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Abstract. Microscale flow descriptions are often given in terms of mean quantities, turbulent kinetic energy, and/or stresses.

Those metrics, while valuable, give limited information about turbulent eddies and coherent turbulent structures. This work

investigates the structure of an atmospheric boundary layer using coherence and correlation in space and time with a range of

separation distances. We calculate spatial correlations over entire planes of velocity fluctuations, from which we can evaluate

the correlation along different directions at different spacings. Similarly, coherence of the three velocity components over5

separations in the three directions is also investigated. We apply these analyses to a mesoscale-to-microscale coupled scenario

with time-varying conditions and examine nuances in spatial correlations that are often overlooked. Through these analyses

and results, this work highlights important differences observed in terms of coherence when comparing large-eddy simulation

data to simpler models, and suggests ways to improve these simpler models. We note that such differences are important for

disciplines like wind energy structural dynamic analysis, in which blade loading and fatigue depend strongly on the structure10

of the turbulence. We emphasize the additional wealth of data that can be provided by typical atmospheric boundary layer

large-eddy simulation when correlation and coherence analysis is included, and we also state the limitations of large-eddy

simulation data, which inherently truncate the smaller scales of turbulence.

1 Introduction

Offshore deployment of wind farms offers a new set of challenges. As wind turbines increase in rotor diameter, it becomes15

increasingly important to characterize the flows these large turbines will experience. Knowing how the flow structures evolve

over the increased geographic extent of wind plants is relevant to turbine and wind plant design. In fact, a better understanding

of atmospheric and wind farm flow physics has been identified as one of the grand challenges in wind energy research (Veers

et al., 2019), noting the coupling between mesoscale and microscale flows.

Descriptions of the microscale flow, or the turbulent flow of the atmospheric boundary layer, are usually given in terms20

of integral flow characteristics, such as statistics of mean and turbulent quantities. Such metrics, while valuable (e.g., see

Robertson et al. (2018)), provide limited information about the spatial or temporal structure of turbulent eddies and how

they change as background atmospheric conditions and stability change. Space–time correlation and coherence provide the

necessary base for understanding the relation between spatial and temporal scales of motion. The correlations quantify how the

fluctuations at one location relate to those at a different location, or how fluctuations at a point are related in time. Coherence25

1



is similar, but compares the two points in the frequency domain rather than comparing the values in the time domain. Together,

these quantities describe important characteristics of turbulent flow structure across spatial and temporal scales.

The turbulence models suggested by the international wind turbine design standards (IEC 61400-1, 2019) to predict mechan-

ical loads contain mathematical descriptions of spatial coherence. One of the two models, which will be discussed in details

in this work, includes exponential-based equations that impose coherence on a flow based on spectral content descriptions.30

Accurately capturing how coherences vary with different model parameters, such as separation distance, and change with dif-

ferent velocity components can better inform and improve models. The base of the suggested model go back to the original

exponential decay coherence formulation of Davenport (1961), which states that the coherence spectrum γ of the streamwise

turbulent component u is given by

γ = exp

(
−Cu

z δzf

U

)
, (1)35

where Cu
z is an empirical decay coefficient, δz is the vertical separation distance, f is the frequency, and U is the mean wind

speed. Davenport’s model, however, fails to account for the reduction of coherence at low frequencies and large separation

distances. While in the original formulation the decay coefficient does not depend on the separation distance, it was later found

that the dependency was necessary for vertical and lateral separations (Simiu and Scanlan, 1996; Saranyasoontorn et al., 2004;

Bowen et al., 1983; Sacré and Delaunay, 1992; Cheynet et al., 2017b).40

Davenport’s model assumptions were also found to be invalid in situations where the separation distance is large with respect

to the length scale of the turbulence (Kristensen and Jensen, 1979; Mann et al., 1991). Based on Davenport’s model, Kaimal’s

spectrum with exponential coherence model (Kaimal et al., 1972; Thresher et al., 1981) addressed shortcomings related to

the invalidity of Davenport’s model in these situations. An additional term involves the ratio of the separation distance to a

coherence scale parameter Lc. This extra term allowed for the reduction in coherence levels at zero frequency as the separation45

distance increases. The final equation will be given later and discussed in more detail. Such improvement eventually became

one of the recommended models in the mentioned IEC guidelines (IEC 61400-1, 2019). The other model suggested in the

standard is Mann’s spectral turbulence model (Mann, 1994, 1998). The Mann model, on the other hand, is based on the von

Kármán (1948) model, and assumes that an isotropic energy spectrum is distorted by a linearized mean velocity shear, providing

one-point spectra, cross-spectra, and the coherence of the three components. In this work, we will focus on the Kaimal’s model50

with the exponential decay from Davenport’s model.

The use of models suggested by the IEC standards can result in an overestimation of fatigue loads (Holtslag et al., 2016).

The same study, however, noted that the primary sources of fatigue loads, the wind shear and turbulence levels, can vary

significantly depending on the stability state. While the IEC-suggested models were developed for neutrally stratified flows,

such stability is often not the norm. The effect of stability on loads has also been studied in Sathe and Bierbooms (2007) and55

Sathe et al. (2013) by the use of Mann’s model with the Monin–Obukhov length. While turbulence and shear, separately, cause

different loads on blades, tower, and rotor, it was noted that the IEC standards are very conservative on the definition of wind

shear and turbulence, which results in a significant overestimation of the loads (the authors note up to 96%) when compared
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to loads obtained when using wind conditions specific to a site of interest. Note that the standard is of conservative nature by

design.60

Understanding how the coherence changes with varying conditions is important. Recent studies have assessed the effects

of coherence functions on loads of offshore wind turbine blades (Doubrawa et al., 2019; Nybø et al., 2020). The impact of

coherence functions has also been noted in other studies (Kelley et al., 2005; Kelley, 2011). Prior work focused on offshore

flows, either by showing the coherence levels of such flows alone (Naito, 1983) or by establishing comparisons between

observed data to Kaimal and Mann spectral models (Cheynet et al., 2017a). Often, all three components of the turbulence65

vector are analyzed, adding to the prior studies that only considered the streamwise component (e.g., Eidsvik (1985); Andersen

and Løvseth (2006)). Unfortunately, usually only vertical separation is studied, given limited instruments arranged in a tower.

Most of these studies found that coherence levels based on observations at an offshore environment are higher than those

computed by the spectral models. Cheynet et al. (2018), however, found good agreement between exponential coherence

models and observations under near-neutral conditions at sea for the streamwise component.70

Coherence is also studied in the context of dynamic wake meandering. It has been reported that immersing wind turbines

in a flowfield created by synthetic turbulence generators (e.g. TurbSim (Kelley and Jonkman, 2005)) can result in signifi-

cantly different wake meandering behavior (Wise and Bachynski, 2019, 2020; Shaler et al., 2019). The differences in wake

meandering appear when the flowfield is created by applying coherence only in the streamwise component, rather than in all

components, when compared to wake characteristics obtained using turbulence-resolving large-eddy simulation tools. Some of75

these differences include negligible lateral wake meandering in cases without the application of lateral and vertical coherence,

estimated from tracking the center of the wake laterally. As mentioned, the IEC standard only specifies in the coherence of the

streamwise component in the vertical and lateral directions. The scales of interest for dynamic wake meandering are different

that those scales that are known to impact loads and blade fatigue.

Obtaining the field data required to gain a comprehensive picture of the coherence and correlation of the flow can be80

challenging—especially with lateral coherence. Meteorological masts are typically deployed in isolation or with spacing that is

much larger than the size of background turbulent structures, such that the fluctuations are decorrelated between the meteoro-

logical masts. It is worth noting, however, that instruments such as sonic anemometers and scanning Doppler lidars have been

mounted on bridges in coastal areas, allowing a relatively successful study of lateral coherence (Kristensen and Jensen, 1979;

Cheynet et al., 2016). Nonetheless, computational models, especially turbulence-resolving large-eddy simulations (LES), are85

particularly well-suited for the task because data can be collected anywhere in the flow field at high frequency. Prior work used

LES (Simley et al., 2016; Berg et al., 2016; Lukassen et al., 2018; Doubrawa et al., 2019; Nybø et al., 2020) to assess coher-

ence in the flow and compare with models, and in general it was found that the buoyancy effects affects shear and turbulence

levels, which has a direct effect on the coherent structures. Both the Mann and the Kaimal with Davenport’s exponential decay

models, in their original form as suggested by the IEC standard, do not explicit account for potential temperature stratification90

and resulting buoyancy effects present in the atmosphere.

In this work we employ LES to compute the flow field within the atmospheric boundary layer and use the generated data to

investigate the correlations and coherence present in all components of the turbulence and how they vary over time with varying
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atmospheric conditions. In particular, the microscale simulations are performed with mesoscale forcing so that regional-scale

weather variations in the wind speed, direction, shear, and surface heat flux are introduced into the microscale domain. The95

goal is to highlight the additional information that can be obtained with LES, show how it relates to simple models, and note

shortcomings that can benefit from further LES studies.

2 Methodology

2.1 Numerical Setup

The simulations are executed using the Simulator for Wind Farm Applications (SOWFA) (Churchfield et al., 2012), an LES100

code designed for atmospheric and wind energy applications. The simulation is done on a laterally periodic domain. The

domain extends for 3 km in the horizontal directions and 1 km vertically, and has a uniform grid resolution of 10 m. The

microscale mean profiles of velocity and potential temperature are driven toward mesoscale mean profiles as computed by the

Weather Research and Forecasting (WRF) numerical weather prediction tool through a profile assimilation technique (Allaerts

et al., 2020). The conditions investigated are given in the next subsection. The code is executed with second-order-accurate105

schemes in space and time. The time step is chosen so that the Courant number does not exceed 0.75. A turbulence “spin-up”

time is considered prior to the window of interest and ignored in the analysis. A differentiating aspect of this work is that the

analysis is carried out on transient background conditions, driven by mesoscale mean quantities.

We note that the domain extent implicitly limits the maximum correlation and coherence distance, as well as the maximum

integral length scale that the simulation is able to capture. However, investigations with larger domain sizes indicated that 3110

km is well suited for the flow field observed during the period of interest.

2.2 Scenario Investigated

The focus of this work is on a 4-hour period in the North Sea off the German coast near the Netherlands at the FINO1

atmospheric measurement platform, see Fig. 1. The wind during the period of interest is predominantly from the northwest, so

from the open sea.115

The period of interest spans from 1 a.m. to 5 a.m. local time on May 16, 2010. The stability state over most of the period is

slightly convective. We performed mesoscale-driven LES of the flow in the vicinity of FINO1 during the time period of interest.

The overall background conditions are shown in Fig. 2. While we allow the conditions to change, the period of interest was

picked because of the relative small change in wind direction and wind speed. The goal was to have the flow mostly from the

offshore environment, rather than influenced by the nearby land. High-frequency sonic anemometer data at the FINO1 tower120

were available at 40, 60, and 80 m above sea level (approximately). Unless otherwise noted, the comparisons with LES are

made using observation data at 80 m above sea level.

Turbulence intensity levels of the microscale LES followed well the levels observed in the FINO1 platform, shown in

Fig. 2(c). A difference in both wind direction and wind speed can be observed in Figs. 2(a–b). The microscale does not receive

4



Figure 1. Overview of the region around the Alpha Ventus FINO1 tower. Figure from Wikimedia Commons, distributed under a CC BY-SA

3.0 license.
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Figure 2. Mean background conditions during the period of interest compared to observation data and the mesoscale solution used to drive

the microscale LES. (a) Wind speed, (b) wind direction, and (c) turbulence intensity at 80 m, (d) wind shear exponent.
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any information from the observations, but rather from the mesoscale, which means the microscale will inherit any errors125

from the mesoscale and the microscale mean quantities will only be as accurate as the mesoscale. Note that turbulence is

not resolved at mesoscale resolutions, reflected in Fig. 2(c). The mesoscale coupling provides information on mean profiles,

resulting in similar shear histories. Shear information is not explicitly passed from the mesoscale to the microscale. The shear

exponent value in Fig. 2(d) was calculated using a logarithmic curve-fit on the bottom 500 m of the boundary layer. Nonetheless,

by allowing the shear levels to fluctuate from that implicitly given by the mesoscale, the microscale was able to capture the130

appropriate level of turbulence of that captured by instruments at sea.

The velocity spectra, Fig. 3, show the differences between the small-scale turbulence resolved by LES and that measured at

the FINO1 for the first hour and the last hour of the period of interest. There is a good match between LES and observation data

before the drop-off in resolved content by LES. The drop-off in energy for the LES occurs between 0.1 and 0.2 Hz, a result of

its inability to capture such frequencies due to grid size limitations and mean wind speeds over the interval. The energy content135

of the LES is slightly higher than the content of the observation data set for the last hour of the period at the low-frequency

range, possibly a result of a delay of the LES turbulence to react to the slight ramp-down event that started at 04Z (Fig. 2(a),

thus still exhibiting higher levels of turbulence intensity (Fig. 2(c)). The velocity spectra are obtained using Welch’s algorithm

with an overlapping (50%) 15-min Hamming window. No significant differences were observed by using a Hann window.
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Figure 3. Comparison of power spectra of the three turbulence components (a,d) u, (b,e) v, and (c,f) w for the first hour (top row), and the

last hour (bottom row) of the period of interest at 80 m using 15-min Hamming windows.

2.3 Turbulence Spatial Correlation140

The correlation coefficient, Rij , between two points x and x+ r, where r is a separation vector, is given by

Rij(x,r, t) =

〈
ui(x+ r, t)uj(x, t)

〉√〈
u2i (x+ r, t)

〉√〈
u2j (x, t)

〉 (2)
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where ui denotes the zero-mean turbulent fluctuations, and the angled brackets denote an ensemble average of realizations. Here

we focus on autocorrelations (i.e., i= j). Throughout this work, we define u= u1 as the streamwise component, v = u2 as the

cross-stream component, and w = u3 as the vertical component of the flow. For clarity, when speaking of velocity components,145

we refer to “streamwise” and “cross-stream” components. However, when speaking of the directionality of separation vector,

we refer to “along-wind” and “crosswind” directions.

The idea is to perform two-point correlation computations with respect to a fixed point. We vary the second point so that

the turbulence over a plane covering the computational domain is correlated with the fixed point. The result is a map of the

correlation coefficients over this plane. This is useful in assessing how the turbulence evolves and allows us to obtain correlation150

coefficients between two points arbitrarily spaced. For a horizontal plane at reference height (e.g., 80 m), we start by saving

horizontal slices at 1 Hz from the LES for postprocessing. Picking the central point as the reference point (r = 0), we expect

(by definition) the correlation to be exactly 1 at this central point with an exponential decay with increasing r. The domain size

allows us to perform correlations with |r| ≤ 1.5 km.

The procedure is to apply Eq. (2) to all points on the plane with respect to a central point for each snapshot. Time averaging155

replaces ensemble averaging, but because the mesoscale conditions vary in time, a temporal average over the whole interval

is not performed. Instead, shorter time averaging windows are used over which mesoscale conditions change relatively little.

From a study on window size and overlap, we found that a 15-min window with 10-min overlap provided (i) enough data for

smooth converged statistics, (ii) a short enough interval such that mean conditions did not change appreciably, and (iii) a large

enough interval to accommodate large time-scale features. A goal of this analysis is to see how the correlation coefficients160

change with evolving conditions, and not necessarily to capture short, instantaneous transients.

It is important to highlight the assumptions and limitations so far. In choosing the grid resolution, a bound on the smallest

resolved scales is imposed, which for this type of numerical method is 4–5 times the grid resolution (Pope, 2001, p. 574). In

choosing a domain extent, a limit on the largest scales is also imposed. Domain sizes, though, are usually much larger than the

largest scales of interest. We assume horizontal homogeneity due to the choice of periodic lateral boundaries on the case setup.165

2.4 Turbulence Coherence over Arbitrary Separations

Knowing the integral length scales present in the flow, we compute a related but different statistic, coherence, with separation

distances of the same order of magnitude. Here we focus on coherence magnitude, which we will simply refer to as “coherence.”

It is the normalization of the magnitude of the cross spectra of velocity fluctuations. In other words, it describes the correlation

between two time series as a function of frequency, but does not give information about the phase. The square of coherence170

magnitude between two signals i and j is defined as

γ2ij (f) =
|Sij(f)|2

Sii (f) Sjj (f)
(3)

where Sii and Sjj are the power spectral density of signals i and j, and Sij is the cross-power spectral density between i and

j. The two signals are of individual components of the three-dimensional velocity vector U = (u,v,w) and are often given

in terms of along-wind, crosswind, or vertical separation distance δ. The type of coherence is given by the direction of the175
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separation. For instance, the along-wind coherence of the streamwise component is given by γ2uu,long, where the two time series

are of streamwise velocity at two locations separated by distance δ in the along-wind direction.

Coherence and correlation give similar information, but they differ in a few ways. Correlation shows how two quantities are

related in physical space or time and can vary from−1 to 1. For example, if two sinusoidal signals are identical in amplitude and

frequency, but have a phase lag at a certain separation distance, the correlation can lie anywhere between −1 and 1 depending180

on the phasing. For instance, for a separation that aligns maxima with minima, the correlation will become anti-correlated with

a value of−1. On the other hand, coherence magnitude ranges from 0 to 1 and is not as sensitive to the phase lag because it uses

cross-spectra magnitude. Two identical but phase-lagged sinusoidal signals will have a coherence of 1 at only the frequency of

the sine wave (the other frequencies would be undefined due to zero spectral information and the definition (3)). Although this

work focuses on coherence magnitude, one can also examine the real and imaginary part of the coherence, which are termed185

“co-coherence” and “quad-coherence,” respectively. While coherence magnitude is a measure of the consistency of a phase

relationship in the data, it does not have information on what that phase relationship is—such information can be obtained by

individual examination of co-coherence and quad-coherence separately.

The Kaimal spectrum model with exponential decay coherence model, suggested by the IEC standards, is only defined in

the crosswind and vertical directions. An improvement to Davenport’s exponential model given in Eq. 1, the Kaimal’s model190

introduces an additional term that is a function of the separation distance, δ, and a coherence scale parameter, Lc. For the

streamwise component of the velocity at two points, vertically or laterally separated by distance δ, with mean wind speed U ,

the coherence model reads

γ2uulat,vert
(f,δ) = exp

−a
√(

f δ

U

)2

+

(
bδ

Lc

)2
 (4)

where a and b are tuning parameters. The IEC standards recommend a= 12 and b= 0.12. Lc is given as 8.1Λ1, where Λ1 is a195

longitudinal scale parameter constant at 42 m for hub heights above 60 m.

Another common model for coherence adopted by the IEC guidelines is the Mann (1998) model. Both the Kaimal and

Mann models are based on spectral methods. While the Mann model is based more on physics and is a function of parameters

used to define the spectral tensor, the Kaimal model is based more on empirical formulations and less on physics. While they

are computationally inexpensive and useful in the design process, they have two main limitations. First, in some cases, when200

the flow field as computed by these models is used to drive load calculations, the results can be different from one model

to another (Eliassen and Obhrai, 2016), resulting in inconsistencies in load estimations. A second limitation of the models is

that atmospheric stability is not considered, as neutral stratification provided a sufficient description of the turbulence for load

estimation purposes at the time the models were developed.

To add longitudinal separation and to overcome the atmospheric stability limitation, studies have proposed more complex205

models for longitudinal coherence. For example, adding longitudinal separation, Simley and Pao (2015) suggested

γ2uulong
(f,δ) = exp

−(a1 σ
U

+ a2

)√(
f δ

U

)2

+

(
b1 δ

Lb2
c

)2
 (5)
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where σ is the standard deviation of the wind speed, Lc is a measure of the integral length scale, and a1, a2, b1, and b2 are

empirical constants adjusted using LES. In general, a number of exponential forms of the correlation decay have been proposed.

For more information, the interested reader should see the review by Martin et al. (2015).210

As mentioned, an accurate modeling of coherence is an important task. An increase in coherence has been shown to increase

the loads (Eliassen et al., 2015). The study of wind-induced response of wind turbines can be traced back to Davenport (1962)

with the development of the buffeting theory, which allowed coherence and one-point velocity spectra to be used to predict the

dynamic response of wind-sensitive slender structures. Nowadays, more complex simulation tools for wind energy applications

such as load estimation and thus design of wind turbines often follow IEC standards, which suggest Eq. (4) for the streamwise215

velocity, thus neglecting the other components as well as the longitudinal separations. Prior work focused on observation data

has investigated other components in other separations (Saranyasoontorn et al., 2004).

The estimation procedure for coherence and some results are presented in section 3.2. As shown earlier in Fig. 3, the highest

frequency properly resolved by the LES given the grid resolution is approximately 10−1 Hz. Due to this recognized inability of

our current setup to capture higher frequency phenomena, our focus will be at the low-frequency range of f < 0.15 Hz, which220

corresponds to approximately the rotational frequency of large offshore wind turbines.

3 Results

3.1 Correlation Results

Performing the steps outlined in section 2.3 on the whole domain results in few realizations and noisy results. Keeping the

largest scales of interest in mind, we leverage horizontal homogeneity and use spatial averaging as ensemble averages. Thus225

we split the domain into smaller subdomains and perform local spatial correlation analysis. For this subdomain analysis, the

correlation between all locations within a sub-domain and its central point is established. Figure 4 shows the correlations for

the three components of turbulence on a 3-by-3 grid of 1× 1 km subdomains. This strategy allows for more averaging and

smoother statistics; however, it imposes a tighter limit on the largest scales. The aforementioned temporal windowing imposes

another limit on the largest time scale captured. The limit on the time scale is not relevant for this problem, but it is worth230

mentioning. Figure 4 shows an average over the whole 4-hour period of interest—the intent of this figure is to illustrate the

process and not directly obtain data from it. The general wind direction (roughly southeast, see Fig. 2) can be qualitatively

observed in the correlation of the streamwise component.

The spatial average of the subdomains shown in Fig. 4 can be obtained for each 15-min window separately. A single interval

is shown next in Fig. 5 for illustration purposes. Note the axis limits and overall domain size after the ensemble average. The235

figure includes arrows indicating the mean wind direction over the interval. From this point forward, all results are related to

the correlation analysis performed using the 3-by-3 grid of 1× 1 km subdomains.

The results of this analysis show what is often intuitive by looking at typical boundary layer flow fields: the turbulent structure

of the streamwise component of the turbulence is “stretched” in the along-wind direction, whereas structures formed by the

other components are much more isotropic. The behavior of the streamwise component is much different in the crosswind240
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Figure 4. Contour plots of spatial correlation for the three turbulence components for the split-domain approach. Nine domains organized in

a 3-by-3 grid are use. The goal is to have more realizations for an ensemble average. For each panel, a spatial average is shown in Fig.5. The

general wind direction, towards the southeast, can be observed in the streamwise component.
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Figure 5. Contour plots of spatio-temporal average of spatial correlation for the three turbulence components for the 15-min interval starting

at 2:40Z. The interval-mean along-wind and crosswind directions are indicated by the black and magenta arrows, respectively. The spatial

correlation of the streamwise component is stretched in the direction of the wind (mostly towards the southeast, black arrow), while other

components show no clear preferential direction.

versus the along-wind direction: within a relatively short distance, it becomes decorrelated and then slightly anticorrelated,

meaning that one should expect alternating patterns of along-wind elongated structures containing streamwise velocity excesses

arranged next to deficits. This spatio-temporal correlation analysis show similar results to that of Lukassen et al. (2018).

Because we compute autocorrelation maps for each overlapping time window within the analysis period, we can observe

how turbulence autocorrelation varies as flow conditions change. Although the contour maps are very informative, we sought245

ways to reduce the information they contain to quantities of interest that we can track versus time. As a first step, for each

1-Hz snapshot of each 15-min interval, we sample autocorrelation coefficient values from the contour maps over along-wind-

and crosswind-oriented lines that pass through the central point (see black and magenta arrows in Fig. 5, which indicate the

direction of these lines). These lines are constant for each interval and represents the mean wind direction within that interval.

The resulting curves for each snapshot are averaged in time and represents the correlation coefficient in the along-wind and250

crosswind direction of that interval. The resulting curves of correlation coefficients versus along-wind or crosswind distance are
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shown in Fig. 6 for the streamwise component of the flow. In this figure, each light blue curve comes from the ensemble average

at each time interval of 15 min. The red curve is the average of all the individual 15-min curves. The red curve is computed in

order to establish a more direct comparison with observation data over the entire period of interest, as will be discussed later.

By definition in Eq. (2), the correlation coefficients are 1 at zero separation. The more gradual decay of correlation coefficient255

with along-wind versus crosswind distance is clear. The autocorrelation of streamwise velocity fluctuation drops to effectively

zero within 150 m in the cross-stream direction. However, in the along-wind direction, the correlation coefficient decay to zero

is not fully captured over the half-length of the subdomain, even though the decorrelation length scale can be seen to be around

400–450 m for some of the time intervals.
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Figure 6. Correlation coefficients from Fig. 5 in the along-wind and crosswind directions for the streamwise component. Each blue curve

represents a 15-min interval, whereas the red curve is the mean over the time period of interest.

In the above spatial autocorrelation analysis, we examined spatial correlations where the separation vector is purely hor-260

izontal. The FINO1 data investigated come from a single meteorological mast that only contains vertical spacings between

measurement points. To this end, we compute temporal autocorrelations of the streamwise component of the observation data

in order to compare it to the spatial correlations, using

Rij(x, τ) =

〈
ui(x, t0 + τ)uj(x, t0)

〉√〈
u2i (x, t0 + τ)

〉√〈
u2j (x, t0)

〉 (6)

where τ is a separation in time. We transform between spatial separation and temporal separation in the along-wind direction265

by assuming the turbulence is frozen and advecting with the mean wind (Taylor, 1938).

To test the frozen turbulence assumption more definitively, we compute and compare the temporal correlation on the field

and LES data. The results are shown in Fig. 7. Figure 7(a) shows temporal autocorrelations of the streamwise component

of the velocity of the observed data, obtained at 80 m. In Fig. 7(a–c), each light-shade curve represents the correlations of a

15-min interval, whereas the dark shade curves are the average of the light curves, representing the average of the full 4-hour270

period of interest. Note that in Fig. 7(a), the individual curves are rather noisy. Therefore, to obtain some sort of ensemble

average, we perform an average over the whole period. This average, indicated by the dark shade, can be compared with LES

results. In Fig. 7(b), we show the temporal autocorrelations of the streamwise velocity components collected from nine virtual

meteorological masts in the LES, so it is directly analogous to the observation results from Fig. 7(a). In Fig. 7(c), we show the

correlation presented prior in Fig. 6 along the mean wind direction, converted to the time domain using Taylor’s hypothesis.275
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Because of the spatial subdomain size and the mean advection speed, the maximum time separation computed is about 36

s. The reach of this curve is a direct result of splitting the domain. Finally, Fig. 7(d) shows the mean results (dark shade) of

each Fig. 7(a–c) together for ease of comparison. Based on this exercise, noting the good match between the red and green

curves, we conclude that frozen turbulence appears to be a reasonable assumptions and that it can be used to transform between

spatial and temporal correlations. We note a mismatch between curves based on observed data versus LES in low values of280

time separation (from 0 to 10 s). This mismatch is possibly caused by the inability of the LES to resolve turbulence below its

spatial and temporal filter scale.
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Figure 7. Comparison of spatial correlation and temporal autocorrelation of streamwise component of the velocity from LES with field

data. Each lightly shaded curve represents one 15-min interval; the dark-shaded curve is the average of the light curves. (a) Temporal

autocorrelation of single-mast observation data obtained at 80 m; (b) Temporal autocorrelation of 9 virtual meteorological masts from LES;

(c) Spatial correlation results from LES transformed to time-domain; (d) Comparison of the mean curves of each panel.

The integral length scales of the streamwise component in the along-wind direction Lx
u and crosswind direction Ly

u are

obtained by integration of the spatial correlation curves presented in Fig. 6. The results are shown in Fig. 8(a), where integration

is carried out until the correlation drops to 0.05 (value suggested by Flay and Stevenson (1988), and used by others such as285

Tian et al. (2018)). The same process is performed with the integration of the temporal autocorrelation curves to obtain the

integral time scale. Again, we may use Taylor’s assumption to transform between the integral time and length scales, which

was used to produce Fig. 8(b). In canonical LES studies, stationary mesoscale conditions are usually the focus. Here, with

mesoscale coupling and varying mesoscale conditions, we are able to study the effect of mesoscale transients on turbulence. In

the conditions investigated in this work and as shown in Fig. 8, the integral length scale in the along-wind direction Lx
u mostly290

fluctuates between 110 m to 150 m. In comparison, the integral length scale of the streamwise component in the crosswind

direction Ly
u is about 3 to 4 times smaller that in the along-wind direction.
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Figure 8. Integral scales variation of the 4-hour period of interest from LES. (a) Integral length scale of the streamwise component of the

turbulence u for the along-wind direction (Lx
u), and crosswind direction (Ly

u); (b) Along-wind integral time scale calculated separately from

spatial correlation and temporal autocorrelation data.

3.2 Coherence Results

For vertically separated pairs of turbulence fluctuations, we sampled a vertical plane along the domain. For longitudinal and

lateral separations, we use the same horizontal plane as the prior analysis. Interpolation is not needed for the vertically separated295

coherence, but it is needed within grid points for longitudinal and lateral separation. It is challenging to have grid points that

are aligned with the wind direction because of the changing wind conditions.

The time series during the period of interest is not stationary, thus the spectra and subsequently the coherences are calculated

using smaller intervals. The sample results shown in this section were obtained with 1 hour of data, using 50%-overlapping

15-min windows multiplied by the Hann function.300

Figure 9 shows the curves obtained when focusing on the low-frequency range for the first hour of the interval of interest.

There is no recommendation by the IEC standards for longitudinally separated points, so comparisons with the Simley and Pao

(2015) model are presented for the streamwise velocity component, where it is defined.
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Figure 9. Coherence of the three turbulence components (a) u, (b) v, and (c) w separated longitudinally. Also shown are Simley’s model,

Eq. (5). Note the logarithmic scale of the x-axis.

All three components show a high value of coherence at a relatively wide range of frequencies. The results match well the

stability state correction proposed by Simley and Pao (2015). The results shown for the streamwise component of longitudinally305
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separated points are also similar to those obtained using lidar data (Debnath et al., 2020), where for a case with about 140-m

length scale, the drop-off occurred at around 0.1–0.2 Hz. No model is available for the other components.

Coherence of longitudinally separated points is not as important as laterally and vertically separated points from a wind

turbine design point of view. While the high levels of coherence in the longitudinal direction is a well-known fact, it is still

nonetheless relevant the quantification of the longitudinal coherence. Performing this analysis on longitudinal separation is310

relevant in the context of wind turbine control, where controls strategies based on inflow preview require knowledge of the

evolution of the turbulence in the longitudinal direction, as it approaches the rotor. Some studies have looked exclusively at

longitudinal coherence with controls, rather than loads, in mind (see Schlipf et al. (2013, 2015), as well as the aforementioned

Simley and Pao (2015); Debnath et al. (2020)).

Coherence of the components of the turbulence separated laterally are shown in Fig. 10 for selected separation distances.315

Where Kaimal’s model with Davenport’s exponential decay is defined, comparisons are provided. The IEC-recommended

model overestimates the coherence in the frequency range investigated. The coherence values for laterally separated points

(Fig. 10) are significantly lower than those encountered in longitudinally separated points (Fig. 9), as expected. The lateral, as

well as vertical, coherence may impact turbine loads, especially as wind turbine rotors become larger. For lower lateral separa-

tion values, the coherence drops at very low frequencies. In fact, it has been long known that the coherence does not approach320

1 as frequencies approach zero (Kristensen and Jensen, 1979; Saranyasoontorn et al., 2004). The results are consistent with

those found by Bardal and Sætran (2016) where it was noted that given the same separation, lateral coherence is “significantly”

smaller than longitudinal coherence. At higher frequencies, the computed curves do not converge to zero, which stems from the

fact that the coherence definition (3) used here is a biased estimator (Kristensen and Kirkegaard, 1986; Mann, 1994), although

the lack of convergence towards zero has also been attributed to numerical noise in the work of Shaler et al. (2019).325
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Figure 10. Coherence of the three turbulence components (a) u, (b) v, and (c) w separated laterally. Dash-dotted curves shown are obtained

from the IEC-recommended Kaimal spectrum with exponential coherence model, where defined.

The coherence for separations in the vertical direction is shown next in Fig. 11, with comparisons with Kaimal’s spectrum

with Davenport’s exponential coherence model. In this case, the separation value is given relative to a measurement point at 80

m. We acknowledge that 80 m is too low for typical and next-generation offshore wind turbine hub heights—this reference point

was chosen due to the data availability from the FINO1 research platform equipment. We use the term “negative separation”

to indicate vertical separation directionality. Although using a negative separation distance in a coherence model would be330
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nonphysical, we emphasize that here negative separation means that one measurement point is below the reference point located

at 80 m. The other curves presented with positive separation means they were computed with the pair of points consisting of

the reference point at 80 m and the second point being above the reference by the separation distance. The plots show a

faster decay in the coherence of the streamwise component than in the other components, as well as a slight overprediction by

Kaimal’s spectrum with exponential coherence model. The vertical component decays the slowest with vertical separation. The335

results are consistent with prior investigations by Saranyasoontorn et al. (2004) on much smaller separation distances. A small

asymmetry between positive and negative separations is observed, and can be a result of the fact that the largest eddies present

increase with height. Interestingly, for the vertical component, the negative separations result in stronger coherence decay with

increasing frequency than that for the corresponding positive separations. Comparing the same separation magnitudes (the pairs

of separations 20 and −20, and 40 and −40), we note an asymmetry effect that appears to increase as the separation distance340

gets larger. This asymmetry effect has been first noted and modeled in the work of Bowen et al. (1983), and further investigated

and improved in Cheynet (2018), which essentially takes the two heights into account, rather than just a separation distance,

while also accounting for the non-unity at zero frequency. We note that curves related to 20-m separation distance are showed

for illustration and should not be deemed well-resolved, as such separation includes only two LES grid points, and because

of that, we isolate the curves related to a separation of 40 m in Fig. 12 for ease of comparison. Finally, the vertical coherence345

of v and w components do not approach 1 as the frequency tends to zero. In similar observations, Naito (1983) attributed the

cause to be due to the fact that that these components rarely include long-period fluctuations in the surface layer. Nonetheless,

as mentioned before, Kristensen and Jensen (1979) point out that the coherence is not unity because the separation distance is

not negligible when compared to typical length scales of turbulence.

0.00 0.05 0.10 0.15
f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

γ2 uu
,v

er
t

(a)

IEC

0.00 0.05 0.10 0.15
f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

γ2 vv
,v

er
t

(b)

0.00 0.05 0.10 0.15
f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

γ2 w
w

,v
er

t

(c) −40 m sep
−20 m sep
20 m sep
40 m sep
80 m sep
120 m sep
160 m sep

Figure 11. Coherence of the three turbulence components (a) u, (b) v, and (c) w separated vertically with respect to 80 m. Negative separation

means that one of the points is below 80 m. Note the asymmetry shown by the same separation in different directions. Dash-dotted curves

shown are obtained from the IEC-recommended Kaimal spectrum with exponential coherence model, where defined.

One interesting aspect of the IEC standard when it comes to recommendations of the Kaimal spectrum with exponential350

coherence model is that no distinction is made between lateral and vertical coherences. This is an important aspect that is

not often investigated by the literature. We show in Fig. 12 only the curves related to a separation of 40 m in both the lateral

and vertical direction, alongside the Kaimal spectrum with exponential coherence model prediction for the same separation.

The intention here is to highlight that the levels of coherence can be substantially different depending on the direction and
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component of the flow. As we have previously mentioned, coherences in the v and w components are needed for realistic wake355

meandering predictions.

0.00 0.05 0.10 0.15
f [Hz]

0.0

0.2

0.4

0.6

γ2 uu
,la

t,
ve

rt
(a)

IEC

0.00 0.05 0.10 0.15
f [Hz]

0.0

0.2

0.4

0.6

γ2 vv
,la

t,
ve

rt

(b)

0.00 0.05 0.10 0.15
f [Hz]

0.0

0.2

0.4

0.6

γ2 w
w

,la
t,

ve
rt

(c) −40 m vert sep
40 m vert sep
40 m lat sep

Figure 12. Comparison of lateral and vertical coherences related to separations of 40 m. Negative separation means one point is below the

reference point located at 80 m, while positive separation means the second point is above the reference point.

To assess if the LES results are within what one would expect, we compare two of the vertical separation curves to the

observed data. The observation data were available at three heights, thus allowing two different separation distances with

respect to the reference height of 80 m to be analyzed. Figure 13 shows the result. Note that prior comment about 20-m

separation also applies here, as it constitutes only two LES grid points and thus results encompass a greater uncertainty. For the360

streamwise component there is a good match, with the observation data following the LES much better than Kaimal’s model.

The rather noisy nature of the observations curve is due to single-mast data. For the cross-stream and vertical components,

the general trends and decay rate are also captured. We point out, nonetheless, that a model based on LES data could provide

more information than no model at all. The present study suggests that, if considering vertical coherence over large separation

distances, it might be important to consider the aforementioned asymmetry effect. With large separation distances, relevant365

for tall, large offshore wind turbines, the overall distance to the sea (or ground) level can lead to different characteristics in

coherence (as shown in Fig. 11(c)). For example, the coherence between points at 40 m and 120 m above sea level is unlikely

to be the same as the coherence between points located at 120 m and 200 m above sea level, even though they are separated by

the same distance.

An advantage of using large-eddy simulation to obtain coherence is that we are able to perform the same analysis for an370

arbitrary separation distance. Some curves obtained at discrete separation values have been presented, but in Fig. 14 we show

a contour plot of the same quantities for all separation distances. Although this figure also shows very small separations, we

remind the reader that the values in such regions are not well resolved because the finest computational grid resolution is 10 m.

The goal here is to point out an advantage of numerical models over field observations in that data can be sampled at virtually

any location. Without that ability, we could not create the complete maps of coherence and correlations shown in Figs. 5 and375

14.

Figure 14 summarizes the importance of modeling all three components of the turbulence. Perhaps not surprisingly, the

highest coherence occurs for the component of turbulence in the same direction as the separation direction (diagonal panels).

The coherence of large separation distances do not approach 1 as the frequency tends to zero, as reported in the literature

(e.g., Doubrawa et al. (2019)).380
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Figure 13. Comparison of coherence related to observed data for (a) u, (b) v, and (c) w components of the wind speed separated vertically

with respect to 80 m. Negative separation means one point is below the reference point located at 80 m, while positive separation means

the second point is above the reference point. Dash-dotted curves shown are obtained from the IEC-recommended Kaimal spectrum with

exponential coherence model, where defined.
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Figure 14. Contour of the coherence for all components of the turbulence, along all three separation directions, over a continuous range of

separation distances. The diagonal panes are the component in the same direction of the separation.

3.3 Cross Coherence

We calculate cross coherences uv, uw, and vw, each obtained from two distinct components of the turbulence at zero separation

(same point). For the calculation of cross coherences shown here, we select points that lie on the 80 m above-ground-level plane
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and perform the computation. For each point, cross coherences are calculated and then an ensemble average is computed using

all the individual cross coherences. The results for the first hour of the interval is are shown in Fig. 15.385
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Figure 15. Mean cross coherence for points at a plane 80 m above ground level.

Cross coherence is not usually considered in preliminary design and load analysis of new wind turbines. The isotropic

von Kármán model (von Kármán, 1948) considers all of them to be zero, due to the isotropy assumptions and lack of shear

consideration. The Mann uniform shear model considers only uw coherence to be nonzero. This is what we observe in the cross

coherence shown in Fig. 15. The largest cross coherence is found between the streamwise and vertical components, while no

significant correlation exists between the streamwise and cross-stream turbulent components, and neither between the cross-390

stream and vertical components (ignoring numerical noise). These findings are consistent with those from Saranyasoontorn

et al. (2004) and the aforementioned study by Mann (1994). The uw coherence is related to the friction velocity and, therefore,

affected by the wind shear. This study adds to the study of Saranyasoontorn et al. (2004) pointing out that it might be relevant

to account for the effect of uw-coherence when generating inflow with the goal of load analysis.

4 Discussion395

The analysis procedure outlined in this study is general and can be applied to any LES solution of the atmospheric boundary

layer. The curves obtained through the analysis can then be used to inform a synthetic turbulence generator such as Turb-

Sim (Kelley and Jonkman, 2005). TurbSim has the option to generate synthetic inflow following the Kaimal spectrum model

with exponential decay coherence, options that may be readily extended to use coherence characteristics obtained from a

high-fidelity solution. Future work should further study the variation of coherence curves of each component for any arbitrary400

separation distance given varying atmospheric conditions, which will produce a set of coherence curves for each component

and separation direction. The additional curves can be used to derive curves for intermediate conditions that were not explicitly

simulated. Ultimately, this would enable LES-informed time series of turbulence to be generated for any condition using syn-

thetic turbulence generators. Prior studies such as Simley and Pao (2015) looked at canonical stable and unstable conditions in

an LES setting, while others such as Cheynet (2018) (and references therein) looked at continuous data for an offshore case,405

but only for a limited set of separation distances and for the streamwise component. More accurate time series of the turbulence

can improve the representation of design load conditions that are used for load estimations in lower-fidelity wind turbine design

codes. The ultimate impact is the ability to obtain less conservative, site-specific designs, relying less on simplified models like
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that of Kaimal with Davenport exponential decay, one of the suggested models the current IEC standards is based on. It is also

worth noting that wind turbine design is not the only discipline that can benefit from more accurate coherence estimations.410

Longitudinal and lateral coherence are relevant in the control of wind turbines and wind farms. Longitudinal coherence affects

feed-forward control (e.g., Simley and Pao (2015); Schlipf et al. (2013); Debnath et al. (2020)), while lateral coherence is

important for dynamic wake meandering studies and can affect the efficacy of wake tracking and wake steering (e.g., Wise and

Bachynski (2020); Shaler et al. (2019)).

The coherence magnitude is given by the cross-spectra normalized by the auto spectra of the individual components of the415

turbulence. The coupled effects of the different components of the turbulence are expressed in the cross-spectra term. From

a statistical perspective, the information contained in the coherence fully defines two-point, second-order statistics of random

fields. Therefore, all the second-order dynamic properties are contained in these quantities and can be used to generate a field

that is consistent with those properties. We emphasize that these are the quantities that dominate the dynamic response of a

system like a wind turbine rotor.420

The asymmetry aspect inherent to the study of vertical coherence is captured in this work, adding to the body of literature.

In close relationship with the prior points raised in this section, the variation of such asymmetry effect given different stability

states, and how that further affects the loads and fatigue characteristics, is an important question. While out of scope of the

current analysis, we note that the mesoscale-coupled LES setups presented here are more realistic than the standard “canonical”

setups and and enable the investigation of coherence effects in site and weather-condition specific situations.425

It is also important to note the grid spacing used in this work and the final applicability of such a model on modern large,

flexible rotors. The 10-m resolution limits the scale of the resolved turbulence and frequency of the computed coherence. For

instance, resolving turbulent structures at 20-m separation can be relevant near the tip of the blade and, at the current grid

spacing, 20-m separation results are not reliable. The general analysis applied to simulations with higher spatial resolution

would allow much more detailed investigations of the coherence in all three components, informing both how we model and430

measure turbulence. This realization certainly drives the authors’ decision making about LES resolution in our future work.

A higher spatial resolution would also push the cutoff frequency higher than the 0.15 Hz shown here and provide insight

into higher-frequency, smaller-scale turbulence. The procedure is also suitable for modeling turbine–turbine interactions in a

wind farm setting. For example, considering a row of turbines, one could process the data following the coherence analysis

presented here and come up with simple analytical models that could potentially include the wake of turbines within the farm.435

Ultimately, such models can be used within other simulation tools for loads and fatigue. Some of these other simulation tools

are lower in fidelity than an LES approach and runs much faster, allowing efficient and robust iterative design of wind turbines.

Some of these tools include OpenFAST and FAST.Farm (Jonkman et al., 2017). Flow fields generated using stochastic tools

with LES-informed coherence characteristics can be further used for wind farm analysis in, e.g., FAST.Farm, which would

ultimately result in better estimates of loads and wind-turbine array efficiency.440

Another interesting application of the analysis routine outlined is its use in the assessment of whether or not the resolved

turbulence has reached a “fully developed” stage. Consider the common situation in which a wind farm LES is set up with

inflow without grid-scale-resolved turbulence. For example, some researchers apply inflow to their LES that comes from a
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mesoscale weather model which does not explicitly resolver turbulence. Such an LES setup exhibits a fetch region in which

both resolved and modeled turbulent quantities must undergo a transient to a fully-developed state. The length of this spatial445

fetch region is often determined by visual inspection of the flow field and, more quantitatively, using power spectral density.

The correlation analysis of streamwise and lateral flow presented here can be used as another metric to quantify when a fully-

developed state has been reached and to help determine the fetch region extent.

5 Concluding Remarks

This work highlights the utility of computing turbulence correlations and coherence using turbulence-resolving LES data.450

Coherence of the v and w components along all three directions does not appear to be negligible, but the Kaimal model with

Davenport’s exponential coherence—the basis for one of the models suggested by the IEC standards—is only defined for the u

component. This missing information that is essential to creating coherent synthetic turbulence may be filled in by knowledge

gained through LES.

We showed that evolving conditions can change the way the flow is presented in terms of both integral scales and coherence455

levels. For the period investigated, when the wind shear remained relatively constant with an exponent of 0.1–0.15, our analysis

indicates that frozen turbulence appears to be a suitable assumption when correlations are the main metric under investigation.

The coherence decay, however, is faster in some components and directions than others. This suggests that given high coherence

for eddies of certain sizes, the turbulence can be considered frozen; while the same may not be true for eddy sizes corresponding

to low coherence values. The variation of coherence decay among the different directions and components of the wind speed460

can be significant. This is an important aspect of some flows that may be overlooked by simplified studies where single-

point first-order metrics (e.g., turbulent kinetic energy) are highlighted. A better understanding of the spatial structure of the

turbulence under different conditions can improve turbulence models that are used for loads calculations. A higher confidence

in the estimations from such models could result in better estimates of blade fatigue life. We also note that a more accurate

representation of coherence characteristics are useful for other areas such as the modeling of wake meandering and inflow-465

preview-based control strategies.

This work demonstrates the wealth of additional information that can be gathered from a typical atmospheric LES, and

outlines the numerical limitations that need to be considered when using LES data. State-of-the-art atmospheric simulation

capabilities are continuing to evolve, and complex, large scenarios are now more routine practice. Some of these complex

scenarios include realistic weather conditions such as full diurnal cycles, frontal passages, and low-level jets, among others.470

With the rapid adoption of GPU-based LES codes, we are headed into ever faster, higher-resolution workflows. Quantities

such as correlation, integral scales, coherence, and cross-spectral information are not often computed and discussed in typical

atmospheric and wind plant studies. We therefore have an opportunity to develop new insights from site- and condition-specific

studies without any additional computational expense, and to advance the state of the science in characterizing the atmospheric

boundary layer and modeling turbulence.475
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