was observed that the 2D version of the EARSM yielded

almost identical results to the 3D version, even when tangential forces were applied on the AD, and
:
;
::::
thus we used the 2D model

for the remainder of the paper. It should be noted that the 2D version of the WJ-EARSM is a complete and invariant model530

for general 3D mean flows. Only the particular dependency of pure 3D effects are simplified, which will have minor effects

:::::
impact

:
in most 3D mean flows of interest. The wake profiles of the EARSM model were more top-hat shaped than the profiles

observed in the LES data, which might be related to the underlying weak-equilibrium assumption and limitations in the length-

scale determining ε model equation
:
,
:::
but

::::
could

::::
also

::
be

::::::
caused

:::
by

::::
wind

::::::::
direction

::::::::
variations

:::
(see

:::::::::
Appendix

::
C). The disk-averaged

velocity deficit and turbulence intensity recovery profiles were however improved over the k–ε–fP model for the specific case.535

It is
:::
also

:
possible to obtain a more Gaussian shaped wake profile by increasing the c1 constant and re-tuning the turbulence

model constants, but this will deteriorate the prediction of the underlying ASL anisotropy (Appendix B). The wake in real

conditions, as well as in LES simulations, will be subjected to slow movements due to large scale turbulence in the ASL and

possibly instabilities in the wake development. All such superimposed movements will enforce a more Gaussian-shaped wake,

which is demonstrated by a post-processing step in the form of a Gaussian filter (Appendix C). A notable difference between540

the WJ-EARSM and the k–ε–fP model is also that the latter predicts large peaks of lateral and vertical normal Reynolds stress

components in the wake, which are not present in the LES data, because of the Boussinesq closure; this deficiency and the low

value of Cµ used for the k–ε–fP model are possibly the reasons why it tends to overpredict turbulence intensity in the wake.

Finally, we simulated the lower row of the TotalControl reference wind farm consisting of ten
:
a
::::
row

::
of

::::
eight aligned turbines,

where the trends from the single wake case could also be seen, e.g., the top-hat shaped profiles and better turbulence intensity545

prediction with EARSM. There were more uncertainties on the comparison with the LES data in this case, because different

turbine modeling techniques were used, but the case nevertheless shows that the EARSM also behaves sensible in cases with

wake–wake interaction
::
in

:::
the

::::
sense

::::
that

:::
the

::::
code

::::
still

::::::::
converges

::::
and

:::
that

:::
no

:::::::::
unphysical

:::::
trends

:::::
(such

::
as

:::::::::
monotonic

::::::::
increase

::
of

::::
wake

::::::
deficit

:::::::::
throughout

:::
the

:::
row

:::
of

:::::::
turbines)

:::
are

::::::::
observed.

In conclusion, the EARSM of Wallin and Johansson (2000) can be used for wake simulations in a numerical robust550

way
::::::::::
numerically

:::::
robust

:::::
way, and only has a small computational overhead compared to standard two-equation models ,

:::
(on

::
the

:::::
order

:::
of

:::
5%

:::
for

:::
the

::::
V80

:::::
single

:::::
wake

:::::
case);

:
hence it is at least three orders of magnitude faster than LES. It provides an

advantage over two-equation models in the sense that it has more realistic inflow with anisotropic turbulence and that the wake

turbulence also becomes more anisotropic, which indeed is also observed in LES. The turbulence intensity prediction was

improved for both test cases considered, while velocity deficit was only considerably improved for the single wake case; more555

cases (both LES and experimental data) are needed to draw general conclusions about its performance in this regard.

Atmospheric conditions in thermally stable stratification and thermal convection is strongly influencing the turbulence states,

anisotropies and, in particular, the vertical mixing in the ASL. This will have a fundamental influence on the wake development

and the performance of wind parks. The extension of the EARSM to non-neutral conditions has over the recent years been

developed by Lazeroms et al. (2013) and Želi et al. (2019) have
::::::::::
subsequently

:
demonstrated the model’s capability of capturing560

these effects. This will be of interest for future wind turbine wake studies.
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Appendix A: Grid study of WJ-EARSM for wind turbine wake simulations

Earlier studies (van der Laan et al., 2015b) have shown that a grid spacing of D/8 in the wake region is sufficient for grid

convergence of wake velocity deficits with the k–ε–fP model and the same conclusion can be drawn for the 2D WJ-EARSM,

see Fig. A1. We also plot the TI profiles in Fig. A1, which are more sensitive to grid resolution, but we nevertheless decide to565

use D/8 in this paper, because it represents the typical resolution used in wind farm studies and saves a considerable amount

of computational resources.
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Figure A1. Grid study of streamwise velocity (upper row) and TI (lower row) profiles at hub height for the V80 case with the 2D WJ-EARSM

using different mesh resolutions.

Appendix B: Tuning the turbulence model constants in the WJ-EARSM

The c1 constant, aka. Rotta coefficient, in the WJ-EARSM originates from the pressure-redistribution term and can in principle

be re-tuned, e.g., the original LRR model has c1 = 1.5 and van der Laan (2014) used c1 = 4.5 for the fP model. As shown in570

Sect. 4.1, for the neutral ASL the WJ-EARSM can be used to obtain a direct relationship between c1 and many other variables

in equilibrium, see Fig. 11. From this it is clear that the ASL anisotropy is enhanced for decreasing c1 and vice versa. It is
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important to emphasize that the variables in Fig. 11 are only dependent on c1 and not the other turbulence constants. In this

section we will test three different c1 values in addition to the standard value of c1 = 1.8, see Table B1.

Constants Derived for general, neutral ASL For V80 case

Case Cε,1 Cµ a13 a11 σv/σu σw/σu z0 [m] u∗ [m/s]

c1 = 1.2 1.44 0.085 -0.29 0.37 0.80 0.53 2.93 · 10−3 0.30

c1 = 1.8 1.44 0.087 -0.30 0.25 0.85 0.68 3.12 · 10−3 0.30

c1 = 4.0 1.34 0.054 -0.23 0.11 0.93 0.85 8.88 · 10−4 0.27

c1 = 8.0 1.18 0.030 -0.17 0.06 0.96 0.92 1.50 · 10−4 0.23
Table B1. Tested sets of turbulence model constants and derived variables for the single wake V80 case. For all sets, we use Cε,2 = 1.82,

σk = 1.0, σε = 1.3, κ= 0.38 and c2 =
5
9

.

Equation (23) needs to be satisfied to have a balanced RANS solution, hence when c1 is adjusted and Cµ thereby changes,575

then either κ, σε, Cε1, Cε2 or a combination of all needs to be adjusted. We choose to adjust Cε1 and fix the others, and the

resulting sets of constants are shown in Table B1. The first set (c1 = 1.2) gives anisotropic freestream turbulence close to the

Panofsky and Dutton (1984) neutral ASL values, the second set (c1 = 1.8) is equivalent to the standard set (see Table 2), the

third set (c1 = 4.0) gives Cµ = 0.054, which is close to the value used by WAsP CFD (Bechmann, 2016) and finally the last

set (c1 = 8.0) gives Cµ = 0.03, which is often used for atmospheric applications (Sørensen, 1995; Richards and Hoxey, 1993).580

Another consideration is that the roughness length and friction velocity also needs to be modified to give the same hub

height velocity and turbulence intensity according to Eq. (22), again because Cµ changes with changing c1. The values of these

are therefore also included in Table B1 and explain why the velocity inflow profiles differ slightly in Fig. B1. The figure also

clearly demonstrates that freestream turbulence anisotropy decreases for increasing c1 and vice versa, which is also evident

from the combination of Eq. (10-11):585

β4

β1
=N−1 =

(
9

4
c1

)−1

. (B1)

In the derivation of Eq. B1 we use the definition of N , c′1 and that P/ε= 1 in the neutral ASL. From Eq. (B1), we see that for

increasing c1 there is a decreasing a(ex)
ij , see Eq. (9), which is the part of the closure responsible for anisotropy and therefore

explains why the turbulence becomes more isotropic with increasing c1.
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Figure B1. Inflow profiles for the single wake V80 case with different sets of model constants.

Fig. B2 shows how the wake is effected by the new sets of constants. The velocity deficit shape is more Gaussian for larger590

c1 and thus more similar to the LES shape, while the turbulence intensity increases. From these observations, one could argue

that c1 = 4.0 would perhaps be a better choice for modeling of velocity deficit, while c1 = 1.8 is better for TI and anisotropy

predictions.

Increasing c1 also has a significant impact on the normal stress contours as shown in Fig. B3, where one especially can note

how the length of the inner low u′u′ core decreases. In this regard a larger c1 than the standard c1 = 1.8 also seems desirable,595

although we again have to remind that this will also result in less correct freestream anisotropy. However, it it notable that

although a larger c1 leads to more isotropic freestream turbulence, then in contrast to the k–ε–fP model (see Fig. 17), there is

still significant wake turbulence anisotropy.
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Figure B2. Streamwise velocity (upper row) and TI (lower row) profiles extracted at various donwstream positions for the single wake V80

case with different sets of model constants.
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Figure B3. Normal stresses at hub height for the single wake V80 case with different sets of model constants.
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Appendix C: Gaussian filtered RANS model
:::::
Effect

::
of

:::::
wind

::::::::
direction

:::::::::::
uncertainty

As discussed in Sect. 4.2 and Appendix B, the WJ-EARSM velocity deficit is rather top-hat shaped, whereas the LES shape is600

more Gaussian. This could also be interpreted as
::::::
possibly

:::
be a consequence of unaccounted large scale atmospheric turbulence,

wake instabilities and the applied unidirectional inflow in our RANS simulation. In this section we present a possible
:::
the

:::::::::::
unidirectional

::::::
inflow

::::
used

::
in

:::
our

::::::
steady

:::::
RANS

:::::::::
simulation

::::
and

:::::
hence

:::
the

::::
lack

::
of

::::
wake

::::::::::
meandering

:::::::::::::::::
(Larsen et al., 2008),

::::::
which

:::
else

:::::
tends

::
to

::::::
smear

:::
out

:::
the

::::::::::::
time-averaged

::::::
wake.

:::
For

:::
the

:::::::
k-ε-fP :::::

model
::
it
::::
was

:::::::::
effectively

::::::::
included

::
in

:::
the

:::::::::
turbulence

::::::
model

::::::
through

:::
the

:::::::::
calibration

:::
of

:::
the

:::
CR::::::

model
:::::::
constant,

::::
but

:::
for

:::
the

::::::::::
WJ-EARSM

:::::
there

::
is

::::
less

::::
room

:::
for

:::::::::
calibration

::::
and

::::::
instead

::::
one605

:::::
should

::::::::
therefore

::::::
ideally

::
do

::
a post-processing step to take this into account

::::::
include

:::
the

:::::
effect.

::
It
::
is

:::::::
however

:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

:::::
paper

::
to

:::::::
carefully

::::::
design

::::
such

:
a
:::::::::::::
post-processing

:::::
step,

::
but

:::
we

:::
can

::
at
::::
least

:::::::::::
qualitatively

::::
show

::::
that

:::
the

:::::
effect

::
of

::::
wind

::::::::
direction

:::::::::
uncertainty

::
is

::
to

::::::::
smoothen

:::
the

::::::
top-hat

::::::
shaped

:::::
wake

::::::
profile

:::
into

::
a
::::
more

::::::::
Gaussian

:::::
shape.

Defining the wind direction as

:::
The

:::::
wind

:::::::
direction

:
φ≡ arctan

(
V
U

)
≈ V

U (small angle approximation) , we can calculate its variance as
:::::::
variance

::
is:610

σ2
φ =

(
∂φ

∂U

)2

σ2
u +

(
∂φ

∂V

)2

σ2
v =

(
− V

U2

)2

σ2
u +

(
1

U

)2

σ2
v ≈

σ2
v

U2
. (C1)

Taking
:::
For

:::::::
example

:
the hub height LES values for the V80 case gives σφ =±0.0484 rad =±2.8◦.

:::::::
However,

:::::::::
according

::
to

::::::::::::::::
Larsen et al. (2008)

:::
the

:::::
wake

::::::::::
meandering

::::::
motion

::
is

::::
only

::::::
caused

:::
by

:::
the

:::::
large

:::::
eddies

::::
(the

:::::
"slow

::::::::
moving"

::::
part

::
of

:::
the

:::::
wind

:::::::
direction

::::::::
changes),

::
so

::::
one

::::::
should

::
in

:::::::
principle

:::
use

::
a

::::::
smaller

:::::::
variance

::
to

::::::
model

:::
the

:::::::::
meandering

:::::::
motion.

::::::::
However,

::
as

:::::
most

::
of

:::
the

:::::::
variance

::
is

::::
given

:::
by

:::
the

::::
large

::::::
eddies,

:::
the

:::::
usage

:::
of

::
σ2
φ::

is
::::
only

::::::::
expected

::
to

::::
give

:
a
:::::
small

::::::::::::
overprediction

::
of

:::::::::::
meandering.615

Assuming zero mean wind direction and a Gaussian distribution gives a simple model for the wind direction variability:

fφ(φ) =
1

σφ

√
2π

e
− 1

2

(
φ
σφ

)2

. (C2)

Gaussian wind direction distribution.

Perhaps the simplest way to model the effect of wind direction variability in RANS is to just run a single simulation with

wind direction equal to zero (as we usually do) and then apply a Gaussian filter to the wake profiles as a post-processing step.620

To filter the U(y) profiles from Fig. 15, one needs to convert
:
It
::::::
should

:::
be

:::::::::
intuitively

::::
clear

::::
that

::::
such

::
a
::::::::::
distribution

::
of

:::::
wind

::::::::
directions

:::::
would

:::
act

::
to

:::::::::
smoothen

:::
out

:::
the

::::
wake

::::::
profile

::::::::
compared

::
to
::
a
:::::::::
simulation

::::
with

::::::
φ= 0◦,

:::
but

:::
we

::::
can

:::
also

::::::::
illustrate

:::
this

:::
by

:::::::
applying

::
a
::::::::::
convolution

::
to
:::
the

::::::
φ= 0◦

:::::
wake

::::::
profile:

:

Ũ(x,y) =

∞∫
−∞

U(x,y− y′)fy(x,y
′)dy′.

:::::::::::::::::::::::::::::::

(C3)

::
To

::::::
obtain

:::
fy ::::

from
:::
fφ::::

one
:::::
could

::::::
simply

:::::
make

::
a
::::::
change

:::
of

::::::::
variables

::::
from

:::
φ

::
to

::
y

:::
and

:::::::
assume

:::::::::
σy = xσφ,

::::
but

:::
the

:::::
latter625

:::::::::
assumption

::
is
:::::::::
equivalent

::
to

:::::::::
assuming

:::
that

:::
the

:::::::
φ= 0◦

:::::
wake

::
is

::::::
moved

::::::::
"rigidly"

::::
from

::::
side

::
to

:::::
side,

:::::
which

::
is
::::

not
:::::::
realistic

:::
for

:
at
:::::

least
:::
two

::::::::
reasons.

:::::
First,

:
it
::::::::
assumes

::::::
"frozen

::::::::::
turbulence"

::
in
::::

the
:::::
sense

:::
that

::
a
:::::
wake

:::::::
released

::
in

:::
the

::
φ
::::::::

direction
::::::::
continues

:::
in

:::
that

::::::::
direction

::::
until

:::::::
infinity.

:::::::::
Secondly,

:::
the

::::
yaw

::::::::::
mechanism

::
of

::
a
::::::
turbine

::
is
::::::
slower

::::
than

::::
the

:::::::::
turbulence

::::
time

:::::
scale,

::::::
hence the
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wind direction uncertainty to the corresponding uncertainty in the y-direction: for small angles, we have σy(x)≈ xσφ, so our

Gaussian distribution is then:
::::::::::
corresponds

::
to

::::
yaw

:::::::
offsets,

:::::
which

::::
will

::::
bend

:::
the

:::::
wake

::::::::
inwards.

:
It
:::::

must
::::::::
therefore

::
be

:::::::::
presumed630

:::
that

:::
σy :::::::

increases
::::::
slower

::::
than

:::::
linear

::
in

::
x

:::
and

:::::
could

:::
for

:::::::
example

:::
be

:::::::
modeled

::
as

::
a

::::::::
quadratic

:::::::::
polynomial

:::::::
instead:

fy(y;x,y
:
) =

1

σy

√
2π

e
− 1

2

(
y
σy

)2

. (C4)

σy

D
::

=
:


(

x
D − 0.05

(
x
D

)2)
σφ, 0≤ x/D ≤ 10

5σφ, x/D ≥ 10
(C5)

The distribution is dependent on the downstream position, x, and from Fig. ?? one can observe that even a seemingly small

σφ leads to a large
::::
above

::::::
model

:::
for

:
σy , when one is far downstream. For reference, a standard deviation of σφ = 5◦ is also635

shown
:::
was

::::::
chosen

:::::
such

:::
that

::
it
::::::::::
approaches

:::
the

:::::
linear

::::
filter

:::::
width

::::::
model

:::
for

:::::::::
x/D → 0,

:::
has

::::::::::
dσy/dx≥ 0

::::
and

::
is

::::::::::
continuous,

:::
see

:::
Fig.

::::
C1.

:::
The

:::::::
constant

::::::
−0.05

::
is

:::::
rather

::::::::
arbitrary

:::
and

::
it
::::
must

:::::
again

:::
be

:::::::
stressed

:::
that

::::
this

::
is

:::
just

::
a

::::::::
qualitative

::::::
model

::
to

::::::
model

:::
the

:::
two

:::::::::::::
aforementioned

::::::
effects

::::
(one

:::::
could

:::
just

::
as

::::
well

:::::
have

::::
used

:::
any

:::::
other

:::::
simple

::::::::
function

::
to

:::::
model

:::
σy).
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Figure C1. Wake profile uncertainty at three downstream distances modeled after
::
(a) Gaussian distributions

::::
wind

:::::::
direction

:::::::::
distribution

:::
and

::
(b)

:::
the

:::::::
Gaussian

::::
filter

::::
width

:::
for

::
the

:::::::::
convolution

::::
with

::::::::
σφ = 2.8◦.

The distributions in Fig. ?? are used for rolling averaging
:::
Both

::::
the

:::::
linear

:::
and

:::::::::
quadratic

::::
filter

:::::
width

:::::::
models

:::
are

::::
used

:::
in

:::::::
Gaussian

:::::::::::
convolutions

:
of the 2D WJ-EARSM wake profiles and the results are shown in Fig. C2. A significant

::::::::
Although640

::::::::
σφ = 2.8◦

::
at
::::
first

:::::
might

::::::
appear

:::
as

:
a
:::::
small

:::::::
number,

::
a

:::::::::
significant

:::::::::
smoothing effect is seenfor both the velocity deficit and TI,

and the small uncertainty of σφ = 2.8◦ calculated with Eq. (C1) is enough to smoothen the sharp edges of the velocity deficit

profiles. However, the ,
::::::
which

:::::::::
effectively

:::::::
removes

:::
the

:::::::
top-hat

::::::
shaped

:::::::
velocity

:::::::
deficits

:::
and

::::::
shows

::::
that

:::::::
missing

::::::::::
meandering

::::
could

:::::::
actually

:::::::
explain

:::
the

::::::
top-hat

::::::
shape.

::::
The

:::::
linear

:::::
width

::::::
model

:::::::::::
overestimates

:::
the

:::::::::
smoothing

:::
as

:::::::
expected

:::::
from

:::
its

:::::::
inherent

:::::
frozen

:::::::::
turbulence

::::::::::
assumption,

:::::
while

:::
the

::::::::
quadratic

::::::
model

:::::
gives

::::::
results

:::::
closer

::
to

:::
the

:::::
LES.

:::
The

:
TI results are not improved by645

the Gaussian filter
:::::::::
convolution

:::::::::
correction.
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Figure C2. Gaussian filtered (GF) wake profiles.
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