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Abstract. The two-parameter Weibull distribution has garnered much attention in the assessment of wind energy potential. 

The estimation of the shape and scale parameters of the distribution has brought forth a successful tool for the wind energy 10 

industry. However, it may be inappropriate to use the two-parameter Weibull distribution to assess energy at every location, 

especially at sites where low wind speeds are frequent, such as the tropical region. In this work, a robust technique for wind 

resource assessment using a Bayesian approach for estimating Weibull parameters is first proposed. Secondly, the wind 

resource assessment techniques using a two-parameter Weibull distribution and a three-parameter Weibull distribution, which 

is a generalized form of two-parameter Weibull distribution, are compared. Simulation studies confirm that the Bayesian 15 

approach seems a more robust technique for accurate estimation of Weibull parameters. The research is conducted using data 

from seven sites in tropical region from 1o N of Equator to 21o South of Equator. Results reveal that a three-parameter Weibull 

distribution with non-zero shift parameter is a better fit for wind data having a higher percentage of low wind speeds (0-1 m/s) 

and low skewness. However, wind data with a smaller percentage of low wind speeds and high skewness showed better results 

with a two-parameter distribution that is a special case of three-parameter Weibull distribution with zero shift parameter. The 20 

proposed distribution can be incorporated in commercial software like WAsP to improve the accuracy of wind resource 

assessments. The results also demonstrate that the proposed Bayesian approach and application of a three-parameter Weibull 

distribution are extremely useful for accurate estimatione of available wind power density. 

 

Keywords: Wind energy resource assessment; Two-parameter Weibull distribution; Three-parameter Weibull distribution; 25 

Bayesian estimation method. 

1 Introduction 

Wind energy has now become one of the world’s fastest-growing sources of energy. It is an inexhaustible source of energy 

with increasing utilization all around the world. Growing climate change concerns have prompted many developed and 

developing countries to implement policies that reduce their reliance on non-renewable sources and instead utilize renewable 30 
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sources such as wind, hydro, and solar energies (Renner et al., 2022; IEA, 2021). However, developing countries encounter 

several challenges in generating sustainable wind energy. There is a need for reliable wind data and proper assessments of a 

country’s wind energy potential before initiating energy generation projects that would help them meet the sustainable 

development goals set by the United Nations. 

While climate change is being experienced globally, some regions are getting affected more than the others. Pacific islands 35 

countries (PICs), particularly those in the warmer tropical region, are more susceptible to its effects. The contribution of the 

PICs to the current global greenhouse gas emissions is below 0.03%; yet they are among the first to be affected. It is projected 

that the people of PICs will be among the first who will need to adapt to climate change or be required to relocate from or 

abandon their traditional homeland. Some islands are already facing the impacts of climate change on their communities, 

infrastructure, water supply, coastal and forest ecosystems, fisheries, agriculture, and human health. Island states such as 40 

Kiribati, Marshall Islands, Tokelau and Tuvalu are the immediate victims of this phenomenon due to rising sea level. 

Knowledge of the effects of climate change on PICs should act as a driving force behind the commitment to decrease 

greenhouse emissions.  The PICs, which currently depend heavily on imported fossil fuels and their by-products, need to 

become more energy efficient and self-reliant (Weir, 2018). PICs are among the countries with lowest access to electricity and 

the prices of electricity are among the highest in the world due to their heavy reliance on high-cost diesel-based generation. 45 

Energy security and low-cost energy are becoming increasingly important within the region, which requires increasing 

investments in renewable energy technologies. PICs are also among the most vulnerable countries to natural disasters 

(Robinson, 2020). The energy sector can be highly vulnerable to such events, which requires adequate attention to these issues 

in the design of energy production and distribution infrastructure. This can only be achieved by adopting resilient renewable 

energy policies. Most of the countries in the region have their national sustainable development plans to achieve United 50 

Nations’ sustainable development goals (SDGs); for examples, the country Cook Islands, aims to have 100% renewable power 

generation in near future and Fiji is committed to reducing 30% of its national greenhouse emissions and achieve 99% 

renewable energy generation by 2030 (MOE, 2017). 

However, lack of reliable and accurate wind resource data acts as a barrier to a clean energy future in the PICs, especially in 

the smaller developing islands (Michalena et al., 2018).  So far, wind resource assessment has received only limited attention 55 

in the PICs, and there is a need for further wind data collection and analysis and accurate wind energy potential assessment. 

World Bank provides support to PICs through the Sustainable Energy Industry Development Project (SEIDP).  In various 

phases of renewable energy resource mapping, they support the countries to carry out an assessment of solar and wind potential. 

The objectives of this component are to enhance awareness and knowledge of the potential for renewable technologies (solar 

and wind) to the governments, power utilities and private sector, and to provide governments with a spatial planning framework 60 

to guide investments in the renewable energy sector (PPA, 2015). 
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The utilization of wind energy is slowly increasing in PICs such as New Caledonia, Fiji, Vanuatu, Cook Islands and Samoa 

with the installation of wind farms. However, there have been little to no attempts to establish wind power in many of these 

countries. The University of the South Pacific installed towers of 34 m height, named as Integrated Renewable Energy 

Resource Assessment Systems (IRERAS), in Kiribati, Nauru, Niue, Tuvalu, Tokelau, Samoa, Tonga, Fiji, Vanuatu, Solomon 65 

and Cook Islands to collect data on wind and solar energy resources (Gosai, 2014). 

The Weibull distribution has now become a widely accepted model in determining the potential of wind energy (Indhumathy 

et al., 2014). Wind energy professionals in different parts of the world have widely employed the use of Weibull distributions 

in the statistical analyses of wind characteristics and for estimating wind power density (Corotis et al., 1978). The Weibull 

shape parameter defines the width of wind distribution. A higher shape parameter indicates that the distribution is narrower, 70 

and the peak value is higher. The Weibull scale parameter controls the abscissa scale of the data distribution plot (Chang, 

2011). Thus, the Weibull distribution function is comprehensively used for analyzing the wind power potential at a site.  

Past researchers found the two-parameter Weibull distribution to be a useful and practical tool for wind energy estimation. The 

advantages of two-parameter Weibull distribution include its flexibility, simplicity in parameter estimation, convenience of 

conducting goodness-of-fit tests on these parameters as well as its dependence only on two parameters that can be expressed 75 

in closed form. The present authors studied a number of methods for finding the Weibull parameters (shape factor and scale 

factor) for a number of sites: Kadavu (Kutty et al., 2019), Vanuatu (Singh et al., 2019) and Cook Islands (Singh et al., 2022). 

However, some authors suggested that the 2-p Weibull distribution is not suited for all wind regimes encountered in nature 

such as regimes with a high percentage of low wind speeds and bimodal distributions. Therefore, its usage cannot be 

generalized. To minimize errors, a suitable probability density function must be carefully selected for different wind regimes. 80 

(Carta et al., 2009; Sukkiramathi and Seshaiah, 2020) and Patlakas et al. (2017) emphasized the importance of studying low 

wind speeds stating that this information can be included in risk assessment. Leahy and Mckeogh (2013) studied the persistence 

of low wind speed conditions and their implications on the variability of wind power. 

Tuller and Brett (1984) proposed a three-parameter Weibull function for wind data analysis and found that it showed better 

fitness and flexibility than the two-parameter Weibull function. Recently, some authors utilized the three-parameter Weibull 85 

distribution and found that it has more flexibility with improved fitness than the two-parameter Weibull distribution in wind 

energy assessments. Wais (2017) compared the two and three-parameter Weibull distribution to find the most appropriate 

distribution of wind speed. The results revealed that methods other than the three-parameter Weibull distribution cannot 

account for cases where the frequency of low wind speed is higher. The author compared the wind speeds for three different 

sites and found that the three-parameter Weibull distribution performed the best when there was a greater frequency of lower 90 

wind speeds. Sukkiramathi and Seshaiah (2020) and Wang et al. (2022) also utilized the three-parameter Weibull distribution 

for analyzing wind power potential. However, to date, only limited research has been carried out on wind data analysis using 

the three-parameter Weibull distribution.  



4 
 

 

Furthermore, many estimation methods have been proposed for estimating Weibull parameters. Among these, maximum 95 

likelihood estimation (MLE), a popular frequentist technique, has been widely used for estimating the parameters (Teimouri 

and Gupta, 2013). Recently, the Bayesian estimation approach has received a lot of attention from many researchers. Among 

them is Ibrahim and Mohammed (2011) who considered the Bayesian survival estimator for Weibull distribution with censored 

data. Many authors, including Hossain and Zimmer (2003) and Pandey et al. (2011) did some comparative studies on the 

estimation of the Weibull parameters using complete and censored samples, and Lye et al. (1993) determined the Bayes 100 

estimation for the extreme-value reliability function. Guure et al. (2012) examined the performance of MLE and Bayesian 

methods for estimating the two-parameter Weibull failure time distribution. However, the use of the Bayesian technique for 

modelling wind data and analyzing wind power potential was not explored in their work. 

The present work is aimed at comparing the two-parameter and three-parameter Weibull distributions to fit wind speed data 

more accurately at seven locations in the tropical region, where wind speeds are generally lower. Development of a novel 105 

approach using the Bayesian method for estimating the Weibull parameters is also a part of this work. The results from 

Bayesian technique are compared with those of the traditional MLE method to determine a more accurate evaluation method 

of wind speed characteristics. 

2 Wind Speed Data Sites 

Wind speed data from seven different sites in the tropical region were used in the present work, as shown in Table 1.  110 

Table 1: Locations of data collection sites. 

Sites Location Country Measurement period Topography   

1. Tarawa 
Latitude 1° 26' N   

Longitude 173° 00' E 
Kiribati 

September 2012 to 

September 2013 
Flat 

2. Pentecost 
Latitude 15o 41' S 

Longitude 168o 11' E 
Vanuatu 

October 2012 to 

November 2013 

Mountainous 

terrain 

3. Rakiraki 
Latitude 17o 22' S 

Longitude 178o 10' E 
Fiji 

February 2012 to 

October 2013 
Flat 

4. Kadavu 
Latitude 19° 0' S  

Longitude 178o 15' E 
Fiji 

January 2018 to 

December 2018 

Mountainous 

terrain 

5. Rarotonga 
Latitude 21 15' S,  

Longitude 159 45' W 

Cook 

Islands 

January 2016 to 

December 2018 
Flat 

6. Nuku'alofa 
Latitude 21o 15' S 

Longitude 175o 15' W 
Tonga 

January 2016 to August 

2019 
Flat 
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7. Sanasana 
Latitude 18o 6' S 

Longitude 177 o  20' E 
Fiji 

December 2018 to 

December 2019 
Flat 

 

For sites 1, 2 and 3, data were obtained from measurements using 34 m tall towers with the help of sensors described in Table 

2. The NRG systems towers, named Integrated Renewable Energy Resource Assessment Systems (IRERAS), with a height of 

34 m were used. NRG SymphoniePlus3 was the data-logger used which was connected to seven different sensors installed on 115 

the tower. The sensors measured wind speed, temperature, pressure, rainfall, solar insolation, humidity, and wind direction. 

The data were either collected from the SD card in person or sent via the GSM-based network to a data-bank located at the 

ICT centre of the University of South Pacific at the Laucala Campus, Fiji. The anemometers (serial numbers 179500189054-

57, 179500189089-90) have an accuracy of 0.1 m/s and a range of 0.4 to 96 m/s. The wind vane is placed at 30 m above ground 

level (AGL). The data were recorded in a time-series format in an RWD file which were later transferred to a Microsoft excel 120 

sheet. The wind speed data were recorded continuously at an interval of 10 minutes with three cup anemometer – two at heights 

of 34 m above ground level and one at 20 m above ground level – respectively. For sites 4, 5 and 6, satellite data were 

downloaded; land data from ERA5 were used in the present work (Ref: https://cds.climate.copernicus.eu/). ERA5 is the fifth 

generation ECMWF reanalysis for the global climate and weather for the past 4 to 7 decades. Reanalysis combines model data 

with observations from across the world into a globally complete and consistent dataset using the laws of physics. This 125 

principle, called data assimilation, is based on the method used by numerical weather prediction centres, after certain number 

of hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce 

a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. 

Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several 

decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and 130 

when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit 

the quality of the reanalysis product. For site 7, an NRG systems towers, similar to the ones used for sites 1, 2 and 3, but 50 m 

high, was installed; it has anemometers at 50 m, 40 m and 30 m AGL. 

Table 2: Specifications of the relevant measurement sensors (Aukitino et al., 2017). 

Parameter Sensor Type Range Accuracy 

Wind speed NRG#40C anemometer 0.4-96.0 m/s 0.1 m/s 

Wind direction NRG 200P direction vane 0-360o N/A 

Pressure NRG BP-20 barometric 

pressure sensor 

15 kPa - 115 kPa 1.5 kPa 

Temperature NRG 110S -40 oC –  65 oC 1.11 oC 

 135 
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For the measured values, some uncertainties were taken into account such as calibration errors, the terrain of the site that was 

used, the dynamic over speeding, the error introduced due to wind shear and the inflow angle (Jain, 2016). The measurements 

in the present work were performed close to the shoreline at a flat terrain. The flow was in the horizontal plane, resulting in a 

lower uncertainty level. The calibration report for the anemometers used in the present work showed a maximum uncertainty 

of 0.6% for a wind speed range of 4-7 m/s, which reduced at higher wind speeds. The overall uncertainty in the estimation of 140 

wind speed is obtained by taking all the above uncertainties into account (Jain, 2016) and using the relation in equation (1): 

 

2

1

 = 
N

i
i

 

       (1)  

 

where ɛi is each component of uncertainty and N is the number of components of uncertainty. The uncertainties were estimated 145 

at 95% confidence level. As per the IEC Standard IEC 61400-12-1,(Iec, 2017) the uncertainty in the measurements was 

estimated to be approximately 1.74%. 

3 Weibull Distribution 

Assessment of wind power energy at a site requires knowledge of the appropriate probability distribution of the site’s wind 

speed, as the estimation of wind energy depends on its accuracy. 150 

3.1 Two-parameter Weibull distribution 

The two-parameter Weibull probability density functions (PDF) and the cumulative distribution function (CDF) for wind 

speed, U, respectively are given by 
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where f(U) is the probability of observing the wind speed,  k is the shape parameter and A is the scale parameter (m/s) of the 

distribution. The parameter k indicates the wind potential and what peak the distribution can reach. Its value ranges between 

1 and 3. A lower k value signifies highly variable winds, while constant winds are characterized by a larger k. The parameter 

A denotes how windy the site under study is and it takes a value proportional to the mean wind speed (Manwell et al., 2010; 160 

Sukkiramathi and Seshaiah, 2020).  
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3.2 Three-parameter Weibull distribution 

The three-parameter Weibull PDF and the CDF for wind speed, respectively are given by 
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where  f U  is the probability of observing the wind speed,  k is the shape parameter, A is the scale parameter (m/s), and 

θ is the shift or location parameter (m/s) of the distribution. If 0  ,  f U and  F U become the PDF and CDF of a two-

parameter Weibull distribution, respectively. 170 

As the name implies, the shift parameter, θ, shifts the distribution along the abscissa. When θ = 0, the distribution starts at U 

= 0 or at the origin. Whereas, if θ > 0, the distribution starts at the location θ to the right of the origin. If θ < 0, the distribution 

starts with the location parameter θ to the left of the origin. For the distribution of wind speed, θ provides an estimate of the 

earliest time-to-start the wind (Tuller and Brett, 1984; Wais, 2017). However, when θ < 0, one may encounter the issue that 

the integral of the standard probability distribution (4) over non-negative wind speeds becomes considerably less than one. In 175 

such cases, when there is significant loss in the integral value, a truncated version of the three-parameter Weibull distribution 

supporting positive windspeed only with a finite probability of calm wind speed (U = 0) may be used, as given by 
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where calmf  is a postulated probability of calm situations given by 
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and ( )U  is Kronecker’s delta function.  

4 Methods of Estimating Weibull Parameters 

To estimate the Weibull parameters, we propose a Bayesian approach and compare its performance with a popular frequentist 

approach, the maximum likelihood estimation (MLE) method.  
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4.1 The Maximum Likelihood Method 185 

4.1.1 Two-parameter distribution 

MLE is the most popular technique for deriving estimators.(Aukitino et al., 2017; Casella and Berger, 2020; Chaurasiya et al., 

2018) If 
1
, ...,

n
U U  are the wind speed values with the Weibull density function given in (2), the shape parameter (k) and scale 

parameter (A) are the values that maximize the likelihood function    
1 1

, ,..., ,n

n i i
L k A U U f U k A


  . Then, solving 

ln 0L k    and ln 0L A    gives the equation of MLE of the scale parameter A as: 190 
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Finally, equation (9) is used for estimating the shape parameter (k) as: 
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        (9) 

which may be solved to get an estimate of k using Newton-Raphson method or any other numerical procedure because equation 

(9) does not have a closed form solution. When the value of k is obtained, the value of A can be found using equation (8). 195 

4.1.2 Three-parameter distribution 

The likelihood function L for estimating the parameters is given by    
1 1

, , ,..., , ,n

n i i
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
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ln 0L k   , ln 0L A    and ln 0L     gives the equations of MLE of the parameters as shown in Equations (10-

12): 
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There is no closed form solution of the equations but the non-linear equations (10) - (12) may be solved by applying some 

optimization techniques such as Newton-Raphson method or other numerical procedures (Teimouri and Gupta, 2013; Lawless, 

2003). 205 

4.1.3 Evaluation of MLE methods 
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To determine the best model, we can compare the fit of the two MLE methods using different measures of goodness-of-fit 

(Luceño, 2008; Cousineau and Allan, 2015; Ramachandran and Tsokos, 2021). The most used criteria are: 

Log-likelihood (log-like): 

If a PDF  ˆf U  fitted on the wind speed data and ̂  is the estimated parameter of the distribution, then the log-likelihood 210 

for the goodness of fit is obtained by the following equation: 

      ˆ

1

log-like log
n

i

i

f U


  
 
 
                                                       (13) 

where 
iU is the ith observed wind speed and n is the number of observations in the dataset. A higher value of log-likelihood 

value indicates a better fit. 

Akaike information criteria (AIC): 215 

If k is the number of distribution parameters to estimate, AIC is obtained using equation (14): 

      AIC 2 log-like 2k              (14) 

A lower value of AIC indicates that the model fits the data better. Compared to the log-likelihood, this criterion takes into 

consideration the parsimony of the model as it includes a penalty term that increases the number of parameters.  

Bayesian information criteria (BIC): 220 

This criterion is obtained using equation (15): 

 

 BIC 2 log-like log( )k n  
    

    (15) 

Similar to AIC, a lower value of BIC indicates that the model fits the data better. However, BIC provides a stronger penalty 225 

than AIC for additional parameters. 

Kolmogorov-Smirnov (Solomon et al.) test: 

The Kolmogorov-Smirnov (Solomon et al.) test is also used to check the adequacy of a given theoretical distribution for a 

given set of wind speed data. The KS test computes the maximum difference between the predicted and observed distribution, 

and the test statistic D  is given by: 230 

     
1

ˆD max i i
i n

F F
 

       (16) 

where ˆ
iF  is the ith predicted cumulative probability from the theoretical CDF and 

iF  is the empirical probability of the ith 

observed wind speed. 

Anderson-Darling (AD) test: 
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For a finite data sample, the Anderson-Darling (AD) test statistic 
2A  is defined by: 235 

 

      
2A n s   ,           (17) 
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4.2 The Bayesian Method 240 

A classical frequentist approach such as MLE has certain drawbacks. Most of its properties hold only for large sample sizes 

and it requires a symmetric form of sample distribution. The Bayesian approach, however, is free from such limitations. 

Moreover, Bayesian simulation tools provide an exact method of inference even if sample size is very small. Thus, in real-life 

situations where the sample size may be small, Bayesian methods seem to be more suitable over frequentist methods if prior 

information about the parameters is available.  245 

In this paper, a Bayesian inference approach for modeling of wind speed data is proposed. In the Bayesian paradigm, data and 

prior information about the parameters are combined together to make an inference about the parameters of interest.  

The most influential contribution of the Bayesian approach is its modification of the likelihood function into a posterior - a 

valid probability distribution defined by the classic Bayes' rule. The posterior distribution of wind speed is expressed as: 

          
 

p U p
p U

p U

 
       (18) 250 

where  p U  is the posterior distribution of wind speed,  p   is the prior distribution of unknown parameters 

 , ,k A  ,  p U   is the likelihood of wind speed data and      p U p U p d    . The denominator of 

equation (18),  p U , normalizes the posterior distribution,  p U . Since it is independent of U, it is often convenient to 

write the posterior distribution as: 

          p U p U p         (19) 255 

i.e. the posterior distribution of the parameters is proportional to the likelihood function times the prior distribution of 

parameters. While fitting wind speed data, a non-informative uniform prior distribution is used, as very little prior knowledge 

about its model parameters is available. In Bayesian computations, a sample of the joint posterior distribution is obtained by 

using Gibbs sampler to simulate a sample from a Markov Chain Monte Carlo (MCMC). Then, we can calculate the desired 

values of the posterior. 260 



11 
 

In this paper, the software JAGS is used to fit the model. The R package R2jags is used to summarize the posterior inference, 

which is discussed in more detail in Section 4.2.1. 

 
4.2.1 Bayesian Fitting of Weibull distribution with JAGS 

JAGS, an acronyms for “Just Another Gibbs Sampler” (Plummer, 2003), accepts a model string written in an R-like syntax 265 

that compiles and generates MCMC samples from the model using Gibbs sampling. It is an open-source software written in 

C++ using GNU compilers and packaging tools - freely available at http://mcmc-jags.sourceforge.net/. R packages such as 

R2jags or rjags allow running JAGS models within R on Windows machines for the summarization of posterior inference. 

 
In the present work, JAGS models for the Bayesian fit of wind speed with two and three parameter Weibull distributions are 270 

developed and MCMC data are generated. In MCMC simulations, the Gibbs sampler with the JAGS models is run for 10,000 

iterations using the jags function in R2jags package (Su and Yajima, 2020). Then, the posterior estimates of parameters 

are obtained by performing the Gibbs sampler iterations and using 1000 burn-in period to attain convergence with five thinning 

intervals and 3 chains with a sample size of 1800 per chain. The model specifications to perform the Bayesian fit, and the 

jags function and its arguments are presented in Appendix 1. The computational time for the 2-p Weibull method is 275 

approximately 24 minutes while that for the 3-p Weibull method is approximately 34 minutes compared to about 1 minutes 

and 2 minutes respectively for the MLE method. It should, however, be noted that a direct comparison of the computational 

time would not be appropriate as the Bayesian method is a simulation based technique which take longer time than the standard 

software based MLE technique. 
 280 
4.2.2 Evaluation of Bayesian Models 

The standard likelihood, AIC and BIC statistics, discussed in Section 4.1.3 are not relevant while evaluating Bayesian methods 

such as MCMC. Instead, Spiegelhalter et al. (2002) suggested that the Deviance Information Criterion (DIC) should be used 

to compare models. The DIC is a generalization of AIC that is based on Deviance statistics: 

         2 log 2 logD f U h U         (20) 285 

where  h U  is some standardizing function of the data. The DIC is then defined as: 

      
DDIC D p        (21) 

where  UD E D  is the posterior expectation of deviance and 
Dp  is effective number of parameters that captures the 

complexity of a model. A smaller value of DIC indicates a better-fitting model.  

5 Estimation of available wind power  density 290 
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When the wind speed (U) of a site and the frequency distribution  f U  are known, the available wind power density can be 

estimated. If ρ is the density of air, D is the turbine rotor diameter and 2 4
R

A D  is the rotor cross sectional area, then the 

probability of available wind power density for a given velocity U is obtained by 

                  31
; 0

2
R

p U A U U                                                               (22) 

Then, the expected wind power (P) is estimated by 295 

     Wind power,    
0

.P P U f U dU


                       (23) 

Substituting (22), (2) and (4) in (23), the expected total available wind powers density for two-parameter and three-

parameter Weibull distributions respectively, are determined by  

     
2

2 0

1

2

k

P R k

k
U

Ak
P A U e dU

A


 

 
 
            (24) 

and 300 

      
3 0

131
.

2
P R k

k
U

k AP A U d
k

U e
A

U



 


             (25) 

6 Analyzing performance of different estimators  

The efficiency and performance of MLE and Bayesian methods for estimating two and three parameter Weibull distributions 

were determined using different goodness of fit and error measures such as coefficient of determination ( 2R ), root mean square 

error (RMSE), coefficient of efficiency (Rocha et al.), mean absolute error (MAE) and the mean absolute percentage error 305 

(MAPE).  Arithmetically, these are computed as follows (Kidmo et al., 2015; Aukitino et al., 2017; Azad et al., 2014): 

Coefficient of determination ( 2R ): 

It is a statistical measure that gives some information about the goodness of fit of a model, that is, how much the variance of 

the observed data is explained by the fitted model. It is defined as: 

      
2

2

1

2

1

ˆ( )

1

( )

n

i i
i
n

i
i

U U

R

U U






 






     (26) 310 

where n is the number of observations, 
iU  is the ith actual data, ˆ

iU  is the ith predicted data with the Weibull distribution, U  

is the mean of actual data. A higher 2R  value indicates a better fit and 2R = 1 indicates that the regression predictions perfectly 

fit the data. 

Root mean square error (RMSE): 
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It determines the deviation of the predicted values of wind speed from the observed values and obtained by 315 

      2

1

2

1

1 ˆ
n

i i
i

RMSE U U
n 

  
  
      (27) 

A smaller RMSE value normally indicates accurate modeling. The calculated RMSE value approaches zero as the difference 

between the observed and predicted values becomes smaller (Indhumathy et al., 2014). 

Coefficient of efficiency (Rocha et al.): 

It quantifies the ratio of difference between predicted wind speed and the mean wind speed to the difference between actual 320 

values and the average of wind speeds. A higher COE value indicates a good fit for the data. It is expressed as: 

      

 

 

2

1

2

1

ˆ
n

i
i
n

i
i

U U

COE

U U













     (28) 

Mean absolute error (MAE): 

The mean absolute error is a measure of the absolute difference between predicted and actual values. A smaller value of 

MAE indicates higher accuracy. The MAE is mathematically expressed as: 325 

      
1

1 ˆ
n

i i
i

MAE U U
n 

       (29) 

Mean absolute percentage error (MAPE): 

It is a comparative measure, indicating the error as a percentage of the actual data which helps accurately predict the 

forecasting method. Like MAE, a lower value of MAPE indicates better accuracy. It is mathematically expressed as: 

     
1

ˆ100 n
i i

i i

U U
MAPE

n U


                   (30) 330 

7 Results 

In this section, the results of fitting of two-parameter (2-p) and three-parameter (3-p) Weibull distributions are presented. 

Further, the results for the application of MLE and the proposed Bayesian approach for estimating the parameters, as described 

in Sections 3 and 4, are also presented. To accomplish this, wind speed data at seven different sites were collected as mentioned 

in Section 2. Table 3 provides wind speed distributions at these sites. The table shows that the range of speed varies at different 335 

sites. The lowest range of wind speed was observed at site 1 (0-19 m/s) and the highest range was found at site 3 (0-34 m/s). 

Some sites tend to have more low to null wind speeds (0-1 m/s). 

 

Table 3: Frequency distributions of wind speed at different sites. 

Wind speed Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 
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U Frequency Frequency Frequency Frequency Frequency Frequency Frequency 
(0,1] 889 1063 5882 62 209 251 1662 
(1,2] 2197 1998 4246 219 773 799 2161 
(2,3] 5224 3579 4951 367 1498 1543 3712 
(3,4] 7006 5739 5845 641 1928 2390 5220 
(4,5] 8721 8077 7134 803 2388 3330 6331 
(5,6] 8783 10332 8716 949 2878 4260 7393 
(6,7] 7554 9570 10771 1026 2965 4590 6698 
(7,8] 5591 7094 11215 1052 2937 3915 5651 
(8,9] 3381 4810 9363 851 2833 3502 4449 
(9,10] 1706 2701 6496 882 2349 2812 3535 
(10,11] 604 1255 4226 723 2016 2023 2792 
(11,12] 236 482 2366 437 1411 1205 1989 
(12,13] 125 119 1177 311 892 715 1316 
(13,14] 42 26 588 215 661 278 654 
(14,15] 11 9 247 99 405 193 288 
(15,16] 3 8 107 54 91 114 67 
(16,17] 1 10 60 7 42 97 9 
(17,18] 4 3 53 9 17 43 1 
(18,19] 2 3 38 6 6 30 0 
(19,20] 0 1 13 6 2 16 0 
(20,21] 0 0 5 7 3 9 0 
(21,22] 0 0 4 15 0 8 0 
(22,23] 0 0 3 8 0 11 0 
(23,24] 0 0 6 2 0 1 0 
(24,25] 0 0 5 5 0 1 0 
(25,26] 0 0 4 2 0 0 0 
(26,27] 0 0 4 0 0 0 0 
(27,28] 0 0 3 1 0 0 0 
(28,29] 0 0 5 0 0 0 0 
(29,30] 0 0 10 0 0 0 0 
Above 30 0 0 4 1 0 0 0 
Total frequency 52080 56879 83554 8760 26304 32136 53928 

 340 

Both the 2-p and 3-p Weibull distributions were fitted to the recorded wind speed data and the parameters in the distributions 

were estimated using the MLE and the Bayesian methods. In the MLE method, the goodness of fit with 2-p and 3-p Weibull 

distributions is evaluated using the statistical measures AIC, BIC, AD, KS and log-like. Table 4 presents the estimated values 

of the parameters of 2-p and 3-p Weibull distributions and the values of the various statistical measures determined by the 

MLE at the seven sites. The highlighted values in this table and the subsequent tables indicate which distribution is performing 345 

better. 

Table 4: MLE estimated values of parameters and statistical measures. 

Site Distribution k A   AIC BIC AD KS log-like 

1 2-p Weibull 2.564486 6.019568  230352.8 230370.6 23.95999 0.021077 -115174.4 
 3-p Weibull 2.777792 6.438856 -0.380611 230075.7 230102.3   9.98482 0.013953 -115034.9 

2 2-p Weibull 2.735978 6.535565  256112.4 256130.3 101.4772 0.038265 -128054.2 
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 3-p Weibull 3.233794 7.532297 -0.922046 255252.9 255279.8   32.0876 0.025796 -127623.5 
3 2-p Weibull 1.948074 7.017269  433669.2 433687.8 1414.721 0.092759 -216832.6 
 3-p Weibull 2.636074 8.804806 -1.546749 429666.9 429694.9   478.748 0.058134 -214830.5 

4 2-p Weibull 2.385540 8.445309  45434.68 45448.83 6.759304 0.019735 -22715.34 
 3-p Weibull 2.401323 8.493057 -0.042536 45435.82 45457.05 6.577964 0.019739 -22714.91 

5 2-p Weibull 2.438715 8.234657  135020.5 135036.9 16.29118 0.015911 -67508.26 
 3-p Weibull 2.569510 8.596043 -0.323893 134971.8 134996.4 10.37910 0.014681 -67482.92 

6 2-p Weibull 2.503177 7.843472  159616.8 159633.6 22.04708 0.019279 -79806.41 
 3-p Weibull 2.522584 7.896873 -0.047855 159615.8 159641.0 21.85474 0.018862 -79804.91 

7 2-p Weibull 2.153354 7.112349  271584.1 271601.9 69.32922 0.021085 -135790.1 
 3-p Weibull 2.425388 7.807676 -0.603869 270987.3 271014.0 20.57445 0.010117 -135490.6 

 

In Bayesian estimates, uniform prior distributions of the parameters were used to fit wind data. Firstly, a sample of the joint 

posterior distribution by simulating a sample from MCMC methods using a Gibbs sampler as discussed in Section 4.2.1 is 350 

obtained. Finally, the DIC is obtained to evaluate the Bayesian parameters of the Weibull distributions. Table 5 presents the 

estimated mean values of the parameters with standard deviation (SD) of both two and three parameter Weibull distributions 

for all the sites. The 95% credible region (lower limit - 2.5% and upper limit - 97.5%) for each of the parameters and the model 

evaluation statistic DIC values are also presented. 

Table 5: Estimated values of the parameters obtained using Bayesian technique and summary statistics. 355 

Site Distribution Parameter Mean SD 2.5% 97.5% DIC 
1 2-p Weibull k 2.564487 0.008762 2.547292 2.581560 949864.6 
 A 6.019417 0.010876 5.998086 6.041268 
 3-p Weibull k 2.778195 0.018610 2.742305 2.814923 949587.6 
 A 6.439670 0.033898 6.373026 6.507357 
   -0.381144 0.029685 -0.439400 -0.323193 

2 2 parameter k 2.736076 0.008940 2.718410 2.753285 256112.2 
 A 6.535458 0.010427 6.515002 6.555774 
 3 parameter k 3.231943 0.023096 3.184961 3.273617 255252.4 
 A 7.528328 0.044253 7.438378 7.607035 
   -0.918508 0.040458 -0.989749 -0.835880 

3 2 parameter k 1.947640 0.005556 1.936812 1.958478 433669.2 
 A 7.017671 0.013022 6.992180 7.042895 
 3 parameter k 2.635850 0.016118 2.604492 2.667974 429666.8 
 A 8.804653 0.044092 8.718409 8.892835 
   -1.546999 0.038766 -1.624995 -1.472661 

4 2-p Weibull k 2.385596 0.019486 2.347390 2.424420 166458.7 
 A 8.446062 0.039889 8.367275 8.525195 
 3-p Weibull k 2.405809 0.026990 2.356128 2.461114 166459.8 
 A 8.507469 0.070222 8.377540 8.660753 
   -0.055714 0.051466 -0.169674 0.031573 

5 2-p Weibull k 2.438528 0.011898 2.415595 2.462772 498423.7 
 A 8.233447 0.021645 8.190758 8.276122 
 3-p Weibull k 2.569184 0.024930 2.521912 2.619417 498375.1 
 A 8.596434 0.065046 8.471752 8.729620 
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   -0.324597 0.055076 -0.438669 -0.220035 
6 2-p Weibull k 2.502775 0.010741 2.482126 2.524369 603592.3 
 A 7.843795 0.018777 7.806656 7.880416 
 3-p Weibull k 2.523740 0.016243 2.492982 2.555752 603591.3 
 A 7.900740 0.038140 7.830501 7.978555 
   -0.051032 0.030016 -0.113036 0.004279 

7 2-p Weibull k 2.153266 0.007378 2.139086 2.167660 1016627 
 A 7.111621 0.014636 7.083240 7.140584 
 3-p Weibull k 2.425984 0.016281 2.394208 2.457741 1016030 
 A 7.808854 0.040671 7.730066 7.892452 
   -0.604597 0.033817 -0.673024 -0.539979 

 

The goodness-of-fit criteria and summary statistics presented in Tables 4 and 5 indicate that the 3-p Weibull distribution fits 

better than the 2-p Weibull distribution for wind speed at the sites 1, 2, 3, 5 and 7 as all the goodness-of-fit measures (AIC, 

BIC, AD, KS and log-like) are smaller in MLE estimate and the DIC is also smaller in Bayesian estimate. Moreover, as shown 

in Table 5 and the marginal posterior means of shift parameter   are -0.381144, -0.918508, -1.546999, -0.324597 and -360 

0.604597. The 95% credible regions of this parameter as shown in columns 2.5% and 97.5% clearly indicates that the 3-p 

Weibull distribution is more appropriate at these sites as the value of its shift parameter is non-zero (i.e. 0  ). Sites with 

negative location parameter are also reported in previous publications, for example (Wais, 2017). 

However, for the site 4, both MLE results in Tables 4 and 5 indicate that the 2-p Weibull distribution fits better than the 3-p 

Weibull distribution at this site as the AIC, BIC and KS are smaller in MLE estimate and the DIC is smaller in Bayesian 365 

estimate. Although, the marginal posterior mean of  of 3-p Weibull distribution is -0.055714 but its 95% credible region (-

0.169674, 0.031573) indicates that the value of its shift parameter is zero (i.e.  = 0). This implies that 3-p Weibull reduces to 

the 2-p Weibull indicating that 2-p Weibull distribution is more appropriate at this site. 

Whereas, at the site 6, the results show a lack of significant difference between the 2-p and 3-p Weibull distributions while 

fitting wind speeds, as all MLE and Bayesian estimates are similar in numerical value. Also, the 95% credible region indicates 370 

that 0   in Bayesian estimate, which indicates 2-p Weibull may be a better distribution at this site as the 3-p Weibull 

distribution reduces to the 2-p Weibull distribution. It should be noted that the 3-p Weibull distribution is a generalized form 

of 2-p distribution, and when  = 0, it becomes 2-p distribution. Thus, 2-p distribution can be seen as a special case of 3-p 

distribution. 

Finally, since the Bayesian estimation is a simulation based iterative procedure, the convergence of the model is diagnosed by 375 

the visual inspections using the trace and posterior density plots. Samples of such plots obtained for the parameters of 2-p 

Weibull and 3-p Weibull distributions from the Bayesian simulations are presented in Figures 1-4 for sites 3 and 4. Samples 

of some more plots for the sites 1, 5 and 6 are also presented in Figures A1-A6 in Appendix 2. 
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In Figure 1, trace plots (left) of 2-p Weibull for site 3 show ‘fat hairy caterpillar’ appearance which is indicative of a random 

scatter around the stable mean of the shape parameter k = 1.947640 within 95% credible region (1.936812, 1.958478) and the 380 

scale parameter A = 7.017671 within 95% credible region (6.992180, 7.042895). Outside of this, the region is marked as non-

stationary region. For the subsequent plots also, the region around the stable mean is the 95% credible region and the region 

outside of it is the non-stationary region. The repeated simulated values from the three chains are shown in this figure and the 

two subsequent figures. The density plots (right) also display smooth curves of these simulated values for both the parameters. 

Thus, the plots clearly indicate the convergence of the simulations of the Bayesian estimates presented in Table 5.  385 

 

Shape, k 

 
Scale, A 

 
 

Figure 1: Trace and posterior density plots for site 3 (2-p Weibull).  

In Figure 2, the trace plots (left) of 3-p Weibull also show ‘fat hairy caterpillar’ appearance which is indicating a random 

scatter around the stable mean of the shape parameter k = 2.635850 within 95% credible region (2.604492, 2.667974) and the 390 

scale parameter A = 8.804653 within 95% credible region (8.718409, 8.892835). The shift parameter shows a random scatter 

around the stable mean of   = -1.546999 within 95% credible region (-1.624995, -1.472661), which is far away from zero 

and it reveals the appropriateness of using 3-p Weibull. The density plots (right) also display smooth curves of these simulated 

values for all the parameters. Thus, the plots clearly indicate the convergence of the simulations of Bayesian estimates 

presented in Table 5. 395 
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Figure 2: Trace and posterior density plots for site 3 (3-p Weibull). 

Similarly, from the Figures 3-4, the trace plots (left) for site 4 indicate random scatter around the stable mean of the shape 

parameter k and the scale parameter A, which are within their 95% credible regions for both 2-p Weibull and 3-p Weibull 400 

distributions. The shift parameter in Figure 4 also shows a random scatter around the stable mean of   = -0.055714 within 

95% credible region (-0.169674, 0.031573), which includes zero and it reveals the appropriateness of using 2-p Weibull. The 
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density plots (right) also display smooth curves of these simulated values for all the parameters. Thus, the plots clearly indicate 

the convergence of the simulations of Bayesian estimates presented in Table 5. 

 405 

Shape, k 
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Figure 3: Trace and posterior density plots for site 4 (2-p Weibull).  
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Figure 4: Trace and posterior density plots for site 4 (3-p Weibull).  

8 Discussion 410 

In Section 7, the results for the goodness of fit for the wind speed distributions at seven different sites were presented. Results 

showed that the 3-p Weibull distribution is a better fit for wind speeds at all the sites investigated, except the sites 4 and 6, in 

the tropical region. The 2-p Weibull distribution may be a better fit for wind speeds data at the sites 4 and 6 as the shift 

parameter   in the 3-p Weibull was found to be zero as detected in Bayesian estimate. As discussed earlier, the 2-p Weibull 

distribution can be considered a special case of 3-p Weibull distribution. 415 

In this section, results of further investigations carried out to explain the difference between the performance of the two 

distributions are presented and discussed. Referring to the percentage of lowest wind speed (0-1 m/s) presented in Table 6, the 

results clearly show that the wind distributions of the sites (sites 1, 2, 3, 5 and 7) that have high percentage (0.79% - 7.04%) 

of lower (or closer to null) wind speeds perfectly fit the 3-p Weibull distribution. The shift parameter in the simulations is also 

found to be significant i.e. 0   for these sites. On the other hand, the 2-p Weibull distribution was a better fit for wind speed 420 

distributions at Sites 4 and 6, where the percentage of low wind speed was smaller (< 0.78%). Similar findings were reported 

by Wais (2017). 

Moreover, histograms presented in Figures 5-8 as a sample of such plots for wind distributions at sites 2, 3, 5 and 7 show 

different shapes, indicating a variation in skewness. Thus, another reason for fitting a better distribution is the skewness of the 
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wind speed distribution. The skewness (1) is a measure of the asymmetry of the wind speed distribution about its mean, which 425 

is defined for a sample of n values as: 

      3
1 3

m

s
                      (31) 

where, s = standard deviation and  3
3 1

1 n

i
m U U

n   is the third central moment. A normal distribution is symmetrical 

and has 1= 0. If 1 is negative, the distribution is left skewed whereas a positive 1 indicates a right skewed distribution. 

Since the Weibull distribution is a right skewed one, 1 is expected to be positive.  430 

Table 6 presents the mean (U ), standard deviation (s) and skewness  1
  of the wind speed data at each site. It shows that 

the wind speed distributions of sites 4 and 6 have higher skewness compared to sites 1, 2, 3, 5 and 7. 

 

Table 6: Percentage lowest wind speed, mean, SD and best Weibull distribution for the seven sites. 

 Site 

% lowest 
speed 

(0-1 m/s) 

Site mean 
wind speed 

(U ) 
SD 
(s) 

Skewness 
( 1 ) 

Fitted 
distribution 

1 1.71 5.35 2.22 0.28 3-p Weibull 

2 1.87 5.83 2.29 0.09 3-p Weibull 

3 7.04 6.29 3.20 0.20 3-p Weibull 

4 0.71 7.50 3.31 0.62 2-p Weibull 

5 0.79 7.31 3.20 0.22 3-p Weibull 

6 0.78 6.97 2.95 0.51 2-p Weibull 

7 3.08 6.32 3.04 0.29 3-p Weibull 

 435 

Thus, the results reveal that the 3-p Weibull distribution is a better fit for wind speed data with both: greater frequency of 

low wind speeds (0-1 m/s) and low skewness, compared to a 2-p Weibull distribution. The Bayesian analysis also confirms 

that the wind speed data with a smaller percentage of low speeds fitted better as a 2-p Weibull distribution than the 3-p 

Weibull distribution as its shift parameter   was found to be zero. 

To reiterate, this research is aimed at comparing the goodness of fit of both 2-p and 3-p Weibull distributions and to compare 440 

the performance of frequentist MLE and Bayesian methods for the estimation of Weibull parameters. Therefore, a 

comparison study of the four methods is conducted by: 

1. Fitting of 2-p Weibull distribution with an MLE estimate – MLE.2p 

2. Fitting of 3-p Weibull distribution with an MLE estimate – MLE.3p 
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3. Fitting of 2-p Weibull distribution with a Bayesian estimate – BAYESIAN.2p 445 

4. Fitting of 3-p Weibull distribution with a Bayesian estimate – BAYESIAN.3p 

The wind speed bins and the Weibull distribution curves obtained using these four methods are illustrated in Figures 5-8 as a 

sample each from the four sites. The figures show that for all the sites, except the sites 4 and 6, the 3-p Weibull distributions 

are closer to the histograms than the 2-p Weibull distributions. The Weibull distribution curves of Bayesian estimates are 

also closer to the histograms than MLE estimates. Thus, the 3-p Weibull distribution is a better fit for the wind speed data 450 

compared to the 2-p Weibull distribution (Aukitino et al., 2017). 

 

 

 

Figure 5: 2-p and 3-p Weibull curves by four methods and histogram of the observed wind speeds at site 2. 455 
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Figure 6: 2-p and 3-p Weibull curves by four methods and histogram of the observed wind speeds at site 3.  

 

 

Figure 7: 2-p and 3-p Weibull curves by four methods and histogram of the observed wind speeds at site 5.  460 
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Figure 8: 2-p and 3-p Weibull curves by four methods and histogram of the observed wind speeds at site 7. 

Figures 5 and 7 show symmetric Weibull distribution curves for the sites 2 and 5. The mean wind speed is close to the centre 465 

and the percentage of the lowest wind speed (0 – 1 m/s) is relatively small to moderate at these sites, as can be seen in Table 

6. The distribution curves clearly indicate that the BAYESIAN.3P Weibull distribution fits the data best, which is also 

supported by the Goodness-of-fit measures presented in Table 7. 

However, figures 6 and 8 show non-symmetric distributions of wind speeds for the sites 3 and 7. The distribution curves clearly 

indicate that the BAYESIAN.3P Weibull distribution fits better to the data in these sites. It can be noted that these sites recorded 470 

very high percentage of low wind speeds (0-1 m/s) as seen in Table 6.  

On the other hand, if has also been seen that the wind speed distribution for sites 4 and 6  (figures not shown) relatively less 

symmetric compared to the other sites with clearly high skewness as seen in Table 6. For these sites, the percentage of the 

lowest wind speeds is smaller, hence the Bayesian 2-p distribution fits the wind speed data well. Although the four Weibull 

distribution curves seem to be coinciding, the BAYESIAN.2P distribution curves lie above the 3-p one before the peak and 475 

below the 3-p curve after the peak. From Table 4, it can be seen that the value of the shift parameters   are the smallest (close 

to zero) for these sites, hence the 3-p Weibull distribution becomes 2-p distribution. The 3-p Weibull distribution is thus a 

possible replacement of the existing models of finding Weibull parameters especially those used in commercially used software 

like WAsP. 

To evaluate the performance of the four methods, the five statistical goodness of fit measures discussed in Section 6: R2, 480 

RMSE, COE, MAE and MAPE are estimated and compared. The results of the estimation of these measures for the wind data 
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from all the seven sites are presented in Table 7, which clearly reveal that the BAYESIAN.3P is the most efficient method for 

the sites 2, 3, 5 and 7 as it gives the highest R2 value and the least RMSE, MAE and MAPE values. This indicates that the 3-p 

Weibull with Bayesian estimates is a better method for wind energy assessment at these sites. Moreover, the method equally 

performs with MLE.3p for the site 1. Whereas, BAYESIAN.2P performs better for the sites 4 and 6 producing highest R2 value 485 

and the least COE and RMSE values, which indicates 2-p Weibull with Bayesian estimates is a better method for assessment 

at these two sites which have the lowest occurrence of smallest wind speeds in the range of 0-1 m/s.  

 

Table 7: Goodness-of-fit measures for the four methods. 

Site Method 2R  COE RMSE MAE MAPE 

1 
 
  

MLE.2P 0.9982 0.9936 0.0983 0.0421 1.3052 
MLE.3P 0.9983 1.0011 0.0975 0.0239 0.8269 
BAYESIAN.2P 0.9982 0.9936 0.0983 0.0421 1.3053 
BAYESIAN.3P 0.9983 1.0011 0.0975 0.0239 0.8269 

2 
 
  

MLE.2P 0.9949 1.0048 0.1655 0.1114 3.4259 
MLE.3P 0.9971 1.0034 0.1234 0.0661 1.7917 
BAYESIAN.2P 0.9949 1.0048 0.1655 0.1114 3.4259 
BAYESIAN.3P 0.9971 1.0041 0.1227 0.0645 1.7748 

3 
 
  

MLE.2P 0.9696 0.9823 0.5675 0.4596 10.7507 
MLE.3P 0.9755 1.0681 0.5219 0.3029 7.9253 
BAYESIAN.2P 0.9696 0.9822 0.5677 0.4597 10.7516 
BAYESIAN.3P 0.9755 1.0679 0.5216 0.3027 7.9149 

4 
 
  

MLE.2P 0.9787 1.0512 0.4983 0.1546 1.9778 
MLE.3P 0.9783 1.0523 0.5025 0.1522 1.9013 
BAYESIAN.2P 0.9787 1.0511 0.4981 0.1544 1.9724 
BAYESIAN.3P 0.9783 1.0524 0.5036 0.1518 1.8860 

5 
 
  

MLE.2P 0.9983 1.0180 0.1371 0.1031 2.0079 
MLE.3P 0.9987 1.0186 0.1109 0.0787 1.5343 
BAYESIAN.2P 0.9983 1.0181 0.1372 0.1033 2.0074 
BAYESIAN.3P 0.9989 1.0183 0.1108 0.0785 1.5295 

6 
 
  

MLE.2P 0.9911 1.0173 0.2809 0.1251 1.9635 
MLE.3P 0.9909 1.0181 0.2852 0.1257 1.9187 
BAYESIAN.2P 0.9911 1.0169 0.2806 0.1253 1.9673 
BAYESIAN.3P 0.9909 1.0180 0.2854 0.1258 1.9162 

7 
 
 
 

MLE.2P 0.9973 0.9991 0.1607 0.1126 3.4174 
MLE.3P 0.9987 1.0152 0.1069 0.0718 2.0482 
BAYESIAN.2P 0.9973 0.9992 0.1609 0.1130 3.4244 
BAYESIAN.3P 0.9988 1.0152 0.1068 0.0717 2.0476 

 490 

Assessment of available wind powerwind power density: 

To estimate the turbine productivity, it is necessary to calculate the total available wind power density from each fitted model. 

If the density of the air ρ = 1.16 kg/m3 (based on the average temperature in the region) and the turbine rotor diameter D = 32 
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m, the expected total available wind power density produced from each site is determined using equations (24-25) for both 2-

p and 3-p Weibull distributions. Table 8 shows estimated results for available wind power density. 495 

The relative error of the estimated power shown in Table 8 is calculated as follows: 

  
  -   

Re   (%),    100%
 

Estimated power Actual power
lative error RE

Actual power
    

If the RE is close to zero, the method estimates the parameter accurately. However, a positive RE implies over-estimation and 

a negative RE implies under-estimation by the method. From the values of Power and RE presented in Table 8, we observed 

that the BAYESIAN.2P and BAYESIAN.3P are found to be the most efficient methods for estimating power. The 500 

BAYESIAN.3P predicts the most accurate wind power for the sites 1, 2, 3, 5 and 7, which is very close to the actual power of 

these sites with smaller RE compared to the other methods. On the other hand, the BAYESIAN.2P provides the best estimate 

of power for the sites 4 and 6 with smaller relative error.  

Table 8: Estimated available wind power density and relative error in power estimate. 

Site  Methods Power (kW) RE (%)  

1 
 
 
 

Actual 108457 0.00  
MLE.2P 110306 1.70  
MLE.3P 110061 1.47  
BAYESIAN.2P 110298 1.70  
BAYESIAN.3P 110051 1.47  

2 
 
 
  

Actual 133525 0.00  
MLE.2P 136039 1.88  
MLE.3P 135765 1.68  
BAYESIAN.2P 136030 1.88  
BAYESIAN.3P 135753 1.67  

3 
 
 
  

Actual 206184 0.00  
MLE.2P 220464 6.93  
MLE.3P 209474 1.60  
BAYESIAN.2P 220556 6.97  
BAYESIAN.3P 209458 1.59  

4 
 
 
  

Actual 322492 0.00  
MLE.2P 319732 -0.86  
MLE.3P 319627 -0.89  
BAYESIAN.2P 319812 -0.83  
BAYESIAN.3P 319591 -0.90  

5 
 
 
  

Actual 290717 0.00  
MLE.2P 291809 0.38  
MLE.3P 290928 0.07  
BAYESIAN.2P 291696 0.34  
BAYESIAN.3P 290889 0.07  

6 
 
 
  

Actual 249192 0.00  
MLE.2P 247792 -0.56  
MLE.3P 247770 -0.57  
BAYESIAN.2P 247848 -0.54  
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BAYESIAN.3P 247808 -0.56  
7 
 
 
 
 

Actual 204938 0.00  
MLE.2P 207543 1.27  
MLE.3P 204781 -0.08  
BAYESIAN.2P 207487 1.24  
BAYESIAN.3P 204790 -0.07  

 505 

Thus, the comparison of results based on the goodness of fit and the power estimation at different sites in the tropical region 

show that the 3-p Weibull distribution with Bayesian estimates is the method to be used for wind energy resource 

assessments. If any sites have lower occurrences of the lower wind speeds, then the shift parameter   in the 3-p Weibull 

distribution will be close to or equal to zero, which will be the 2-p Weibull distribution with Bayesian estimates. Another 

advantage of Bayesian approach is that it will reduce the need for long-term measurements for assessing the wind power 510 

potential of a site. This is possible with the integration of prior information with short-term data from a candidate site or 

historical data from one neighboring survey station. 

9 Conclusion 

Knowledge of correct statistical distribution of wind speeds at a given site is very important for accurate wind resource 

assessment. Some sites provide high uncertainty while fitting the traditional two-parameter Weibull distributions to wind speed 515 

data and warrant the need to explore distributions that characterize wind speeds better, such as the three-parameter Weibull 

distribution which is also a generalized form of two-parameter Weibull distribution with an additional non-zero shift parameter. 

In this study, investigation of wind characteristics and wind energy potential are carried out at different locations in the tropical 

region ranging from 1o N to 21o South of the Equator, of which three sites are in Fiji and one each infrom Cooks Islands, 

Tonga, Kiribati and Vanuatu, respectively. The wind speed data at these seven sites were tested for the best model between 520 

the two-parameter and three-parameter Weibull distributions. Furthermore, as there is no unique method that characterizes 

wind data perfectly, it is also imperative to have the knowledge of the best method of estimation for the parameters of wind 

speed distribution at a given site. In this work, we also introduced a novel approach by using the Bayesian method for 

estimating parameters of wind speed distributions at the seven sites selected for testing the method. Then, a comparison study 

was conducted for the robust performance of the proposed Bayesian method with the popular frequentist MLE method. Finally, 525 

the results suggest that the three-parameter Weibull distributions should be used for estimating the wind energy potential 

irrespective of the location. When the wind distribution has frequent low wind speeds and is less skewed, a three-parameter 

Weibull distribution is found to be a better fit. On the other hand, when the wind distribution has less frequent low speeds and 

highly skewed, the two-parameter Weibull distribution which is a special case of three-parameter distribution with zero shift 

parameter is found to be more appropriate. The results also indicate that the Bayesian approach provides more accurate results 530 

while characterizing wind speeds and can be proposed as a better alternative for estimating Weibull parameters. The proposed 

method can be incorporated in the popular software packages such as WAsP used for wind resource assessment and for 

planning wind energy projects. 
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Appendix 1 630 

 
Model Code: 
 

JAGS model specifications to perform the Bayesian fit using R2jags package are provided below. 

 635 
1.  Model specification for 2-parameter Weibull distribution 
 
cat(" 
    model{ 
    # Likelihood 640 
    for (i in 1:length(U)){ 
    p[i] <- dweib(U[i],shape, lambda); 
    observed[i] ~ dbern(p[i]); 
    } 
     645 
    # Priors 
    shape ~ dunif(0,4)  # After a series of trial and error guesses 
    scale ~ dunif(0,100) 
    lambda <- pow(1/(scale), shape) 
    } 650 
    ", file="weibull_model_2p.txt") 

 
Calling JAGS from R 
jags.fit <- jags(data, inits, parameters.to.save, n.iter=10000, 
model.file="weibull_model_2p.txt",n.chains = 3, n.burnin = 1000, n.thin=5) 655 

 
2. Model specifications for the 3-parameter Weibull distribution 
 
cat(" 
    model{ 660 
    # Likelihood 
    for (i in 1:length(U)){ 
    p[i] <- dweib(U[i] - shift ,shape, lambda) / 1000 
    observed[i] ~ dbern(p[i]); 
    } 665 
     
    # Priors 
    shape ~ dunif(0,4) 
    scale ~ dunif(0,31) 
    shift ~ dunif(-1, 1) 670 
    lambda <- pow(1/(scale), shape) 
    } 
    ", file="weibull_model_3p.txt") 

 

 675 

 



31 
 

Appendix 2 
 
Trace and posterior density plots that show the convergence of Bayesian models for sites 1, 5 and 6. 
 680 
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Figure A1: Trace and posterior density plots for site 1 (2-p Weibull). 
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Figure A2: Trace and posterior density plots for site 1 (3-p Weibull). 
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Figure A3: Trace and posterior density plots for site 5 (2-p Weibull). 685 
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Figure A4: Trace and posterior density plots for site 5 (3-p Weibull). 
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Figure A5: Trace and posterior density plots for site 6 (2-p Weibull). 
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Figure A6: Trace and posterior density plots for site 6 (3-p Weibull). 
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