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Abstract. Modal based reduced order models are preferred for modelling structures due to their computational efficiency in

engineering problems. One of the important limitations of the classic modal approaches is that they are geometrically linear.

This study proposes a fast correction method to account for geometric non-linearities which stem from large deflections in

cantilever beams. The method relies on pre-computed correction terms and thus adds negligibly small extra computational

efforts during the time domain response analyses. The accuracy of the method is examined on a straight beam and IEA 15 MW5

wind turbine blade model. The results show that the proposed method increases the accuracy of modal approach significantly

in secondary deflections due to nonlinearities such as axial and torsional motions for the two studied cases.
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1 Introduction

Reduced order models (ROMs) based on modal approach are used in many structural engineering problems such as wind10

turbine blades (Hansen, 2015), aircraft wings (Bisplinghoff et al., 2013), space crafts (Marshall and Pellegrino, 2021) due to

their computational efficiency and reasonable accuracy. These ROMs are based on the small deflection assumption, in other

words they use constant stiffness, mass and damping matrices which are not updated by deflections unlike nonlinear models.

Hence, the accuracy of modal based ROMs reduces as deflections increase and their errors become significant for applications

with large deflections such as long and flexible wind turbine blades or aircraft wings. Moreover, the error in structural response15

amplifies the error in aeroelastic response and load analysis due to the coupled nature of the problem.

The large deflection effects on aeroelastic stability and loads for wind turbine blades (Kallesøe, 2011; Beardsell et al., 2016;

Collier and Sanz, 2016; Riziotis et al., 2008) and aircraft wings (Cesnik et al., 2014) are now well known. Although these

effects can be modeled in some aeroelastic tools by using geometric nonlinear structural solvers (Larsen and Hansen, 2019;

DNV, 2016; Wang et al., 2017; Bauchau, 2009) where the stiffness matrix terms are function of deflections or in other words20

nonlinear, linear modal based ROMs are still in use even for structures with large deflections such as wind turbine blades

(Branlard, 2019; Jonkman and Buhl Jr, 2005; Branlard and Geisler, 2022) due to their speed. Therefore, it is very desirable to

increase accuracy with negligible extra computational demand for such tools. This is fully aligned with the main focus of the

present work.
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The focus of this study is cantilever beam structures and their reduced order models (ROMs) based on modal approach used

in coupled simulations such as aeroelasticity and load simulation of wind turbines and aircraft. A new correction method for

moderately large bending deflection effects is proposed for modal based ROMs. The method has possible minimum compu-

tational cost during the coupled analysis since it includes only some correction terms which don’t require any extra iteration

during the response analysis.5

There are many studies in the literature on geometrically nonlinear ROMs and most of them focus on clamped-clamped

beams or simply supported panels. Table 1 shows some prominent works with cantilever structures from the literature together

with the methods and examples used in them. The methods shown in Table 1 are either intrusive or non-intrusive. In the

former, the nonlinear stiffness matrix terms in modal space are derived analytically. While the latter assumes a cubic relation

between modal amplitudes and internal forces and the coefficients are determined with static analysis. As shown in the table,10

most of the work uses Von karman kinematics which are very useful for deriving the nonlinear stiffness terms as a function of

displacements and it captures the moderately large deflections accurately when plate or shell elements are used.

Intrusive and non-intrusive methods require reduction bases where the displacements are nonlinear function of modal ampli-

tudes. In the given studies a quadratic relation between displacements and modal amplitudes are used with modal derivatives

or expansion modes which are called "dual modes" in some studies. All of these studies, except Gözcü and Dou (2020) are15

limited to beam models with forces applied in single direction or forces in two bending direction with bending deflections

less than 2% of beam span. Moreover, the methods used in existing studies require much more computational time than linear

ROMs due to the iterative solutions required by nonlinear stiffness matrices. On the other hand, our proposed method uses

linear reduction basis and linear stiffness matrix for computing deflections and corrects the linear deflections results with some

quadratic vectors for capturing large bending deflection effects. It may be less accurate compared to the ROMs with nonlin-20

ear stiffness terms, however it has a very similar computational speed to the existing linear ROMs and easy to implement to

existing aeroelastic tools compared to nonlinear models.

The focus of nonlinear ROMs in the literature is generally to use the same model for response and stress analysis. On the

other hand, this study aims to come with a fast and accurate ROM correction method that is suitable only for response analysis

and not for stress analysis. The main contributions of this paper are:25

– Selection of the important physics for the given applications and thus justification of particular method choice (i.e.

displacement only correction).

– Proof of method suitability using a high-fidelity model with prescribed external loads on both simple and complex

geometries.

The paper is divided into three four sections. The kinematics of cantilever beam problem relevant to this study is explained in30

Section 2 and the proposed method is explained in Section 3. Example cases are introduced and their results are given together

with discussion in Section 4 and the conclusion takes place in Section 5.

2



Table 1. Overview of the studies with cantilever structure models. The methods, reduction bases and example cantilever structures used in

the reference studies are given together with applied forces and maximum deflections in terms of span length.

Reference Method
Reduction

basis

Example

structure

Force

direction

Max.

deflection

Kim et al. (2009)

Displacement based

Non-intrusive with

von Karman kinematics

Bending modes +

expansion modes

2D straight

beam

1 bending

direction
50% of span

Wang et al. (2013)

Displacement based

Non-intrusive with

von Karman kinematics

Bending modes +

expansion modes

An unmanned

aircraft wing

1 bending

direction
25% of span

Jain et al. (2017)
Intrusive with

von Karman kinematics

Quadratic basis &

Modal derivatives
A wing model

1 bending

direction
2% of span

Rutzmoser et al. (2017)
Intrusive with

von Karman kinematics

Different quadratic

bases

2D straight

beam

1 bending

direction
30% of span

Wu et al. (2018)
Intrusive with

von Karman kinematics

Rubin basis +

Modal derivatives

NREL 5MW

blade

2 bending

direction
1% of span

Gözcü and Dou (2020)
Force based

Non-intrusive

Linear modes +

Modal derivatives

3D straight beam

NREL5MW blade

2 bending

directions
10-20% of span

This study
Linear approach

Correction terms
Linear modes

3D straight beam

IEA15MW blade

2 bending

directions
20% of span

2 Relevant Kinematics

This section explains the kinematics of cantilever beams and geometric nonlinear effects due to large bending deflections for

symmetric beams and initially curved beams such as wind turbine blades.

Although there are many research studies about geometrically nonlinear ROMs, most of them focus on clamped-clamped

beams or simply-supported plates. In clamped-clamped case, the nonlinearity arises due to the length change where a lateral5

deflection actually alters the length of the structure which causes an additional stiffness effect such as hardening or softening

depending on the sign of length change. This effect is referred to as membrane effect or bending-extension coupling (Touzé

et al., 2021). In the case of cantilever beams, a lateral deflection due to lateral forces doesn’t result in length change (no axial

strain), so there is no bending-extension coupling for cantilever beams. However, the free end of a cantilever beam displaces in

the beam span direction to keep the length constant when it bends as shown in Figure 1. In other words, the cantilever beams10

with lateral loading go through large rotations which don’t result in any strain.
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Figure 1. Displacements of a cantilever and a clamped-clamped beam under lateral distributed loads F . The deflected beam length (Ldef ) is

equal to the undeflected length (Lundef ) for the cantilever beam, resulting in zero axial strain. The clamped-clamped beam has axial strain

due to elongation in beam length.

The cantilever beam in its deflected state can display a bending-torsion coupling behavior that is not seen in the undeflected

state of the straight symmetric cantilever beam. Figure 2 depicts these kinematics using a straight cantilever beam. The lateral

force (Fx) deflects the beam to State-1. Subsequently, the force perpendicular to Fx is applied on the beam which is now at

Final State. It is observed that the beam deflects not only laterally and vertically but also in the torsion direction, even though

there is no torsion load. Geometrically linear models (such as ROMs based on modal approach) can capture bending deflections5

but not the torsion deflection for this problem since their stiffness matrices are not updated by new states or deflections.

Figure 2. Illustration of beam deflections in lateral directions and the resulting torsion motion due to the bending/torsion coupling at the

deflected state. The lateral (x−, y−) and axial (z−) directions are given in beam root coordinates.
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These kinematics become even more prominent for applications such as wind turbine blades which are initially curved

structures due to prebend. They have already bending/torsion couplings at their undeflected states but the lateral deflections

change the magnitude as well as the direction of this coupling. Figure 3 shows the torsion deflection due to the combination

of flapwise and edgewise deflections of a wind turbine blade with prebend at its undeflected position. The edgewise and

torsion motions are already coupled for a blade with prebend as shown in the figure. However this coupling first reduces5

and then changes sign with flapwise bending deflections. As the blade goes through sinusoidal edgewise bending deflections

due to gravity and rotation, the torsion induced by edgewise-torsion coupling also alters blade loads and aeroelastic stability

(Kallesøe, 2011). These coupling effects become significant for very flexible wind turbine blades. In case geometrically linear

models like classical ROMs based on modal reduction are used, the change of torsion-edgewise coupling cannot be captured

correctly for large blade deflections.10

Figure 3. Illustration of a wind turbine deflections in flapwise (y−) and edgewise (x−) directions and the resulting torsion motion due to

the bending/torsion coupling at the deflected state. The lateral (x−, y−) and axial (z−) directions are given in blade root coordinates. The

effective blade length is the projected length onto the root coordinate system in the axial direction. The edgewise/torsion coupling at the

initial blade position has an opposite direction in comparison to the edgewise/torsion coupling at the deflected blade position.

Here, the kinematics of a cantilever beam due to bending deflections are explained and kinematics due to axial-bending

coupling is left without mentioning since the proposed method is developed only for secondary effects due to large bending

deflections of cantilever beams. Hence, the method cannot capture stiffening effects with centrifugal force (Wallrapp and Schw-

ertassek, 1991; Branlard and Geisler, 2022) which comes from bending-extension coupling. However, centrifugal stiffening is

already corrected for linear models in existing tools such as FLEX (Branlard, 2019), FAST (Jonkman and Buhl Jr, 2005). In15

this study, mode shapes at undeformed state without centrifugal stiffening effects are used since the mentioned existing tools
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compute blade mode shapes at undeflected states. However, the method is not limited with undeflected state modal analysis

and it can also work with mode shapes computed at any deflected state.

3 Method

The nonlinear geometric effects of a cantilever beam can be captured by nonlinear ROMs using different methods (Intru-

sive or Non-intrusive see Table 1) and reduction basis where linear modes are used together with quadratic vectors such as5

Expansion modes (Hollkamp and Gordon, 2008) or Modal derivatives (Idelsohn and Cardona, 1985). It is ob-

served that effects of nonlinear stiffness terms such as hardening/stiffening are not significant in bending directions for moder-

ately large deflections of a cantilever beam. On the other hand, the geometric nonlinear effects explained in Section 2 are still

apparent for cantilever beams.

These kinematics together with other nonlinear effects such as centrifugal stiffening are captured very accurately by geo-10

metrically nonlinear models which come with much higher computational cost compared to linear ROMs. Our method uses

linear ROMs which use linear mode shapes, stiffness, mass and damping matrices for response calculation and quadratic vec-

tors are added to the linear response results to capture large bending deflection effects. In the studies where intrusive methods

are used, Modal derivatives are generally preferred as quadratic vectors for deriving nonlinear stiffness terms in modal

space. For non-intrusive methods, the terms for cubic relation between modal amplitudes and reduced stiffness terms are ob-15

tained from some static solutions and the reduction basis includes generally Expansion modes. In this study, both Modal

derivatives and Expansion modes are investigated as correction terms for large bending effects. The formulation and

calculation process of these vectors are explained below.

3.1 Modal derivatives

The modal derivatives (MDs) are quadratic vectors which include secondary effects that occur due to large deflections (geo-20

metric nonlinearities) (Idelsohn and Cardona, 1985; Wu and Tiso, 2014). The quadratic relation needs to be written between

physical displacements (u) and modal amplitudes (q) for defining modal derivatives. So, they can be thought of as second

derivative of physical displacements (u) with respect to modal amplitudes (q) when the displacements are represented as a

function of modal amplitudes. When Taylor series expansion of the displacements around an equilibrium state (u0 = u(q0))

are written, the first term (u(q0)) is the equilibrium state, the first derivative represents the linear mode shapes and the second25

derivative term includes the modal derivatives as shown in equation (1).

u(q)≈u(q0)+
∂u

∂q

∣∣∣∣
q0

· (q− q0)+
1

2

(
∂2u

∂q∂q

∣∣∣∣
q0

· (q− q0)
)
· (q− q0)+O(‖q‖3)

=u(q0)+Φ · q+ 1

2

(
∂Φ

∂q
· q
)
· q+O(‖q‖3)

(1)
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In this study, the equilibrium state is taken as the initial state where u0 = 0 (undeflected state) and equation (1) can be written

in terms of mode shapes and their derivatives at the initial state as

u(q)≈Φ · q+ 1

2

(
∂Φ

∂q
· q
)
· q+O(‖q‖3) (2)

where Φ is linear mode shapes , u is displacement vector and q is modal amplitude vector. The displacement vector is function

of time (t) and position (x), whereas mode shapes are only function of position (x) and modal amplitudes are only function5

of time (t). So, they can be written as u(t,x), q(t), Φ(x), however their time and position relations are not included in the

equations for simplicity. The linear mode shapes (Φ) and corresponding natural frequencies (ω) can be found by the generalized

eigenvalue solution,

(K −ω2
iM)φi = 0 (3)

whereK,M are the tangent stiffness and mass matrices and ωi,φi are the ith eigenvalue and corresponding eigenvector (mode10

shape vector). The tangent stiffness is the Jacobian of the internal force with respect to the displacement. It is a generalization

of the linear stiffness matrix in the nonlinear case. Here the tangent stiffness and mass matrices are computed at the initial state

(u0 = 0) for the purpose of solving eigenvalue problems. As seen in the later derivation in this section, the tangent stiffness

at the deflected state is also required to compute the modal derivatives. The modal derivatives are calculated by taking the

derivative of eigenvalue problem shown in equation (3) with respect to modal amplitude qj .15

∂

∂qj

(
(K −ω2

iM)φi

)
=

(
∂K

∂qj
− ∂ω2

i

∂qj
M −ω2

i

∂M

∂qj

)
φi +(K −ω2

iM)
∂φi

∂qj
= 0 (4)

To determine the derivative of φi and ωi with respect to the jth modal amplitude qj , another equation is needed. This equation

can be chosen as equation (5) where φi is the mass normalized mode shape vector.

∂

∂qj
(φT

i Mφi) = 2φT
i M

T ∂φi

∂qj
+φT

i

∂M

∂qj
φi = 0, where φT

i Mφi = 1 (5)

When the equation (4) and (5) are combined, the modal derivative of ith mode shape vector φi and natural frequency ωi20

with respect to the jth modal amplitude can be determined by(K −ω2
iM) −Mφi

−(Mφi)
T 0



∂φi

∂qj

∂ω2
i

∂qj

=

−
∂K

∂qj
φi +ω2

i

∂M

∂qj
φi

1
2φ

T
i

∂M
∂qj
φi

 (6)

Equation (6) contains all the terms that are required to compute the modal derivatives. The derivation of modal derivatives is

similar to the derivation of the sensitivity of eigenmodes and eigenfrequencies with respect to a design variable in structural

optimization.25

For computation of modal derivatives, the terms related to inertia effects (i.e. mass matrix and its derivatives) are generally

ignored, since their contribution to the modal derivatives is very limited (Rutzmoser et al., 2017). The derivative of the eigen-

value can also be assumed to be zero due to the fact the eigenfrequencies of the slender cantilever beams are not sensitive to
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the vibration amplitude. These assumptions lead to static modal derivatives which are symmetric whereas modal derivatives

computed from equation (6) are not necessarily symmetric.

∂φi

∂qj
=−K−1 ∂K

∂qj
φi (7)

For conciseness, the static modal derivatives are simply called ‘Modal Derivatives (MDs)’ hereafter. In equation (7), the

derivative of the stiffness matrix with respect to the jth modal amplitudes, i.e. ∂K
∂qj

, is needed to compute the modal derivatives.5

In this study, the derivative of stiffness matrix (K) with respect to the jth modal amplitudes (qj) is computed by central finite

differences as

∂K

∂qj
=
K(φjδj)−K(−φjδj)

2δj
(8)

where K(φjδj) is the tangent stiffness matrix when the system displacements equals to φjδj . The tangent stiffness matrix at

the deflected state of the structure by a given amplitudes of δj is computed with a geometrically non-linear beam solver based10

on co-rotational formulation in (Krenk, 2005). The calculation of ∂K
∂qj

from equation (8) is the only step where a geometrically

nonlinear solver is required. When the stiffness matrix derivatives are ready, the computation of equation (7) is straightforward

since the rest of the equation consists of stiffness matrix and linear eigenvectors at the undeflected state. The tangent stiffness

matrix at undeflected state is actually the linear stiffness matrix which is used in existing modal approaches. There are (MMD)

number of modal derivatives which are computed for M number of linear mode shapes. The relation between M and MMD15

can be written as,

MMD =
M × (M +1)

2
(9)

Figure 4 and 5 are used to give visual understanding of the modal derivatives. Figure 4 shows bending of a straight beam

with airfoil cross-section in one direction and its representation by a linear bending mode and its modal derivative by itself.

The linear bending mode shape doesn’t have any displacement in axial (span-wise) direction, so the total (curved) length of20

the beam increases. The modal derivative vector of the bending mode shape with respect to its modal amplitude includes axial

displacement effect. When the linear bending mode and its modal derivative is summed, the axial displacement and bending

effects are captured together.

Figure 4. Bending deflection of a straight beam in the first mode shape and its representation by linear mode shape and its modal derivatives.
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Figure 5 shows the modal derivatives that are similar to that in Figure 4 except that the deflections occur in two bending

directions at the same time. Hence, together with the axial displacements, there is also a torsion effect due to the couplings

at the deflected state. The linear modal approach is only capable of capturing the bending deflections in two lateral (x− and

y−) directions. The axial displacements are captured by the modal derivatives of each bending mode shape with respect to its

own modal amplitudes in Figure 5, whereas the torsion effects are included in the cross modal derivative vectors which are the5

derivatives of one bending mode shape with respect to the modal amplitudes of another bending mode in the other direction.

Figure 5. Bending deflections of a straight beam in lateral (x− and y−) directions and the representation of the deflections by linear mode

shapes and their modal derivatives.

3.2 Expansion modes

Expansion modes are similar to modal derivatives, but they are computed by a non-intrusive approach (Hollkamp and Gordon,

2008). The expansion modes also contain the secondary effects such as the axial and torsion motions caused by the bending

motions. These vectors are computed from the difference between the deflections computed by linear ROMs and the nonlinear10

deflections. The difference is written as a function of selected order of modal amplitudes and a quadratic (2nd order) relation

is used in this study. Nonlinear deflections for static cases are computed in a geometrically non-linear solver. In the expansion

mode approach, the physical displacements are represented as

u(t,x)≈Φ(x)q(t)+ΦEM (x) qEM(t) (10)

where Φ and ΦEM are the matrices whose columns are the linear modes and the expansion modes, x is position and t is15

time. The expansion mode amplitudes qEM are quadratic functions of the bending modes, and can be written in terms of the M

linear mode amplitudes as

qEM =
[
q21 q1q2 . . . q1qM q22 q2q3 . . . q(M−1)qM q2M

]T
(11)

where the qi is the ith linear mode amplitudes. The relation between the number of linear modes (M ) and the number of

corresponding expansion modes (MEM ) is20

MEM =
M × (M +1)

2
(12)
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So, there are the same number of modal derivatives and expansion modes for the same number of linear modes, since both of

these vectors represent the quadratic relation between deflections and modal amplitudes.

While the above Equation (10) defines the expansion modes, the procedure to compute the expansion modes is given below.

First, a set of static analyses are performed. The applied forces are chosen as a combination of two linear mode shapes (Φ),

which can be written as5

f =K(λiΦi +λjΦj) (13)

where λi and λj are the prescribed scaling factors for the ith and jth linear mode shape. The non-linear displacements (u) are

computed with a geometrically nonlinear solver for the loads f .

Second, the amplitudes of the linear modes, i.e. q, are computed from the applied loads as

ΦTKΦq = ΦTf =Krq = fr

q =K−1r fr
(14)10

where K and Kr are the full and reduced stiffness matrices, and f and fr are the full and reduced force vectors. When the

applied forces (f ) are known, q can be computed.

Once we have the linear modal amplitudes (q), the corresponding expansion modal amplitudes (qEM ) can be computed by

using equation (11).

Then, the nonlinear displacements, the amplitudes of the linear modes, and the amplitudes of the expansion modes can be15

collected into three matrices: U ∈ RN×Nk , Q ∈ RM×Nk and QEM ∈ RMEM×Nk . Here each column of the matrices corre-

sponds to a static load case. All load case results can be written in matrix form as

U ≈ΦQ+ΦEMQEM (15)

Equation (15) is similar to Equation (10) except that Equation (15) is in matrix form where the nonlinear displacementsU , the

linear modes Φ, the amplitudes of the linear modes Q, and the amplitudes of the expansion modes QEM are known from the20

above steps. The only unknown in Equation (15) is the expansion modes ΦEM .

Finally, the expansion modes can be determined by using the least square method

ΦEMQEM =U −ΦQ−→ minimize
ΦEM∈RN×MEM

‖U −ΦQ−ΦEMQEM‖ (16)

where ‖ ‖ denotes the 2-norm of the vector and it is solved for Modal expansion matrix ΦEM .

It is noted that the expansion modes are very similar to the modal derivatives. They are identical except the numeric differ-25

ences if the set of ith and jth are symmetric and the force amplitudes λi and λj are small enough. The computational cost of

the expansion modes is more expensive than the modal derivatives since their calculation requires solving more static problems

than the calculation of the modal derivatives. The difference in the computational cost is small when the number of linear

modes (M ) is small. However, this difference becomes significant when the number of the linear modes is large.

Further, it is noted that one can extend Equation (11) to include higher-order expansion modes corresponding to higher-order30

polynomial terms of the amplitudes of the linear modes, for example, the expansion modes for the cubic and quadratic terms

of the linear modal amplitudes.
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3.3 Numerical implementation

As mentioned before, the modal derivatives or the expansion modes are not included into the reduction space. Consequently,

only the linear mass, stiffness and damping matrices are used in the dynamic response analysis. This isn’t the case for other

studies in the literature (see Table 1) which used the nonlinear stiffness terms in the modal space.

Algorithm 1 shows the procedure to obtain structural response with correction vectors for pure structural response analysis5

where the forces are functions of time and for coupled response analysis where the forces are functions of both time and

displacements. In this study, modal derivative and expansion mode vectors are used as correction vectors.

Algorithm 1 Response calculation with quadratic correction vectors

– Model generation step (time independent and done once)

1. Generate the linear ROM from the finite element model:

(a) Compute the linear modes (φi) from
(
K −ω2

iM
)
φi = 0

(b) Compute the reduced order stiffnessKr , massMr and dampingCr matrices by Galerkin projection :

Kr = ΦTKΦ,Mr = ΦTMΦ,Cr = ΦTCΦ

2. Compute the correction vectors:

For the modal derivatives see section 3.1

For the expansion modes see section 3.2

– Pure structural response analysis (forces are functions of time)

1. Compute the modal amplitudes for the linear ROM by solving the equation of motion:

Mrq̈(t)+Crq̇(t)+Krq(t) = ΦTf(t) = fr(t)

2. Compute the displacements by using the linear modes, the correction vectors and the linear modal amplitudes:

With MDs : u(x,t) = Φ(x) · q(t)+ 1
2

(
∂Φ
∂q

· q(t)
)
· q(t)

with EMs : u(x,t) = Φ(x)q(t)+ΦE(x) qE(q)

The calculation of displacements (u(x,t)) doesn’t have to be done at each time step and can be performed as a post process

after the time simulations.

– Coupled response analysis (forces are functions of time and displacements)

1. Compute modal amplitudes for linear ROM by solving equation of motion:

Mrq̈(t)+Crq̇(t)+Krq(t) = ΦTf(t,u) = fr(t,u)

2. Compute displacements by using linear modes, correction vectors, and the linear modal amplitudes:

With MDs : u(x,t) = Φ(x) · q(t)+ 1
2

(
∂Φ
∂q

· q(t)
)
· q(t)

with EMs : u(x,t) = Φ(x)q(t)+ΦE(x) qE(q)

3. Update the loads (f(t,u)) and apply the loads
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4 Results and Discussion

The proposed method is demonstrated in the case studies of a straight cantilever beam and the blade of the IEA 15MW reference

wind turbine under static and dynamic loads. The displacement results are given to evaluate the effectiveness of the correction

methods based on the modal derivatives and expansion modes to capture the large bending deflection effects. The reduced

order model results are compared with HAWC2 results for both static and dynamic cases. HAWC2 (Larsen and Hansen, 2019)5

is a aero-servo-hydro-elastic load analysis tool for wind turbines and developed by DTU Wind and Energy Systems. It uses

multibody formulation with Timoshenko beam and can capture geometric non-linearities (Pavese et al., 2016). In HAWC2,

z− axis is along the axial direction whereas x− and y− directions are lateral directions (see Figure 3 for HAWC2 coordinate

system).

4.1 Straight beam10

A cantilever straight beam model is used for static and dynamic load cases. Table 2 shows the general properties of the beam

whose cross-section properties are constant along the beam length and shear coefficients are very high compared to the bending

stiffness values, so it behaves like an Euler-Bernoulli beam.

Table 2. Straight beam geometry and cross-section stiffness properties. Beam is clamped from its root.

Length Unit mass EIxx EIyy GJ

[m] [kg/m] [Nm2] [Nm2] [Nm2]

10.0 172.4 215×104 869×103 416×104

Figure 6 shows x−, y−, z− displacement and torsion motion components of the first two mode-shape vectors of the beam.

Since the beam is straight and has no material coupling, both bending mode-shapes have only one lateral direction displacement15

without any axial or torsion component. First mode-shape is in x− direction and second one is in y− direction.

Figure 7 shows modal derivative (MD) and expansion mode (EM) vectors for first two mode-shapes. The results are very

similar for MD and EM vectors. These vectors show the sensitivity of a mode-shape with respect to a modal amplitude. The

vector names are given so that the first number represents the mode number for linear mode-shape vector whose sensitivity is

computed with respect to the modal amplitude of the mode number which is given as the second number in the vector names.20

Hence, MD-1-1, MD-2-2, EM-1-1, EM-2-2 shows the sensitivity of a mode-shape with respect to its own modal amplitude

whereas the MD-1-2 and EM-1-2 illustrate the sensitivity of a mode-shape with respect to another mode’s modal amplitude.

Since, MD-2-1 and MD-1-2 are same for static modal derivatives only MD-1-2 results are shown here. This symmetry case

is also valid for expansion modes (EMs), since they are also computed for static cases. MD-i-i and EM-i-i vectors have only

axial displacements since their mode-shapes are only in one lateral direction. On the other hand, MD-i-j and EM-i-j have only25

torsion motions which represents the coupling between two lateral directions.
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Figure 6. x−, y−, z− and torsion components of first two mode shapes of straight beam. Beam span is along the z− axis.

The first test was carried with static loads in x− direction. The applied force vectors are determined from stiffness matrix

(K), first mode shape Φ1 and amplification factor (λ) as,

Fx = λKΦ1 (17)

where mode-shape Φ1 is normalized according to its maximum value.

Expansion mode-shape and modal derivative results are same for this test case, therefore they are given together in Table 35

which shows the tip displacements for linear ROM without corrections (Lin.) and with modal derivative (MD) and expansion

mode (EM) corrections and HAWC2 results. Modal derivative, expansion mode and linear ROM results are same for lateral

(x−) deflections since uncoupled mode-shape result in zero values in lateral direction components (see Figure 7) of modal

derivative and expansion mode vectors. Linear ROM error in x− direction increases as the deflections increases and the error

is less than 5% for deflections of 20% beam length. Moreover linear model cannot capture any axial (z−) displacement whereas10

correction factors work quite well. The axial (z−) deflection is a secondary effect and captured by corrections coming from

modal derivatives and expansion modes whereas linear model estimates zero displacement in z− direction and 100% error for

all solutions. Modal derivative and expansion mode errors are increasing by deflections and are much larger than bending (x−)

13



0 5 10
−0.01

0.00

0.01
X

-d
is

p
[m

]

0 5 10
−0.01

0.00

0.01

Y
-d

is
p

[m
]

0 5 10
Span [m]

−0.10

−0.05

0.00

Z
-d

is
p

[m
]

0 5 10
Span [m]

0.00

0.05

0.10

T
or

si
on

[d
eg

.]

MD-1-1 EM-1-1 MD-2-2 EM-2-2 MD-1-2 EM-1-2

Figure 7. x−, y−, z− and torsion components of modal derivative and expansion mode vectors. Beam span is along the z− axis.

direction errors. The two main source of errors in secondary (z−) direction are truncation errors coming from eq. 2 and the

error in bending (x−) direction which is even amplified for secondary effects due to the formulation.

Table 3. Straight beam lateral (x−) and axial (z−) tip deflection results for HAWC2, linear model, MD and EM corrections together with

the errors of the models compared to HAWC2.

λ x-HAWC2 x-Lin./MD/EM x-error z-HAWC2 z-MD/EM z-MD/EM-err. z-Lin. z-Lin.-err.

1 0.991 1.000 0.9% -0.057 -0.059 3.51% 0.0 100%

2 1.933 2.000 3.35% -0.218 -0.236 8.26% 0.0 100%

3 2.790 3.000 7.0% -0.459 -0.530 15.47% 0.0 100%

Figure 8 shows x− and z− (axial) positions of the structural nodes computed from HAWC2, linear ROM, MD and EM

models for λ= 2 and λ= 3 load cases. The quadratic corrections capture the secondary effects all along the beam length.

The second test case include static loads in x− and y− directions. The load components are determined by similar formu-5

lation given in equation (17). The x− force components are amplified by λ= 2.5 and the y− force components are amplified

by λ= 1.0. Figure 9 shows x−, y−, z− displacements and torsion deflections along the beam length. Linear model estimates
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Figure 8. Straight beam x− and z− (axial) positions for λ= 2 (left figure) and λ= 3 (right figure) load cases. The positions are shown for

HAWC2, linear ROM, MD and EM corrections.

x− and y− displacements quite accurately and quadratic vectors don’t alter results in these directions since they don’t have

components in these directions (see Figure 7). On the other hand they capture the secondary effects in z− and torsion direc-

tions due to geometric nonlinearities. Linear ROM cannot capture any axial (z−) displacements and torsion deflections. On the

other hand, MD and EM corrections result in accurate estimation of secondary effect even though the loads are applied in two

directions. Hence, they can also capture the couplings between different directions.5

The last load case with straight beam model includes dynamic loads in two lateral directions. The x− direction load is

constant with λ= 2 whereas the y− direction load is computed as,

Fy(t) =Mg sin(ωt) (18)

where M is mass matrix, g is acceleration vector, ω is a given rotation frequency of the rotor. Note that the beam does not

rotate, only the load varies with the given frequency. So, there is no axial (z−) force due to centrifugal effects. For this example10

the gravity vector has only y− acceleration with value of 9.81 m/s2, and ω is taken as 1 rad/s. The simulation time step is

0.01 seconds.

Figure 10 shows tip x−, y−, z− displacements and torsion deflections for 100 seconds. Linear model can capture dynamics

in y− direction very accurately, and its x− direction results are very close to HAWC2 results without any fluctuations after

60 seconds which cannot be captured without nonlinear stiffness terms Gözcü and Dou (2020). However these fluctuations are15

very small compared to the overall displacements in x− direction. On the other hand, linear ROM results are again zero in

axial and torsion directions whereas MD and EM corrections work very well even for initial transition period. Moreover, there

is no phase difference between HAWC2 and MD/EM results which support that the nonlinear stiffness effects are very small

for cantilever beams with moderate deflections. The fluctuations in x− direction due to nonlinear stiffness term effects shows

the limitation of this method even though the fluctuations are very small.20
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Figure 9. Straight beam x−, y−, z− displacements and torsion motion results along the beam span. The static load has x− and y−

components.

4.2 IEA 15MW turbine blade

The blade of the IEA 15MW wind turbine is modeled as beams in HAWC2 and FAST for load analysis Gaertner et al. (2020).

It is a more complex structure in comparison to the beam studied in the previous section. The blade has material coupling

terms and initially curved shape due to prebend (mostly in y− direction), aerodynamic twist and back-swept (mostly in x−
direction). Hence, the blade mode-shapes are coupled in x−, y−, z− and torsion direction unlike the straight beam example.5

Besides, its cross-section stiffness properties change over the span and material couplings between lateral bending directions

and torsion brings additional couplings in mode-shapes. Table 4 shows the relevant blade properties.

Table 4. IEA 15MW reference wind turbine blade: geometric dimensions, mass, and initial curvature limits in the prebend (y−) and twist

directions.

Length Mass Tip prebend Max chord Twist range

[m] [ton] [m] [m] [deg]

117 44.7 4.00 5.77 -15 to 2

16



0 25 50 75 100
0

2
T

ip
x-

d
is

p
[m

] HAWC2

MD

EM

Linear

0 25 50 75 100
−1

0

1

T
ip

y-
d

is
p

[m
]

0 25 50 75 100
Time [s]

−0.5

0.0

T
ip

z-
d

is
p

[m
]

HAWC2

MD

EM

Linear

0 25 50 75 100
Time [s]

0.0

0.5

T
ip

to
rs

io
n

[d
eg

.]

Figure 10. Straight beam dynamic analysis tip x−, y−, z− displacements and torsion deflections for HAWC2, linear ROM, MD and EM

corrections.

The straight beam example mode-shapes are uncoupled so that mode-shape vectors include non-zero values only in one

lateral bending direction. However, the mode shapes of the turbine blade are coupled due to its geometry and cross-section

material couplings. Figure 11 shows first two mode-shapes of the blade. The first mode-shape of the blade is mainly in y−
(flapwise) direction with 0.5Hz whereas the second mode-shape is mainly in x− (edgewise) direction with around 0.7Hz.

Moreover, both mode-shapes have components in all directions including z− (axial) and torsion directions. Second mode-5

shape torsion coupling is much stronger than the first mode-shape’s coupling whereas it has weaker coupling in axial direction

than the first mode-shape.

Figure 12 shows x−, y−, z− and torsion components of modal derivative and expansion mode vectors for first two mode-

shapes. MD and EM vectors are very similar and they include components in all directions due to the couplings. The difference

between MD and EM vectors comes from numerical computation process. As seen in section 3.2, expansion modes (EM)10

are computed via least square method which uses all displacement and modal amplitude results gathered in matrices whereas

each modal derivative (MD) is computed independently. Since the IEA 15MW reference wind turbine blade mode shapes are

coupled, there are non-zero values at off-diagonal terms in the displacement matrices used during the computation of EMs.

This leads some numerical differences between MDs and EMs for IEA15 MW blade case.
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Figure 11. The lateral and torsional displacements of the first two mode shapes of IEA 15MW reference wind turbine blade.

The blade loads include aerodynamic loads at steady 11ms−1 wind speed which gives the highest thrust force. The steady

aerodynamic loads for symmetric rotor (no tilt, no yaw) is time independent (static) and their torsion components are not

included for this example so that the torsion due to mode-shape couplings and dynamic forcing is more clear for this example.

On top of the aerodynamic loads, the weight of the blade is applied in x− (edgewise) direction with the formulation given

in equation (18) where ω is 1.0 rad/s. There are 15 linear mode-shapes for blade ROM and quadratic vectors for first three5

modes are included only since these modes have very high modal amplitudes among all (see Table 5).

Figure 13 shows the tip displacement results of the blade in edgewise (x−), flapwise (y−), axial (z−) and torsion directions

for linear ROM, HAWC2 and correction models. Since most of the thrust force is in flapwise direction, the largest displacements

occur in that direction with mean displacement around 13.4m. The fluctuations in y− direction is mostly due to couplings

between mode-shapes, in other words it is mostly due to linear stiffness effects and not the nonlinear stiffness effects which is10

the case for straight beam example (see Figure 10 x− direction results). Since nonlinear stiffness effects are very small in x−
and y− displacements, the results are very similar in terms of magnitude and phase for all models.

The secondary effects become clear in z− (axial) and torsion directions. The linear model has 0.84m mean tip axial dis-

placement for last 50 s due to mode-shape couplings (see Figure 11), however HAWC2 model has −0.41m mean tip axial

displacements for the same time period. Hence, linear ROM estimates 2.5m larger rotor diameter compared to HAWC2.15
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Figure 12. The first three modal derivatives and three expansion modes for the blade of the IEA 15MW reference wind turbine. The lines

show the lateral and torsional displacements along the span of the blade length.

Table 5. IEA15MW blade mean modal amplitude results for last 50 s of the analysis

q1 q2 q3 q4 q5 q6 q7

12.44 1.13 0.74 -0.17 0.23 0.28 0.34

Modal derivative correction model has−0.29m and expansion mode correction model has−0.23m mean axial (z−) displace-

ments. They also represents the fluctuations in z− directions much more accurately compared to the linear model which has

almost no fluctuations for last 50 s. Linear model maximum tip torsion error compared to HAWC2 for last 50 s is about 1.36°.

The maximum tip torsion error of MD and EM models for last 50 s are 0.63° and 0.26°. The correction modes also capture

the phase of torsion motion more accurately than the linear model which is out of phase with HAWC2 in torsion direction. In5

this study, the load time series are prescribed and not updated with deflection. In other words, the results are not obtained for

an aeroelastic analysis. On the other hand, the importance of torsion motion will increase for an aeroelastic analysis. The dif-

ference in mean torsion results are critical in static aeroelastic analysis where the steady operating conditions are determined.

On the other hand, the difference in torsion fluctuations will affect the damage equivalent loads Gozcu and Verelst (2019) and

aeroelastic stability analysis Kallesøe (2011).10
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Figure 13. The lateral and torsional displacements for the blade tip of IEA 15MW wind turbine obtained by using HAWC2, linear ROM,

MD correction, and EM correction.

Figure 14 and Figure 15 show the displacement results over the blade span at the two selected time steps where minimum

and maximum torsion deflections are obtained in the last 50 s from HAWC2 (shown with black dashed lines). These time steps

also correspond to maximum and minimum edgewise displacements. At 70.56 s where the maximum tip torsion occur, linear

ROM results are quite accurate except z− and x− displacement (see Figure 14). On the other hand, MD and EM results are

much better than linear ROM results in all directions for that moment. Linear ROM has 1.29m error in z− direction at blade tip5

whereas MD and EM errors are less than 0.17m for blade tip in figure 15. The linear ROM predicts a nonphysical elongation

in the z−direction because of the non-zero motion in the z−direction in the linear mode shapes (particularly Mode-1) shown in

Fig. 11. In contrast, the two correction methods in this study are not limited by the linear mode shapes. Both of the correction

methods provide a correct estimation of the shortening of the blade in the axial direction.

Figure 14 shows displacement and torsion results along blade span at the maximum tip torsion moment (67.51 s in Figure10

13). Linear ROM is quite accurate in x− and y− direction, however it has low accuracy in z− and torsion directions. Its total

torsion error over the blade span is 33.6° whereas MD error is 7.7° and EM error is 1.7° along the blade span compared to

HAWC2 results. The z− direction results are similar to minimum torsion moment results in Figure 15.
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Figure 14. Spanwise deflection results at the time when the maximum torsion occurs (67.5 seconds)

One of the findings in Figure 10 and Figure 13 is that the frequency of the vibration is not affected by the large deflections

of the blade. Even the linear model can predict the vibration frequency or the time period of the periodic response in good

agreement with HAWC2 simulation in main deflection directions. In practice, this means that no correction is needed for the

vibration frequency in case of large deflections. This also suits the application of the proposed correction method to a variety

of slender cantilever structures including wind turbine blades. Besides, this allows using correction terms to capture secondary5

effects due to geometric nonlinearities for moderately large deflections.

5 Conclusions

This study introduced a correction approach for capturing the geometric nonlinear effects in the reduced order models of

cantilever beam structures which go through the moderately large deflections. The approach is examined based on two different

types of correction vectors (i.e. the modal derivatives and expansion modes) leading to similar results. Both correction vectors10

can be pre-computed by using a geometrically nonlinear beam solver, and then used in the dynamic response analysis. The

advantage of this approach is its low computational cost during the coupled response analysis. It is suitable to be integrated
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Figure 15. Spanwise deflection results at the time when the minimum torsion occurs (70.66 seconds)

into the aeroelastic analysis tools that use the modal based reduced order models for the cantilever beam structures such as

wind turbine blades and airplane wings.

The proposed method is demonstrated by using two case studies, including a simple cantilever beam, and the blade for

the IEA wind 15MW reference turbine. For the simple cantilever beam, its mode shapes are uncoupled in the sense that the

displacements in the two bending modes are orthogonal two each other. For the turbine blade, its mode shapes are coupled5

because of its curved and twisted geometry and complex cross sectional properties. In the case study of the simple cantilever

beam, the correction vectors based on the modal derivatives and expansion modes have identical results and they captured

geometrically nonlinear effects accurately for the lateral deflections up to 25% of the beam length. In the case study of the

blade of the IEA 15MW reference turbine, modal derivative and expansion mode vectors have small deviations from each

other since they are computed by different numerical processes. The blade axial displacements estimated by the linear ROM10

are in opposite direction to the axial displacements in HAWC2 results. In other words, the linear ROM predicts a nonphysical

elongation of IEA 15 MW blade span for the given load case. In contrast, the two correction vectors in this study give a good

estimation of the axial motion of the blade tip. Further, the torsion displacements obtained by the linear ROM are out of phase

with the HAWC2 results, whereas the torsion displacements obtained by using the two correction vectors in this study are in

phase with the HAWC2 results. The torsion phase difference between nonlinear solver HAWC2 and linear ROM is crucial15
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for aeroelastic stability and load analysis of wind turbine blades. The comparison of these results shows that the proposed

correction method is capable to accurately estimate the nonlinear dynamic response of the cantilever beam structures with

large bending deflections, and it is also suitable for the wind turbine blades with curved and twisted geometry and complex

cross sectional properties.

The study can be extended with an implementation of the correction method into an aeroelastic tool that uses the reduced5

order models for airplane wings or wind turbine blades. Further, the proposed correction method can also be implemented

based on machine learning methods such as neural network models or adaptive kiriging methods.
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