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Response to Reviewers’ Comments (WES-2022-70) 

 
Reviewer 1: 

 

GENERAL COMMENTS: 

This paper examines a genuine issue in the science of wind energy and is thus in scope for this journal 

(Wind Energy Science).  There are certainly places with significant periods of calm (wind speed < 1m/s) 

but in which wind power may nevertheless be an option worth considering.  I know of  some such sites in 

Fiji and elsewhere in the Pacific Islands. There is something of a cottage industry in fitting [2-parameter] 

Weibull distributions to measured wind speed at particular sites around the world, with at least 400 papers 

published since 2006 with such a subject, according to the Scopus database. But, as the authors point out, 

a  standard 2-parameter Weibull distribution of wind speed necessarily does not include any calm periods, 

whereas a 3-parameter distribution can do so. A major aim of this paper is to examine the extent to which 

this more complex model can improve estimates of wind energy potential.  Related to this aim is the most 

original part of the paper, namely to examine whether a new Bayesian method of estimating the 

parameters of a 2- or (particularly) a 3- parameter fitted distribution is good for this purpose. The paper 

achieves both these aims, and therefore warrants publication in some form.  

 

Response: The authors would like to thank the reviewer for his encouraging comments as well as the 

suggestions and recommendations given to improve the manuscript. 

 

Certainly sufficient detail is presented to enable a reader to make their own appraisal, including as to 

whether the  improvements are worthwhile in terms of practical estimation of wind energy potential, 

though the authors notably fail to discuss this aspect. Nevertheless, in my opinion, the main text of the 

paper includes some excessive detail that would benefit from moving into its Supplement or otherwise 

condensed. 

 

Response: The authors have decided to delete some histograms from Section 8. Specifically, Figures 5, 8 

and 10, since these histograms are apparently showing overlapping curves (to make the curves distinct, 

the histograms need to be enlarged considerably, which is not practical). We have also decided to delete 

eqns. 24 and 25 and the associated results and discussion as per the recommendation of Reviewer 2.  

 

SPECIFIC COMMENTS: 

Discussion and conclusions. A significant use of fitted Weibull distributions is to facilitate extrapolation 

from the measurement site to nearby sites using computer models like WAsP.  It is not self-evident that 

this can also be done with a 3-parameter fitted distribution, though the authors claim in a throw-away line 

in their conclusions that it can be done. Some such discussion should be included in the Discussion 

section, including a little on why such fitting can be useful the more so as it is bad practice to include a 

substantive point in a Conclusions section that is not raised earlier in the paper.  

 

Response:  This discussion of possible incorporation of the 3-p Weibull distribution in software like 

WAsP is now included in the Discussion. It should be possible for software like WAsP to extrapolate to 

nearby sites, if all the details of the area of interest are available. 

 
Table 8 is a valuable summary of results for average power production. Like Table 7, it supports the 

authors’ qualitative conclusion that Bayesian-3P yields the best results (or nearly so) at all sites examined.  

MLE-2P represents the fit most widely used in the literature. It is surely worth noting that the Bayesian-

3P (the method tested here) yields substantially lower relative error than does MLE-2P only at sites 3 and 

7, which are the only sites with >2% of calms. In my opinion , it is very likely that for the other sites the 

difference of <2% between fitted and actual AEP  would  be overshadowed by the year-to-year changes in 
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actual AEP, so that the gain for engineering purposes of moving from MLE-2P to Bayesian-3P would 

barely be worthwhile.   These fundamental points also warrant discussion, and perhaps an allusion in the 

Conclusions and the Abstract.  

 

Response:  The authors have now included the main points and the reviewer’s suggestions in the Abstract, 

Discussion and Conclusions. The AEP is now replaced with Available Wind Power. 

Note: Relative difference of Power from actual = relative difference of AEP from actual. 

 

Literature cited or not cited. Much of the literature on wind energy makes broad statements about global 

trends in renewable energy, but perversely supported only by a citation to another narrowly focused paper 

on wind energy potential at a particular site. The first paragraph of the Introduction to this paper is a 

typical example. The assertion that many countries are turning to renewable energy is supported only a 

reference to Mostafacipour (2014), which is primarily yet another Weibull analysis of the wind energy 

distribution at a particular place; although that paper contains a similar sentence to the one in this paper, it 

too is supported only by a few references to similar single-site wind energy papers, and is any case rather 

dated. Surely a more appropriate basis for such general statements would be recent reports from one or 

more of the several institutions which specialize in energy statistics and their analysis, such as the 

International Energy Agency (IEA), the International Renewable Energy Agency (IRENA), the REN21 

network with its annual Global Status Reports, The United Nations compilation  of World Energy 

Statistics, or the BP Energy Statistical Review.  Such references could also support the first sentence of 

the same paragraph.Conversely, there are a few general statements  in the Introduction, which, while 

widely accepted, in an academic paper would normally warrant a reference. For example, that the Pacific 

Islands are among the most vulnerable places to climate change (line 45) could be readily referenced to 

the IPCC Sixth Assessment Report (Working Group 2) or similar.  

 

Response:  The authors appreciate the comment of the Reviewer to include references from international 

organizations like IRENA or IEA. The initial references are now replaced with references from these 

organizations; some more appropriate references are added. 

 

Site selection and measured data: For nearly a decade, the research group led by Professor Ahmed has 

been measuring the wind speed at sites across the Pacific Islands, using equipment like that described in 

sec. 2 of this paper. They have published directly measured data, usually for about 12 months,  for sites in 

almost all the places listed in Table 1. The number of observations , helpfully given in Table 3, indicates 

that these measurements (for most of which no reference is made to the relevant paper) are usually the 

“actual’ data used in this paper. . It is therefore surprising that the present paper draws on satellite data for 

sites 4 (Kadavu), 5 (Rarotonga), and 6 (Nuku’alofa). Why is this? What is the accuracy of that data, about 

which no methodological details are given. While the quality of satellite estimates of  wind speed has no 

doubt improved, historically it tended to overestimate actual wind speeds (especially on hilly islands) by 

some 20% (Kumar & Prasad, Renewable Energy, 2010) .  

Of course, the aim of the present paper is primarily mathematical , to examine how well various fitting 

methods match a set of “actual” wind speed data, rather than an engineering aim to  examine the potential 

power available from the wind. Thus the accuracy of the underlying “actual” data does not matter for this 

mathematical purpose, particularly whether it systematically over- or under-estimates the wind speeds.  A 

test of the curve-fitting method for sites with a greater proportion of calms than any of the sites examined 

so far would be of mathematical interest, even if such sites are unlikely to be of interest for production of 

electrical power.  The most obvious examples in the Pacific for which a reasonable amount of data is 

available would be airports, which are usually sited in relatively calm sites for safety reasons! . Nadi 

airport for example  has some 50 years of publicly available wind speed data at 3-hour intervals , of which 

>20% is calms (periods of 10 minutes with average wind speed <0.5 m/s) [FMS (2008), Surface winds at 

Nadi airport, Information Sheet No.38, , Nadi :Fiji Meteorological Service.]. It is important for wider use  
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that a tool for using the Bayesian 3-parameter method is available in the widely used statistical software 

package R , as pointed out  in sec.4.2.1.  

Response:  1) For many sites, there is good match between measured and satellite data (e.g. Vanuatu and 

Tuvalu). The Kadavu site was chosen as a last resort, as there were land ownership issues. Even for other 

sites, due to land ownership issues, we could not install the measurement towers at the desired locations. 

2) Table 3 now has references to our previous wind resource assessments. 3) The airport data are not 

reliable since the anemometers are not calibrated for many years.  

 

TECHNICAL COMMENTS: 

The paper often refers to its sites as being in the “equatorial” region, including in the Abstract and the 

Introduction. .  A more accurate  term here would be “tropical”, as the term “equatorial” refers  more 

specifically to the zone from about 5degN to 5 degS , which includes the Intertropical Convergence Zone, 

which is the climatological region of the Doldrums, a calm region historically notorious among operators 

of sailing ships.  

 
Response:  The term Equatorial is replaced with tropical; except for locations which are very close to the 

Equator. 

 

The page length of the paper could be slightly condensed by merging the multiple similar figures into one 

or two appropriately labelled figures, each incorporating 4 or 6 of the charts. This would save repeating  

the information in the captions and legends. Incidentally, several of the charts appear to have only one 

curve plotted from among the 4 identified in the legend. If this is becaasue the curves co-incide (to visual 

accuracy) then the text should say so.  

 

Response: The authors have decided to delete some histograms from Section 8. Specifically, Figures 5, 8 

and 10, since these histograms are apparently showing overlapping curves (to make the curves distinct, 

the histograms need to be enlarged considerably, which is not practical). We have also decided to delete 

eqns. 24 and 25 and the associated results and discussion as per the recommendation of Reviewer 2. In 

addition to this, some of the Figures from the Appendix 2 are now deleted as per the suggestion from the 

reviewer. 

 

Among  references cited, for which better sources are available include Mohanty (2012) [ which could be 

more appropriately replaced by the SPC’s Framework for Energy Security and Resilience in the Pacific 

(FESRIP) 2021-2030 and/or its issues papers, or even Weir (“Renewable Energy in the Pacific Islands: its 

role and status, Renewable and Sustainable Energy Reviews, 2018) or Michalena et al (“Challenges for 

Pacific small island states”, Energy Policy 2018) , which are slightly more recent than Mohanty’s paper]. 

Also Kidmo (2015)  is focused on a far inland region of Cameroon and says nothing about developing 

country islands, notwithstanding line 53. The citations for MOE (2017) and PPA (2015) are appropriate, 

but the corresponding entries in the List of References are inadequate, since neither spells out the 

institution concerned, namely ( I guess) Ministry of Energy (Suva, Fiji) and Pacific Power Association ,    

respectively 

 

Response:  The authors appreciate the comment of the Reviewer to include references from international 

organizations like IRENA or IEA. The initial references are now replaced with references from these 

organizations and suggested references; some more appropriate references are now added. 

 

 

Reviewer 2 

 

GENERAL COMMENTS: 
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This paper examines a Bayesian method, JAGS, for fitting probability distributions to wind data. JAGS is 

open source and approx. 20 years old, but it seems novel in the context of wind energy. Calculation of the 

posteriori probability distribution with JAGS requires MontCarlo simulation, and the authors used 10000 

iterations for the examples in the paper. This does not appear computationally efficient compared to 

existing methods, but at least the results are similar to those of the well-known maximum-likelihood 

estimation method. The authors suggest a three-parameter Weibull distribution with a location parameter 

giving an offset of the wind-speed scale, as a better model than the traditional two-parameter Weibull 

distribution. Unfortunately, the fitted distributions for the six test cases in the paper are not convincing, 

since they all result in distributions with negative location parameter, i.e. the fitted distributions predicts 

finite probability of negative wind speeds. This is not physically possible.  The fitted distributions are 

evaluated over the entire wind speed range. However, in the context of wind energy, it is more important 

to have an accurate model for wind speeds in the range of turbine operation. Wind resource estimation 

usually works with separate Weibull distributions for 12 or 16 wind-direction sectors and frequency of 

occurrence in each sector. This model is more accurate than a global Weibull distribution for wind speeds 

in all sectors.  

 

Response: The authors would like to thank the reviewer for his detailed review and comments. The main 

concerns raised by the reviewer are responded to after some detailed analysis of his suggestions and/or 

recommendations. In the fitted three-parameter Weibull distribution, the location parameter was found 

negative and was found to capture the null wind speed (<= 1m/s) at the sites. Note that at all the sites, the 

low wind speeds are observed from 0.76% to 3.08% (see Table 6).  In addition: 

 

(i) Sites with negative location parameter are also found in previous publications e.g. Wais 
(2017). He analyzed wind speed data at three sites in Poland and the location 
parameters were found to be: - 1.2692170, - 0.2728700 and - 0.4318956. 

(ii) Although the location parameter is negative, the shape and scale parameters are so 
obtained that the wind speeds with the estimated parameters are positive with a finite 
probability shown in the following SAMPLE table, which presents the wind speed value 
at random p = 0.01, p = 0.05 and p=0.95. At a probability of less than 0.01, there are 
chances of negative wind speeds. So, the authors feel that negative location parameter is 
not a big issue. 

 

Site k A θ U at 
0.05p 

U at 0.95p U at 0.01p 

1 2.777792 6.438856 -0.380611 1.83 9.17 0.5784481 

2 3.233794 7.532297 -0.922046 2.082154 9.655944 0.8924875 

3 2.636074 8.804806 -1.546749 1.30673 11.78448 0.0007525313 

4 2.401323 8.493057 -0.042536 2.422822 13.37067  

5 2.569510 8.596043 -0.323893 2.38755 12.85978  

6 2.522584 7.896873 -0.047855 2.380784 12.16  

7 2.425388 7.807676 -0.603869 2.250445 12.21713  

  

(iii) Based on the comment of the reviewer, the location parameter was forced to remain positive 

(named here as 3-p Weibull+) and results were obtained. The updated Table 5 shows that in Bayesian 

estimation, 3-p Weibull model fits better than the 2-p Weibull and 3-p Weibull+ (the model when the 

location parameter is forced to remain positive) for wind speed data at all the sites, except at Site 4 where 

2-p Weibull fits (a special case of 3-p Weibull) better as the DIC is smaller.  

 The table clearly shows that the model 3-p Weibull+ performs worse than the other two models. 
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(Updated) Table 5: Estimated values of the parameters obtained using Bayesian technique and 

summary statistics. 

Site Distribution Parameter Mean SD 2.5% 97.5% DIC 

1 2-p Weibull k 2.564487 0.008762 2.547292 2.581560 949864.6 

 A 6.019417 0.010876 5.998086 6.041268 

 3-p Weibull k 2.778195 0.018610 2.742305 2.814923 949587.6 

 A 6.439670 0.033898 6.373026 6.507357 

 θ -0.381144 0.029685 -0.439400 -0.323193 

 3-p Weibull+ k 2.563823 0.008847 2.546378 2.580583 949868.5 

  A 6.018284 0.010852 5.99728 6.039555  

  θ 0.001001 0.000991 2.72E-05 0.003657  

2 2 parameter k 2.736076 0.008940 2.718410 2.753285 256112.2 

 A 6.535458 0.010427 6.515002 6.555774 

 3 parameter k 3.231943 0.023096 3.184961 3.273617 255252.4 

 A 7.528328 0.044253 7.438378 7.607035 

 θ -0.918508 0.040458 -0.989749 -0.835880 

 3-p Weibull+ k 2.73565 0.009057 2.717811 2.753553 256116.6 

  A 6.534764 0.010619 6.513872 6.555601  

  θ 0.000694 0.000701 1.81E-05 0.002556  

3 2 parameter k 1.947640 0.005556 1.936812 1.958478 433669.2 

 A 7.017671 0.013022 6.992180 7.042895 

 3 parameter k 2.635850 0.016118 2.604492 2.667974 429666.8 

 A 8.804653 0.044092 8.718409 8.892835 

 θ -1.546999 0.038766 -1.624995 -1.472661 

 3-p Weibull+ k 1.947608 0.005361 1.93689 1.957928 433672.9 

  A 7.017143 0.012839 6.992167 7.042596  

  θ 0.0002 0.000198 5.36E-06 0.000734  

4 2-p Weibull k 2.385596 0.019486 2.347390 2.424420 166458.7 

 A 8.446062 0.039889 8.367275 8.525195 

 3-p Weibull k 2.405809 0.026990 2.356128 2.461114 166459.8 

 A 8.507469 0.070222 8.377540 8.660753 

 θ -0.055714 0.051466 -0.169674 0.031573 

 3-p Weibull+ k 2.378437 0.020051 2.339698 2.417936 166460.8 

  A 8.423957 0.043297 8.336452 8.508813  

  θ  0.018884 0.014624 0.000737 0.053911  

5 2-p Weibull k 2.438528 0.011898 2.415595 2.462772 498423.7 

 A 8.233447 0.021645 8.190758 8.276122 

 3-p Weibull k 2.569184 0.024930 2.521912 2.619417 498375.1 

 A 8.596434 0.065046 8.471752 8.729620 

 θ -0.324597 0.055076 -0.438669 -0.220035 

 3-p Weibull+ k 2.436463 0.011648 2.413392 2.459011 498427.1 

  A 8.229611 0.022021 8.185103 8.273141  

  θ 0.004002 0.003699 0.000103 0.013987  

6 2-p Weibull k 2.502775 0.010741 2.482126 2.524369 603592.3 

 A 7.843795 0.018777 7.806656 7.880416 

 3-p Weibull k 2.523740 0.016243 2.492982 2.555752 603591.3 

 A 7.900740 0.038140 7.830501 7.978555 

 θ -0.051032 0.030016 -0.113036 0.004279 

 3-p Weibull+ k 2.498836 0.011121 2.477168 2.52051 603595.1 

  A 7.832686 0.020837 7.791585 7.872396  

  θ 0.009855 0.008541 0.000325 0.031216  

7 2-p Weibull k 2.153266 0.007378 2.139086 2.167660 1016627 

 A 7.111621 0.014636 7.083240 7.140584 

 3-p Weibull k 2.425984 0.016281 2.394208 2.457741 1016030 



 
 

6 
 

 A 7.808854 0.040671 7.730066 7.892452 

 θ -0.604597 0.033817 -0.673024 -0.539979 

 3-p Weibull+ k 2.153091 0.007379 2.139021 2.167982 1016631 

  A 7.110982 0.01465 7.083335 7.139518  

  θ 0.000686 0.000672 1.80E-05 0.002457  

Furthermore, all the Goodness of fit measures were estimated for the four methods and the 3-p Weibull+ 

method. It can be seen from the updated Table 7 that the BAYESIAN.3P is the most efficient method for 

the sites 1, 2, 3, 5 and 7 as it gives the highest R2 value and the least RMSE, MAE and MAPE values. 

This indicates that the 3-p Weibull with Bayesian estimates is a better method for wind energy assessment 

at these sites. For two sites (4 and 6), the BAYESIAN.3P+ performs better; however, the BAYESIAN.2P 

method also gives similar results, which is a special case of the proposed BAYESIAN.3P method. 

(Updated) Table 7: Goodness-of-fit measures for the four methods. 

Site Method R2 COE RMSE MAE MAPE 

1 

 

 

 

MLE.2P 0.9982 0.9936 0.0983 0.0421 1.3052 

MLE.3P 0.9983 1.0011 0.0975 0.0239 0.8269 

BAYESIAN.2P 0.9982 0.9936 0.0983 0.0421 1.3053 

BAYESIAN.3P 0.9983 1.0011 0.0975 0.0239 0.8269 

 BAYESIAN.3P+ 0.9982 0.9935 0.0943 0.0421 1.3051 

2 

 

 

 

MLE.2P 0.9949 1.0048 0.1655 0.1114 3.4259 

MLE.3P 0.9971 1.0034 0.1234 0.0661 1.7917 

BAYESIAN.2P 0.9949 1.0048 0.1655 0.1114 3.4259 

BAYESIAN.3P 0.9971 1.0041 0.1227 0.0645 1.7748 

 BAYESIAN.3P+ 0.9949 1.0048 0.1655 0.1114 3.4259 

3 

 

 

 

MLE.2P 0.9696 0.9823 0.5675 0.4596 10.7507 

MLE.3P 0.9755 1.0681 0.5219 0.3029 7.9253 

BAYESIAN.2P 0.9696 0.9822 0.5677 0.4597 10.7516 

BAYESIAN.3P 0.9755 1.0679 0.5216 0.3027 7.9149 

 BAYESIAN.3P+ 0.9697 0.9822 0.5676 0.4596 10.7512 

4 

 

 

 

MLE.2P 0.9787 1.0512 0.4983 0.1546 1.9778 

MLE.3P 0.9783 1.0523 0.5025 0.1522 1.9013 

BAYESIAN.2P 0.9787 1.0511 0.4981 0.1544 1.9724 

BAYESIAN.3P 0.9783 1.0524 0.5036 0.1518 1.8860 

 BAYESIAN.3P+ 0.9789 1.0507 0.4962 0.1559 2.0176 

5 

 

 

 

MLE.2P 0.9983 1.0180 0.1371 0.1031 2.0079 

MLE.3P 0.9987 1.0186 0.1109 0.0787 1.5343 

BAYESIAN.2P 0.9983 1.0181 0.1372 0.1033 2.0074 

BAYESIAN.3P 0.9989 1.0183 0.1108 0.0785 1.5295 

 BAYESIAN.3P+ 0.9983 1.0177 0.1375 0.1034 2.0129 

6 

 

 

 

MLE.2P 0.9911 1.0173 0.2809 0.1251 1.9635 

MLE.3P 0.9909 1.0181 0.2852 0.1257 1.9187 

BAYESIAN.2P 0.9911 1.0169 0.2806 0.1253 1.9673 

BAYESIAN.3P 0.9909 1.0180 0.2854 0.1258 1.9162 

 BAYESIAN.3P+ 0.9912 1.0168 0.2798 0.1251 1.9771 

7 

 

 

 

MLE.2P 0.9973 0.9991 0.1607 0.1126 3.4174 

MLE.3P 0.9987 1.0152 0.1069 0.0718 2.0482 

BAYESIAN.2P 0.9973 0.9992 0.1609 0.1130 3.4244 

BAYESIAN.3P 0.9988 1.0152 0.1068 0.0717 2.0476 

 BAYESIAN.3P+ 0.9973 0.9992 0.1609 0.1130 3.4247 
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Concerning the comment on fitting only the wind speeds in the operating range of the turbine (≥3.5 m/s), 

please note that this paper is only estimating the available power. Also, different turbines have different 

cut-in speeds; nowadays, they are even designing turbines with cut-in speeds of 2 m/s. Hence, it is difficult 

to fix a wind speed to remove lower wind speed data. However, to respond to the reviewer, we fitted the 

Weibull curves with wind speeds of 3.5 m/s and above for site 1 and estimated the different goodness of fit 

values. The results are shown below, which demonstrate that the Weibull curve gets distorted and the 

goodness of fit values indicate higher errors.  

 

Goodness of Fit: 

  Rsq COE RMSE MAE MAPE 

MLE.2P 0.961936 1.118722 0.372791 0.207599 3.482373 

MLE.3P 0.995556 0.969421 0.120654 0.084971 1.322561 

BAYESIAN.2P 0.961948 1.118627 0.372706 0.207574 3.482144 

BAYESIAN.3P 0.995514 0.968467 0.121347 0.085516 1.328605 

 

Regarding the comment on separate Weibull distributions for 12 or 16 wind-direction sectors and 

frequency of occurrence in each sector, the authors would like to state that the present work mainly focuses 

on finding the best model to fit the wind speed data with frequent occurrences of low wind speed, which is 

just a component of wind resource assessment. Any future works aimed at full wind resource assessment 

and AEP estimation from specific turbines can consider such a work. 

 
SPECIFIC COMMENTS 

Equation 4 should only allow positive values of the location parameter, and the distribution fitting method 

should enforce this restriction.  

 

Response: For the tropical region, where the percentage of null wind speeds is significant at most of the 

sites, if the location parameter in eqn. (4) is forced to be positive: 

 

(i) the 3-parameter Weibull will not remain applicable. In other words, if θ > 0, it is likely that θ 

= 0, which reduces to 2-parameter Weibull. The results contradict with Wais (2017) “The 

three-parameter Weibull distribution takes into account the frequency of null winds and it 

can represent a useful alternative to the two-parameter Weibull distribution for the wind with 

considerable null wind probability and a higher fraction of lower speed winds”. 

(ii) As the MLE estimate gives the location parameter of 3-parameter Weibull negative, MLE 

estimation is inappropriate (Green et al. 1994). Thus, only Bayesian estimate is applicable to 

the wind speed data at such locations. 
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Further, for our experimental data, it is found that the forecasted wind speed is rarely (even less than 1%) 

negative if the location parameter is allowed to be negative. It can be seen from the updated Table 8 

below that the BAYESIAN.3P model gives better results than the one with forced positive location 

parameter (it is overestimating the power). 

(Updated) Table 8: Estimated power and relative error in power estimation. 

Site  Methods Power (kW) RE (%) 

1 

Actual 108457 0.00 

MLE.2P 110306 1.68 

MLE.3P 110061 1.46 

BAYESIAN.2P 110298 1.67 

BAYESIAN.3P 110051 1.45 

  BAYESIAN.3P+ 110300 1.67 

2 

Actual 133525 0.00 

MLE.2P 136039 1.85 

MLE.3P 135765 1.65 

BAYESIAN.2P 136030 1.84 

BAYESIAN.3P 135753 1.64 

  BAYESIAN.3P+ 136036 1.85 

3 

Actual 206184 0.00 

MLE.2P 220464 6.48 

MLE.3P 209474 1.57 

BAYESIAN.2P 220556 6.52 

BAYESIAN.3P 209458 1.56 

  BAYESIAN.3P+ 220525 6.50 

4 

Actual 322492 0.00 

MLE.2P 319732 -0.86 

MLE.3P 319627 -0.90 

BAYESIAN.2P 319812 -0.84 

BAYESIAN.3P 319591 -0.91 

  BAYESIAN.3P+ 319775 -0.85 

5 

Actual 290717 0.00 

MLE.2P 291809 0.37 

MLE.3P 290928 0.07 

BAYESIAN.2P 291696 0.34 

BAYESIAN.3P 290889 0.06 

  BAYESIAN.3P+ 291815 0.38 

6 

Actual 249192 0.00 

MLE.2P 247792 -0.56 

MLE.3P 247770 -0.57 

BAYESIAN.2P 247848 -0.54 

BAYESIAN.3P 247808 -0.56 

  BAYESIAN.3P+ 247840 -0.55 

7 

Actual 204938 0.00 

MLE.2P 207543 1.26 

MLE.3P 204781 -0.08 

BAYESIAN.2P 207487 1.23 

BAYESIAN.3P 204790 -0.07 

  BAYESIAN.3P+ 207493 1.23 

 
Equations 21-25 does not include a wind-turbine power curve, so they are not predictions of annual 

energy production. I suggest that you avoid multiplication by the rotor-swept area in equations 22-23, and 

refer to the result as ‘wind power density’, which is a standard term in wind energy. Furthermore, you can 

delete equations 24-25.  
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Response: The authors have decided to delete Equations 24-25 and the annual energy production. 

However, eqns. 22-23 are retained and the power is now reported as total available wind power similar to 

the previous work discussed. 

 

It seems like the last column (AEP) in table 8 is calculated by equations 24-25. AEP normally refers to 

the ‘annual energy production’ for a specific project with a selected turbine, and you need the turbine 

power curve to estimate this. I suggest that you delete this column or substitute by wind power density. 

 

Response: AEP calculations are now removed and only total available wind power estimations are 

reported. 

 

The integration range in equations 22- 23 covers all positive wind speeds, which is natural from a 

physical point of view. However, the fitted 3-parameter distributions all have negative location 

parameters, so you are not integrating over the entire probability space. In one case, you only integrate 

over 98.5% of the probability, which gives the result a negative bias. The conclusion is that we cannot 

apply the three-parameter Weibull distribution with negative location parameter for a wind speed 

distribution.  

 

Response: From the updated tables 5, 7 and 8, it is clear that the three-parameter Weibull distribution with 

negative location parameter is the most appropriate model. 

Note: If we integrate, we can use up to 99.09% of probability space (see table above). 

 

Figures 5-11 compares fitted distributions with bin statistics of wind speeds at six met masts. It seems 

unnecessary to include this many similar plots, especially since tables 4 and 5 summarize the key 

statistics.  

 

Response: The authors have decided to delete Figs 5, 8 and 10, since it is also the recommendation of 

reviewer 1. 

 

TECHNICAL CORRECTIONS 

The text should explain why some numbers in tables 4, 5 and 7 are printed with bold. 

 

Response: The values were highlighted to show that the 3P method is performing better. 
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