
1 
 

Lifetime prediction of turbine blades using global precipitation products 
from satellites 
Merete Badger1, Haichen Zuo1, Ásta Hannesdóttir1, Abdalmenem Owda1, Charlotte Hasager1 
 
1Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, 4000, Denmark 5 

Correspondence: Merete Badger (mebc@dtu.dk) 

Abstract. The growing size of wind turbines leads to extremely high tip speeds when the blades are rotating. The blades are prone 

to leading edge erosion when raindrops hit the blades at such high speeds and blade damage will eventually affect the power 

production until repair or replacement of the blade is performed. Since these actions come with a high cost, it is relevant to estimate 

the blade lifetime for a given wind farm site prior to wind farm construction. Modelling tools for blade lifetime prediction require 10 

input time series of rainfall intensities and wind speeds in addition to a turbine-specific tip speed curve. In this paper, we investigate 

the suitability of satellite-based precipitation data from the Global Precipitation Measurement (GPM) Mission in the context of 

blade lifetime prediction. We first evaluate satellite-based rainfall intensities from the Integrated Multi-Satellite Retrievals for 

GPM (IMERG) final product against in situ observations at 18 weather stations located in Germany, Denmark, and Portugal. We 

then use the satellite and in situ rainfall intensities as input to a model for blade lifetime prediction together with the wind speeds 15 

measured at the stations. We find that blade lifetimes estimated with rainfall intensities from satellites and in situ observations are 

in good agreement despite the very different nature of the observation methods and the fact that IMERG products have a 30 minute 

temporal resolution whereas in situ stations deliver 10 minute accumulated rainfall intensities. Our results indicate that the wind 

speed has a large impact on the estimated blade lifetimes. Inland stations show significantly longer blade lifetimes than coastal 

stations, which are more exposed to high mean wind speeds. One station located in mountainous terrain shows large differences 20 

between rainfall intensities and blade lifetimes based on satellite and in situ observations. IMERG rainfall products are known to 

have a limited accuracy in mountainous terrain. Our analyses also confirm that IMERG overestimates light rainfall and 

underestimates heavy rainfall. Given that networks of in situ stations have large gaps over the oceans, there is a potential for 

utilizing rainfall products from satellites to estimate and map blade lifetimes. This is useful as more wind power is installed offshore 

including floating installations very far from the coast.  25 

1 Introduction 

Leading edge erosion is a progressive roughening of wind turbine blades caused by the impact of precipitation with the blade 

movement through the air. The problem is evidently more pronounced offshore than for wind farms on land. Blade lifetimes of 

only 5-7 years have been reported for offshore wind farms in the North Sea even though the nominal lifetime of a turbine blade is 

typically 20-25 years (Ibrahim and Medraj, 2020; Herring et al., 2019). Leading edge erosion of wind turbine blades is a relatively 30 

new challenge. It has emerged with the growing rotor diameter of modern wind turbines, which leads to higher tip speeds.  

 

A newly installed turbine blade has an incubation time where no damage is observed. Thereafter, initial damage occurs in the form 

of pinholes. Widespread damage will follow and it can be observed as an erosion of material in the top coating, filler or substrate. 

Repair of the blade is typically scheduled long before structural damage occurs. A rough blade has poorer aerodynamic efficiency 35 

and therefore, leading edge roughness can cause a significant loss of the annual wind power production (Bak et al., 2020). It can 
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lead to unforeseen operation and maintenance (O&M) cost (Mishnaevsky and Thomsen, 2020) and, eventually, to replacement of 

wind turbine blades. O&M is costly offshore and contributes to the operational expenditures (OPEX) of a given wind farm.  A 

strategy to mitigate this financial risk is to operate the turbines in a so-called erosion safe mode during events of heavy precipitation 

and strong winds (Bech et al., 2018; Skrzypiński et al., 2020).  40 

 

In connection with the planning of offshore wind energy projects, it is essential to predict the lifetime of the turbine blades in order 

to estimate the OPEX during the project lifetime. To calculate the lifetime of a wind turbine blade, information about the rainfall 

intensity and wind speed at the wind turbine location is needed at the highest possible temporal and spatial resolution. The temporal 

coverage of the rain and wind data sets should ideally be on the order of ten years to account for intra-annual variabilities (Hasager 45 

et al., 2021). Additional information about the wind turbine tip speed curve is also necessary since the movement of the turbine 

blade relative to that of the raindrops and the wind direction is determining the blade damage.  

 

Networks of rain gauges and rain radars are established on land; typically by national meteorological agencies (Kidd et al., 2017). 

The rain observations are used for many different applications e.g. hydrology, agriculture, health, civil protection, and climate 50 

change monitoring. In contrast, rain observations over the oceans are very sparse (Klepp et al., 2020) and rain information is 

typically obtained through Numerical Weather Prediction (NWP) modeling or satellite observations (Shaw et al., in review). 

Previous blade lifetime analyses are based on rain gauge observations (Bech et al., accepted; Hasager et al., 2020; 2021; Law and 

Koutsos, 2020; Skrzypiński et al., 2020; Verma et al., 2021a), disdrometer observations (Tilg et al., 2022; Verma et al., 2021b), 

weather radar observations (Letson et al., 2020), re-analysis data (Prieto and Karlsson, 2021), and mesoscale weather model outputs 55 

(Eisenberg et al., 2018; Visbech et al., in review). 

 

The Global Precipitation Measurement (GPM) mission is a network of satellites delivering global rain observations since 2014 

(Hou et al., 2014). It has a Core Observatory consisting of dual-frequency precipitation radars operating in Ku-band (13.6 GHz) 

and Ka-band (35.5 GHz) as well as the GPM Microwave Imager; a radiometer operating at different frequencies from 10 to 183 60 

GHz. Many other spaceborne microwave sensors contribute to GPM and additional observations from infrared sensors on 

geostationary satellites are included. The GPM mission is an expansion of the Tropical Rainfall Measuring Mission (TRMM), 

which was in operation during 1997-2015 (Huffmann et al., 2007). Whereas TRMM sensed the heavy rainfall associated within 

the tropics, GPM is also sensing the light rain, hail, and snowflakes common to higher latitudes. Here, we hypothesize that rainfall 

intensities from GPM can also be useful for the prediction of erosion damage on wind turbine blades; especially offshore where 65 

no other rain observations exist. 

 

Integrated Multi-Satellite Retrievals for GPM (IMERG) lead to global level-3 rain products with a uniform grid spacing of 0.1° 

latitude and longitude from latitude 60°N to latitude 60°S. The temporal sampling of these products is 30 minutes. The initial 

sampling of the different satellite sensors contributing to IMERG can be considerably higher or lower and therefore, the IMERG 70 

validation performance varies for different scales, periods, and locations on Earth (Chen and Li, 2016). IMERG products come in 

three versions: early, late, and final. The final product is considered the most suitable for scientific applications as it includes 

assimilation of rain gauge observations from the Global Precipitation Climatology Centre. Therefore, it compares best with 

independent in situ observations (Tapiador et al., 2020). Dezfuli et al. (2017) find that the IMERG final product outperforms the 

previous TRMM Multisatellite Precipitation Analysis. Thanks to the higher temporal and spatial resolution of IMERG, the product 75 

captures mesoscale convective systems much better.  
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The objective of this paper is to determine whether rainfall intensities obtained from the IMERG final product are suitable for 

estimating the lifetime of wind turbine blades. The idea of using satellite data for blade lifetime prediction was put forward by 

Mishnaevsky et al. (2021) and here we test its applicability in practise. We first evaluate the performance of IMERG rainfall 80 

intensities with respect to high quality in situ observations from weather stations. Next, we use the IMERG and in situ observations 

of the rainfall intensity as input to a damage model code for prediction of blade lifetimes and compare the two types of lifetime 

estimates.  

2 Previous evaluations of the IMERG final product 

A number of independent studies evaluate the performance of IMERG final products for different regions, temporal scales, and 85 

applications. Overall, IMERG tends to overestimate light rain intensities and underestimate heavy rain intensities. This can lead to 

seasonal biases for regions where the rain characteristics vary throughout the year (Bogerd et al., 2021; Maranan et al., 2020; 

Tapiador et al., 2020). Rios Gaona et al. (2016) perform an early evaluation of the IMERG final product against ground based rain 

radar observations in the Netherlands and finds that IMERG underestimates countrywide rainfall depths by 2%. 

 90 

Based on comparisons with rain gauge data in Brazil, Freitas et al. (2020) find that the IMERG product is a good source of sub-

daily rainfall depth data for hydrological and hydroclimatic applications but they find large overestimations and underestimations 

of the IMERG product for rainfall duration and intensity properties, respectively. Cui et al. (2020) focus on mesoscale convective 

systems in the US and report that IMERG overestimates the total annual precipitation but underestimates the hourly mean 

precipitation. They note that evaporation of light rain under clouds causes frequent falls alarms and positive biases (i.e. IMERG 95 

shows precipitation pixels but no rain is measured at the ground stations). A very high number of false alarms (83% of all IMERG 

rain pixels) is also reported by Maranan et al. (2020) for forested areas in Ghana, whereas high rain intensities are negatively 

biased.  

 

A decomposition according to the source of the IMERG data can give insights in the performance per sensor type. Based on 100 

analyses over the eastern United States, Tan et al. (2016) find that the detection of rain events is most reliable for passive microwave 

sensors or morphed products whereas infrared sensors alone lead to a poorer performance when it comes to identification of rain 

events. Infrared sensors miss a very large fraction of the actual rain events measured on the ground. Bogerd et al. (2021) find that 

false alarm rates are amplified when infrared sensors are included in an analysis over the Netherlands.  

 105 

For detected rain events, the performance on rain rate estimates also varies from sensor to sensor (Bogerd et al., 2021). For all data 

sources, the intensity of shallow rainfall is the most challenging to estimate and work is ongoing to improve the algorithms for 

detection and classification of such events (Arulraj and Barros, 2017). Mountainous terrain represents another challenge for 

accurate rainfall detection from microwave instruments due to rain-shadowing (Prakash et al., 2018). 

3 Data 110 

Figure 1 shows the areas of interest for this analysis, which covers 18 meteorological stations in Germany, Denmark and Portugal. 
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Figure 1. Locations of the 18 meteorological stations investigated. Left: Stations in Germany and Denmark; right: stations in 

Portugal (© Stamen Design). 115 

 

3.1 Satellite observations 

Satellite observations of rainfall intensities are obtained from the product called GPM IMERG Final Precipitation L3 Half Hourly 

0.1 degree x 0.1 degree V06 (GPM_3IMERGHH) (Huffman et al., 2019). We choose the IMERG final product for estimation of 

the turbine blade erosion because it is calibrated with rain gauge measurements and has better data quality (Huffman et al., 2020).  120 

 

We investigate the period from 2014 to 2019. GPM data are included in the IMERG Final product from February 2014, and in situ 

data are available for all stations during the six-year period. Based on nonparametric tests, IMERG data of January 2014 show a 

good consistency with the data from the rest of the period. So we carry out the study for the six complete years. We extract time 

series of the parameters precipitationCal (i.e. precipitation estimate in mm/hr based on multi-satellite with gauge calibration) 125 

together with precipitationQualityIndex (i.e. a quality index for the precipitationCal field) and probabilityLiquidPrecipitation (i.e. 

the probability of liquid precipitation phase in percent) for the grid cell over each meteorological station. 

3.2 In situ observations 

We obtain observations of rainfall intensity and wind speed for 12 coastal and 6 inland stations located in Germany (7), Denmark 

(9), and Portugal (2). Locations of the meteorological stations are shown in Figure 1. The German data series are obtained from 130 

the German Weather Service (DWD), the Danish data series are obtained from the Danish Meteorological Institute (DMI), and the 

Portuguese data series are obtained from the Portuguese Institute for Sea and Atmosphere (IPMA). The German and Danish stations 

have been used in previous works by Bech et al. (accepted) and Hasager et al. (2021) where detailed descriptions are given. 
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Rainfall intensities are measured by rain gauges at each meteorological station and quality control is performed; see Hasager et al. 135 

(2020; 2021) for details. The rainfall intensities are delivered as 10 minute cumulative values. In order to match the temporal 

resolution of the rainfall intensities from IMERG, we calculate the cumulative values over 30 minute intervals.  

 

Wind speeds and directions at the meteorological stations are observed at the height 10 m except at Grosser Arber and Seehausen 

where winds are measured at 15 m height and at Arkona where the measurement height is 24 m. We extrapolate the wind speeds 140 

to the hub-height of the IEA 15 MW turbine (Gaertner et al., 2020) using the wind profile power law with the alpha exponent of 

0.143 following Hsu et al. (1994). The same method is applied in Bech et al. (accepted) and Hasager et al. (2021). To collocate the 

in situ observations with the IMERG product in time, we average the 10 minute wind speeds and directions to 30 minute intervals. 

4 Methods 

4.1 Data pre-processing 145 

For the IMERG product, we remove precipitationCal data whenever precipitationQualityIndex is smaller than 0.4 to ensure a 

sufficient data quality (Huffman et al., 2020). We only consider the impact of rain on wind turbine blades so instances where solid 

precipitation (hail, sleet and snow) occur are filtered out. We keep values if the parameter probabilityLiquidPrecipitation is larger 

than 0.7. Solid precipitation is also removed from the in situ data set.  

 150 

After quality control, we convert the IMERG data to half-hourly accumulated rainfall. Since IMERG data is based on instantaneous 

rainfall intensity, for temporal collocation, we split the 10 minute in situ rainfall to 5 minute intervals and then accumulate them 

from 15 minutes before to 15 minutes after the IMERG measurement time, as shown in Figure 2. After collocation, the data 

availability for blade erosion estimation is shown in Figure 3. 

 155 

 
Figure 2. Time collocation between IMERG and in situ rainfall intensities. 
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Figure 3. Availability of IMERG and in situ data after quality control and collocation. 160 

4.2 IMERG data evaluation 

We evaluate the data quality of the IMERG product by comparing with in situ measurements. Referring to the existing established 

statistics (Bogerd et al., 2021), the relative bias (RB), mean absolute error (MAE), and normalized MAE (NMAE) are calculated for 

each station based on Eq. (1), (2) and (3): 

 165 

𝑅𝑅𝑅𝑅 =
∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠,𝑖𝑖�𝐼𝐼
𝑖𝑖=1

∑ 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠,𝑖𝑖
𝐼𝐼
𝑖𝑖=1

 × 100% (1) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠,𝑖𝑖�𝐼𝐼
𝑖𝑖=1

𝑛𝑛
 (2) 

 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠,𝑖𝑖�𝐼𝐼
𝑖𝑖=1

∑ 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠,𝑖𝑖
𝐼𝐼
𝑖𝑖=1

 (3) 170 

 

where 𝑅𝑅𝐼𝐼𝑀𝑀𝑀𝑀𝑅𝑅𝐼𝐼,𝑖𝑖 and 𝑅𝑅𝐼𝐼𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠,𝑖𝑖 are the 30 minute rainfall accumulation for the IMERG product and in situ measurements, respectively; 

n is the sample size over the whole study period or corresponding to a certain condition, such as rainfall intensity. 

 

Contingency metrics, including the probability of detection (POD) and the probability of false alarm (POFA), are also quantified 175 

based on Eq. (4) and (5) (Bogerd et al., 2021): 

 

𝑃𝑃𝑃𝑃𝑃𝑃 =
ℎ𝑖𝑖𝑠𝑠𝑠𝑠

ℎ𝑖𝑖𝑠𝑠𝑠𝑠 + 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠
 (4) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑚𝑚𝑠𝑠

ℎ𝑖𝑖𝑠𝑠𝑠𝑠 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑚𝑚𝑠𝑠
 (5) 180 

 

where “hits”, “misses” and “false alarms” are defined in Table 1. The threshold to distinguish whether there is rainfall during a 30 

minute interval is 0.1 mm. 
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Table 1. Definition of thresholds for “hit”, “miss” and “false alarm” (mm/30 minutes). 185 

Item 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝑅𝑅𝑖𝑖𝐼𝐼 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 

Hit ≥ 0.1  ≥ 0.1  

Miss < 0.1  ≥ 0.1 

False alarm ≥ 0.1  < 0.1 

 

Apart from the overall comparisons, the temporal variability of rainfall intensities is also assessed. Correlation coefficients (R) 

based on daily rainfall between the two measurement systems are calculated for each country according to Eq.(6): 

 

𝑅𝑅 =
∑ �𝑅𝑅𝐼𝐼𝑀𝑀𝑀𝑀𝑅𝑅𝐼𝐼−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝑀𝑀𝑀𝑀𝑅𝑅𝐼𝐼−𝑑𝑑�������������𝑅𝑅𝐼𝐼𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑑𝑑�����������𝑛𝑛
𝑖𝑖=1

�∑ �𝑅𝑅𝐼𝐼𝑀𝑀𝑀𝑀𝑅𝑅𝐼𝐼−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝑀𝑀𝑀𝑀𝑅𝑅𝐼𝐼−𝑑𝑑������������𝑛𝑛
𝑖𝑖=1 ∑ �𝑅𝑅𝐼𝐼𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑑𝑑�����������𝑛𝑛

𝑖𝑖=1

 (6) 190 

 

where 𝑅𝑅𝐼𝐼𝑀𝑀𝑀𝑀𝑅𝑅𝐼𝐼−𝑑𝑑,𝑖𝑖  and 𝑅𝑅𝐼𝐼𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑑𝑑,𝑖𝑖  are the daily rainfall for the IMERG product and ground-based measurements, respectively; 

𝑅𝑅𝐼𝐼𝑀𝑀𝑀𝑀𝑅𝑅𝐼𝐼−𝑑𝑑�����������  and 𝑅𝑅𝐼𝐼𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑑𝑑����������  are the mean daily rainfall of a country for the IMERG product and ground-based measurements, 

respectively; i is the day, and n is the total number of days during the study period. The monthly and annual variations of both 

rainfall intensity and wind speed over the whole study period are also quantified for each station.  195 

 

To investigate the performance of IMERG under different rainfall intensities, we classify the rain rate into three categories: slight 

(< 0.5 𝑚𝑚𝑚𝑚/ℎ), moderate (0.5 ~4 mm/h), heavy (≥ 4 𝑚𝑚𝑚𝑚/ℎ) (Met Office, 2022). For each category, the relative bias (RB) of each 

station is quantified according to Eq.(1). 

  200 

4.3 Blade lifetime model 

The impingement blade lifetime model (Bech et al., accepted) using the soft-sign fit for the drop sizes is used to estimate blade 

lifetimes at each of the stations. The model is based on the correlation between the drop size of impinging rain and the damage of 

the blade. The correlation is found from extensive tests of specimen in a rain erosion tester spun with several speeds and with four 

different drop sizes. Thus it is based on experimental data. The impingement model is sensitive to the tip speed, the rainfall 205 

intensity, and the drop size. We assume that an IEA 15 MW turbine is installed at each of the in situ stations and we predict the 

lifetime of its blade. The rainfall intensity is observed by IMERG and in situ and both data sets are used as input together with the 

in situ wind speed. Wind speeds are extrapolated to the hub-height of the IEA 15 MW wind turbine (150 m) and converted to tip 

speed. The median drop size is estimated from the function of Best (1950) from the rainfall intensities from IMERG and the in situ 

observations. The model output is a lifetime in years for the blades on the fictive 15 MW turbine. 210 

5 Results 

5.1 IMERG data evaluation 

In the following, we present the results of comparing the IMERG final product against in situ observations at the 18 stations in 

Germany, Denmark, and Portugal. 
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5.1.1 Overall comparison of IMERG and in situ rainfall intensities 215 

Table 2 shows the overall statistics of comparisons between the IMERG and in-situ observations per station calculated for the 

‘hits’ (i.e. times where both IMERG and the in situ stations show rainfall). The mean rainfall intensities from IMERG are higher 

than the observed values for all stations except for Grosser Arber in Germany. Subsequently, we find positive RB values for 17 

stations. Grosser Arber is the only station in our data set, which is located far inland and in mountainous terrain and this could be 

the reasons why it deviates from the other stations. MAE ranges from 0.7 mm to 1.3 mm. Considering that the mean rainfall per 220 

station is on the same order of magnitude, this MAE is high as also reflected in the NMAE values ranging from 0.8 to 1.5. Our 

findings are similar to those reported in Bogerd et al. (2021) for the Netherlands.  

 

The metric POD is an expression of the number of hits relative to all hits and misses. It would have the value 1 if all rain events 

observed at the in situ stations were detected correctly by IMERG. For the stations investigated here, POD lies within the range of 225 

0.4-0.6. POFA, on the other hand, expresses the number of false alarms relative to all hits and false alarms. It would have the value 

0 if all rain events detected by IMERG were also observed by the in situ stations. POFA lies within the range 0.4-0.7 in our analysis. 

POD and POFA are well correlated (R2 = 0.88) so stations with a high POD also show a high POFA.   

 

Table 2. Overall statistics of comparisons between the IMERG and in situ observations of accumulated rainfall during 30 minute 230 

periods in 2014-19. Only hits are considered for the calculation of mean values, relative biases (RB), Mean Absolute Errors (MAE) 

and Normalized Mean Absolute Errors (NMAE). POD is the Probability of Detection and POFA is the Probability of False Alarms. 

 

Site IMERG mean  
(mm) 

In situ mean 
(mm) 

RB 
(%) 

MAE  
(mm) 

NMAE 
- 

POD 
- 

POFA 
- 

Arkona 1.2 0.6 89.0 0.9 1.5 0.6 0.7 
Bremen 1.0 0.7 45.4 0.8 1.1 0.5 0.6 
Fehmarn 0.9 0.7 40.6 0.7 1.1 0.5 0.6 

Grosser Arber 0.8 1.1 
-

24.6 0.9 0.8 0.5 0.6 
Helgoland 1.0 0.7 50.0 0.8 1.2 0.6 0.6 
List 1.2 0.7 83.3 0.9 1.4 0.5 0.6 
Seehausen 1.0 0.8 21.6 0.7 1.0 0.5 0.6 
Aalborg 1.0 0.6 60.0 0.7 1.2 0.4 0.5 
Anholt Havn 1.1 0.6 73.1 0.8 1.3 0.6 0.6 
Billund 1.3 0.8 67.1 1.0 1.2 0.4 0.4 
Hammerodde 0.9 0.6 40.6 0.7 1.1 0.5 0.6 
Hvide Sande 1.3 0.7 96.4 1.0 1.5 0.5 0.6 
Karup 1.3 0.7 84.2 1.0 1.3 0.4 0.4 
Skagen 1.4 0.7 94.4 1.1 1.5 0.6 0.7 
Thyboroen 1.2 0.7 64.1 0.9 1.3 0.5 0.5 
Vindebaek 0.9 0.6 41.7 0.7 1.1 0.5 0.6 
Porto/Pedras Rubas 1.4 1.2 16.2 1.3 1.1 0.5 0.5 
Viana do Castelo/Chafé 1.4 1.0 30.6 1.2 1.1 0.5 0.5 

 

 235 
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5.1.2 Temporal variability of rainfall intensities 

To obtain a deeper understanding of the statistics presented above, we examine the temporal variability of the rainfall intensities 

detected from IMERG and the in situ stations. We consider the daily, monthly, and annual variability of the rainfall intensities. 

 

Daily variability 240 

Figure 4 shows scatter plots of the daily accumulated rainfall values from IMERG vs. in situ observations for the period 2014-19. 

We separate the German, Danish, and Portuguese stations since the in situ data originate from national weather services in each 

respective country. It is possible that procedures for quality control and filtering of the data vary between these agencies. Further, 

the climatic conditions may vary from country to country. All three plots show a clear linear relationship between IMERG and in 

situ rainfall intensities with a positive intercept, which is a direct consequence of the positive RB values presented in Table 2. We 245 

also notice a number of outliers in each plot where the IMERG data set shows extremely high rainfall intensities, which do not 

occur in the in situ data set, and vice versa. 

 

 
Figure 4. Scatter plots showing the rainfall intensities from IMERG vs. the in situ observations during the period 2014-19 for a) 250 
German stations, b) Danish stations, and c) Portuguese stations. Each data point represents a daily accumulated value. 

 

Figure 5 shows time series of the daily rainfall intensities per station for the example year 2019. The overall impression is that 

peaks in the time series from IMERG coincide in time with peaks measured at the in situ stations. This indicates, once again, that 

rainy days are detected from both time series. In case the rainfall on a given day falls in different 30 minute periods for IMERG 255 

and the in situ stations, it will contribute to the POD and POFA statistics given above. The magnitude of peaks can be very different 

between the two data sets. The time series from Arkona, Helgoland, List, Anholt Havn, Skagen, Porto/Pedras Rubas, and Viana 

do Castelo/Chafé show occasional spikes where the rainfall intensity from IMERG exceeds 80 mm. These high rates are not 

reflected in the in situ observations. At Grosser Arber and Porto/Pedras Rubas we see examples of rainfall events exceeding 80 

mm in the in situ data where the IMERG data show more moderate intensities.  260 
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Figure 5. Daily rainfall intensities from IMERG and in situ observations during the example year 2019 for the 18 stations 

investigated.  

 265 

Monthly variability 

Figure 6 shows accumulated monthly rainfall intensities and monthly mean wind speeds per station averaged over 2014-19. 

Overall, the rain gauges in Germany and Denmark show the highest rainfall intensities during the summer months with peaks in 

July, August, or September and often with a secondary maximum during the winter months. At the two Portuguese stations, in 

contrast, the summer is very dry and the rainfall intensities peak in November. 270 
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From Figure 6 it is also evident that there can be large differences between the monthly rainfall from IMERG and the in situ 

stations. IMERG overestimates the monthly rainfall with respect to the in situ observations at all stations except for Grosser Arber 

and the two Portugese stations. At these stations, the in situ observations show higher monthly rainfall intensities than IMERG for 

some months during June to October. The differences between IMERG and in situ rainfall vary throughout the year and are most 275 

likely related to the dominant type of rain at a given time of the year (Bogerd et al., 2021). We find the largest discrepancies 

between IMERG and in situ rainfall for the stations Arkona, Helgoland, List, Anholt Havn, Hvide Sande, and Skagen. Several of 

these stations also showed large peaks in the time series in Figure 5. 

 

Most of the German and Danish stations show the highest mean wind speeds in the winter months; especially in December and 280 

January. The monthly wind speed variation is most pronounced for stations near the coast (Arkona, Fehmarn, Helgoland, List, 

Anholt Havn, Hammerodde, Hvide Sande, Skagen, and Thyborøn) whereas the monthly mean wind speeds observed at the inland 

stations are lower and more uniform throughout the year. The inland station Grosser Arber is an exception as it shows a similar 

monthly wind speed distribution to the coastal stations. The reason for this deviation could be that Grosser Arber is located in 

mountainous terrain so the wind speed observations are influenced by topography. The two stations in Portugal show low mean 285 

wind speeds (2-4 m s-1) throughout the year so the wind climate is significantly different from that of the German and Danish 

stations. 
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Figure 6. Monthly rainfall from IMERG and in situ observations (bars) and monthly mean wind speeds from in situ observations 

(green curves) averaged over 2014-19 for the 18 stations investigated.   290 

 

Inter-annual variability 

Figure 7 shows the accumulated annual rainfall and the mean wind speed per year for the 18 stations. The annual rainfall per station 

is also listed in Table 3. The annual rainfall intensities reflect the findings for daily and monthly timescales: At 16 stations, IMERG 

rainfall intensities exceed the intensities observed on the ground during all the six years investigated. At Grosser Arber, we find 295 

that the highest rainfall intensities are observed at the in situ stations for four of the years (2014, 2016, 2018, 2019) whereas IMERG 
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rainfall intensities are higher during 2015 and 2017. Viana do Castello in Portugal shows a higher rainfall intensity from the in situ 

measurements during 2015 but for the other years, IMERG shows the highest intensities. 

 

Table 3. Accumulated annual rainfall (mm) and average rainfall during 2014-19 from IMERG and in situ observations for the 18 300 

stations investigated. 

Station Data set 2014 2015 2016 2017 2018 2019 Average 
Arkona IMERG 1182 1095 1022 1180 698 1231 1068 

In situ 500 519 392 548 271 480 452 
Bremen IMERG 904 1055 798 1095 672 920 907 

In situ 561 612 424 650 397 519 527 
Fehmarn IMERG 820 880 742 917 584 811 792 

In situ 502 522 415 582 350 480 475 
Grosser Arber IMERG 701 475 622 633 384 443 543 

In situ 816 401 662 549 409 620 576 
Helgoland IMERG 1161 1402 1082 1512 1037 1352 1258 

In situ 698 716 627 910 514 804 711 
List IMERG 1200 1597 943 1309 706 1235 1165 

In situ 681 688 481 721 394 734 617 
Seehausen IMERG 637 698 522 787 445 581 612 

In situ 526 487 345 597 294 400 441 
Aalborg IMERG 927 1036 800 923 707 1047 907 

In situ 570 744 540 766 484 748 642 
Anholt Havn IMERG 1076 1235 823 1309 774 1253 1079 

In situ 550 504 415 514 244 656 481 
Billund IMERG 1202 1244 954 976 699 1238 1052 

In situ 915 952 700 786 513 1058 821 
Hammerodde IMERG 797 763 627 869 525 780 727 

In situ 579 546 398 568 361 531 497 
Hvide Sande IMERG 1314 1426 999 1205 913 1207 1177 

In situ 666 669 460 527 432 655 568 
Karup IMERG 1144 1232 923 979 723 1200 1033 

In situ 777 865 582 819 525 902 745 
Skagen IMERG 1476 1398 1161 1248 890 1648 1303 

In situ 700 593 392 562 436 675 560 
Thyboroen IMERG 876 1338 990 1293 951 1437 1148 

In situ 526 851 544 829 686 983 736 
Vindebaek IMERG 765 835 645 770 428 746 698 

In situ 451 588 434 474 261 505 452 
Porto/Pedras Rubas IMERG 914 1046 1731 1036 1477 1343 1258 

In situ 898 920 1458 798 1238 1210 1087 
Viana do Castelo/Chafé IMERG 1872 1014 1583 989 1530 1411 1400 

In situ 1729 1050 1214 784 1327 1207 1218 
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Figure 7 also shows that fluctuations of the mean wind speed from year to year are limited during 2014-19. Mean wind speeds 

exceeding 6 m s-1 are found for stations located near the coast (Arkona, Fehmarn, Helgoland, List, Anholt Havn, Hammerodde, 

Hvide Sande, Skagen, and Thyborøn) whereas inland stations show lower mean wind speeds on the order of 4-6 m s-1. Grosser 305 

Arber is again an exception as the mean wind speed here is 6-8 m s-1. This is most likely due to the higher elevation of the station. 

 

 
Figure 7. Annual rainfall from IMERG and in situ observations (bars) and annual mean wind speeds from in situ observations 
(green curves) during the period 2014-19 for the 18 stations investigated.   310 
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5.1.3 Bias of the rainfall intensity according to precipitation type 

Relative biases (RB) on rainfall intensities for different precipitation types (i.e. slight, moderate, and heavy) are given in Table 4. 

The table shows that IMERG overestimates rainfall at slight and moderate intensities whereas rainfall at high intensities is 

underestimated for all 18 stations. This finding is well aligned with the literature (Bogerd et al.; 2021; Maranan et al. 2020; Tapiador 315 

et al., 2020) and also with the monthly distributions of rainfall presented in Figure 6. 

 

Table 4. Relative biases (RB) of the rainfall intensity (mm) for different categories of precipitation: slight (< 0.5 𝑚𝑚𝑚𝑚/ℎ), moderate 

(0.5 ~4 mm/h), heavy (≥ 4 𝑚𝑚𝑚𝑚/ℎ). Red colour indicates overestimation and blue colour underestimation of rainfall intensities by 

IMERG with respect to the in situ stations. 320 

 
 

5.2 Blade lifetime estimates 

In the following, we present the blade lifetimes estimated with input rainfall intensities from IMERG and the in situ stations, 

respectively. One of the 18 stations investigated, Viana do Castello in Portugal, is left out of this analysis because the data 325 

availability of wind speeds at the station is only 24% whereas the other stations have a data availability of 70-95% (Fig. 3). 

 

Site Slight Moderate Heavy

Arkona 376.2 96.7 -5.0
Bremen 404.4 56.0 -50.6
Fehmarn 301.4 52.4 -41.0
Grosser Arber 243.7 -2.1 -60.1
Helgoland 362.6 55.0 -35.0
List 325.4 92.5 1.2
Seehausen 362.6 42.9 -49.1
Aalborg 353.8 67.4 -36.5
Anholt Havn 402.4 73.4 -25.7
Billund 505.0 79.6 -26.1
Hammerodde 278.5 46.4 -51.8
Hvide Sande 567.7 105.4 -28.2
Karup 475.1 93.4 -20.7
Skagen 465.7 101.8 -0.1
Thyboroen 414.4 83.1 -35.1
Vindebaek 310.7 51.8 -52.2
Porto 574.6 64.8 -43.2
Viana do Castelo 500.2 66.1 -33.7
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Figure 8 shows the expected average blade lifetimes in years per station calculated with input rainfall from IMERG and the in situ 

stations. Overall, we see a good agreement between estimates based on IMERG and in situ rainfall intensities. Biases between the 

estimates based on IMERG and in situ rainfall are positive for eight stations and negative for seven stations. Seven of the stations 330 

show lifetimes deviating by less than one year for the IMERG and in situ inputs. The other stations show deviations up to 30% and 

the deviation for Grosser Arber is exceptionally high (approximately 100%) as the lifetime estimate from IMERG and in situ data 

are 11.2 years and 5.6 years, respectively. This deviation might be due to challenges associated with microwave sensing and rain-

shadowing in mountainous terrain (cf. Sect. 2 and Prakash et al. (2018)).  

 335 

The station Seehausen shows much longer lifetimes than the other stations (44.5 years from IMERG and 35.5 years from in situ 

observations). This can be attributed to the relatively low rainfall intensities in combination with low mean wind speeds throughout 

the year at this location (Figure 6). Two other inland stations, Bremen and Karup, also show blade lifetimes exceeding 10 years 

based on the in situ observations. Overall, the estimated blade lifetimes tend to be longer for inland stations compared to stations 

near the coast and Grosser Arber is again an exception from this pattern. Recent work by Bech et al. (accepted) supports these 340 

findings. 

 

 
Figure 8. Blade lifetimes estimated using 30 minute accumulated rainfall intensities from IMERG and the in situ stations. Note that the Portuguese 
station Viana do Castello is left out due to a limited wind data availability. 345 

 

Rainfall intensities from IMERG are given as 30 minute accumulated values and we have created similar accumulated values from 

the in situ observations whereas previous analyses over the same sites are based on the native 10 minute observations from the in-

situ observations (Bech et al., accepted). In order to test the sensitivity of blade lifetime estimates to the temporal resolution of the 

input rainfall intensities, we compare the estimated blade lifetimes based on 10 minute in situ observations with the lifetimes 350 

calculated with 30 minute accumulated rainfall. The outcome is shown in Figure 9, which indicates that the effect of accumulating 

the rainfall intensities to 30 minute values instead of using the native 10 minute values is small, i.e. ranging from -6% to 5% and 
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in absolute values from -0.4 years to 0.7 years. This is excluding Seehausen. At Seehausen the lifetime is very long and when we 

estimate lifetimes much longer than the length of our time series, the uncertainty increases. 

 355 

 
Figure 9. Blade lifetimes estimated using 30 minute accumulated rainfall intensities from the in situ stations and the native 10 minute rainfall 
intensities observed at the stations. Note that the Portuguese station Viana do Castello is left out due to a limited wind data availability. 

 

6 Discussion 360 

This study is the first to use IMERG rain data as input to predict turbine blade lifetimes. Our blade lifetime estimates based on the 

IMERG final product data and local rain gauge data differ very little. This is a comforting fact as IMERG products are available 

onshore and offshore for more than eight years (2014-22). This could enable a regional to global mapping of the expected lifetime 

for specific turbines and blade coatings based on the concept applied here. In the context of blade lifetime assessment, the temporal 

coverage of available input data is important since the joint rain and wind variability in northern Europe is significant (Figure 7). 365 

Around 10 years of data is sufficient to predict blade lifetimes (Hasager et al., 2021). In case of shorter time series, there is 

considerable variation in the predicted lifetime. Our sensitively analysis using 10 minute vs. 30 minute accumulated rainfall 

intensities shows little influence on lifetime estimates at sub-hourly timescales. We see large differences for the station Seehausen 

only, which has a lifetime much longer than the length of our timeseries. 

 370 

Our results suggest that blade lifetimes are shorter for locations near the coast as compared to stations located further inland. It is 

also evident that the wind speed plays a very important role when it comes to leading edge erosion as also shown by Bech et al. 

(accepted). The damage of turbine blades is caused by heavy rainfall and strong winds in combination and therefore, the coastal 

stations with high annual mean wind speeds are the most prone to damage of the turbine blades. This is in line with results from 

the Netherlands (Verma et al., 2021b). 375 
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Our comparisons of rainfall intensities from the IMERG final product versus rain gauge observations at ground stations confirm 

the findings in previous works (Bogerd et al., 2021). Light rainfall is overestimated by IMERG whereas heavy rainfall is 

underestimated. We see this pattern for all the 18 stations investigated (Table 4). We also find that the seasonal variability of the 

rainfall type and intensity drives the bias on IMERG rainfall rates with respect to in situ observations (Figure 6). Comparisons 380 

between IMERG and in situ observations of rainfall intensities are therefore only representative for local areas where the climatic 

conditions remain similar. Another reason why validation of the IMERG final product is representative for local areas only is the 

nature of the data set where the number and the type of satellite sensors as well as the number of in situ stations assimilated in the 

product is variable (cf. Sect. 1).  

 385 

The stations considered here are primarily located in northern Europe where the rainfall conditions are similar in terms of the 

monthly distribution of rainfall (Figure 6) and the total amount of rainfall per year (Table 3). We therefore also find that the bias 

between IMERG and in situ rainfall is on the same order of magnitude (Table 2). The two stations in Portugal and the elevated 

station Grosser Arber are located in very different regimes in terms of rainfall. In spite of these differences, the bias between 

IMERG and in situ rainfall is not so different.  390 

 

A few aspects should be noted about the reference precipitation data set used here as well as in previous works (Bech et al., 

accepted; Hasager et al., 2021). Networks of in situ stations operated by national weather services (here by DMI, DWD and IPMA) 

are primarily established to monitor extreme rain events and to model the hydrological balance of catchment areas. In connection 

with these activities, different corrections are implemented but such corrections are not necessarily included in the in situ data sets 395 

we have accessed. The in situ data set used here represents the best possible estimates of the rainfall intensities and wind speeds 

locally at the stations but they are not perfect. For example, strong winds may influence the amount of rainfall collected by a rain 

gauge. Such a bias will vary from station to station depending on the local wind climate. Likewise, the observations of wind speed 

may be influenced by sheltering obstacles such as buildings in the vicinity of the stations.  

 400 

Precipitation measurements made with rain gauges at ground stations are very different in nature from remote sensing observations 

based on microwave or infrared sensors in space. Firstly, the observations are made at different levels in the atmosphere where the 

properties of a given rainfall event may also differ. Secondly, the sensing techniques are radically different. Rain gauges collect 

rain droplets by weight whereas remote sensing instruments in this context measure the properties of a volume of air. As described 

in Sect. 2, the capability of microwave sensors when it comes to detection of rainfall depends on the instrument frequency.  405 

 

In our analyses, we have considered liquid precipitation only. Solid precipitation in the form of hail can cause severe damage on 

wind turbine blades as well (Letson et al., 2020; Macdonald et al., 2016). In the future, it might be possible to separate different 

types of precipitation with confidence and analyse their individual effects on leading edge erosion. Thanks to dual frequency 

Ku/Ka-band radar sensing in combination with passive microwave sensing, GPM makes it possible to estimate particle size 410 

distributions within rain clouds (Le and Chandrasekar, 2014; Tokay et al., 2017). Drop size distributions are essential for the 

development and prediction of storms. Tilg et al. (2022) have shown that the drop size distributions obtained from disdrometers 

(i.e. laser instruments) can also lead to improved estimates of the kinetic energy, which drives the leading edge erosion of turbine 

blades. The kinetic energy model used by Hasager et al. (2020, 2021), Skrzypiński et al. (2020), and Tilg et al. (2022) severely 

overestimates the effect of larger drops compared to smaller drops in contrast to the droplet-dependent impingement model used 415 
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in the present study (Bech et al., accepted). There is thus an obvious potential for resolving drop size distributions from GPM and 

using them for the prediction of blade lifetimes. 

7 Conclusion 

The combination of heavy rain and strong winds can cause leading edge erosion of wind turbine blades and ultimately, a need for 

blade repair or replacement. We have demonstrated for the first time that rainfall intensities obtained from the Global Precipitation 420 

Measurement (GPM) Mission constellation of satellites can be used as input for the prediction of blade lifetimes at locations in 

Germany, Denmark and Portugal. Our analysis is based on precipitation data from the Integrated Multi-Satellite Retrievals for 

GPM (IMERG) final product, which contains GPM observations since 2014. The satellite-based rainfall intensities were first 

compared against in situ observations of rainfall at the daily, monthly, and annual timescales. In line with previous analyses, we 

find that heavy rainfall is underestimated by IMERG whereas light rainfall is overestimated. The accuracy of annual rainfall 425 

intensities from IMERG is thus very dependent on the rainfall regime at a given point location and on the type(s) of satellite sensors 

and the number of ground stations included in the IMERG final product at that specific location. In spite of these challenges, blade 

lifetimes estimated from the satellite and in situ observations of rainfall are rather similar at most of the stations analyzed.  We also 

find that the 30 minute temporal resolution offered by IMERG is sufficient to predict blade lifetimes. Our analyses indicate that 

there is a potential for using satellite-based rainfall observations for modeling of leading edge erosion and this represents a new 430 

application of the GPM. The findings are particularly relevant for planning of wind farms offshore where networks of in situ 

stations lack coverage. In the future, it might be possible to refine the analyses presented here by resolving the drop size 

distributions based on GPM satellite observations.   
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