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Abstract. The growing size of wind turbines leads to extremely high tip speeds when the blades are rotating. The blades are 

prone to leading edge erosion when raindrops hit the blades at such high speeds and blade damage will eventually affect the 

power production until repair or replacement of the blade is performed. Since these actions come with a high cost, it is relevant 

to estimate the blade lifetime for a given wind farm site prior to wind farm construction. Modelling tools for blade lifetime 10 

prediction require input time series of rainfall intensities and wind speeds in addition to a turbine-specific tip speed curve. In 

this paper, we investigate the suitability of satellite-based precipitation data from the Global Precipitation Measurement (GPM) 

Mission in the context of blade lifetime prediction. We first evaluate satellite-based rainfall intensities from the Integrated 

Multi-Satellite Retrievals for GPM (IMERG) final product against in situ observations at 18 weather stations located in 

Germany, Denmark, and Portugal. We then use the satellite and in situ rainfall intensities as input to a model for blade lifetime 15 

prediction together with the wind speeds measured at the stations. We find that blade lifetimes estimated with rainfall intensities 

from satellites and in situ observations are in good agreement despite the very different nature of the observation methods and 

the fact that IMERG products have a 30 minute temporal resolution whereas in situ stations deliver 10 minute accumulated 

rainfall intensities. Our results indicate that the wind speed has a large impact on the estimated blade lifetimes. Inland stations 

show significantly longer blade lifetimes than coastal stations, which are more exposed to high mean wind speeds. One station 20 

located in mountainous terrain shows large differences between rainfall intensities and blade lifetimes based on satellite and 

in situ observations. IMERG rainfall products are known to have a limited accuracy in mountainous terrain. Our analyses also 

confirm that IMERG overestimates light rainfall and underestimates heavy rainfall. Given that networks of in situ stations 

have large gaps over the oceans, there is a potential for utilizing rainfall products from satellites to estimate and map blade 

lifetimes. This is useful as more wind power is installed offshore including floating installations very far from the coast.  25 

1 Introduction 

Leading edge erosion is a progressive roughening of wind turbine blades primarily caused by the impact of precipitation with 

the blade movement through the air. The problem has emerged with the growing rotor diameter of modern wind turbines, 

which leads to higher tip speeds (Keegan et. al, 2013). Leading edge erosion is more pronounced offshore than for wind farms 

on land because offshore turbines are larger and the steady state wind speed is higher over the ocean. The energy of raindrops 30 

impinging on turbine blades is therefore also higher. Blade repair or replacement after only 5-7 years in operation has been 

reported for several offshore wind farms in the North Sea and the Kattegat Strait (Ibrahim and Medraj, 2020; Herring et al., 

2019) even though the nominal lifetime of a turbine blade is typically 20-25 years.  

 

A newly installed turbine blade has an incubation time where little to no damage is detected. Thereafter, initial damage occurs 35 

in the form of pitting. Widespread damage will follow and it can be observed as an erosion of material in the top coating, filler 

or substrate. A rough blade has poorer aerodynamic efficiency and therefore, leading edge roughness can cause a significant 

loss of the annual wind power production (Bak et al., 2020). It can lead to unforeseen operation and maintenance (O&M) cost  

and, if untreated, to replacement of wind turbine blades (Mishnaevsky and Thomsen, 2020). Ideally, repair of the blade is 
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scheduled long before structural damage occurs. O&M costs are exacerbated offshore due to vessel cost and this contributes 40 

to the operational expenditures (OPEX) of a given wind farm. A strategy to mitigate this financial risk is to operate the turbines 

in a so-called erosion safe mode where the blade tip speed is reduced during events of heavy precipitation (Bech et al., 2018; 

Skrzypiński et al., 2020). Another strategy is to enforce the turbine blades in order to make them more resistant to leading edge 

erosion. Coatings, tapes, and erosion shields represent different forms of leading edge protection that are commercially 

available (Herring et al., 2019). 45 

 

In connection with the planning of offshore wind energy projects, it is essential to predict the lifetime of the turbine blades in 

order to forecast the OPEX budget during the project lifetime. To calculate the lifetime of a wind turbine blade, information 

about the rainfall intensity and wind speed at the wind turbine location is needed at the highest possible temporal and spatial 

resolution. The temporal coverage of the rain and wind data sets should ideally be on the order of 10 years to account for intra-50 

annual variabilities (Hasager et al., 2021). A wind turbine tip speed curve is also necessary since the movement of the turbine 

blade relative to that of the raindrops and the wind direction is determining the blade damage.  

 

Networks of rain gauges and rain radars are established on land; typically by national meteorological agencies (Kidd et al., 

2017). The rain observations are used for many different applications e.g. hydrology, agriculture, health, civil protection, and 55 

climate change monitoring. In contrast, rain observations over the oceans are very sparse (Herring et al. 2020; Klepp et al., 

2020) and rain information in this setting is typically obtained through Numerical Weather Prediction (NWP) modeling or 

satellite observations (Shaw et al., in review). Previous blade lifetime analyses are based on rain gauge observations (Bech et 

al., 2022; Hasager et al., 2020; 2021; Law and Koutsos, 2020; Skrzypiński et al., 2020; Verma et al., 2021b), disdrometer 

observations (Tilg et al., 2022; Verma et al., 2021a), weather radar observations (Letson et al., 2020), re-analysis data (Prieto 60 

and Karlsson, 2021), and mesoscale weather model outputs (Eisenberg et al., 2018; Visbech et al., in review). 

 

The Global Precipitation Measurement (GPM) mission is a network of satellites delivering global rain observations since 2014 

(Hou et al., 2014). It has a core observatory consisting of dual-frequency precipitation radars operating in Ku-band (13.6 GHz) 

and Ka-band (35.5 GHz), as well as the GPM Microwave Imager; a radiometer operating at different frequencies from 10 to 65 

183 GHz. Many other spaceborne microwave sensors contribute to GPM and additional observations from infrared sensors on 

geostationary satellites are included. The GPM mission is an expansion of the Tropical Rainfall Measuring Mission (TRMM), 

which was in operation during 1997-2015 (Huffmann et al., 2007). Whereas TRMM sensed the heavy rainfall associated within 

the tropics, GPM also senses the light rain, hail, and snowflakes common to higher latitudes. Here, we hypothesize that rainfall 

intensities from GPM can also be useful for the prediction of erosion damage on wind turbine blades; especially offshore where 70 

other rain observations are limited.  

 

Integrated Multi-Satellite Retrievals for GPM (IMERG) lead to global rain products with a uniform grid spacing of 0.1° latitude 

and longitude from latitude 60°N to latitude 60°S. The temporal sampling of these products is 30 minutes. The initial sampling 

of the different satellite sensors contributing to IMERG can be considerably higher or lower and therefore, the IMERG 75 

validation performance varies for different scales, periods, and locations on Earth (Chen and Li, 2016). IMERG products come 

in three versions: early, late, and final. The final product is considered the most suitable for scientific applications as it is 

adjusted based on rain gauge observations from the Global Precipitation Climatology Centre (Huffmann et al., 2020a). 

Therefore, it compares best with independent in situ observations (Tapiador et al., 2020). Dezfuli et al. (2017) found that the 

IMERG final product outperforms the previous TRMM Multisatellite Precipitation Analysis. Due to the higher temporal and 80 

spatial resolution of IMERG, the product captures mesoscale convective systems much better.  
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The objective of this paper is to determine whether rainfall intensities obtained from the IMERG final product are suitable for 

estimating the lifetime of wind turbine blades. The idea of using satellite data for blade lifetime prediction was put forward by 

Mishnaevsky et al. (2021) and here we test its applicability in practice for the first time. We evaluate the performance of 85 

IMERG rainfall intensities with respect to high quality in situ observations from weather stations. Next, we use the IMERG 

and in situ observations of the rainfall intensity as input to a damage model code for prediction of blade lifetimes and compare 

the two types of lifetime estimates.  

2 Previous evaluations of the IMERG final product 

A number of independent studies evaluate the performance of IMERG final products for different regions, temporal scales, 90 

and applications. Overall, IMERG tends to overestimate light rain intensities and underestimate heavy rain intensities. This 

can lead to seasonal biases for regions where the rain characteristics vary throughout the year (Bogerd et al., 2021; Maranan 

et al., 2020; Tapiador et al., 2020). Rios Gaona et al. (2016) performed an early evaluation of the IMERG final product against 

ground based rain radar observations in the Netherlands and found that IMERG underestimates countrywide rainfall depths by 

2%. 95 

 

Based on comparisons with rain gauge data in Brazil, Freitas et al. (2020) reported that the IMERG product is a good source 

of sub-daily rainfall depth data for hydrological and hydroclimatic applications but they found large overestimations and 

underestimations of the IMERG product for rainfall duration and intensity properties, respectively. Cui et al. (2020) focused 

on mesoscale convective systems in the US and reported that IMERG overestimates the total annual precipitation but 100 

underestimates the hourly mean precipitation. They noted that evaporation of light rain under clouds causes frequent falls 

alarms and positive biases (i.e. IMERG shows precipitation pixels but no rain is measured at the ground stations). A very high 

number of false alarms (83% of all IMERG rain pixels) is also reported by Maranan et al. (2020) for forested areas in Ghana, 

whereas high rain intensities are negatively biased.  

 105 

A decomposition according to the source of the IMERG data can give insights into the performance per sensor type. Based on 

analyses over the eastern United States, Tan et al. (2016) found that the detection of rain events is most reliable for passive 

microwave sensors or morphed products whereas infrared sensors alone lead to a poorer performance when it comes to 

identification of rain events. Infrared sensors miss a very large portion of the actual rain events measured on the ground. Bogerd 

et al. (2021) found that false alarm rates are amplified when infrared sensors are included in an analysis over the Netherlands.  110 

 

For detected rain events, the performance on rain rate estimates also varies from sensor to sensor (Bogerd et al., 2021). For all 

data sources, the intensity of shallow rainfall is the most challenging to estimate and work is ongoing to improve the algorithms 

for detection and classification of such events (Arulraj and Barros, 2017). Mountainous terrain represents another challenge 

for accurate rainfall detection from microwave instruments due to rain-shadowing (Prakash et al., 2018). 115 

3 Data 

Figure 1 shows the areas of interest for this analysis, which covers 18 meteorological stations in Germany, Denmark and 

Portugal. 
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 120 
Figure 1. Locations of the 18 meteorological stations investigated. Left: Stations in Germany and Denmark; right: stations in 

Portugal (© Stamen Design). 
 

3.1 Satellite observations 

Satellite observations of rainfall intensities are obtained from the product called GPM IMERG Final Precipitation L3 Half 125 

Hourly 0.1 degree x 0.1 degree V06 (GPM_3IMERGHH) (Huffman et al., 2019). We chose the IMERG final product for 

estimation of the turbine blade erosion because it is calibrated with rain gauge measurements. The final product is providing 

more accurate rainfall intensities in regions with gauge information and it is considered the research-grade product (Huffman 

et al., 2020b).  

 130 

We investigated the six-year period from 2014 to 2019 where collocated IMERG and in situ observations of rainfall intensities 

are available. GPM data are included in the IMERG final product from mid-March 2014 but thanks to retrospective 

reprocessing and a TRMM satellite calibrator, it is possible to achieve a consistent product dating back to June 2000 (Huffman 

et al., 2020b). Our nonparametric tests showed that IMERG data of January 2014 are consistent with the data from the month 

of January in 2015-19 so we carried out our analyses for the six complete years. We extracted time series of the parameters 135 

precipitationCal (i.e. precipitation estimate in mm/hr based on multi-satellite with gauge calibration) together with 

precipitationQualityIndex (i.e. a quality index for the precipitationCal field based on the correlation between the different 

sensor components contributing to the IMERG products (Huffmann, 2019)) and probabilityLiquidPrecipitation (i.e. the 

probability of liquid precipitation phase in percent) for the IMERG grid cell over each meteorological station. 

3.2 In situ observations 140 

We obtained observations of rainfall intensity and wind speed for 12 coastal and 6 inland stations located in Germany (7 

stations), Denmark (9 stations), and Portugal (2 stations). The locations of the meteorological stations are shown in Figure 1. 

The German data series was obtained from the German Weather Service (DWD), the Danish data series was obtained from 

the Danish Meteorological Institute (DMI), and the Portuguese data series was obtained from the Portuguese Institute for Sea 
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and Atmosphere (IPMA). The German and Danish stations have been used in previous works by Bech et al. (2022) and Hasager 145 

et al. (2021) where detailed descriptions of the datasets are given. 

 

Rainfall intensities are measured by rain gauges at each meteorological station and quality control is performed; see Hasager 

et al. (2020; 2021) for details. The rainfall intensities are delivered as 10 minute cumulative values. In order to match the 

temporal resolution of the rainfall intensities from IMERG, we calculated the cumulative values over 30 minute intervals. 150 

Wind speeds and directions at the meteorological stations are observed at a measurement height of 10 m except at Grosser 

Arber and Seehausen where winds are measured at a 15 m height and at Arkona where the measurement height is 24 m. We 

extrapolated the wind speeds to the hub-height of the IEA 15 MW turbine (Gaertner et al., 2020) using the wind profile power 

law with the alpha exponent of 0.143, following Hsu et al. (1994). The same method is applied in Bech et al. (2022) and 

Hasager et al. (2021). To collocate the in situ observations with the IMERG product in time, we averaged the 10 minute wind 155 

speeds and directions to 30 minute intervals. 

4 Methods 

4.1 Data pre-processing 

For the IMERG product, we removed precipitationCal data whenever precipitationQualityIndex was smaller than 0.4 because 

of a high uncertainty due to significant infrared contribution to ensure a sufficient data quality (Huffman et al., 2019). We only 160 

considered the impact of rain on wind turbine blades so instances where solid precipitation (hail, sleet and snow) occur are 

filtered out. We kept values if the parameter probabilityLiquidPrecipitation was larger than 75%. Empirically, the threshold 

to classify precipitation as rainfall or snow is 50% (Xiong et al., 2022). We increased the threshold to 75% to exclude other 

solid types such as hail and graupel and to make the proportion of liquid precipitation samples for IMERG and for in situ alike. 

Solid precipitation was also removed from the in situ data set. Additionally, only the precipitationCal values equal to or greater 165 

than 0.2 mm/h (0.1 mm/30min) were considered as rainfall (Maranan et al., 2020). After quality control, we converted the 

IMERG data to half-hourly accumulated rainfall. The availability of collocated data for blade erosion estimation is shown in 

Figure 2. 

 

 170 
Figure 2. Availability of IMERG and in situ data after quality control and collocation. 
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4.2 IMERG data evaluation 

We evaluated the data quality of the IMERG product by comparing with in situ measurements. Referring to the existing 

established statistics (Bogerd et al., 2021), the relative bias (RB), mean absolute error (MAE), and normalized MAE (NMAE) 

were calculated for each station based on Eq. (1), (2) and (3): 175 

 

𝑅𝑅𝑅𝑅 =
∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖�𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 × 100% (1) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖�𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (2) 

 180 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖�𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 (3) 

 

where 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖  and 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  are the 30 minute rainfall accumulation for the IMERG product and in situ measurements, 

respectively; n is the sample size over the whole study period or corresponding to a certain condition, such as rainfall intensity. 

 185 

Contingency metrics, including the probability of detection (POD) and the probability of false alarm (POFA), were also 

quantified based on Eq. (4) and (5) (Bogerd et al., 2021): 

 

𝑃𝑃𝑃𝑃𝑃𝑃 =
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 (4) 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 (5) 

 

where “hits”, “misses” and “false alarms” are defined in Table 1. The threshold to distinguish whether there is rainfall during 

a 30 minute interval is 0.1 mm. 

 195 

Table 1. Definition of thresholds for “hit”, “miss” and “false alarm” (mm/30 minutes). 

Item 𝑹𝑹𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝑹𝑹𝒊𝒊𝒊𝒊 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 

Hit ≥ 0.1  ≥ 0.1  

Miss < 0.1  ≥ 0.1 

False alarm ≥ 0.1  < 0.1 

 

In addition to the overall comparisons, the temporal variability of rainfall intensities was also assessed. Correlation coefficients 

(R) based on daily rainfall between the two measurement systems were calculated for each country according to Eq.(6): 

 200 

𝑅𝑅 =
∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑑𝑑�������������𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑑𝑑�����������𝑛𝑛
𝑖𝑖=1

�∑ �𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑑𝑑������������𝑛𝑛
𝑖𝑖=1 ∑ �𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑑𝑑,𝑖𝑖 − 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑑𝑑�����������𝑛𝑛

𝑖𝑖=1

 (6) 
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where 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑑𝑑,𝑖𝑖 and 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑑𝑑,𝑖𝑖 are the daily rainfall for the IMERG product and ground-based measurements, respectively; 

𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−𝑑𝑑����������� and 𝑅𝑅𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑑𝑑���������� are the mean daily rainfall of a country for the IMERG product and ground-based measurements, 

respectively; i is the day, and n is the total number of days during the study period. The monthly and annual variations of both 205 

rainfall intensity and wind speed over the whole study period were also quantified for each station.  

 

To investigate the performance of IMERG under different rainfall intensities, we classify the rain rate into three categories 

according to the United Kingdom Meteorological Office standard (Met Office, 2012): slight (< 0.5 mm h−1), moderate (0.5 

~4 mm h-1), heavy (≥ 4 mm h−1) (Met Office, 2012). For each category, the relative bias (RB) of each station is quantified 210 

according to Eq.(1). 

  

4.3 Blade lifetime model 

The impingement blade lifetime model developed by Bech et al. (2022) using the soft-sign fit for the rain droplet sizes was 

used to estimate blade lifetimes at each of the stations. The model is based on the correlation between the droplet size of 215 

impinging rain and the damage of turbine blades. The correlation is found from extensive tests of specimen in a Rain Erosion 

Test (RET) rig spun with several speeds and with four different droplet sizes. The rain erosion testing is done with specimen 

with topcoat polyurethane based on glass fiber. The droplet sizes are 0.76 mm, 1.90 mm, 2.38 mm and 3.50 mm and the impact 

speeds range from 90 to 150 m s-1. For each data set, the damage progression is observed from photographs and visual 

inspection. The observations are plotted in diagrams with impingement and impact speed, and the best-fit empirical curves are 220 

established (VH-curves, V for velocity, H for impingement). The slopes of the curves are steeper for the larger droplets than 

for the smaller droplets. This corresponds to an increasing exponent of the fitted power law. The result of the analysis is a 

droplet size dependent empirical model for impingement to damage as a function of the impact velocity. The increasing slope 

with increasing droplet size yields that larger droplets result in shorter erosion life at lower velocities relevant for wind turbine 

rotors. The impingement blade lifetime prediction model for site-specific conditions is an empirical damage accumulation 225 

model with drop size dependent VH curves. Thus, the impingement model is sensitive to the wind turbine tip speed, the rainfall 

intensity, and the droplet size. It should be noted that other coating systems might give other lifetimes dependent upon their 

properties and response to impacting speed, rain intensity, and droplet size. We assumed that an IEA 15 MW turbine is installed 

at each of the in situ stations and we predicted the lifetime of its blade. The rainfall intensity is observed by IMERG and in 

situ stations, with both data sets used as input together with the in situ wind speed. Wind speeds were extrapolated to the hub-230 

height of the IEA 15 MW wind turbine (150 m) and converted to tip speeds. The median drop size was estimated from the 

function of Best (1950) using the rainfall intensities from IMERG and the in situ observations. The model output is a lifetime 

in years for the blades on the theoretical 15 MW turbine. 

5 Results 

5.1 IMERG data evaluation 235 

In the following, we present the results of comparing the IMERG final product against in situ observations at the 18 stations 

located in Germany, Denmark, and Portugal. 

5.1.1 Overall comparison of IMERG and in situ rainfall intensities 

Figure 3 illustrates the average rainfall over 30 minutes from IMERG and in situ observations and Table 2 shows the 

comparative statistics calculated for the ‘hits’ (i.e. times where both IMERG and the in situ stations show rainfall). The average 240 

rainfall intensities from IMERG are higher than the observed values for all stations except for Grosser Arber in Germany. 

Subsequently, we find positive RB values for 17 stations. Grosser Arber is the only station in our data set, which is located far 
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inland and in mountainous terrain and this could be the reasons why it deviates from the other stations. MAE ranges from 0.7 

mm to 1.3 mm. Considering that the mean rainfall per station is on the same order of magnitude, this MAE is high as also 

reflected in the NMAE values ranging from 0.8 to 1.5. Our findings are similar to those reported by Bogerd et al. (2021) for 245 

the Netherlands.  

 

The metric POD is an expression of the number of hits relative to all hits and misses. It would have the value 1 if all rain events 

observed at the in situ stations were detected correctly by IMERG. For the stations investigated here, POD lies within the 

range of 0.4-0.6. POFA, on the other hand, expresses the number of false alarms relative to all hits and false alarms. It would 250 

have the value 0 if all rain events detected by IMERG were also observed by the in situ stations. POFA lies within the range 

0.4-0.7 in our analysis. POD and POFA are well correlated (R2 = 0.82) so stations with a high POD also show a high POFA.  

 

 
Figure 3. Comparisons between the IMERG and in situ observations of the average rainfall (mm) during 30 minute periods 255 

in 2014-19. 
 

Table 2. Overall comparative statistics between the IMERG and in situ observations of the average accumulated rainfall (mm) 

during 30 minute periods in 2014-19. RB is the relative bias, MAE is the Mean Absolute Error, NMAE is the Normalized 

Mean Absolute Errors, POD is the Probability of Detection, and POFA is the Probability of False Alarms. 260 

 

Station IMERG In situ
Arkona 1.2 0.6
Bremen 1.0 0.7
Fehmarn 1.0 0.7
Grosser Arber 0.8 1.1
Helgoland 1.0 0.7
List 1.2 0.7
Seehausen 1.0 0.8
Aalborg 1.0 0.6
Anholt Havn 1.1 0.6
Billund 1.3 0.8
Hammerodde 0.9 0.6
Hvide Sande 1.3 0.7
Karup 1.3 0.7
Skagen 1.4 0.7
Thyboroen 1.2 0.7
Vindebaek 0.9 0.6
Porto/Pedras Rubas 1.4 1.2
Viana do Castelo/Chafé 1.4 1.0

Station Location IMERG-in situ RB MAE NMAE POD POFA
Arkona Coastal 0.6 92.2 0.9 1.5 0.6 0.7
Bremen Inland 0.3 48.5 0.8 1.1 0.5 0.6
Fehmarn Coastal 0.3 48.5 0.7 1.1 0.5 0.6
Grosser Arber Inland -0.3 -25.0 0.9 0.8 0.5 0.6
Helgoland Coastal 0.4 56.0 0.8 1.2 0.6 0.6
List Coastal 0.6 88.8 0.9 1.4 0.5 0.6
Seehausen Inland 0.2 23.5 0.7 1.0 0.5 0.5
Aalborg Inland 0.4 61.5 0.7 1.2 0.4 0.5
Anholt Havn Coastal 0.4 70.5 0.8 1.3 0.6 0.6
Billund Inland 0.5 63.7 0.9 1.2 0.4 0.4
Hammerodde Coastal 0.2 39.5 0.7 1.1 0.5 0.6
Hvide Sande Coastal 0.6 92.9 1.0 1.5 0.5 0.6
Karup Inland 0.6 80.4 0.9 1.3 0.4 0.4
Skagen Coastal 0.7 93.5 1.1 1.5 0.6 0.7
Thyboroen Coastal 0.5 64.9 0.9 1.3 0.5 0.5
Vindebaek Coastal 0.3 43.7 0.7 1.1 0.5 0.6
Porto/Pedras Rubas Coastal 0.2 18.4 1.3 1.1 0.5 0.5
Viana do Castelo/Chafé Coastal 0.3 29.5 1.2 1.1 0.5 0.4
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5.1.2 Temporal variability of rainfall intensities 

To obtain a deeper understanding of the statistics presented above, we examined the temporal variability of the rainfall 

intensities detected from IMERG and the in situ stations. We considered the daily, monthly, and annual variability of the 

rainfall intensities. 265 

 

Daily variability 

Figure 4 shows hexbin plots of the daily accumulated rainfall values from IMERG vs. in situ observations for the period 2014-

19. We separated the German, Danish, and Portuguese stations since the in situ data originate from national weather services 

in each respective country and the procedures for quality control and filtering may vary between these agencies. Further, the 270 

climatic conditions may vary from country to country. All three plots show a clear linear relationship between IMERG and in 

situ rainfall intensities with a positive intercept, which is a direct consequence of the positive RB values presented in Table 2. 

We also notice a number of outliers in each plot where the IMERG data set shows extremely high rainfall intensities, which 

do not occur in the in situ data set, and vice versa. 

 275 

 
Figure 4. Hexbin plots showing the daily rainfall intensities from IMERG vs. the in situ observations during the period 2014-

19 for a) German stations, b) Danish stations, and c) Portuguese stations. The color of each hexbin indicates the number of 
samples in it. 

 280 

Figure 5 shows a time series of the daily rainfall intensities per station for the example year 2019. The overall impression is 

that peaks in the time series from IMERG mostly coincide with peaks measured at the in situ stations. This indicates, once 

again, that rainy days are detected from both time series. In case the rainfall on a given day falls in different 30 minute periods 

for IMERG and the in situ stations, it will contribute to the POD and POFA statistics given above. The magnitude of some of 

the peaks is shown to be very different between the two data sets. The time series from Arkona, Porto/Pedras Rubas, and Viana 285 

do Castelo/Chafé show occasional spikes where the rainfall intensity from IMERG exceeds 80 mm. These high rates are not 

reflected in the in situ observations. At Porto/Pedras Rubas we see examples of rainfall events exceeding 80 mm in the in situ 

data where the IMERG data show more moderate intensities.  

 

 290 
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Figure 5. Daily rainfall intensities from IMERG and in situ observations during the example year 2019 for the 18 stations 

investigated. 

 

Monthly variability 295 

Figure 6 shows accumulated monthly rainfall intensities and monthly mean wind speeds per station averaged over 2014-19. 

Overall, the rain gauges in Germany and Denmark show the highest rainfall intensities during the summer months with peaks 

in July, August, or September and often with a secondary maximum during the winter months. At the two Portuguese stations, 

in contrast, the summer is very dry and the rainfall intensities peak in November. 

 300 

From Figure 6 it is also evident that there can be large differences between the monthly rainfall from IMERG and the in situ 

stations. IMERG overestimates the monthly rainfall with respect to the in situ observations at all stations except for Grosser 

Arber and the two Portuguese stations. At these stations, the in situ observations show higher monthly rainfall intensities than 
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IMERG for certain months during June to October. The differences between IMERG and in situ rainfall vary throughout the 

year and are most likely related to the dominant type of rain at a given time of the year (Bogerd et al., 2021). We find the 305 

largest discrepancies between IMERG and in situ rainfall for the stations Arkona, Helgoland, List, Anholt Havn, Hvide Sande, 

and Skagen. These stations are all within close proximity to the coast and several of the stations also showed large peaks in 

the time series in Figure 5. 

 

 310 
Figure 6. Monthly rainfall from IMERG and in situ observations (bars) and monthly mean wind speeds from in situ 

observations (green curves) averaged over 2014-19 for the 18 stations investigated. 

 

Most of the German and Danish stations show the highest mean wind speeds in the winter months; especially in December 

and January. The monthly wind speed variation is most pronounced for stations near the coast (Arkona, Fehmarn, Helgoland, 315 

List, Anholt Havn, Hammerodde, Hvide Sande, Skagen, and Thyborøn) whereas the monthly mean wind speeds observed at 
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the inland stations are lower and more uniform throughout the year. The inland station Grosser Arber is an exception as it 

shows a similar monthly wind speed distribution to the coastal stations. The reason for this deviation could be that Grosser 

Arber is located in mountainous terrain so the wind speed observations are influenced by topography. The two stations in 

Portugal show low mean wind speeds (2-4 m s-1) throughout the year so the wind climate is significantly different from that 320 

of the German and Danish stations. 

 

Inter-annual variability 

Figure 7 shows the average annual rainfall for the 18 stations and Figure 8 shows the annual rainfall per year together with the 

annual mean wind speed. The annual rainfall intensities reflect the findings for daily and monthly timescales: At 16 stations, 325 

IMERG rainfall intensities exceed the intensities observed on the ground during all the six years investigated. At Grosser 

Arber, we find that the highest rainfall intensities are observed at the in situ stations for four of the years (2014, 2016, 2018, 

2019) whereas IMERG rainfall intensities are higher during 2015 and 2017. Viana do Castello in Portugal shows a higher 

rainfall intensity from the in situ measurements during 2015 but for the other years, IMERG shows the highest intensities. 

 330 

 
Figure 7. Average annual rainfall (mm) during 2014-19 from IMERG and in situ observations for the 18 stations 

investigated. 

 

Figure 8 also shows that fluctuations of the mean wind speed from year to year are limited during 2014-19. Mean wind speeds 335 

exceeding 6 m s-1 are found for stations located near the coast (Arkona, Fehmarn, Helgoland, List, Anholt Havn, Hammerodde, 

Hvide Sande, Skagen, and Thyborøn) whereas inland stations show lower mean wind speeds on the order of 4-6 m s-1. Grosser 

Arber is again an exception as the mean wind speed here is 6-8 m s-1. This is most likely due to the higher elevation of the 

station. 

 340 

Station IMERG In situ
Arkona 1009 451
Bremen 869 527
Fehmarn 749 476
Grosser Arber 525 583
Helgoland 1209 711
List 1113 617
Seehausen 589 443
Aalborg 883 648
Anholt Havn 1043 483
Billund 1036 822
Hammerodde 667 497
Hvide Sande 1133 568
Karup 1019 747
Skagen 1252 560
Thyboroen 1100 737
Vindebaek 654 454
Porto/Pedras Rubas 1207 1086
Viana do Castelo/Chafé 1356 1217
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Figure 8. Annual rainfall from IMERG and in situ observations (bars) and annual mean wind speeds from in situ 

observations (green curves) during the period 2014-19 for the 18 stations investigated. 

 

5.1.3 Bias of the rainfall intensity according to precipitation type 345 

Relative biases (RB) on rainfall intensities for different precipitation types (i.e. slight, moderate, and heavy) are given in Figure 

9. The figure shows that IMERG overestimates rainfall at slight and moderate intensities for all stations except for Grosser 

Arber whereas rainfall at high intensities is underestimated for all stations except for Skagen. This finding is well aligned with 

the literature (Bogerd et al.; 2021; Maranan et al. 2020; Tapiador et al., 2020) and also with the monthly distributions of rainfall 

presented in Figure 6. 350 
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Figure 9. Relative biases (RB) of the rainfall intensity (mm) for different categories of precipitation (Met Office, 2012): 

slight (< 0.5 mm h−1), moderate (0.5 ~4 mm h-1), and heavy (≥ 4 mm h−1). Orange colour indicates overestimation and 355 

blue colour underestimation of rainfall intensities by IMERG with respect to the in situ stations. 

 

5.2 Blade lifetime estimates 

In the following, we present the blade lifetimes estimated with input rainfall intensities from IMERG and the in situ stations, 

respectively. One of the 18 stations investigated, Viana do Castello in Portugal, is left out of this analysis because the data 360 

availability of wind speeds at the station is only 24% whereas the other stations have a data availability of 70-95% (Fig. 2). 

 

Figure 10 shows the expected average blade lifetimes in years per station calculated with input rainfall from IMERG and the 

in situ stations. Overall, we see a good agreement between estimates based on IMERG and in situ rainfall intensities. Biases 

between the estimates based on IMERG and in situ rainfall are positive for eight stations and negative for seven stations. Seven 365 

of the stations show lifetimes deviating by less than one year for the IMERG and in situ inputs. The other stations show 

deviations up to 30% and the deviation for Grosser Arber is exceptionally high (approximately 100%) as the lifetime estimate 

from IMERG and in situ data are 11.2 years and 5.6 years, respectively. This deviation might be due to challenges associated 

with microwave sensing and rain-shadowing in mountainous terrain (cf. Sect. 2 and Prakash et al. (2018)).  

 370 

The station Seehausen shows much longer lifetimes than the other stations (44.5 years from IMERG and 35.5 years from in 

situ observations, see Figure 10). This can be attributed to the relatively low rainfall intensities in combination with low mean 

wind speeds throughout the year at this location. Two other inland stations, Bremen and Karup, also show blade lifetimes 

exceeding 10 years based on the in situ observations. Overall, the estimated blade lifetimes tend to be longer for inland stations 

compared to stations near the coast and Grosser Arber is again an exception from this pattern. Recent work by Bech et al. 375 

(2022) supports these findings. 

 

Station Slight Moderate Heavy
Arkona 379.7 100.7 -13.4
Bremen 355.9 62.4 -50.0
Fehmarn 347.2 55.6 -38.8
Grosser Arber 277.0 -1.2 -63.9
Helgoland 382.7 56.7 -27.1
List 386.8 94.1 -7.3
Seehausen 334.0 40.9 -45.6
Aalborg 344.7 65.4 -29.3
Anholt Havn 365.9 70.6 -20.1
Billund 451.0 76.7 -21.2
Hammerodde 262.2 48.5 -58.0
Hvide Sande 464.6 106.5 -27.7
Karup 400.4 87.2 -6.7
Skagen 410.6 102.2 10.3
Thyboroen 405.0 80.2 -26.1
Vindebaek 290.7 48.7 -43.6
Porto/Pedras Rubas 542.5 65.3 -43.2
Viana do Castelo/Chafé 486.9 59.0 -28.5
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Figure 10. Blade lifetimes estimated using 30 minute accumulated rainfall intensities from IMERG and the in situ stations. Note that the 

Portuguese station Viana do Castello/Chafé is left out due to a limited wind data availability. 380 

 

Rainfall intensities from IMERG are given as 30 minute accumulated values and we have created similar accumulated values 

from the in situ observations, whereas previous analyses over the same sites are based on the native 10 minute observations 

from the in-situ observations (Bech et al., 2022). In order to test the sensitivity of blade lifetime estimates to the temporal 

resolution of the input rainfall intensities, we compare the estimated blade lifetimes based on 10 minute in situ observations 385 

with the lifetimes calculated with 30 minute accumulated rainfall. The outcome is shown in Figure 11, which indicates that 

the effect of accumulating the rainfall intensities to 30 minute values instead of using the native 10 minute values is small, i.e. 

ranging from -6% to 5% and in absolute values from -0.4 years to 0.7 years. This is excluding Seehausen. At Seehausen the 

lifetime is very long and when we estimate lifetimes much longer than the length of our time series, the uncertainty increases. 

 390 

 
Figure 11. Blade lifetimes estimated using 30 minute accumulated rainfall intensities from the in situ stations and the native 10 minute 

rainfall intensities observed at the stations. Note that the Portuguese station Viana do Castello/Chafé is left out due to a limited wind data 
availability. 

 395 
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6 Discussion 

This study is the first to use IMERG rain data as input to predict turbine blade lifetimes. Our blade lifetime estimates based on 

the IMERG final product and local rain gauge data differ very little in spite of large biases of the rainfall rates at certain 

stations. Our results suggest that blade lifetimes are shorter for locations near the coast as compared to stations located further 

inland even for stations with similar annual rainfall rates. The damage of turbine blades is caused by heavy rainfall and strong 400 

winds in combination and therefore, the coastal stations with high annual mean wind speeds are the most prone to damage of 

the turbine blades. In other words, the blade lifetime model applied in this study is less sensitive to rainfall rates than to wind 

speeds Bech et al. (2022). Our findings are aligned with results from the Netherlands (Verma et al., 2021a). 

 

IMERG products are available onshore and offshore for more than twenty years (2000-22). This could potentially enable a 405 

regional to global mapping of the expected lifetime for specific turbines and blade coatings based on the concept applied here. 

In the context of blade lifetime assessment, the temporal coverage of available input data is important since the joint rain and 

wind variability in northern Europe is significant (Figure 6). Around 10 years of data is sufficient to predict blade lifetimes 

(Hasager et al., 2021). In case of shorter time series, there is considerable variation in the predicted lifetime. Our sensitivity 

analysis using 10 minute vs. 30 minute accumulated rainfall intensities shows little influence on lifetime estimates at sub-410 

hourly timescales. We see large differences for the station Seehausen only, which has a lifetime much longer than the length 

of our timeseries. 

 

Our comparisons of rainfall intensities from the IMERG final product versus rain gauge observations at ground stations 

confirm the findings in previous works (Bogerd et al., 2021). Light and moderate rainfall is overestimated by IMERG whereas 415 

heavy rainfall is underestimated. We see this pattern for almost all the 18 stations investigated (Figure 9) and because heavy 

rain contributes more than light rain to leading edge erosion, blade lifetimes based on IMERG could be underestimated. We 

also find that the seasonal variability of the rainfall type and intensity drives the bias on IMERG rainfall rates with respect to 

in situ observations (Figure 6). Comparisons between IMERG and in situ observations of rainfall intensities are therefore only 

representative for local areas where the climatic conditions remain similar. Another reason why validation of the IMERG final 420 

product is representative for local areas only is the nature of the data set where the number and the type of satellite sensors as 

well as the number of in situ stations assimilated in the product is variable (cf. Sect. 1).  

 

The stations considered here are primarily located in northern Europe where the rainfall conditions are similar in terms of the 

monthly distribution of rainfall (Figure 6) and the total amount of rainfall per year (Figure 7). We therefore also find that the 425 

bias between IMERG and in situ rainfall is on the same order of magnitude (Table 2). The two stations in Portugal and the 

elevated station Grosser Arber are located in very different regimes in terms of rainfall. In spite of these differences, the bias 

between IMERG and in situ rainfall is not so different.  

 

A few aspects should be noted about the reference precipitation data set used here as well as in previous works (Bech et al., 430 

2022; Hasager et al., 2021). Networks of in situ stations operated by national weather services (here by DMI, DWD and IPMA) 

are primarily established to monitor extreme rain events and to model the hydrological balance of catchment areas. In 

connection with these activities, different corrections are implemented but such corrections are not necessarily included in the 

in situ data sets we have accessed. The in situ data set used here represents the best possible estimates of the rainfall intensities 

and wind speeds locally at the stations but they are not necessarily representative of the ‘ground truth’. For example, strong 435 

winds may influence the amount of rainfall collected by a rain gauge. Such a bias will vary from station to station depending 

on the local wind climate. Likewise, the observations of wind speed may be influenced by sheltering obstacles such as buildings 

in the vicinity of the stations.  
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Precipitation measurements made with rain gauges at ground stations are very different in nature from remote sensing 440 

observations based on microwave or infrared sensors in space. Firstly, the observations are made at different levels in the 

atmosphere where the properties of a given rainfall event may also differ. Secondly, the sensing techniques are radically 

different. Rain gauges collect rain droplets by weight whereas remote sensing instruments in this context measure the properties 

of a volume of air. As described in Sect. 2, the capability of microwave sensors when it comes to detection of rainfall depends 

on the instrument frequency.  445 

 

In our analyses, we have considered liquid precipitation only as the damage model currently only works for liquid precipitation. 

Solid precipitation in the form of hail can cause severe damage on wind turbine blades as well (Letson et al., 2020; Macdonald 

et al., 2016). In the future, it might be possible to separate different types of precipitation with confidence and analyse their 

individual effects on leading edge erosion. Thanks to dual frequency Ku/Ka-band radar sensing in combination with passive 450 

microwave sensing, GPM makes it possible to estimate particle size distributions within rain clouds (Le and Chandrasekar, 

2014; Tokay et al., 2017). Drop size distributions are essential for the development and prediction of storms. Tilg et al. (2022) 

have shown that the drop size distributions obtained from disdrometers (i.e. laser instruments) can also lead to improved 

estimates of the kinetic energy, which drives the leading edge erosion of turbine blades. The kinetic energy model used by 

Hasager et al. (2020, 2021), Skrzypiński et al. (2020), and Tilg et al. (2022) severely overestimates the effect of larger drops 455 

compared to smaller drops in contrast to the droplet-dependent impingement model used in the present study (Bech et al., 

2022). There is thus an obvious potential for resolving drop size distributions from GPM and using them for the prediction of 

blade lifetimes.  

 

The damage model by Bech et al. (2022) is valid for the specific coasting system tested and is more weakly dependent upon 460 

droplet size than the kinetic energy model. It is surmised that other coating systems will respond differently depending on their 

viscoelastic properties, the thickness of coating and adhesion to the substrate. Our focus has been on the input precipitation 

data and despite differences between GPM and local observations, the lifetime results compare well. Another focus could 

involve wind speed variation and impact speed variation on blades with erosion observed in the field (Prieto and Karlsson, 

2018; Visbech et al. in review). It would be valuable to assure the methodological reliability using GPM and different wind 465 

speed input and precipitation data near wind turbine sites with observed blade erosion for lifetime prediction.  

7 Conclusion 

The combination of heavy rain and strong winds can cause leading edge erosion of wind turbine blades and ultimately, a need 

for blade repair or replacement. We have demonstrated for the first time that rainfall intensities obtained from the Global 

Precipitation Measurement (GPM) Mission constellation of satellites can be used as input for the prediction of blade lifetimes 470 

at locations in Germany, Denmark and Portugal. Our analysis is based on precipitation data from the Integrated Multi-Satellite 

Retrievals for GPM (IMERG) final product, which contains GPM observations since 2014. The satellite-based rainfall 

intensities were first compared against in situ observations of rainfall at the daily, monthly, and annual timescales. In line with 

previous analyses, we find that heavy rainfall is underestimated by IMERG whereas light rainfall is overestimated. The 

accuracy of annual rainfall intensities from IMERG is thus very dependent on the rainfall regime at a given point location and 475 

on the type(s) of satellite sensors and the number of ground stations included in the IMERG final product at that specific 

location. In spite of these challenges, blade lifetimes estimated from the satellite and in situ observations of rainfall are rather 

similar at most of the stations analyzed.  We also find that the 30 minute temporal resolution offered by IMERG is sufficient 

to predict blade lifetimes. Our analyses indicate that there is a potential for using satellite-based rainfall observations for 
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Cross-Out



18 
 

modeling of leading edge erosion and this represents a new application of the GPM. The findings are particularly relevant for 480 

planning of wind farms offshore where networks of in situ stations lack coverage. In the future, it might be possible to refine 

the analyses presented here by resolving the drop size distributions based on GPM satellite observations.   
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