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RESPONSE TO REVIEWER 
 
Dear Reviewer, 
 
We would like to thank you all for your time and insightful comments about our article 
entitled “A Neighborhood Search Integer Programming Approach for Wind Farm Lay-
out Optimization” (submission WES-2022-82), for appreciating the contribution of this 
work, and for considering the topic and proposed method as relevant and promising.   
We have made a large effort to improve the quality of the paper and to address all 
your comments and suggestions. 
 
See a modified version of our article attached after this letter. 
 
Find below responses to each of your comments: 
---------------------------------------------------------------------------------------------------------------- 
GENERAL COMMENTS 
---------------------------------------------------------------------------------------------------------------- 
- Comment: This work presents a new approach (NSH) to solving the wind farm layout 
optimization problem using a MILP approach that is made more tractable by a simpli-
fied wind farm AEP model. The results of the model and the optimization algorithm are 
clearly compared to previous works and seem reasonably reproduceable. The work 
appears to be well-founded from a scientific perspective, is relevant to the subject 
matter of Wind Energy Science, and provides meaningful contributions to field. While 
the work is reasonably well presented, the English grammar and usage in the work 
present a barrier to understanding. The manuscript should be carefully, preferably pro-
fessionally, edited to address these concerns so the material will be more accessible, 
clear, and useful to the community. 
 
- Response:  Thanks for appreciating the contributions presented in the article. Re-
garding the English grammar and usage, we have conducted a thorough review of it 
to improve the quality of the manuscript.  
---------------------------------------------------------------------------------------------------------------- 
SPECIFIC COMMENTS 
---------------------------------------------------------------------------------------------------------------- 
Abstract  
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 4-5: “deficit is aimed” I don’t know what is meant by this.  
 
- Response:  Thanks for pointing out this misleading statement. The word “aimed” has 
been replaced bv “optimized”, so now this sentence should be clearer in transmitting  
 



 
 

    

 
the idea that in the power-curve-free model is optimized a measure closely related to 
wind speed deficit. 
---------------------------------------------------------------------------------------------------------------- 
 
- Comment: Line 5-6: it is unclear if the heuristic wraps the model (formulations?) or is 
separate. Consider clarifying. 
 
- Response:  Thanks for the suggestion. As an attempt to increase clarity, this is re-
stated as: 
“A special-purpose neighborhood search heuristic wraps these formulations increas-
ing tractability and effectiveness compared to the full model that is not contained in the 
heuristic.” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 8: This sentence was confusing to me, but I think I understand. Con-
sider reworking. I think the intended meaning is that the results of the benchmark prob-
lems show that using some substitute objective rather than actual AEP can be a good 
approach. 
 
- Response:  Thanks for the suggestion. As an attempt to increase clarity, this is re-
stated as: 
“…Numerical results on a set of publicly available benchmark problems indicate that 
a proxy for total velocity deficit as objective is a functional approach, since high-quality 
solutions of annual energy production metric are obtained, when using the latter func-
tion as substitute objective…” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 10: “match” is probably a bit strong for the presented results, 
maybe say the results are competitive or something that does not indicate equality. 
 
- Response:  Thanks for point this out. The authors agree. This sentence is restated 
as: 
“…Furthermore, the proposed heuristic is able to provide good results compared to a 
large set of distinctive approaches that consider the turbine positions as continuous 
variables.” 
---------------------------------------------------------------------------------------------------------------- 
1: Introduction 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 17: I don’t think I’m convinced about the importance of wind farm 
layout optimization by this paragraph. You state that wind energy is important politi-
cally, is presumably profitable without subsidies, and is a mature industry. The profit 
and maturity seem to hurt the argument for why this study is important. It sounds like  
 
things are just fine without WFLO. I’d suggest re-working this first paragraph. You 
could consider discussing the tight margins of wind developers and OEMs, especially 
offshore. You could also mention some hard values for how improved wind farm lay-
outs could reduce the cost of energy even further. Basically, be careful to lay a clear 
foundation for why this work matters. You don’t need to cover a lot of detail or history, 
but do make a clear case. 
 



 
 

    

 
- Response: Thank you for the remark. Indeed, it may read a bit as a contradiction. 
Authors re-phrased the paragraph focusing on why lower costs, partially achievable 
via optimization, are important. 
 
“…For wind energy to become the cornerstone of a successful green energy transition, 
further reduction in costs - partly achievable by economically refined wind farm designs 
- will play an important role.” 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 24: I think you are citing Deb (2013) here for an example of a GA, 
but it reads like you are pointing readers to the GA that Mosetti used, only the dates 
don’t line up (2013 vs 1994). Consider reworking this or putting the expected citation 
(or no citation, you already cited Mosetti which presumably has the information on the 
GA). 
- Response: Thanks for the suggestion. The citation to Deb (2013) has been removed 
as the authors agree with this comment. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 26: Consider removing “and the associated numerical algorithms” 
because you are stating “main components”. Nearly all computational methods will 
have “associated” algorithms. However, I’d argue that the wake combination model 
qualifies as a “main” component as well. 
 
- Response: Thanks for pointing out this misleading statement. The first sentence of 
this paragraph is changed to: 
“The main components when building an optimization workflow for the WFLO problem 
are the wake models (deficit and superposition), the program formulation, and the as-
sociated numerical algorithms…” 
The authors consider very important to differentiate the three aspects: wake modelling, 
problem formulation, and numerical algorithms. Essentially, an optimization program 
is set up by defining each of them according to the needs of the problem and choices 
of the designer. As it is well known, there are plethora of wake models that can be 
used for optimization. Likewise, different problem formulations can be selected, includ-
ing for example, discrete or continuous modelling, distinctive objective functions and 
constraints structures, among others. Lastly, it is important to emphasize that for any 
combination of the previous two components, several solution algorithms can be uti-
lized, for example SLSQP, branch-and-cut, etc.  
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 30-34: while the wake model background may not need to be com-
plete, the background given here is not quite correct. 
1. I think Niayifar and Porte-Agel (2015) is mostly focused on the wake combination 
and turbulence intensity to extend the Bastankhah model to multiple turbines. In this 
light the citation would be better placed with the wake combination citations. Also note 
that there is a journal paper by the same authors from 2016 on the topic that may be 
a better source to cite here. 
 
2. The Jensen cosine model was actually proposed by Jensen in 1983, so it may be 
good to cite that paper for the Jensen cosine model as the original source, though the 
Thomas et al. paper does provide some clarifications. 
 



 
 

    

 
3. The list as given seems to show several smooth and differentiable wake models, 
but the combined citations seem to really only refer to two distinct wake models. I’d 
suggest making this a little more clear in the discussion. 
 
4. While the sum of squares or linear combination statement is correct to my 
knowledge, it may be worth mentioning that the two methods have been used with 
local and freestream velocity conditions. This makes for four distinct proposed wake 
combination methods. 
– Linear/freestream: Lissaman 1979 
– Sum of squares/freestream: Katic et al. 1986 
– Linear/local: Niayifar and Porte Agel 2015, 2016 
– Sum of squares/local: Voutsinas 1990 Update: I saw you do discuss this nuance 
later. It may ok as is, but it did seem incomplete to me at first. 
 
- Response: Thanks for this really good point. As the reviewer says, the wake model 
background may not need to be complete, but it should  be improved respect to what 
was presented in the first version. The rest of the paragraph has been edited as 
 
“…For formulating tractable frameworks, the designer needs to rely on the so-called 
engineering wake models. These are essentially mathematical representations which 
can be expressed in terms of analytical equations after significantly simplifying com-
plex physics modelling, while still capturing to a good extent the underlying nature of 
the phenomenon under analysis. Scientific articles in this field have proposed and val-
idated engineering wake models with smooth and differentiable velocity deficit shape, 
two examples are the Bastankhah’s Gaussian (Bastankhah and Porté-Agel, 2016) or 
its simplified version (IEA Wind Task 37, 2019), and the Jensen cosine model 
(Jensen, N.O., 1983). Likewise, the aggregation of individual wake velocity deficits can 
be done through linear superposition (Lissaman, 1979) or root sum squares (Vout-
sinas et al., 1990), with local or freestream velocity conditions (Porté-Agel et al., 
2020).” 
The authors consider that with these modifications the wake modelling state-of-the-art 
review complies with the points highlighted by the reviewer. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 49: the jump from gradient-based and gradient-free algorithms to 
discrete algorithms was not clear and needs motivation. Consider stating the connec-
tion and purpose of the jump for those unfamiliar with the algorithms ((1) discrete 
methods are generally a sub-set of gradient-free methods, and (2) why are we talking 
about them here?) 
- Response: The authors do not agree with this point, as they believe that there are no 
discrete algorithms, but rather two modelling philosophies with respect to variable 
types: continuous and discrete optimization. In the paragraph from lines 36 to 48 (in 
the new version of the manuscript) the continuous optimization technique is discussed. 
For this, both gradient-free and gradient-based algorithms have been utilized in the 
literature. The following paragraph from lines 49 to 54 is new, where the latest work of  
(LoCascio et al., 2022) is discussed. In the next paragraph (lines 55 to 65) the discrete 
optimization technique is discussed. Within this field, both gradient-free and gradient-  
 
 



 
 

    

 
based algorithms have also been applied. To clarify this, the following sentence has 
been added:  
“…Algorithms utilizing explicit gradients are also a valid approach in this field (Pollini, 
2022)…” 
 
This is an article very recently published that adopts a discrete modelling technique as 
well, using gradient-based algorithms to address the WFLO problem. 
The objective of paragraph from lines 66 to 73 is to introduce the motivation of the 
focus of this manuscript which is integer programming modelling, presenting the in-
hering modelling benefits of discrete optimization in this context. Lastly, lines 74 to 84 
picks up this idea and discusses state-of-the-art in integer programming for the WFLO 
problem. The next two paragraphs in lines 85 to 94 and lines 95 to 105 discuss the 
contributions of this manuscript. 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 59-69: consider also citing https://wes.copernicus.org/arti-
cles/7/1137/2022/ 
 
- Response: Thanks for giving notice to the authors for this very interesting work. This 
manuscript is cited in the paragraph from lines 49 to 54, right after the paragraph that 
in general discusses continuous optimization. The authors think that is a great addition 
to expand the concept of applying simpler objective functions that mitigate the com-
plexity of optimization programs, while still being very competitive finding good solu-
tions compared to more sophisticated models. Note that this article is again cited in 
lines 92 to 94 to contrast it with the proxy objective function proposed in the authors’ 
manuscript. 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 71: how is modeling economic metrics an advantage of the discrete 
model? This can and has been done in a continuous space for optimization. see 
https://onlinelibrary.wiley.com/doi/epdf/10.1002/we.2310 
 
- Response: In this line it is stated “capacity to include the number of WTs as a variable 
and to model overall economic metrics as Net Present Value (NPV)”. In the mentioned 
article “Optimization of turbine design in wind farms with multiple hub heights, using 
exact analytic gradients and structural constraints” the focus is, as the title states, on 
how to optimize wind farm layouts accounting for WT design. The problem assumes 
fixed number of WTs. It is clear that the difference lies in the fact that by a discrete 
modelling technique the number of WTs is considered an optimization variable. With 
variable number of WTs, the modelling of overall financial metrics as NPV would ex-
pose the trade-off between the number of WTs in the farm  and the wake losses (AEP) 
vs investment costs. This is in general not possible in classic continuous optimization 
frameworks. 
--------------------------------------------------------------------------------------------------------------- 
- Comment: Line 72: (ii) can be done continuously, but it is more difficult 
 
- Response: In this line it is stated “…ease of modeling any shape of project area or 
forbidden zones, convex or non-convex…”, meaning exactly what the reviewer says 
in this comment. 
 

https://wes.copernicus.org/articles/7/1137/2022/
https://wes.copernicus.org/articles/7/1137/2022/
https://onlinelibrary.wiley.com/doi/epdf/10.1002/we.2310


 
 

    

 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 72-73: why is (iii) specific to a discrete formulation? 
 
- Response: In this line it is stated “…capacity to model extensive 
integrated models to support electrical systems optimization…”. The cable layout  
 
optimization problem, which designs the electrical network to connect the WTs to-
wards the substations, is a discrete optimization problem. It would be straight-forward 
to formulate a unified optimization program for the simultaneous wind farm and cable 
layout optimization problem, if the WFLO is modelled in a discrete way. With both 
problems being in the same modelling universe, it would be clear which optimization 
algorithms to explore. If the WFLO is modelled continuously, the authors cannot en-
visage a tractable way of tackling the unified problem. 
---------------------------------------------------------------------------------------------------------------- 
- Comment:  Line 73-74: what is the distinction between “cost functions” (iv) and “eco-
nomic metrics” (i)? 
 
- Response: An economic metric is defined in this context as the expression used to 
value a project from the financial perspective. NPV and IRR are examples. Cost func-
tions refer to the mathematical representations to calculate the value of components 
that are required to fully compute economic metrics. 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 74: fully continuous WFLO has been done with multiple turbine types 
https://www.wind-energ-sci.net/4/99/2019/wes-4-99-2019.pdf  
 
- Response: The authors are aware of this. It is mentioned about the possibility to 
easily do this. Therefore, the sentence is rewritten as: 
 
“…ease of incorporating multiple WT types, among others…” 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 76-77: consider elaborating on this idea and why discrete optimiza-
tion is well suited to overcome the convexity problem 
 
- Response: This is not the meaning of this sentence. The non-convexity nature cannot 
be overcome. Nevertheless, because of this feature, it is not possible to formally prove 
optimality. Due to this, usually different solution algorithms will converge into different 
final solutions. By having a diverse set of available solution algorithms, the likelihood 
to obtain better solutions for a given problem instance is increased.  
----------------------------------------------------------------------------------------------------------------
2: Physics Modelling 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 97-99: I’m not sure how this statement “No particular . . . ” relates to 
the first sentence in the paragraph. Also, Thomas et al. 2022b specify some re-
strictions on the mathematical structure for controlling wake diameter and deficit, at 
least for their purpose. Specifically, the wake deficit and wake diameter must be sep-
arately controlled 
 
 

https://www.wind-energ-sci.net/4/99/2019/wes-4-99-2019.pdf


 
 

    

 
- Response: Thanks for the feedback. To improve readability and connection between 
sentences, the statements have been rewritten like this 
 
“The proposed MILP models and general optimization framework in this article can be 
easily applied to many wake deficit models. No particular properties on smoothness 
or differentiability are required from these models for optimization purposes. 
Additionally, no specific demands on mathematical structure in connection with  
 
controlling wake diameter and deficit (Thomas et al., 2022b) are stemming from the 
optimization programs proposed in this article…” 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 101: from which source? there are two references 
 
- Response: Thanks for pointing out this redundancy on the references. Reference 
(Dykes et al., 2015) has been deleted, because (Baker et al., 2019) is an indexed 
paper containing the information about wake model and benchmark results. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 105: why is Thomas and Ning 2018 cited here and at line 32 for the 
simplified Gaussian? For the original Bastankhah wake model, I’d suggest citing 
Bastankhah 2016. For the simplified model, use the citation given in the following sen-
tence (IEA Wind Task 37 2019)  
 
- Response: Thanks for the suggestion. For the original wake model, it is cited 
(Bastankhah and Porté-Agel, 2016) and for the simplified model (IEA Wind Task 37, 
2019), as suggested by the reviewer. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 110: 𝑑𝑑𝑖𝑖𝑖𝑖

∥  and 𝑑𝑑𝑖𝑖𝑖𝑖⊥  are not used in Eq. (1), though the coordinate frame 
clarifications are helpful, the symbols used seem extraneous at this point in the paper. 
You could possibly include these symbols as additional equations following the equa-
tion explanation of Eqs. (1) and (2) in preparation for use later in the paper. 
 
- Response:  Thanks for the suggestion. The authors consider that defining 𝑑𝑑𝑖𝑖𝑖𝑖

∥  and 𝑑𝑑𝑖𝑖𝑖𝑖⊥  
is useful at this point of the paper because variables �̅�𝑥ℓ, �̅�𝑥𝑖𝑖, 𝑦𝑦�ℓ and 𝑦𝑦�𝑖𝑖 are introduced 
here. Trying to improve readability, this paragraph is restated as 
“where 𝑢𝑢∞ is the inflow wind speed, 𝐶𝐶T  is the thrust coefficient, �̅�𝑥𝑖𝑖 −  �̅�𝑥ℓ is the stream-
wise distance from the hub generating wake (�̅�𝑥ℓ) to hub of interest (�̅�𝑥𝑖𝑖) along 
freestream (let this difference be 𝑑𝑑𝑖𝑖𝑖𝑖

∥ ), 𝑦𝑦�𝑖𝑖 − 𝑦𝑦�ℓ is the span-wise distance from the hub 
generating wake to hub of interest perpendicular to freestream (let this difference be 
𝑑𝑑𝑖𝑖𝑖𝑖⊥ ), 𝜎𝜎y is the standard deviation of the wake deficit, 𝑘𝑘y is a variable based on a turbu-
lence intensity, and 𝐷𝐷 is the WT diameter.” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 115: consider removing one of these duplicate mathematical state-
ments. 
 
- Response:  Thanks for noticing this typo. It has been fixed. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 125-130: The references used to arrive at Eqs. (6) and (7) were 
given in the introduction, but I think it would be helpful to provide them again here. 



 
 

    

 
- Response:  Thanks again for this contribution. The references have been added 
above Eq. (3), Eq. (4), Eq. (6), and Eq. (7). 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 133: why is the power curve non-differentiable specifically at rated 
wind speed? The definition provided in this manuscript is non-differentiable at the rated  
 
power, but the continuity of the power curve is just dependent on the power curve 
definition, so this statement is not correct in general. 
 
- Response:   The authors have modified this subsection as follows to improve the 
technical rigor 
“Suitable power curves are required for computing AEP. Often, power curves are not 
perfectly suitable for optimization, due to the usual non-differentiability in several 
points throughout the function. Generally, a power curve is zero below cut-in wind 
speed, zero above the cut-out wind speed, and constant between the rated wind speed 
and the cut-out wind speed. In this particular study, between the cut-in and rated wind 
speeds the curve is assumed to be smooth, convex and monotonically 
increasing. The simplified power curve for a generic turbine as a function of wind speed 
u is modelled through…” 
 
“…where 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the nominal power at (and above) rated wind speed 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. The 
other turbine characteristics are the cut-in wind speed 𝑢𝑢𝑐𝑐𝑐𝑐𝑟𝑟−𝑖𝑖𝑖𝑖, and the cut-out wind 
speed 𝑢𝑢𝑐𝑐𝑐𝑐𝑟𝑟−𝑜𝑜𝑐𝑐𝑟𝑟. In this definition, the WT power curve is not differentiable at 𝑢𝑢𝑐𝑐𝑐𝑐𝑟𝑟−𝑖𝑖𝑖𝑖, 
𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑢𝑢𝑐𝑐𝑐𝑐𝑟𝑟−𝑜𝑜𝑐𝑐𝑟𝑟, since in these points the left and right hand side derivatives are differ-
ent. Be aware that the optimization programs proposed in this manuscript are not de-
pendent on WT power curve differentiability.” 
The non-differentiability discussed here is naturally dependent on the power curve 
definition. However, the one presented aligns with the usual function recurrently im-
plemented in the literature.  
---------------------------------------------------------------------------------------------------------------- 
3: Optimization Models 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Eqs. (12) to (14) The presentation here is difficult to follow. Perhaps con-
sider breaking them up into more equations with more explanation and grouping by 
interval (1, 2, a+1, m+1, m+2). 
– the statement “for a = 1,. . . ,m” should be applied to each numbered equation it 
applies to individually. 
– I’m not sure how the delta u is supposed to be applied in Eq. (13). Re-working the 
presentation of these equations should help. 
– are “a” and “l” being used for the same thing here? If so, correct. If not, please clarify. 
– There may be a better way to present the interval values, the above are just my 
ideas at the moment. 
 
 
- Response: Thanks for this observation. This part has been reworked as presented 
in the next page. 
Authors hope that this improves the readability of this part. The statement “for a = 1,. 
. . ,m” has been applied individually in Eq. (14) and in Eq. (15), meaning each of the  



 
 

    

 
subintervals sampled within the cubic subdomain of the whole WT power curve do-
main. The value of Δ𝑢𝑢 has been explicitly declared in the paragraph preceding the 
equations. Lastly, 𝑎𝑎 and 𝑙𝑙 represents different things. The variable 𝑙𝑙 is for any interval 
in the whole domain of the curve, while 𝑎𝑎 is for an interval located in the cubic domain. 
 
“

” 
 
Equation (12) defines the lower and upper limits for the extreme intervals 𝑙𝑙 =  1 
𝑎𝑎𝑎𝑎𝑑𝑑 𝑙𝑙 =  𝑚𝑚 +  2, Eq. (13) formalizes the lower and upper limits for the first interval in 
the cubic part, 𝑎𝑎 =  1, and the last one 𝑎𝑎 =  𝑚𝑚, respectively. Equation (14) expresses 
the lower limits for intervals in the cubic part (𝑎𝑎 =  1, . . . ,𝑚𝑚), while Eq. (15) does it for 
the upper limits. Equation (16) presents how to determine the extracted wind speed 
associated to the interval 𝑙𝑙 of the whole domain, which is the average value of 𝑢𝑢𝑠𝑠𝑙𝑙  and 
𝑢𝑢ℎ𝑙𝑙 .” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Eq. (16a): xi, eta, and u are specified as design variables, but I think eta 
and u are state variables dependent on xi, so it seems that xi represents all design 
variables. I’ve only seen design variables represented in the sub-scripted variables 
under the “maximize” in the optimization equation. 
 
- Response: The reviewer is right about the fact that eta and u are state variables fully 
dependent on xi. However, the authors do not agree with the observation that the 
subscripted variables under “maximize” should only present fully independent  
 
variables. For completeness, authors chose to present all variables required in an op-
timization program, regardless of relation of dependence between them. On the other  
 



 
 

    

 
hand, the article explains clearly the difference between binary variables \xi and the 
state ones eta, u, and tau. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Section 3.2: this approach appears similar to the FLOWERS model found 
in https://wes.copernicus.org/articles/7/1137/2022/wes-7-1137-2022.pdf.  I’d suggest 
contrasting the method in the submitted manuscript to the FLOWERS model, perhaps 
in the introduction, but referring back to it again here. 
 
- Response: The manuscript is cited in the paragraph from lines 49 to 54, right after 
the paragraph that discusses continuous optimization in general. Thereafter, this arti-
cle is again cited in lines 92 to 94 to contrast it with the proxy objective function pro-
posed in the authors’ manuscript. Finally, this article is referred back in this section in 
lines 266 to 268 as 
“This proxy objective function is very useful for formulating the program in the MILP 
category. While the work in (LoCascio et al., 2022) focuses on a different formulation 
(likely more accurate analytically than the one presented here) that is non-linear but 
gradient friendly, hence useful for continuous gradient-based optimization.” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 204: I need a little clarification regarding which “outlook” the IEA 37 
studies follow. 
 
- Response: The authors have rewritten this sentence to improve readability as fol-
lows 
“Albeit the formulation of Sect. 3.1 represents to a very large extent the physics ruling 
the problem, it has a considerable number of variables and constraints that may hinder 
the capacity to tackle larger problems. The model presented in this section neglects 
power curve and AEP calculation and aims at simplifying the power-curve-based ver-
sion. 
 
The model deploys a strategy to account for the combination of Eq. (3) and Eq. (7) to 
calculate velocities, since the case studies from the IEA Wind Task 37 follow this meth-
odology for AEP computation. It would be possible though to consider the linear su-
perposition model if necessary. However, the power-curve-free model does not sup-
port the application of Eq. (4).”  
 
The authors mean that that approach is considered in this section for AEP computa-
tion, following the methodology implemented in the IEA37 Wind Task. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 211: please provide justification for dropping the square roots. Why 
is the model expected to be correct if the square root is simply “dropped”? 
 
- Response: The authors acknowledge that by simply dropping the square roots the 
model is not “correct”, but expect that the resultant expression, incorporated in the 
MILP model, is “good enough”. Line 241 in the new version of the manuscript is added: 
“…the arguments of the square roots in Eq. (19) define a function closely related to 
the full root-squared expression…” 
To have a better idea about this premise, please see the below plot 

https://wes.copernicus.org/articles/7/1137/2022/wes-7-1137-2022.pdf


 
 

    

 
 

The plane plot is of the function 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 and the other one is for 𝑧𝑧 =  √𝑥𝑥 + �𝑦𝑦. Note 
how these two functions follow relatively close to each other for non-negative values 
of 𝑥𝑥 and 𝑦𝑦. A similar behavior is expected between the original root-squared expres-
sion and the other one that ignores them. 
Practical evidence of the accuracy of this simplification is presented in Table 1. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Eq. 20: how did you get to b_{i,l} + b_{l,i} and the l>i? I don’t see offhand 
how those terms come from combining eqs. 18 and 19 as stated. 
 
- Response: As variable 𝑧𝑧𝑖𝑖ℓ represents that both WTs in 𝑖𝑖 and 𝑗𝑗 are selected, then 
when it is zero, the mutual influence given by summing up both 𝑏𝑏𝑖𝑖ℓ and 𝑏𝑏ℓ𝑖𝑖 must also 
be zero. By defining the second sum with ℓ > 𝑖𝑖, the number of variables is halved after 
this symmetric property. 
---------------------------------------------------------------------------------------------------------------- 
4: Neighborhood Search Heuristic 
---------------------------------------------------------------------------------------------------------------- 
- Comment:  Alg. 1, Line 13: check spacing 
 
- Response: Thanks for noticing this typo. It has been fixed. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 263-264: what is meant by “stopped until”? 
 
- Response: Thanks for noticing this misleading statement. It has been restated as 
“…The complete model is sent to the MILP solver with ξ as warm-starter, stopped 
when reaches either optimality or the assigned maximum computing time 𝑇𝑇…” 
---------------------------------------------------------------------------------------------------------------- 
- Comment:  The NSH algorithm seems similar to the one developed by Paul Malisani 
and presented in “A Comparison of Eight Optimization Methods Applied to a Wind 
Farm La out Optimization Problem” by Thomas et al. (https://wes.copernicus.org/pre-
prints/wes-2022-90/). Consider comparing and contrasting the approaches. 
 
- Response: Thanks for giving notice to the authors for this very interesting work. The 
authors have added this work in the introduction (paragraph from lines 95 to 105) as 
 
 

https://wes.copernicus.org/preprints/wes-2022-90/
https://wes.copernicus.org/preprints/wes-2022-90/


 
 

    

 
“The second main contribution is the proposition of a new special purpose neighbor-
hood search heuristics in order to speed up the generation of high-quality solutions. 
This heuristic, wrapping both formulations, has a twofold functionality; first to increase 
tractability, and second to redirect the optimization search in terms of a specified ob-
jective function with higher fidelity. Similar neighborhood search methods have been 
proposed in the literature, as the Discrete exploration-based optimization (DEBO) 
(Thomas et al., 2022c), which is a two-steps process composed by a greedy initializa-
tion and a local search block. While the method proposed in this manuscript shares 
most of the advantages of the mentioned approach (no gradients required, can handle 
unconnected and non-convex boundary constraints, and so on), it actually improves 
the DEBO algorithm as among others, i) significantly less AEP function evaluations 
are required, and ii) it is based on well-establish integer programming theory, 
relying in efficient implementations of the branch-and-cut algorithm. The main numer-
ical results indicate good computational performances for a set of publicly available      
benchmark case studies compared to state-of-the-art gradient-free and gradient- 
based approaches (Baker et al., 2019).” 
 
This article is referred back in this section in paragraph from lines 298 to 307 as 
 
“… One of the advantages of the NSH compared to the DEBO algorithm (Thomas et 
al., 2022c) is the reduced number of AEP evaluations. In an iteration κ, only |S| eval-
uations are required. Likewise, many of the other expensive calculations are done in 
a preprocessing stage…” 
 
“…Another difference between the NSH and the DEBO is that the latter only changes 
the position of a single WT in a given iteration, while the former considers simultane-
ous modifications of several WT positions.” 
---------------------------------------------------------------------------------------------------------------- 
5: Computational Experiments 
---------------------------------------------------------------------------------------------------------------- 
- Comment:  Line 286: why these parameter values? 
 
- Response: In the line 320 has been added the reference for benchmarking 
“The main parameters of the wake model in Sect. 2.1 are fixed to CT = 8/9 and ky = 
0.0324555, according to (Baker et al., 2019)”  
---------------------------------------------------------------------------------------------------------------- 
- Comment:  Line 299: it would be nice to see all non-default parameters (the introduc-
tion “for example” seems to indicate that only some of the non-default parameters are 
given). Consider putting in a table with the non-default parameter values. 
 
- Response: This paragraph has been modified to 
“…The selected MILP solver is the commercial branch-and-cut algorithm implemented 
in IBM ILOG CPLEX Optimization Studio V20.1 (IBM, 2022). Apart from the number 
of threads and time limit settings, a few other parameters are also set to different val-
ues compared to the default choices as well. One is the parameter returning high-
quality feasible solutions early in the process, for which, the (CPX_MIPEMPHA-
SIS_HEURISTIC) is activated. The intention is to generate more feasible layouts 
which is important for the neighborhood search algorithm. Additionally, strong branch-
ing is used for variable selection given the large size of the models  



 
 

    

 
(CPX_VARSEL_STRONG is selected). The intention is to reduce the size of the 
search tree and thus the memory requirements compared to default settings.” 
 
Since these are the only settings that have been changed from default values, we 
choose not to add a table for this purpose to avoid enlarging the paper’s length. 
---------------------------------------------------------------------------------------------------------------- 
- Comment:  Line 305-316: was this sampling method compared to any other meth-
ods? 
 
- Response: Not being the objective of the manuscript to evaluate different sampling 
methods, this has not been exhaustively investigated by the authors. One of the ex-
periments not included in the article was to use a Delaunay-triangulation-based sam-
pling of the 1300 m radius circumference. Using the same algorithm parameters, the  
 
presented method in the manuscript consistently improved the Delaunay one. Be-
cause more experiments should be done to elaborate a comprehensive comparison, 
no discussion is presented in this matter. This could be an interesting support work to 
perform in the short-term future. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 334: how do we know it is “still strong enough”? What was the bar? 
 
- Response: Thanks for the feedback. The authors agree with the fact that this expres-
sion may sound as comparative to a well-defined standard. Instead, this sentence has 
been modified to  
“..In spite of this deterioration, the linear correlation is still considered quite 
strong..” 
Although the range of correlation coefficient values and the corresponding levels of 
correlation vary depending on the application context, a correlation in the interval [-1 
to -0.80] is usually deemed as ‘Very Strong Negative’, and between [-0.79 to -0.60] as 
‘Strong Negative’. See for example reference https://www.ccsenet.org/journal/in-
dex.php/cis/article/view/59661. 
Since the authors do not aim to provide a formal definition of this aspect, adding the 
word “considered” should highlight the subjective meaning intended. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 346: which model is “exact”? All the models presented in this paper 
appear to be approximations. 
 
- Response: This comment refers to the general finding of the article that focusing on 
total wind speed minimization (or its use to calculate an approximated AEP function) 
is a promising research line for the WFLO problem. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 349: Perhaps the “deterioration” is partly due to “dropping” the square 
root? 
 
- Response: This is true and it is actually discussed in the lines 377 to 383. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 349: “this” is unclear, state meaning explicitly 
 
- Response: It has been replaced “this” by “…Case III…”. 

https://www.ccsenet.org/journal/index.php/cis/article/view/59661
https://www.ccsenet.org/journal/index.php/cis/article/view/59661


 
 

    

 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Table 1, Fig. 4: beautiful use and presentation of correlation. Nice work! 
 
- Response: Thanks! 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 363: It would be helpful to provide more information about the tun-
ing process. 
 
- Response: Since the authors consider that there is not an optimal way of tuning these 
parameters, no extensive discussions are deployed. Some general annotations are 
given in the following lines about the reasoning behind the presented values of 𝑪𝑪, 𝑻𝑻, 
and 𝑽𝑽. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 363: My understanding of C, T, and V was incomplete and I had to 
go back and re-read previous sections and this sections to get straitened out. I’d sug-
gest adding more explanation of these inputs when you introduce the algorithm. 
 
- Response: Done. This is carried out by 
“..The main inputs are C = {467, 590, 1014} (set of candidate locations), T = {1, 1.5, 
2} h (set of max computing times for each candidate location), V = {2, 4, 6, 16} (set of 
neighborhood search sizes). See Sect. 4...” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Fig. 5: – are the times shown clock time or CPU time? – while run time is 
helpful, it can vary drastically depending on implementation, language, system, etc. 
You may want to consider also including a count of total calls to your objective function. 
 
- Response: It is indeed clock time and it has been clarified in Line 385.  
 
To the authors’ knowledge, function evaluation metric is usually used to assess me-
taheuristic algorithm’s performance as they depend upon the number of generations 
and the size of the population, so it is an indication of the efficiency of the algorithm, 
considering a given computing time to assess the fitness function once. Some gradi-
ent-based solver also provide this metric. However, the proposed method uses an 
exact formulation and calls an external state-of-the-art solver using branch-and-cut 
method to get high-quality solutions. Authors see that the vast majority of works in the 
operations research field using solvers as CPLEX report clock time as normal practice. 
See for example https://link.springer.com/article/10.1007/s10732-015-9295-
0#:~:text=Relax%2Dand%2Dfix%20(RF,in%20their%20sophisticated%20lot%2Dsiz-
ing, or https://www.sciencedirect.com/science/article/pii/S2211692317300188.  
This is usually the case because branch-and-cut black-box solvers do not easily pro-
vide this information. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Fig. 6, 8: – Are your wind turbine markers to scale? – This figure is miss-
ing axis labels – This figure is missing units for the tick labels 
 
- Response: Markers are not to scale. Figures 3, 6, and 8 have been edited so axis 
labels and units for ticks are added. 
---------------------------------------------------------------------------------------------------------------- 
 

https://link.springer.com/article/10.1007/s10732-015-9295-0#:%7E:text=Relax%2Dand%2Dfix%20(RF,in%20their%20sophisticated%20lot%2Dsizing,
https://link.springer.com/article/10.1007/s10732-015-9295-0#:%7E:text=Relax%2Dand%2Dfix%20(RF,in%20their%20sophisticated%20lot%2Dsizing,
https://link.springer.com/article/10.1007/s10732-015-9295-0#:%7E:text=Relax%2Dand%2Dfix%20(RF,in%20their%20sophisticated%20lot%2Dsizing,
https://www.sciencedirect.com/science/article/pii/S2211692317300188


 
 

    

 
- Comment: 5.3: the baseline of the percentages given is unclear. Is each percent-
age given using the last step level as the baseline or the original “incumbant” value? 
 
- Response: The baseline is the last step commented. In line 450-451 has been 
added the sentence 
“…As for Case I, improvement percentages are calculated using the last commented 
step as the baseline…” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Fig. 7: perhaps I missed where this was stated, but are all the AEP values 
here calculated using the full model for comparison? If not, I think they should be. 
 
 
- Response: Correct. This is stated in line 315-319. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Eq. 23: The equation in your reference is general, but you provide a spe-
cific version here. It would be helpful to introduce the general form of your equation 
from your reference and then fill in the specifics. You may also want to use a more 
concrete reference here than Investopedia. There are many for this material. 
 
- Response: From lines 488 to 453, the following descripted has been added 
“…. The general form of the NPV equation (Cogency, 2014) is defined by the sum of 
the present value of cash flows (Discounted Cash Flow, DCF) of a project under anal-
ysis. In Eq. (25), the first sum is a negative cash flow representing purchase of the 
WTs at the construction stage of the project, while the next term represents positive 
cash flows coming from trading the electricity in the market. Because of the additive 
nature of the NPV metric and since the focus is on evaluating investment vs revenues, 
by maximizing Eq. (25), a fully comprehensive NPV metric is equivalently improved.”   
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 474: The last sentence here needs more explanation. 
 
- Response: By expanding the previous paragraph and with the following sentence, 
the authors consider that the explanation has been improved 
 
“When the number of turbines is fixed to 10, the NPV evolution (green line in Fig. 11b) 
is driven by the AEP (green line in Fig. 11a). Both curves are monotonically increasing, 
reaching a final value of NPV of = 456.40 Mill. Eur. The same behaviour is visible for 
nT = 50, although the final NPV is greater (683.53 Mill. Eur), see blue line Figure 11b. 
In the second study, the positive difference in DCF from the revenues surpasses the 
associated extra investment costs from the additional 40 wind 
turbines considered. The significant increase in the number of WTs doubles the com-
puting time, due to the large increase in the number of variables, selecting 50 WTs 
entails significantly more possible combinations of valid solutions.” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 476: I’m not sure what you mean, but if it is the main question then I 
should. Can you be more specific and/or clarify? 
 
- Response: The sentence is restated as 
 



 
 

    

 
“…An interesting question is whether there is a larger NPV in between the bounds of 
WT number.…” 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Fig. 11-13 would probably be more clear if combined and corresponding 
lines were plotted on the same axes 
 
- Response: Thanks for the advice. The recommendation has been followed and the 
descriptive texts have correspondingly been adapted. 
---------------------------------------------------------------------------------------------------------------- 
TECHNICAL CORRECTIONS 
---------------------------------------------------------------------------------------------------------------- 
General 
---------------------------------------------------------------------------------------------------------------- 
- Comment: There are many grammar and usage errors throughout. The manuscript 
should be carefully edited to address these concerns so the material will be more ac-
cessible and useful to the community. I have noted a few of these below. 
 
- Response: We have conducted a thorough review of it to improve the quality of the 
manuscript.  
---------------------------------------------------------------------------------------------------------------- 
1: Introduction 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 13: “Subsidy-free . . . ” check grammar 
 
- Response: Done. 
 ---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 19: Because you give a list of parts here (rather than just one pri-
mary thing), “consists of” may be more appropriate.  
---------------------------------------------------------------------------------------------------------------- 
- Response: Done. Thanks for the advice. 
 ---------------------------------------------------------------------------------------------------------------- 
2: Physics Modelling 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 132-133: comma after AEP 
 
- Response: Done. Thanks for the advice.  
---------------------------------------------------------------------------------------------------------------- 
- Comment: Eq. (8): this piece-wise equation contains multiple definitions for some 
cross-over points. Check the usage of “<” vs “<=” 
 
- Response: Thanks for noticing this typo. The authors had seen it in advance, and it 
has been corrected.  
---------------------------------------------------------------------------------------------------------------- 
3: Optimization Models 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Line 145: check commas to ensure clarity 
 
- Response: Done. Thanks for the advice.  
---------------------------------------------------------------------------------------------------------------- 



 
 

    

 
- Comment: Line 200-203: check grammar and usage to ensure clarity 
 
- Response: Done. See full paragraph. 
…Albeit the formulation of Sect. 3.1 represents to a very large extent the physics ruling 
the problem, it has a considerable number of variables and  constraints that may hin-
der     
 
the capacity to tackle larger problems. The model presented in this section neglects 
power curve and AEP calculation and aims at simplifying the power-curve-based ver-
sion.”  
----------------------------------------------------------------------------------------------------------------
- Comment: Line 205: does “this” refer to the linear superposition model or the 
powercurve free model? In general, try to avoid “this” where there is any possibility of 
misinterpretation. 
 
- Response: Thanks for the advice. Corrected as 
 
“…However, the power-curve-free model does not support the application of Eq. (4)…” 
----------------------------------------------------------------------------------------------------------------
4: Neighborhood Search Heuristic 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 243: observation should be singular 
 
- Response: Thanks for noticing this typo. It has been corrected. 
----------------------------------------------------------------------------------------------------------------
5: Computational Experiments 
---------------------------------------------------------------------------------------------------------------- 
- Comment:  Fig. 4: This figure is a little busy, consider giving the figures a little more 
space by removing all unnecessary elements and adding some buffer space between 
sub-figures and figure elements. I really like this figure overall though. 
 
- Response: Thanks for the advice. The AEP units in this figure has been changed to 
GWh and a buffer space between the top sub-figures has been added as well. 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 276: radii 
 
- Response: Thanks for noticing this typo. It has been corrected. 
----------------------------------------------------------------------------------------------------------------
- Comment: Line 412: I suggest avoiding starting a paragraph with “As shown in Fig. 
x” because we don’t even know what the subject of the paragraph is yet. The “as 
shown. . . ” should fit well at the end of the sentence. 
 
- Response: Thanks for the advice. It has been corrected and checked throughout the 
manuscript. 
---------------------------------------------------------------------------------------------------------------- 
- Comment: Figures in general: – The units given sometimes lead to very large num-
bers that clutter the figure and impede interpretation. I’d suggest using units that re-
duce the number of digits required in the tick labels (i.e. GWh instead of MWh, and 
hours or days instead of seconds) 



 
 

    

 
- Response: For Figure 4 and Figure 11 this comment is particularly useful and it has 
been applied. For Figures 5, 7, and 9 the ordinate units has been changed to GWh. 
The abscissa units (s) has been kept according to the needs of the descriptive text. 
 
 
Best wishes, 
 
Juan-Andrés Pérez-Rúa 
Mathias Stolpe 
Nicolaos A. Cutululis 
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Abstract. Two models and a heuristic algorithm to address the wind farm layout optimization problem are presented. The

models are linear integer programming formulations where candidate locations of wind turbines are described by binary vari-

ables. One formulation considers an approximation of the power curve by means of a step-wise constant function. The other

model is based on a power-curve-free model where minimization of a measure closely related to total wind speed deficit is

optimized. A special-purpose neighborhood search heuristic wraps these formulations increasing tractability and effectiveness5

compared to the full model that is not contained in the heuristic. The heuristic iteratively searches neighborhoods around the

incumbent using a branch-and-cut algorithm. The number of candidate locations and neighborhood sizes are adjusted adap-

tively. Numerical results on a set of publicly available benchmark problems indicate that a proxy for total velocity deficit as

objective is a functional approach, since high-quality solutions of annual energy production metric are obtained, when using

the latter function as substitute objective. Furthermore, the proposed heuristic is able to provide good results compared to a10

large set of distinctive approaches that consider the turbine positions as continuous variables.

1 Introduction

Cost reductions for renewable energy generation is on the top of political agendas, with the objective of supporting the world-

wide proliferation of clean energy production systems. Subsidy-free tendering processes become more frequent, as is the case

for offshore wind auctions in Germany since 2017 and in Netherlands since 2018, or in China for onshore wind from 202115

(GWEC, 2020a). The fast evolution of offshore wind in the last decade, with a sharp growth of global installed capacity

(GWEC, 2020b), is yet another clear indicator of growth trend of wind energy. For wind energy to become the cornerstone of

a successful green energy transition, further reduction in costs - partly achievable by economically refined wind farm designs

- will play an important role.

The basic Wind Farm Layout Optimization (WFLO) problem aims at deciding the positioning of Wind Turbines (WTs)20

within a given project area to maximize the Annual Energy Production (AEP), while respecting a minimum separation distance.

The classic problem definition aims at placing a fixed number nT of typically homogeneous (single type) WTs. This problem

has been studied broadly and intensively since at least three decades (Herbert-Acero et al., 2014). The first effort in the topic
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was the pioneering work of Mosetti et al. (Mosetti et al., 1994), where the Katic-Jensen wake decay model (Katic et al., 1986),

implemented to compute wake losses, is coupled with a genetic algorithm as optimizer to iteratively improve the layout.25

The main components when building an optimization workflow for the WFLO problem are the wake models (deficit and

superposition), the program formulation, and the associated numerical algorithms. For formulating tractable frameworks, the

designer needs to rely on the so-called engineering wake models. These are essentially mathematical representations which can

be expressed in terms of analytical equations after significantly simplifying complex physics modelling, while still capturing

to a good extent the underlying nature of the phenomenon under analysis. Scientific articles in this field have proposed and30

validated engineering wake models with smooth and differentiable velocity deficit shape, two examples are the Bastankhah’s

Gaussian (Bastankhah and Porté-Agel, 2016) or its simplified version (IEA Wind Task 37, 2019), and the Jensen cosine model

(Jensen, N.O., 1983). Likewise, the aggregation of individual wake velocity deficits can be done through linear superposition

(Lissaman, 1979) or root sum squares (Voutsinas et al., 1990), with local or freestream velocity conditions (Porté-Agel et al.,

2020).35

Optimization techniques for the WFLO problem formulation can be classified, depending on the choice of variables, into

continuous and discrete optimization. In the field of continuous optimization, the location pi of a WT i, in terms of the abscissa

(xi) and ordinate variables (yi) in the Cartesian plane, pi = (xi,yi), can take any real values, while ensuring that the point is

within the project area F, and simultaneously satisfying the minimum distance constraints. Several gradient-free algorithms

have been applied to this problem, including metaheuristics, as genetic algorithm (Réthoré et al., 2014) or particle swarm40

optimization (Wan et al., 2010). Likewise, gradient-based methods can be used, as for example the Sparse Nonlinear OPTimizer

(SNOPT), that uses a Sequential Quadratic Programming (SQP) approach (Thomas et al., 2022a), or interior-point solvers

(Pérez et al., 2013). In general, gradient-free algorithms, although highly flexible for modelling aspects, have considerably

poorer scalability for larger problem sizes than gradient-based approaches. Re-parametrization approaches aiming to reduce

the number of variables through simplified geometrical representations of the problem, such as row and column spacing or45

inclination angle, are also emerging (Stanley and Ning, 2019). Additionally, multi-start strategies are frequently implemented

as a workaround for the intrinsic multi-modal nature of the WFLO problem. Finally, hybrid methods combining gradient-free

and gradient-based algorithms have been proposed with good results (Mittal and Mitra, 2017).

The utilization of simplified objective functions closely related to more sophisticated AEP models is also an emerging

research field for continuous gradient-based optimization. In the recent work (LoCascio et al., 2022), a novel formulation for50

time-averaged wake velocity incorporating an analytical integral of wake deficits across wind direction is proposed. This article

shows the application of this analytical formulation for WFLO using the Sequential Least Squares Quadratic Programming

(SLSQP) as numerical algorithm. Computational results indicate the ability of this approach in finding WT layouts with energy

production comparable to the alternative of optimizing directly more accurate AEP objectives.

Discrete optimization models can be formulated for this problem by means of sampling the available project area in form55

of N candidate location points. Thus, only a set of finite options from the continuous search space are considered, where the

nT WTs to be installed are in principle nT≪N . In contrast to continuous optimization, a candidate point i is then represented

by a binary variable ξi, that gets a value of one if a WT is installed at that location, or zero otherwise. The vast majority of
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articles in the literature implement gradient-free algorithms for this technique, as the works of Mosetti et al. (Mosetti et al.,

1994) and Grady et al. (Grady et al., 2005), both using genetic algorithms. Algorithms utilizing explicit gradients are also a60

valid approach in this field (Pollini, 2022). This modelling technique fits very well in the well-studied general framework of

integer programming. The main advantage of this approach is the possibility to utilize exact solvers based on branch-and-cut

method; theoretically able to solve a problem to optimality while supporting common engineering constraints (Wolsey, 2020).

Nevertheless, the low tractability and poor scalability of this method as function of the size of N and the number of state

variables is well-known.65

A large number of benefits are implicit in the discrete modelling technique over the continuous counterpart, including: (i)

capacity to include the number of WTs as a variable and to model overall economic metrics as Net Present Value (NPV),

(ii) ease of modelling any shape of project area or forbidden zones, convex or non-convex, (iii) capacity to model extensive

integrated models to support electrical systems optimization, (iv) ease of modelling terrain-based constraints or cost functions,

(v) ease of incorporating multiple WT types, among others. These functionalities are the main motivation for focusing on70

proposing new methods for the WFLO problem in the area of discrete optimization. Moreover, in broader terms, since even the

basic definition of the WFLO problem translates into a non-convex formulation, new methods are required to efficiently obtain

high-quality solutions.

Probably the first work within the context of integer programming for the WFLO problem was the thesis of Fagerfjäll in

2010 (Fagerfjäll, 2010), where a Mixed Integer Linear Program (MILP) is proposed, modelling the objective AEP function75

as a superposition of deficits defined in terms of power. Although physically inaccurate, as the deficit superposition should

be computed for velocities, an important reduction in the number of variables is achieved that ultimately allow solving to

optimality rather small problem instances. A similar approximation is carried out by Archer et al. (Archer et al., 2011), Fischetti

et al. (Fischetti et al., 2016), and Quan et al. (Quan and Kim, 2019), but introducing important modifications to the model by

reducing number of constraints. The objective function may also be formulated for aggregated velocity deficit (Turner et al.,80

2014; Kuo et al., 2016), but the imperfect correspondence with AEP will result in not solving to optimality, possibly resulting

in final low-quality solutions. Another advantage of integer programming formulations is the chance of incorporating heuristic

routines in the top of such models, as for instance proximity search (Fischetti et al., 2016; Shaw, 1998), to quickly improve a

given starting feasible point.

Several contributions to the field of discrete optimization for WFLO are proposed in the manuscript. The first contribution85

is the proposition of new integer linear formulations which are able to capture to a good extent the underlying physics of the

problem. The main obstacles for a MILP representation of WFLO problem are the non-linearity of the power curves, and the

choice of wake velocity deficit superposition approach. Currently, the scientific literature has fundamental knowledge gaps.

For example, previous works have considered aggregation of power deficits instead of velocities, gaining a simplification on

the mathematical formulation in detriment of the physics modelling fidelity. This article presents new strategies for modelling90

both facets in the class of MILP problems, one with explicit power curve and wake superposition modelling, and another with

a proxy objective function based on total wind speed, thus simplifying the original formulation. In contrast to (LoCascio et al.,
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2022), this proxy objective is developed for MILP optimization, meaning that the aim is to get a linear expression that does not

need to be friendly for explicit gradient-based optimization.

The second main contribution is the proposition of a new special purpose neighborhood search heuristics in order to speed up95

the generation of high-quality solutions. This heuristic, wrapping both formulations, has a twofold functionality; first to increase

tractability, and second to redirect the optimization search in terms of a specified objective function with higher fidelity. Similar

neighborhood search methods have been proposed in the literature, as the Discrete exploration-based optimization (DEBO)

(Thomas et al., 2022c), which is a two-steps process composed by a greedy initialization and a local search block. While the

method proposed in this manuscript shares most of the advantages of the mentioned approach (no gradients required, can handle100

unconnected and non-convex boundary constraints, and so on), it actually improves the DEBO algorithm as among others, i)

significantly less AEP function evaluations are required, and ii) it is based on well-establish integer programming theory,

relying in efficient implementations of the branch-and-cut algorithm. The main numerical results indicate good computational

performances for a set of publicly available benchmark case studies compared to state-of-the-art gradient-free and gradient-

based approaches (Baker et al., 2019).105

Section 2 introduces the engineering models of the physical aspects of interest in the article. Section 3 presents the two

mathematical programs developed, and Sect. 4 unfolds the proposed heuristic framework wrapping both programs. Computa-

tional experiments are deployed in Sect. 5, followed up by discussions in Sect. 6, and lastly the manuscript is finalized with the

conclusions in Sect. 7.

2 Physics Modelling110

The proposed MILP models and general optimization framework in this article can be easily applied to many wake deficit

models. No particular properties on smoothness or differentiability are required from these models for optimization purposes.

Additionally, no specific demands on mathematical structure in connection with controlling wake diameter and deficit (Thomas

et al., 2022b) are stemming from the optimization programs proposed in this article. Since the computational results in the

article are obtained after solving open access case studies from the IEA Wind Task 37 (Baker et al., 2019), the wake model115

implemented there is presented in Sect. 2.1, along with the superposition techniques in Sect. 2.2, WT power curve in Sect.

2.3, and the AEP calculation procedure in Sect. 2.4. Variations on ways of computing the absolute velocity deficits and linear

wakes superposition under the framework of MILP are also introduced.

2.1 Wake Deficit Model

A simplified version of the Bastankhah’s Gaussian is considered (IEA Wind Task 37, 2019). The relative velocity deficit120

δuiℓ =∆uiℓ/u∞ = (u∞−u(x̄i, ȳi))/u∞ behind a single WT located at ℓ, and evaluated at point i, is described using the

model and notation from (IEA Wind Task 37, 2019).
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δuiℓ =





(
1−

√
1− CT

8σ2
y /D

2

)
exp

(
−0.5

(
ȳi−ȳℓ

σy

)2)
, x̄i− x̄ℓ > 0

0, otherwise.
(1)

σy = ky(x̄i− x̄ℓ)+D/
√
8 (2)

where u∞ is the inflow wind speed, CT is the thrust coefficient, x̄i− x̄ℓ is the stream-wise distance from the hub generating125

wake (x̄ℓ) to hub of interest (x̄i) along freestream (let this difference be d
∥
ij), ȳi− ȳℓ is the span-wise distance from the hub

generating wake to hub of interest perpendicular to freestream (let this difference be d⊥ij), σy is the standard deviation of the

wake deficit, ky is a variable based on a turbulence intensity, and D is the WT diameter.

2.2 Wake Velocity Deficit Superposition Model

The absolute velocity deficit ∆uiℓ(θ
j ,k) at wind direction θj and wind speed k can be estimated in two ways. Either based on130

the inflow wind speed (Lissaman, 1979; Katic et al., 1986) through

∆uiℓ(θ
j ,k) = δuiℓ(θ

j ,k)uk
∞ (3)

or based on the wind speed uℓjk at WT ℓ creating the wake at point i for wind direction θj and speed k (Voutsinas et al., 1990;

Niayifar and Porté-Agel, 2015),

∆uiℓ(θ
j ,k) = δuiℓ(θ

j ,k)uℓjk (4)135

here δuiℓ(θ
j ,k) is the relative velocity deficit of ℓ over i at operation condition {j,k} after Eq.(1) and Eq.(2). Note that Eq.

(3) leads to a greater value and therefore is considered a conservative approach compared to (the potentially more realistic)

Eq. (4). Nonetheless, implementing Eq. (3) greatly simplifies the resultant system of equations and allow for preprocessing

calculations.

Let the set Uθj

i collects the WTs creating wake over WT at point i for wind direction θj and speed k as per140

Uθj

i = {ℓ | position ℓ is up-wind compared to position i for wind direction j} (5)

The wake velocity deficit superposition, to calculate the total velocity deficit at WT i, ∆ui(θ
j ,k), can be obtained through

two mechanisms. Either it is based on linear superposition model (Lissaman, 1979; Niayifar and Porté-Agel, 2015) through

∆ui(θ
j ,k) =

∑

ℓ∈Uθj
i

∆uiℓ(θ
j ,k) (6)

or it is based on the root sum squares superposition model (Katic et al., 1986; Voutsinas et al., 1990)145

∆ui(θ
j ,k) =

√√√√
∑

ℓ∈Uθj
i

∆2uiℓ(θj ,k) (7)
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2.3 WT Power Curve

Suitable power curves are required for computing AEP. Often, power curves are not perfectly suitable for optimization, due

to the usual non-differentiability in several points throughout the function. Generally, a power curve is zero below cut-in wind

speed, zero above the cut-out wind speed, and constant between the rated wind speed and the cut-out wind speed. In this150

particular study, between the cut-in and rated wind speeds the curve is assumed to be smooth, convex and monotonically

increasing. The simplified power curve for a generic turbine as a function of wind speed u is modelled through

p(u) =





0, u < ucut-in

prated
(

u−ucut-in

urated−ucut-in

)3
, ucut-in ≤ u < urated

prated, urated ≤ u < ucut-out

0, u≥ ucut-out.

(8)

where prated is the nominal power at (and above) rated wind speed urated. The other turbine characteristics are the cut-in wind

speed ucut-in, and the cut-out wind speed ucut-out. In this definition, the WT power curve is not differentiable at ucut-in, urated,155

ucut-out, since in these points the left and right hand side derivatives are different. Be aware that the optimization programs

proposed in this manuscript are not dependent on WT power curve differentiability.

2.4 Annual Energy Production, AEP

The AEP is calculated with

AEP = 8760

nT∑

i=1

∑

j,k

wjkp(uijk) (9)160

where wjk is the joint probability of wind direction j and wind speed k, and 8760 is the number of hours of a standard year.

3 Optimization Models

The MILP program with explicit modelling of the WT power curve, wake deficit, and wakes superposition, is introduced in

Sect. 3.1. Then, the power-curve-free formulation is described in Sect. 3.2.

The main type of variables ξi ∈ {0,1} represent presence or absence of turbines at the candidate locations, for both models.165

Given N points, i.e. candidate locations for turbine positions, with positions pi inside the domain F (i.e. pi ∈ F for all i WT

candidate locations), binary variables ξi ∈ {0,1} are associated with the following interpretation

ξi =





1, if a turbine is located at point i with position pi, and

0, otherwise.
(10)
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Let the index sets N i storing the candidate locations violating the minimum distance constraints for a WT i be defined as

N i = {j ∈ {1, . . . ,N}, j ̸= i | dij(pi,pj)< dmin} (11)170

where dmin > 0 is the minimum required distance between two turbines (2D in this study). If ξi = 1 then all binary variables

in the set N i should be forced to zero, whereas if ξi = 0 these variables should be free to take any value in {0,1}.

All relevant distances can be pre-processed for all combinations of points i and j. These parameters are then defined as

function of the Cartesian plane positions p and wind direction θj , as the Euclidean distances dij(p) = ∥pi−pj∥2, the stream-

wise distances d∥ij(p;θ
j) and the span-wise distances d⊥ij(p;θ

j), extending the concept introduced in Sect. 2.1.175

3.1 Power-curve-based Model

Continuous state variables uijk are used for wake modelling and power computation. A variable uijk represents the wind speed

at WT location i, for wind direction j, and wind speed k.

The power curve is approximated with a step-wise function. The cubic part of the power curve is first partitioned into m

intervals, plus one interval from a negative point (−uini) to the cut-in speed, and a final one to cover the range from rated to180

cut-out speed. Each isometric interval within the cubic domain of length ∆u= (urated−ucut-in)/m, is approximated with a

constant power value, see Fig. 1.

An interval l of the whole domain is characterized by three parameters ul
s, u

l
m, and ul

h with the next properties

u1
s =−uini,u1

h = ucut-in,um+2
s = urated,um+2

h = ucut-out (12)

185

u2
s = ucut-in,um+1

h = urated (13)

ua+1
s = ucut-in +(a− 1)∆u for a= 1, . . . ,m (14)

190

ua+1
h = ucut-in + a∆u for a= 1, . . . ,m (15)

ul
m = 0.5(ul

s +ul
h) (16)
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Figure 1. Piece-wise constant approximation of a wind turbine power curve through sampling with m= 10 intervals between the cut-in and

rated wind speeds.

Equation (12) defines the lower and upper limits for the extreme intervals l = 1 and l =m+2, Eq. (13) formalizes the lower195

and upper limits for the first interval in the cubic part, a= 1, and the last one a=m, respectively. Equation (14) expresses the

lower limits for intervals in the cubic part (a= 1, . . . ,m), while Eq. (15) does it for the upper limits. Equation (16) presents

how to determine the extracted wind speed associated to the interval l of within whole domain, which is the average value of

ul
s and ul

h.

Let define the binary state variables ηlijk ∈ {0,1} for l = 1, . . . ,m+2 with the interpretation200

ηlijk =





1, if ul
s ≤ uijk ≤ ul

h, and

0, otherwise.
(17)

i.e. these variables indicate which of the wind speed intervals l of the power curve approximation for WT i, operates at wind

direction j, and wind speed k.

With all the variables of the model - activation variables ξ, continuous state variables u, and binary state variables η -

introduced, formulation in Eq. (18) collects the AEP objective function, the constraints of a generalized version of the WFLO205

problem, and the variables’ domain definition.
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maximize
ξ,η,u

8760

N∑

i=1

∑

j,k

m+2∑

l=1

wjkη
l
ijkp(u

l
m) (18a)

subject to: ξi + ξj ≤ 1 ∀ i, j ∈N i (18b)

nmin ≤
N∑

j=1

ξj ≤ nmax (18c)

m+2∑

l=1

ηlijku
l
s ≤ uijk ≤

m+2∑

l=1

ηlijku
l
h ∀ (i, j,k) (18d)210

m+2∑

l=1

ηlijk = 1 ∀ (i, j,k) (18e)

uijk = uk
∞(ξi−

∑

ℓ∈Uθj
i

ξℓδuiℓ(θ
j ,uk

∞)) ∀ (i, j,k) (18f)

ξ,η ∈ {0,1} u ∈ R (18g)

The objective function in Eq. (18a) is an approximation of the AEP computation presented in Eq. (9). Equation (18b) models

the minimum distance constraints as explained in the introduction of Sect. 3. If a binary variable ξi is active, then all candidate215

points closer than dmin should be excluded, i.e. set to zero. If a binary variable ξi is inactive then the other candidates are still

eligible. The definition of the set N i is provided in Eq. (11). Equation (18c) models the situation that the designer requires at

least nmin and at most nmax WTs to be located in the domain. Note that for the classic problem definition nmin = nmax=nT.

Equation (18d) connects state variables u and η as explained in Eq. (17) while Eq. (18e) forces one operation case active for

each WT candidate at each wind direction and speed. The last constraint in Eq. (18f) is for the wake velocity deficit and wakes220

superposition modelling to calculate wind speed for each candidate location at each wind direction and inflow speed uk
∞. The

presented model supports a conservative velocity deficit approach (Eq. (3)) with linear superposition (Eq. (6)). The definition

of set Uθj

i is provided in Eq. (5). Note that an extension, consisting in creating extra continuous state variables and associated

constraints, could allow for considering the more realistic approach in Eq. (4). It is still unknown if the root sum squares model

of Eq. (7) could be implemented in the framework of MILP. Finally, Eq. (18f) defines the domain of the required variables. A225

value for uini of ucut-out is set up.

3.2 Power-curve-free Model

Albeit the formulation of Sect. 3.1 represents to a very large extent the physics ruling the problem, it has a considerable number

of variables and constraints that may hinder the capacity to tackle larger problems. The model presented in this section neglects

power curve and AEP calculation and aims at simplifying the power-curve-based version.230

The model deploys a strategy to account for the combination of Eq. (3) and Eq. (7) to calculate velocities, since the case

studies from the IEA Wind Task 37 follow this methodology for AEP computation. It would be possible though to consider the

linear superposition model if necessary. However, the power-curve-free model does not support the application of Eq. (4).
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Combining Eq. (3) and Eq. (7) and extending the summation range in Eq. (7) to all candidate locations, the total wind speed

in the farm, U , can be modelled through235

U =

N∑

i=1

∑

j,k

wjku
k
∞ξi−

N∑

i=1

∑

j,k

wjku
k
∞

√√√√
N∑

ℓ=1

(δuiℓ(θj ,uk∞))2ziℓ (19)

where new binary variables ziℓ are introduced. The variable ziℓ is equal to one if both WTs i and ℓ are active (i.e. if

ξi = ξℓ = 1) and zero otherwise. Nevertheless, the previous expression is not linear for variable ziℓ due to the presence of the

square root in each total relative velocity deficit term. By removing the square roots, the following expression is obtained:

Ũ =

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

N∑

ℓ=1

∑

j,k

wjku
k
∞(δuiℓ(θ

j ,uk
∞))2ziℓ (20)240

the arguments of the square roots in Eq. (19) define a function closely related to the full root-squared expression. Let the

pre-processed coefficient in front of of ziℓ be

biℓ =
∑

j,k

wjku
k
∞(δuiℓ(θ

j ,uk
∞))2 (21)

Combining Eq. (20) and Eq. (21) results in

Ũ =

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

N∑

ℓ>i

(biℓ + bℓi)ziℓ (22)245

which defines the objective function of the power-curve-free model. In comparison to the objective function in Eq. (18a), no

power curve or continuous state variables are required.

Nonetheless, the presence of variables ziℓ can be troublesome. For the complete model, in addition to having these variables

of combinatorial nature, constraints of the same kind must be incorporated: zij ≥ ξi + ξj − 1, zij − ξi, zij − ξj . Experimental

results show the heavy computational burden incurred when solving this formulation, impacting the ability of solving large-250

scale problems (Fischetti et al., 2016). To circumvent this, a big-M trick is incorporated, resulting in an exactly equivalent

model, as reflected in formulation of Eq. (23).
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maximize
ξ,τ

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

τi (23a)

subject to: τi ≥
N∑

ℓ=1:i ̸=ℓ

ξℓbiℓ +(ξi− 1)Mi ∀ i (23b)

nmin ≤
N∑

i=1

ξi ≤ nmax (23c)255

ξi + ξj ≤ 1 ∀ i, j ∈N i (23d)

ξ ∈ {0,1} τ ∈ R : τ ≥ 0 (23e)

The new objective function in Eq. (23a) modifies the component linked to the total wind speed deficit proxy by creating

variables τi; this variable means total wind speed deficit proxy for WT in candidate location i. Equation (23b) defines τi, if a WT

candidate location is inactive ξi = 0, then there is no deficit at this location, therefore τi = 0, because of Mi =
∑N

ℓ=1:i ̸=ℓ biℓ,260

and the minimization nature of the problem for wind speed deficits. Oppositely, if ξi = 1, then τi is forced to be equal to
∑N

ℓ=1:i̸=ℓ ξℓbiℓ. The next two equations are the same with those already presented in Sect. 3.1 for number of active WTs, and

minimum distance constraints. Finally, Eq. (23e) defines the domain of the required variables.

Note that for the classic problem definition nmin = nmax=nT, the first part of the objective function becomes

N∑

i=1

∑

j,k

wjku
k
∞ξi =

∑

j,k

wjku
k
∞

N∑

i=1

ξi =
∑

j,k

wjku
k
∞nT = constant

For this situation, the objective function is thus equivalent to

minimize
ξ,τ

N∑

i=1

τi (24)265

This proxy objective function is very useful for formulating the program in the MILP category. While the work in (LoCascio

et al., 2022) focuses on a different formulation (likely more accurate analytically than the one presented here) that is non-linear

but gradient friendly, hence useful for continuous gradient-based optimization.

4 Neighborhood Search Heuristic

For addressing large-scale problems, a heuristic wrapping the MILP formulations given in Sect. 3 is introduced. It is based on270

neighborhood search and local branching theory (Fischetti and Lodi, 2003). The algorithm solves a sequence of MILPs, with

different candidates number N and/or neighborhood search size K, taking advantage of robust and efficient implementations

of branch-and-cut methods for MILP.
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The heuristic relies on the observation that for a fixed layout described by ξ ∈ {0,1}N , the other state variables are straight

forward to determine. This observation is valid for all problem formulations presented in Sect. 3. Given ξ ∈ {0,1}N , for275

the power-curve-based model, the continuous state variables u can be determined through classical wake analysis, and the

binary state variables η are directly determined by inspection of the velocities. Similarly, for the power-curve-free model, the

τ variables are trivially computed.

The pseudo code of the Neighborhood Search Heuristic (NSH) is described in detail in Algorithm 1.

Algorithm 1 Neighborhood Search Heuristic (NSH) Algorithm

1: C←{N1, · · · ,NC} ,N ∈C {Input candidates set}

2: T ←{T1, · · · ,TC} ,T ∈ T {Input times set}

3: V ←{K1, · · · ,KV } ,K ∈ V {Input neighborhood sizes set}

4: countern← 1 counterv← 1

5: Obtain initial incumbent of activation binary variables for WTs ξ with objective value ob

6: for (κ= 1 : 1 : κmax) do

7: N ←C[countern] T ← T [countern] K← V [counterv]

8: Formulate optimization model with N candidates (including the incumbent), either from Sect. 3.1 or Sect. 3.2

9: Add Hamming distance constraint centered around the incumbent ξ,
∑

i:ξi=0 ξi +
∑

i:ξi=1(1− ξi)≤K

10: Solve opt. model from algorithm lines (8) to (9) until optimality or computing time T with ξ as warm-starter

11: Get the solution pool S, where ξ̂ ∈ S represents the activation binary variables for WTs of an individual solution

12: Apply true objective function over each solution ξ̂ ∈ S, and obtain objective values set O

13: Compute ot←maxO, and it← argmaxO

14: if ot > ob then

15: ob← ot

16: ξ← S[it]

17: else

18: counterv← counterv+1

19: end if

20: if counterv = |V |+1 then

21: counterv← 1 countern← countern+1

22: end if

23: if countern= |C|+1 then

24: Break

25: end if

26: end for
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The first three lines are the main inputs of the algorithm: the candidates set C, the times set T , and neighborhood sizes280

set V . The first set contains the sizes N of the meshes to be considered, the second one is the maximum computing time T

for the MILP solver for each size N and the last one is for the search size defined as the maximum number of changes K

allowed to the incumbent solution. If the incumbent is improved, then the candidates set C, and neighborhood size K are kept,

otherwise at least one of them is increased. The first step (line 5) is to obtain an initial incumbent binary variables, with the

set ξ storing the acquired value (0 or 1) for each variable ξi : i≤N . The incumbent has an objective value of ob calculated285

after the true objective function. The true objective function refers to the real equation that represents the ultimate aim to be

optimized. For example, if this is the AEP, then it is the product of the power calculation process, applying the considered wake

and superposition models and the original power curve, and not the objective function of the implemented formulation, as in

Eq. (18a), which is always an approximation.

The next step is to start the iterative process in line 6. Values for N , T , and K are fetched in line 7, followed by the290

formulation of the MILP model for candidates N accounting for the points of ξ. The Hamming distance, see e.g. (Fischetti

and Lodi, 2003), centered around the incumbent point ξ, is added to the optimization model in line 9; this constraint reduces

the search space as the number of changes of ξ are limited to K. The complete model is sent to the MILP solver with ξ as

warm-starter, stopped when reaches either optimality or the assigned maximum computing time T .

After solver termination, the solution pool S is retrieved in line 11. It is very important to emphasize the aim of getting295

the whole pool instead of the best solution. This is done because of the imperfect correspondence between the true objective

function and the objective function of the applied MILP model. For example, a solution which may have worse objective value,

may actually have a better AEP based on the real model. One of the advantages of the NSH compared to the DEBO algorithm

(Thomas et al., 2022c) is the reduced number of AEP evaluations. In an iteration κ, only |S| evaluations are required. Likewise,

many of the other expensive calculations are done in a pre-processing stage. The whole pool of solutions is examined, and the300

best solution indexed by it with AEP of ot is obtained in line 13. If ot is actually greater than ob, then the whole algorithm is re-

centered around the new ξ (lines 14 to 16) and in the next iteration κ, the same values of N and K are maintained. Otherwise,

the next value of K is taken (line 18), unless the set has been exhausted. In this case, the next candidates size N is considered

given by countern, restarting the neighborhood set counter counterv to one (lines 20 to 22). The NSH algorithm is terminated

when all candidates set C have been processed (line 23 to 25). Another difference between the NSH and the DEBO is that the305

latter only changes the position of a single WT in a given iteration, while the former considers simultaneous modifications of

several WT positions.

5 Computational Experiments

For a transparent benchmark of the proposed methods, the open access case studies from the IEA Wind Task 37 (Baker et al.,

2019) are used for comparison. The Task 37 cases consider circular project areas with three different radius (1300 m, 2000 m,310

and 3000 m) and number of WTs (16, 36, and 64), nT. Thus, Case I has a radius of 1300 m and nT = 16 WTs, whereas Case

II has radius 2000 m and nT = 36, and Case III has radius 3000 m and nT = 64, correspondingly.
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The results of the statistical correlation between the proxy function given by the argument in Eq. (24) and AEP of the

problem definition (Baker et al., 2019) are presented in Sect. 5.1 for each case. The performance of the proposed models in

the case studies are shown in Sects. 5.2 (Case I), 5.3 (Case II), 5.4 (Case III). The power-curve-free model of Eq. (23) is315

implemented with the Eq. (24) as objective function in these three sections. The true objective function in the NSH Algorithm

1 for these cases is the AEP of the problem definition. In the end, to prove the capabilities of power-curve-based model of Eq.

(18), Sect. 5.5 displays results after applying this formulation with a modified objective function to express a metric similar to

NPV.

The main parameters of the wake model in Sect. 2.1 are fixed to CT = 8/9 and ky = 0.0324555 , according to (Baker320

et al., 2019). Wind resource is modelled using a wind rose approach where the wind resource is binned in J directions, and

for a specific direction j (θj), wind speeds are discretized in V sectors. For the case studies, the wind rose is composed of

16 directions and a single wind speed k of 9.8 ms−1, shown in Fig. 2. The power curve from Eq. (8) modelling the IEA37

3.35 MW reference turbine (with diameter of D = 130 m) is used in the case studies, ensuring replicability of results (IEA

Wind Task 37, 2019; Baker et al., 2019). The main parameters are prated = 3.35 MW, urated = 9.8 ms−1, ucut-in = 4 ms−1, and325

ucut-out = 25 ms−1, and is plotted in Fig. 1.

Parameters

The wind turbine is the IEA37 3.35 MW onshore reference turbine [1] with the following characteristics:

Rotor Diameter 130 m
Turbine Rating 3.35 MW
Cut-In Wind Speed 4 m/s
Rated Wind Speed 9.8 m/s
Cut-Out Wind Speed 25 m/s

All turbine data is also contained in the enclosed iea37-335mw.yaml. The power curve is defined as:

P (V ) =





0 V < Vcut-in

Prated ·
(

V−Vcut-in

Vrated−Vcut-in

)3

Vcut-in ≤ V < Vrated

Prated Vrated ≤ V < Vcut-out

0 V ≥ Vcut-out
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The farm wind speed for all scenarios is constant at 9.8 m/s. The +y axis is coincident with 0◦, and the
CW wind rose is defined by 16 discrete bins tabulated in iea37-windrose.yaml, depicted pictorially below:
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2.1 Case Study 1: Optimization Only

This problem defines three different wind farm sizes, and corresponding number of turbines, intended to test
scalability of your optimization approach. The three scenarios are:

1. 16 turbines, boundary radius of 1,300 m.

2. 36 turbines, boundary radius of 2,000 m.

3. 64 turbines, boundary radius of 3,000 m.

For this Case Study the user is only free to choose the optimization approach. The wake model is fixed and
is a simplified version of Bastankhah’s Gaussian wake model [2, 3, 4]. A Python implementation is supplied
for convenience (iea37-aepcalc.py). Alterations to this implementation are permitted, as long as the

2

Figure 2. Wind rose used in the computational experiments. Taken from open access source (IEA Wind Task 37, 2019).

The experiments in Sects. 5.2, 5.3, and 5.4 have been carried out on an Intel Core i7-6600U CPU running at 2.80 GHz with

four logical processors and 16 GB of RAM. For the experiment in Sect. 5.5, a larger resource is used, an Intel Xeon Gold

6226R CPU running at 2.90 GHz with 32 virtual cores and 640 GB of RAM.

The selected MILP solver is the commercial branch-and-cut algorithm implemented in IBM ILOG CPLEX Optimization330

Studio V20.1 (IBM, 2022). Apart from the number of threads and time limit settings, a few other parameters are also set to

differently than default values. One is the parameter returning high-quality feasible solutions early in the process, for which,

the (CPX_MIPEMPHASIS_HEURISTIC) is activated. The intention is to generate more feasible layouts which is important

for the neighborhood search algorithm. Additionally, strong branching is used for variable selection given the large size of

the models (CPX_VARSEL_STRONG is selected). The intention is to reduce the size of the search tree and thus the memory335

requirements compared to default settings.
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The number N and positions pi for i≤N of the candidate locations are of course very important parameters for the discrete

modelling techniques. A customized automatic strategy based on independently sampling the boundary and interior area of the

circular domain F has been employed. An example of the sampling strategy for these particular case studies giving N = 467

is illustrated in Fig. 3.340
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Figure 3. Example of generation of WTs candidate locations N .

The boundary is densely sampled, as a candidate point is defined every natural angle from 0◦ to 359◦, i.e. 360 candidate

points are provided since it is intuitively expected that a good portion of the WTs will be placed in the boundaries to decrease

wake losses. For the interior, a set of finite parallel line segments are generated and the candidates points are then taken along

those segments. In the example of Fig. 3, the slope of the line segments is zero, and the distance between points and lines is

equal to 1.7D.345

5.1 Correlations

To validate the approach modelled by the MILP formulation of Eq. (23) (i.e. the power-curve-free model), 5000 random

feasible WT layouts are created. For each of them, the AEP (Baker et al., 2019), the total theoretical wind speed, U , given by

Eq. (19), the total wind speed proxy, Ũ , defined by Eq. (22), and total wind speed deficit proxy,
∑N

i=1 τi, argument of Eq. (24),

are calculated. Although the random way of generating the layouts is biased towards high-quality solutions, the interest is in350

the general trend and can be assumed to be fairly representative for the whole domain.

In all cases Pearson product-moment linear correlation coefficients (Pearson, 1895) are used to extract information from the

data and collected in Table 1 for all pairs. This coefficient illustrates the degree to which the movement of pairs of variables is

associated in a linear fashion. The correlation plots of Fig. 4 present the graphical representation of the relations for Case I.

The correlation between AEP and the total theoretical wind speed is shown in Fig. 4a for the Case I. The main observation is355

the very strong linear relation between these two variables as illustrated by the correlation coefficient of 0.97. Interestingly, this

reflects the rather low influence of the WT power curve in obtaining high-quality feasible points. The relation between U and
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Ũ is represented in Fig. 4b, resulting in an almost identical linear connection between them, as in the previous graph. When

one looks into AEP vs
∑N

i=1 τi, however, it is noticeable that the Pearson coefficient decreases to −0.88. There is a wider area

in the body of points that causes this behaviour. Note that in contrast to the previous two figures, there is a negative correlation360

because the comparison is done in terms of wind speed deficit instead of total wind speed. In spite of this deterioration, the

linear correlation is still considered quite strong. These results motivate the approach where the minimization of a proxy total

wind speed deficit can lead to high-quality AEP solutions. The NSH Algorithm 1 helps correcting the imperfect correspondence

between these two variables during the optimization routine as reflected in Sect. 4.

Table 1. Pearson product-moment linear correlation coefficients for all case studies.

Case AEP vs Theoretical wind speed Theoretical vs Proxy wind speed AEP vs Proxy wind speed deficit

Case I 0.97 0.96 -0.88

Case II 0.97 0.95 -0.85

Case III 0.96 0.88 -0.72
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(a) Correlation between AEP and the theoretical wind speed.
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(b) Correlation between the theoretical and approximated wind speeds.
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(c) Correlation between AEP and the approximated wind speed deficit.

Figure 4. Correlation plots for 5000 randomly generated wind turbine layouts for Case I.
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The general trends of the correlation plots for Case II are very similar. Correlations between AEP versus theoretical total365

wind speed (0.97), and theoretical total wind speed versus total wind speed proxy (0.95) are still very strong. Nonetheless,

there is a slight decrease between AEP vs total wind speed proxy (down to −0.85 from −0.88 previously), as the spread for

middle velocity values is larger. The linear relation is deemed as satisfactory enough to carry on with the application of model

of Eq. (23) with objective function Eq. (24).

The very strong linear relation between AEP and the theoretical total wind speed (0.96) is observed also for Case III, prompt-370

ing to a very interesting conclusion. Although almost all research in the WFLO space focuses strictly on power modelling

(which brings a great deal of complexity due to the non-linear and non-differentiable properties of WT power curve), using

an exact model for determining total wind speed as objective function alleviates the computational complexity, while finding

high-quality solutions in terms of AEP. However, one should note that deterioration in the correlation still exists, potentially

leading to lower quality results.375

Likewise, correlations stemming from the proxy to calculate total wind speed deficit are lowered in Case III. This is the

case for both with the total wind speed theoretical (0.88) and the AEP (−0.72). Keep in mind that the reason to formulate

such approximation is to fit in the context of integer programming to leverage theory and state-of-the-art algorithms of this

mature field. However, the price to pay is to lose fidelity to represent the real (true) target to optimize. The deterioration

in the correlation of these pairs of variables may also suggest the need to resort to the power-curve-based model for some380

applications. Whether the price is too high or not is reflected in the reachable solution quality. Sects. 5.2, 5.3, and 5.4 present

the optimization results for the cases of fixed number of WTs that will ultimately help to elaborate a final evaluation regarding

the adopted modelling technique.

5.2 Case I: 16 WTs

The evolution of two of the proposed optimization frameworks is given in Fig. 5 (clock time given in the abscissa). The green385

line of the full model is obtained after solving the model of Eq. (23) with objective function as in Eq. (24) for N = 1014 without

implementing the NSH. It represents the incumbent solution in terms of AEP (not total wind speed deficit proxy) obtained by

post-processing the CPLEX’s log. The blue line results after applying the NSH with the model of Eq. (23) plus objective

Eq. (24), and AEP as true objective function in Algorithm 1. The main inputs are C = {467,590,1014} (set of candidate

locations), T = {1,1.5,2} h (set of max computing times for each candidate location), V = {2,4,6,16} (set of neighborhood390

search sizes). See Sect. 4. These inputs are tuned after evaluating the performance of the method using different values. In

general, the first two elements of C consists of moderately big values, relatively close to each other, while the last element is

sizeably greater in the seek of the best possible solution. Each element N ∈C has associated a computing time T . Finally, the

first elements of V are relatively low values to favour termination of the solver due to optimality, and then they start increasing

to refine the search. The red line is for establishing a reference of AEP value, this comes from the best performing method395

in the survey of IEA Wind Task 37 (Baker et al., 2019), the SNOPT plus Wake Expansion Continuity (WEC) (Thomas and

Ning, 2018; Thomas et al., 2022b). Time evolution for the SNOPT+WEC is not reflected in this graph, as this information is

unavailable. Results for the benchmark against a testbed of different algorithms are available in Table 2.
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The yellow box in Fig. 5 contains information about the values of N , T , and termination criterion of the solver after each

iteration κ of the NSH Algorithm 1 (beginning from point 2 where κ= 1). The initial layout (point 1), labelled in Fig. 6a, is set400

up by arbitrarily by picking up candidate locations around the circular boundary; this layout has an AEP of 387 GWh. Between

points 2 to 7 where N = 467 and K = 2, the models are solved to optimality (gap of 0%), and the solution is improved by

2.92% in only 56 s. After a short plateau, the solution is markedly refined by 2.96% from point 10 to 13 by performing a search

of the domain with K = 16, and restarting the model every 1 h with a new warm-starting. The percentages are calculated with

respect to the last commented improvement.405
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Figure 5. Performance of two different optimization approaches for Case I and comparison with existing best benchmark results.

The next considerable jump happens for N = 590 and 2≤K ≤ 6 in around 20 min, elevating the AEP by 1.94%. After,

again, a plateau without improvements, when N reaches its maximum value of 1014, the solution is maximized to the final

value of 418 GWh during the lowest values of K. For this particular instance, the greatest value of K = 16 is exploited for the

lowest number of candidate points N , where the largest improvement comes up.

The benefit of the proposed neighborhood search strategy is shown in Fig. 5. Solving the full model is significantly slower,410

leading actually to a worse solution (3.31% lower). The capacity of the NSH to iterate over different values of candidate

points N and search sizes K brings alone not only improvements in terms of solution time and solution quality, but also less

computational resources as the RAM memory generally escalates faster when solving the single model.

The initial and final solution layouts for this case study are illustrated in Fig. 6. The importance of finely sampling the

boundaries of the available area is evident in Fig. 6b, because 7 out of the 16 WTs are placed in that subdomain.415
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Table 2. Results for all three benchmark cases from other algorithms (G, gradient-based and GF, gradient-free) obtained while allowing

WT locations to vary continuously. Values reproduced from (Baker et al., 2019). The difference column shows how the proposed heuristic

with the power-curve-free model performs in comparison. Negative percentages means that the proposed method performs better than the

corresponding algorithm.

Method
AEP I Diff. I AEP II Diff. II AEP III Diff. III

[GWh] [%] [GWh] [%] [GWh] [%]

SNOPT+WEC (G) 418.92 0.09 863.68 -0.19 1513.31 0.85

fmincon (G) 414.14 -1.06 820.39 -5.19 1336.16 -10.95

SNOPT (G) 412.25 -1.51 846.36 -2.19 1476.69 -1.59

SNOPT (G) 411.18 -1.76 844.28 -2.43 1445.97 -3.64

Preconditioned SQP (G) 409.69 -2.12 849.37 -1.84 1506.39 0.39

Mul.interior-point (G) 408.36 -2.44 851.63 -1.58 1480.85 -1.31

Full pseudo-gradient (GF) 402.32 -3.88 828.75 -4.23 1455.08 -3.03

Basic genetic algorithm (GF) 392.59 -6.20 777.48 -10.15 1332.88 -11.17

Simple particle swarm (GF) 388.76 -7.12 776 -10.32 1364.94 -9.04

Simple pseudo-gradient (GF) 388.34 -7.22 813.54 -5.98 1422.27 -5.22
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout obtained by the heuristic.

Figure 6. Generated wind farm layouts for the benchmark Case I with 16 turbines.

Finally, Table 2 compares the proposed method to a large number of different approaches from the IEA37 reference study

(Baker et al., 2019). The results for all case studies are presented, where I, II, and III make reference to cases from this section,

Sect. 5.3, and Sect. 5.4, respectively.
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The third column of Table 2 reports the difference of the AEP with respect to the proposed method for the smallest case study.

The resulting AEP is better than almost all the other alternatives, except to the SNOPT+WEC, where a nearly identical objective420

value is achieved. When directly comparing to the gradient-free (GF) methods, their best solution (full pseudo-gradient with

402 GWh) is determined in around 2 h by the proposed method, which is significantly faster than average computing time of

these kind of algorithms. In a broader context, beyond the presented numerical comparisons, discrete optimization approaches,

as the MILP ones presented in this article, could be formulated to cope with problem definitions with required functionalities

that in theory continuous optimization methods can not support (or at least the implementation becomes strenuous).425

The power-curve-based model of Eq. (18) within the NSH using the same AEP formulation as true objective function,

provides a solution 1.18% lower in objective value in around 36 h using the computer system with 32 virtual cores. Although

the quality of the layout is very close to the one schematized in Fig. 6b, the larger computational resources favour implementing

the power-curve-free model for problems with fixed number of WTs. Therefore, Sects. 5.3 and 5.4 are present only the results

reached after the application of the power-curve-free model embedded into the NSH.430

5.3 Case II: 36 WTs

The evolution of the proposed methods, and the initial and final WT layouts are plotted in Fig. 7 and Fig. 8, respectively. Main

inputs are C = {477,684,1907}, T = {1,1.5,2} h, V = {2,4,8,16,36}. The blue line (model of Eq. (23) with objective

function Eq. (24) plus NSH Algorithm 1) has clearly three sectors stemming from each value of N ∈C. The initial WT

layout (Fig. 8a) - also determined by choosing roughly equidistant candidate locations in the boundary - has an AEP of 796435

GWh. As for Case I, improvement percentages are calculated using the last commented step as the baseline. After seven NSH

iterations (point 8) in 41 s, the incumbent is improved by 1.84%, when N = 477 and 2≤K ≤ 4, being able to solve each

model instantation to optimality.

After a three-hours-plateau linked to 8≤K ≤ 36 (four iterations), N is raised to 684, resulting in the largest AEP en-

hancement, as shown in Fig. 7. The energy production increases with 4.51% after only 23 min in point 27. This noticeable440

improvement comes after solving to optimality models with rather small neighborhood search sizes 2≤K ≤ 4. The conve-

nience of allowing large neighborhood search sizes as K = 16 or K = 36 is reflected from this moment. From point 30 to 33 (6

h) with K = 16 the incumbent is slowly boosted by nearly 1%. Again, after a three-hours-plateau, N becomes equal to 1907,

and in around 32 min for 2≤K ≤ 4, the AEP is augmented by 0.41%. Then, the large neighborhood search starts for K = 16

and K = 36, and after a total of 16 h, the final solution of 865 GWh (increment of 0.61%) is achieved (Fig. 8b).445

A pattern in the operation of the NSH algorithm can be seen. Small neighborhood search sizes result in the fastest enhance-

ment of the objective function, but large neighborhood search is very important as a slow cook refinement for reaching the final

high-quality solutions.

The full model (i.e. without implementing the NSH algorithm) initially provides better solutions within the first 3 h, but then

lags behind in solution quality compared to the NSH algorithm in the long run (lower 3.05%), as shown in in Fig. 7.450

For this case, the proposed method reaches the best solution, as shown in the fifth column of Table 2. The SNOPT+WEC is

again the closest contender. When uniquely comparing to GF methods, the proposed method matches the best solution from
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those algorithms in around 3 h, which is generally a very fast computing time compared methods where gradients are not

explicitly utilized in the optimization process.
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Figure 7. Performance of two different optimization approaches for Case II and comparison with existing best benchmark results.
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout obtained by the heuristic.

Figure 8. Generated wind farm layouts for the benchmark Case II with 36 wind turbines.
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5.4 Case III: 64 WTs455

The evolution of the proposed methods, and the initial and final WT layouts are displayed in Fig. 9 and Fig. 10, respectively.

Main inputs are C = {625,1017,2741}, T = {1,1.5,2} h, V = {2,4,8,16,32,64}. Note that in comparison the number of

elements of V has been increased by one after each study case. This has been done taking into account the number of WTs.

Likewise, the values of N ∈C are larger to cover for the wider project areas.
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Figure 9. Performance of two different optimization approaches for Case III and comparison with existing best benchmark results.

Comparing blue lines of Fig. 5, Fig. 7, and Fig. 9 is evident that for the last case the curve shows less sudden increases.460

The largest change occurs after 27 s where the initial solution (Fig. 10a) with AEP of 1395 GWh is improved by 3.18% for

N = 625 and K = 2 up to point 9, reaching optimality in few seconds. With 4≤K ≤ 8 the model instantiations are solved to

optimality in minutes, obtaining a solution improved by 0.18%.

After point 13 one notes a plateau without improvement for N = 625 and K ≥ 16, i.e. a large neighborhood search does not

lead to further enhancements. Due to this, N is enlarged to 1017, where the second largest boost (increase of 2.12%) comes,465

with the largest search size (K = 64) resulting in the best improvement. This enhancement occurs after 13 h of starting the

NSH (point 26). From point 28, N = 2741 and for 2≤K ≤ 4 the solver reaches optimality; slowly converging to the final

solution of 1500 GWh (Fig. 10b).

Seventh column of Table 2 shows that the SNOPT+WEC and the preconditioned SQP provide slightly better layouts than the

proposed method. However, the algorithm provides feasible layouts that improve the objective compared to all the gradient-free470

approaches.
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout proposed by the heuristic.

Figure 10. Generated wind farm layouts for benchmark Case III with 64 wind turbines.

5.5 Case IV: 10-50 WTs

Although in most projects today the total capacity for grid connection is decided already in the early planning phases, in the

future one can envisage situations where flexibility in optimizing the number of wind turbines in a project would yield benefits.

Even if the power-curve-free model (Sect. 3.2) exhibits a quite good performance in terms of AEP and computing time for475

fixed number of WTs, it is not very well suited for optimizing economic metrics, like NPV. For such an optimization, the

power-curve-based mathematical program of Sect. 3.1 may be handy as the number of generators is allowed to vary between

a lower and upper bound, nmin and nmax, respectively. For illustration, a domain defined by a circle with radius 1300 m,

and variable number of WTs between 10 and 50 are utilized. These parameters are set relatively arbitrarily but with sufficient

distance to reasonably expect that the limits are not reached. The aim is to illustrate the ability of the method in reaching480

non-trivial solutions, resulting in a an optimized design with an intermediate number of wind turbines.

Keep in mind that for this case, a linear superposition model for the AEP component in the NPV calculation is considered.

In this sense, the original WT power curve as deployed in Fig. 1 is used. NPV is the true objective function when applying the

NSH Algorithm 1. The modified objective function of MILP model of Eq. (18) for this case has the form (Cogency, 2014):

maximize
ξ,η,u

−
N∑

i=1

cwtξi +8760

Y∑

y=1

N∑

i=1

∑

j,k

m+2∑

l=1

cewjkη
l
ijkp(u

l
m)

(1+ r)y
(25)485

where cwt is the cost per WT in Mill.Eur, ce the energy price in Mill.EurMWh−1, r is the discount rate in %, and Y is the

number of years of lifetime of the project. For this case study, values of cwt = 6.7 Mill. Eur (Mishnaevsky Jr and Thomsen,

2020), ce = 0.00015 Mill.EurMWh−1 (Nord Pool, 2022), r = 5%, and Y = 20 are assumed. The general form of the NPV

equation (Cogency, 2014) is defined by the sum of the present value of cash flows (Discounted Cash Flow, DCF) of a project
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under analysis. In Eq. (25), the first sum is a negative cash flow representing purchase of the WTs at the construction stage of490

the project, while the next term represents positive cash flows coming from trading the electricity in the market. Because of the

additive nature of the NPV metric and since the focus is on evaluating investment vs revenues, by maximizing Eq. (25), a fully

comprehensive NPV metric is equivalently improved.

The model of Eq. (18) with modified objective function Eq. (25), embedded in the NSH Algorithm 1 with NPV as target

function is executed in three runs. For the first run the number of turbines is fixed to nmin = nmax = 10, while for the second the495

number of turbines remains fixed but is increased to nmin = nmax = 50. For the third run the number of wind turbines is allowed

to vary between nmin = 10 and nmax = 50. The Algorithm 1 input parameters are C = {467,590,1014}, T = {1,1.5,2} h,

V = {2,4,6,8,24}. The results are plotted in Figure 11.
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Figure 11. Evolution of the AEP, NPV, and number of WTs for the three simulations. The green lines are results for the optimization program

with fixed number of WTs equal to 10, the blue ones equal to 50, and the black ones for the optimization program with variable number of

WTs between 10 and 50.

When the number of turbines is fixed to 10, the NPV evolution (green line in Fig. 11b) is driven by the AEP (green line in

Fig. 11a). Both curves are monotonically increasing, reaching a final value of NPV of = 456.40 Mill. Eur. The same behaviour500

is visible for nT = 50, although the final NPV is greater (683.53 Mill. Eur), see blue line Figure 11b. In the second study,
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the positive difference in DCF from the revenues surpasses the associated extra investment costs from the additional 40 wind

turbines considered. The significant increase in the number of WTs doubles the computing time, due to the large increase in

the number of variables, selecting 50 WTs entails significantly more possible combinations of valid solutions.

An interesting question is whether there is a larger NPV in between the bounds of WT number. For the optimization program505

with variable number of WTs, the evolution of the WTs number in Fig. 11c and the AEP in Fig. 11a (see black lines in these

figures) exhibits a perfect correspondence. The more WTs the larger AEP, in spite of the increased wake losses. The curves

increase in time, up to a point where the model estimates that further increase of WTs would not lead to a better NPV. The final

number of WTs is 34. The NPV evolution in Fig. 11b (black line) naturally only improves with time, resulting in a final value

of 795.86 Mill. Eur. Note that the NPV in this case is greater than when a larger number of WTs (i.e. 50) was considered and510

of course when only 10 were considered. Interestingly, the optimization program with 50 fixed number of WTs finds a final

solution with AEP very close to that from the variable number program, being the solution of the former 0.50% lower than the

latter, but requiring more WTs, and hence more investment (47% more). The final NPV value of the variable number model is

16.43% greater than the one with fixed 50 WTs. These figures could be expected to be similar even in situations where lower

AEPs are obtained, if that compensates by augmenting overall financial metrics as the NPV.515

This result shows the benefit of having optimization models that support variable number of WTs and accounting for metrics

beyond AEP. The advantages may become even more pronounced for more complex situations, as for instance, if the WT

investment costs are dependent on the exact installation area or different WT sizes are considered.

6 Discussions and Future Work

The two models proposed in this article have many of the characteristics of mixed integer linear programming models. They520

require significant computational time and memory and exhibit rather low tractability and scalability for global optimization

algorithms.

The power-curve-based model, albeit requiring large computational resources, manages to provide reasonably good solutions

for small-sized problem, being only 1.18% lower than its power-curve-free counterpart for the 16 WTs case and 4.41% for

the 36 WTs case. This diminishing efficiency is to be expected, given the large number of variables and constraints. The525

power-curve-free model on the other hand, along with the heuristic, is much faster due to its more compact formulation. This

translates into the ability to be highly competitive compared to a large set of benchmark algorithms. In situations where there

is an interest for optimizing metrics beyond AEP, such as the NPV, the power-curve-based model becomes very useful given

its intrinsic capacity to support this kind of objective functions.

It should be mentioned that there are limitations in the wake models used compared to recent ones (Thomas et al., 2022b).530

For example, the wake model used in this article does not consider the changes in the turbulence intensity or thrust coefficient

variations from wind speed variations inside the wind farm. It is uncertain if using wake models like the ones in (Thomas

et al., 2022b) would still allow an integer linear programming formulation or approximation of the WFLO problem. It is also
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uncertain the impact on the final solution quality these detailed modelling aspects imply. These questions are left for future

work.535

Notwithstanding the listed shortcomings, it is very enthralling that these models, in combination with the neighborhood

search heuristic, are able to match and in some cases improve the results obtained when considering the turbine positions as

continuous variables (see Table 2). This opens the door to experimenting case studies with functionalities easily adaptable to

discrete parametrization techniques, which can be very challenging for continuous variable modelling approaches.

Future work can include the application of the proposed methods to real-world problem instances with for example, forbid-540

den areas, complex turbine cost functions or integrated optimization with electrical systems. Furthermore, the assessment of

the robustness of the method for different initial layouts can be assessed in following studies.

7 Conclusions

This manuscript contributes both methodologically and empirically to address the WFLO problem. A neighborhood search

heuristic embedding integer programming formulations is proposed. For both presented formulations presented in the article,545

the step-wise power curve and power-curve-free, the heuristic notably improves a single execution of full models when calling

a state-of-the-art branch-and-cut solver in terms of solution quality. An improvement of up to 3.42% in the AEP is achieved by

applying the neighborhood search strategy for cases where the WTs number is fixed compared to solving the full model.

Another important takeaway is the satisfactory performance of the power-curve-free model, which uses an approximation

of the total wind speed deficit, when (implicitly) optimizing for AEP. This is due to the good correlation between the two550

measures, and the correction capability of the heuristic. For the classic WFLO problem definition, the proposed model is

able to considerably improve (from 1% to around 10%) the AEP compared to benchmark results by multiple gradient-based

and gradient-free algorithms. Even when directly compared to methods implementing a continuous variables technique, the

proposed heuristic provides similar or even better results. These are very promising results that would enable to get high-quality

solutions for problem instances where continuous variables modelling approaches may not be able to run or provide with good555

incumbents.

Finally, the model with explicit representation of the power curve embedded within the neighborhood search heuristic is

able to propose non-trivial solutions when implementing objective functions beyond AEP, such as NPV. For these cases, the

trade-off between energy revenues and investment costs is inherently studied. For example, the model suggests that is installing

a lower number of wind turbines than the allowed would results in a better NPV value, albeit a slightly lower AEP.560
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