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Abstract. Two models and a heuristic algorithm to address the wind farm layout optimization problem are presented. The

models are linear integer programming formulations where candidate locations of wind turbines are described by binary

variables. One formulation considers an approximation of the power curve by means of a step-wise constant function. The

other model is based on a power-curve-free model where minimization of a measure closely related to total wind speed

deficit is aimed
::::::::
optimized. A special-purpose neighborhood search heuristic wraps the formulations in order to increase

::::
these5

::::::::::
formulations

:::::::::
increasing

:
tractability and effectiveness compared to the full model

:::
that

::
is

:::
not

::::::::
contained

:::
in

:::
the

:::::::
heuristic. The

heuristic iteratively searches neighborhoods around the incumbent using a branch-and-cut algorithm. The number of candidate

locations and neighborhood sizes are adjusted adaptively. Numerical results on a set of publicly available benchmark problems

indicate that a proxy for total velocity deficit
::::
total

::::
wind

::::::
speed

:::::
deficit as objective is a functional approach, since high-quality

solutions of an annual energy production metric are found
::::::::
obtained,

:::::
when

::::
using

:::
the

:::::
latter

:::::::
function

::
as

:::::::::
substitute

:::::::
objective. Fur-10

thermore, the proposed heuristic is able to match and in some cases improve the results obtained when considering
::::::
provide

::::
good

::::::
results

::::::::
compared

::
to

::
a

::::
large

:::
set

::
of

:::::::::
distinctive

:::::::::
approaches

::::
that

:::::::
consider the turbine positions as continuous variables.

1 Introduction

1.1
:::::::::
Motivation

::::
and

:::::::
Problem

:::::::::
Definition

Cost reductions for renewable energy generation is on the top of political agendas, with the objective of supporting the world-15

wide proliferation of clean energy production systems. Subsidy-free tendering processes become more frequent, as is the case

for offshore wind auctions in Germany since 2017 and in Netherlands since 2018, or in China for onshore wind from 2021

(GWEC, 2020a). The fast evolution of offshore wind in the last decade, with an
:
a sharp growth of global installed capacity

(GWEC, 2020b), is yet another clear indicator of the maturity of the industry. As wind energy is unleashing its potential to

contribute for
::::::
growth

:::::
trend

::
of

::::
wind

::::::
energy.

::::
For

::::
wind

::::::
energy

::
to

:::::::
become

::
the

::::::::::
cornerstone

::
of

:
a successful green energy transition,20

the need to further economically refine
:::::
further

::::::::
reduction

::
in
:::::

costs
:
-
::::::

partly
:::::::::
achievable

:::
by

:::::::::::
economically

:::::::::
optimized wind farm

designs turns into a crucial task
:
-
:::
will

::::
play

:::
an

::::::::
important

::::
role.

The basic Wind Farm Layout Optimization (WFLO) problem consists in
:::
aims

::
at deciding the positioning of Wind Turbines

(WTs) within a given project area to maximize the Annual Energy Production (AEP)
:
, while respecting a minimum separation
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distancebetween the generators. The classic problem definition is to place
:::
aims

::
at
:::::::
placing a fixed number nT of

:::::::
typically

:
homo-25

geneous (single type) WTs. This problem has been studied broadly and intensively since at least three decades (Herbert-Acero

et al., 2014). The first effort in the topic was the pioneering work of Mosetti et al. (Mosetti et al., 1994)
::::::::::::::::
Mosetti et al. (1994),

where the Katic-Jensen wake decay model (Katic et al., 1986), implemented to compute wake losses, is coupled with a genetic

algorithm (Deb, 2013) as optimizer to iteratively improve the layout.

In this perspective, the30

1.2
:::::::::::

Optimization
:::::::::
Workflow

:::
for

::::::
WFLO

:::
The

:
main components when building an optimization workflow for the WFLO problem are the wake and the optimization

models
::::::
models

::::::
(deficit

::::
and

::::::::::::
superposition),

:::
the

::::::::
program

::::::::::
formulation, and the associated numerical algorithms. For the first,

in order to be able to formulate .
::::

For
::::::::::
formulating

:
tractable frameworks, the designer needs to rely on the so-called en-

gineering
::::
wake

:
models. These are essentially mathematical representations which can be expressed in terms of analytical35

equations after greatly
::::::::::
significantly

:
simplifying complex physics modelling, while still capturing at

:
to

:
a good extent the

underlying nature of the phenomenon under analysis. Recently, scientific
:::::::
Scientific

:
articles in this field have proposed and

validated engineering wake models with smooth and differentiable velocity deficit shape, as
:::
two

:::::::::
examples

:::
are

:
the Bas-

tankhah’s Gaussian (Bastankhah and Porté-Agel, 2016) or its simplified version (Thomas and Ning, 2018), the Niayifar and

Porté-Agel (Niayifar and Porté-Agel, 2015) or
::::::::::::::::::::::
(IEA Wind Task 37, 2019),

::::
and the Jensen cosine model (Thomas et al., 2022b)40

:::::::::::::::::
(Jensen, N.O., 1983). Likewise, the aggregation of individual wake velocity deficits can be done through linear superposi-

tion
::::::::::::::
(Lissaman, 1979) or root sum squares (Porté-Agel et al., 2020)

::::::::::::::::::
(Voutsinas et al., 1990)

:
,
::::
with

::::
local

:::
or

:::::::::
freestream

:::::::
velocity

::::::::
conditions

::::::::::::::::::::
(Porté-Agel et al., 2020).

1.3
:::::::::

Continuous
::::::::::::
Optimization

:::
for

:::::::
WFLO

Optimization techniques for the WFLO problem
:::::::::
formulation can be classified, depending on the choice of variables, into45

continuous and discrete optimization. In the field of continuous optimization, the location pi of a WT i, in terms of the abscissa

(xi) and ordinate variables (yi) in the Cartesian plane, pi = (xi,yi), can take any real values, while ensuring that the point is

within the project area F, and simultaneously satisfying the minimum distance constraints. Several gradient-free algorithms

have been applied to this problem, including metaheuristics, as genetic algorithm (Réthoré et al., 2014) or particle swarm

optimization (Wan et al., 2010). Likewise, gradient-based methods can be utilized for this problem
:::
used, as for example the50

Sparse Nonlinear OPTimizer (SNOPT), that uses a Sequential Quadratic Programming (SQP) approach (Thomas et al., 2022a),

or interior-point solvers (Pérez et al., 2013). In general, gradient-free algorithms, although highly flexible for modelling aspects,

have considerably poorer scalability for larger problem sizes than gradient-based approaches. Re-parametrization approaches

aiming to reduce the number of variables through simplified geometrical representations of the problem, such as row and

column spacing or inclination angle, are also emerging within this context bringing along various enhancements (Stanley and55

Ning, 2019). Additionally, multi-start strategies are frequently implemented as a workaround for the intrinsic multi-modal
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nature of the WFLO problem. Finally, hybrid methods combining gradient-free and gradient-based algorithms are also an

alternative able to come up with competitive
::::
have

::::
been

::::::::
proposed

::::
with

::::
good

:
results (Mittal and Mitra, 2017).

:::
The

:::::::::
utilization

::
of

:::::::::
simplified

::::::::
objective

::::::::
functions

:::::::
closely

::::::
related

::
to
:::::

more
::::::::::::

sophisticated
::::
AEP

:::::::
models

::
is

::::
also

::
an

:::::::::
emerging

:::::::
research

::::
field

:::
for

:::::::::
continuous

::::::::::::
gradient-based

::::::::::::
optimization.

::
In

:::
the

:::::
recent

:::::
work

:::::::::::::::::::
(LoCascio et al., 2022),

::
a
:::::
novel

::::::::::
formulation

:::
for60

:::::::::::
time-averaged

:::::
wake

:::::::
velocity

:::::::::::
incorporating

::
an

:::::::::
analytical

::::::
integral

::
of

:::::
wake

::::::
deficits

:::::
across

:::::
wind

:::::::
direction

::
is

::::::::
proposed.

::::
This

::::::
article

:::::
shows

:::
the

::::::::::
application

::
of

:::
this

:::::::::
analytical

::::::::::
formulation

:::
for

::::::
WFLO

:::::
using

:::
the

::::::::::
Sequential

:::::
Least

:::::::
Squares

::::::::
Quadratic

::::::::::::
Programming

:::::::
(SLSQP)

::
as

:::::::::
numerical

:::::::::
algorithm.

::::::::::::
Computational

::::::
results

::::::
indicate

:::
the

::::::
ability

::
of

:::
this

::::::::
approach

::
in

::::::
finding

::::
WT

::::::
layouts

::::
with

::::::
energy

:::::::::
production

:::::::::
comparable

:::
to

::
the

:::::::::
alternative

:::
of

:::::::::
optimizing

::::::
directly

:::::
more

:::::::
accurate

::::
AEP

:::::::::
objectives.

1.4
::::::
Discrete

::::::::::::
Optimization

:::
for

:::::::
WFLO65

Discrete optimization models can be formulated for this problem by means of sampling the available project area in form of

N candidate location points. Thus, only a set of finite options from the continuous search space are considered, where the nT

WTs are installable, with in principle N ≫ nT::
to

::
be

::::::::
installed

:::
are

::
in

:::::::
principle

::::::::
nT≪N . In contrast to continuous optimization,

a candidate point i is then represented by a binary variable ξi, that gets a value of one if a WT is installed at that location,

or zero otherwise. The vast majority of articles in the literature implement gradient-free algorithms for this technique, as70

the works of Mosetti et al. (Mosetti et al., 1994) and Grady et al. (Grady et al., 2005), where both use
:::::::::::::::::
Mosetti et al. (1994)

:::
and

:::::::::::::::
Grady et al. (2005)

:
,
::::
both

:::::
using

:
genetic algorithms.

:::::::::
Algorithms

::::::::
utilizing

::::::
explicit

::::::::
gradients

:::
are

::::
also

::
a
::::
valid

::::::::
approach

:::
in

:::
this

::::
field

::::::::::::
(Pollini, 2022)

:
. This modelling technique , however, fits very well in the well-studied general framework of integer

programming. The main advantage of this approach is the possibility to utilize exact solvers based on branch-and-cut method;

theoretically , being able to solve a problem to optimality while supporting common engineering constraints (Wolsey, 2020).75

Nevertheless, the low tractability and poor scalability of this method in
::
as

:
function of the size of N and the number of state

variables is well-known.

:
A
:::::

large
:::::::
number

::
of

:::::::
benefits

:::
are

:::::::
implicit

::
in

:::
the

:::::::
discrete

::::::::
modelling

:::::::::
technique

::::
over

:::
the

:::::::::
continuous

:::::::::::
counterpart,

::::::::
including:

:::
(i)

:::::::
capacity

::
to

:::::::
include

:::
the

::::::
number

:::
of

::::
WTs

:::
as

:
a
::::::::

variable
:::
and

::
to
::::::

model
::::::
overall

:::::::::
economic

::::::
metrics

:::
as

:::
Net

:::::::
Present

:::::
Value

:::::::
(NPV),

::
(ii)

:::::
ease

::
of

:::::::::
modelling

:::
any

:::::
shape

::
of
:::::::

project
::::
area

::
or

::::::::
forbidden

::::::
zones,

::::::
convex

:::
or

::::::::::
non-convex,

::::
(iii)

:::::::
capacity

::
to

::::::
model

::::::::
extensive80

::::::::
integrated

::::::
models

::
to

:::::::
support

::::::::
electrical

::::::
systems

:::::::::::
optimization,

::::
(iv)

::::
ease

::
of

::::::::
modelling

:::::::::::
terrain-based

:::::::::
constraints

:::
or

:::
cost

:::::::::
functions,

::
(v)

::::
ease

:::
of

::::::::::
incorporating

::::::::
multiple

::::
WT

:::::
types,

::::::
among

::::::
others.

::::::
These

::::::::::::
functionalities

:::
are

:::
the

:::::
main

:::::::::
motivation

:::
for

::::::::
focusing

:::
on

::::::::
proposing

::::
new

:::::::
methods

:::
for

:::
the

::::::
WFLO

:::::::
problem

::
in

:::
the

::::
area

::
of

::::::
discrete

:::::::::::
optimization.

:::::::::
Moreover,

::
in

:::::::
broader

:::::
terms,

:::::
since

::::
even

:::
the

::::
basic

::::::::
definition

::
of

:::
the

::::::
WFLO

::::::::
problem

::::::::
translates

:::
into

::
a

:::::::::
non-convex

:::::::::::
formulation,

:::
new

::::::::
methods

:::
are

:::::::
required

::
to

::::::::
efficiently

::::::
obtain

::::::::::
high-quality

::::::::
solutions.

:
85

1.5
::::::::
Literature

:::::::
Review

:::
for

:::::::
Integer

::::::::::::
Programming

::::::
within

:::::::
WFLO

Probably the first work within the context of integer programming for the WFLO problem was the thesis of Fagerfjäll in

2010 (Fagerfjäll, 2010), where a Mixed Integer Linear Program (MILP) is proposed, modelling the objective AEP func-

tion as a superposition of deficits defined in terms of power. Although physically inaccurate, as the deficit superposition
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should be computed for velocities, an important reduction in the number of variables is achieved that ultimately allow solv-90

ing to optimality rather small problem instances. A similar approximation is carried out by Archer et al. (Archer et al., 2011)

, Fischetti et al. (Fischetti et al., 2016), and Quan et al. (Quan and Kim, 2019)
::::::::::::::::
Archer et al. (2011),

::::::::::::::::::
Fischetti et al. (2016),

::::
and

::::::::::::::::::
Quan and Kim (2019), but introducing important modifications to the model by reducing number of constraints. The objective

function may also be formulated for aggregated velocity deficit (Turner et al., 2014; Kuo et al., 2016), but the imperfect cor-

respondence with AEP will result in not solving the original problem to optimality, and possibly getting
:::::::
possibly

::::::::
resulting

::
in95

final low-quality solutions. Another advantage of integer programming formulations is the chance of incorporating heuristic

routines in the top of such models, as for instance proximity search (Fischetti et al., 2016; Shaw, 1998), to quickly improve a

given starting feasible point.

A large number of benefits are implicit in the discrete modelling technique over the continuous counterpart, including: (i)

capacity to include the number of WTs as a variable and to model overall economic metrics as Net Present Value (NPV), (ii)100

capacity to easily model any shape of project area or forbidden zones, convex or non-convex, (iii) capacity to model extensive

integrated models to support electrical systems optimization, (iv) capacity to easily model terrain-based constraints or cost

functions, (v) capacity to incorporate multiple WT types, among others. These functionalities are the main motivation for this

manuscript to focus on proposing new methods for the WFLO problem in the area of discrete optimization. Moreover, in

broader terms, since even the basic definition of the WFLO problem translates into a non-convex formulation, in general new105

methods are required to efficiently come up with high-quality solutions.

1.6
:::::::::::

Contributions

Several contributions to the field of discrete optimization for WFLO are proposed in the manuscript. The first contribution is the

proposition of new integer linear formulations which are able to capture to a good extent the underlying physics of the problem.

The main obstacles for a MILP representation of WFLO problem are the non-linearity of the power curves, and the choice of110

wake velocity deficit superposition approach. Currently, the scientific literature in this context has fundamental knowledge

gapsin at least one of these aspects. For example, previous works have considered aggregation of power deficits instead of

velocities, gaining a simplification on the mathematical formulation , in detriment of the physics modelling fidelity. This article

:::::::::
manuscript presents new strategies for modelling both facets in the class of MILP problems, one with explicit power curve and

wake superposition modelling, and another with a proxy objective function based on total wind speed, thus simplifying the115

original formulation.
::
In

:::::::
contrast

::
to

:::::::::::::::::::
(LoCascio et al., 2022),

::::
this

:::::
proxy

::::::::
objective

:
is
:::::::::
developed

:::
for

:::::
MILP

:::::::::::
optimization,

::::::::
meaning

:::
that

:::
the

:::
aim

::
is
::
to

:::
get

::
a

:::::
linear

:::::::::
expression

:::
that

::::
does

:::
not

:::::
need

::
to

::
be

:::::::
friendly

:::
for

::::::
explicit

:::::::::::::
gradient-based

::::::::::
optimization

:
.

The second main contribution is the proposition of a new special purpose neighborhood search heuristics in order to speed

up the generation of high-quality solutions. This heuristicwraps both formulationshaving
:
,
::::::::
wrapping

::::
both

:::::::::::
formulations,

::::
has

a twofold functionality,
:
;
:
first to increase tractability, and second to redirect the optimization search in terms of a speci-120

fied high-fidelity objective function
::::::::
objective

:::::::
function

::::
with

::::::
higher

:::::::
fidelity.

::::::
Similar

::::::::::::
neighborhood

::::::
search

:::::::
methods

::::
have

:::::
been

:::::::
proposed

::
in

:::
the

::::::::
literature,

:::
as

::
the

::::::::
Discrete

::::::::::::::
exploration-based

:::::::::::
optimization

:::::::
(DEBO)

:::::::::::::::::::
(Thomas et al., 2022c),

:::::
which

::
is
::
a

::::::::
two-steps

::::::
process

:::::::::
composed

::
by

::
a
::::::
greedy

:::::::::::
initialization

:::
and

::
a
::::
local

::::::
search

::::::
block.

:::::
While

:::
the

:::::::
method

::::::::
proposed

::
in

::::
this

:::::::::
manuscript

::::::
shares

4



::::
most

::
of

:::
the

::::::::::
advantages

::
of

:::
the

:::::::::
mentioned

::::::::
approach

:::
(no

::::::::
gradients

:::::::
required,

::::
can

::::::
handle

::::::::::
unconnected

::::
and

::::::::::
non-convex

::::::::
boundary

:::::::::
constraints,

::::
and

::
so

::::
on),

::
it
:::::::

actually
:::::

goes
::::::
beyond

::::
the

::::::
DEBO

::::::::
algorithm

:::
as

::::::
among

::::::
others,

::
i)
:::::::::::

significantly
::::
less

::::
AEP

::::::::
function125

:::::::::
evaluations

:::
are

::::::::
required,

:::
and

::
ii)

::
it
::
is

:::::
based

::
on

::::::::::::
well-establish

::::::
integer

::::::::::::
programming

::::::
theory,

::::::
relying

::
in

:::::::
efficient

::::::::::::::
implementations

::
of

:::
the

:::::::::::::
branch-and-cut

::::::::
algorithm. The main contributions of this research are both methodological and empirical. The main

numerical results indicate good computational performances for a set of publicly available benchmark case studies compared

to state-of-the-art gradient-free and gradient-based approaches (Baker et al., 2019).

:::
The

::::
rest

::
of

:::
the

:::::::::
manuscript

::
is
:::::::::
structured

::
as

:::::::
follows.

:
Section 2 introduces the engineering models of the physical aspects of130

interestin the article. Section 3 presents the two mathematical programs developed, and Sect. 4 unfolds
:::::::
describes the proposed

heuristic framework wrapping both programs. Computational experiments are deployed
:::::
shown in Sect. 5, followed up by

discussions in Sect. 6, and lastly the manuscript is finalized with the conclusions in Sect. 7.

2 Physics Modelling

The proposed MILP models and general optimization framework in this article
:::::::::
manuscript

:
can be easily applied to many wake135

deficit models. No particular properties on smoothness or differentiability , or
:::
are

:::::::
required

::::
from

:::::
these

::::::
models

:::
for

:::::::::::
optimization

:::::::
purposes

:
.
:::::::::::
Additionally,

::
no specific demands on mathematical structure are required in connection with controlling wake di-

ameter and deficit (Thomas et al., 2022b)
::
are

:::::::::
stemming

::::
from

:::
the

:::::::::::
optimization

::::::::
programs

::::::::
proposed

:::
in

:::
this

::::::
article. Since the

computational results in the article are obtained after solving open access case studies from the IEA37
::::
IEA Wind Task 37

(Baker et al., 2019; Dykes et al., 2015), the implemented wake model from that source
::::::::::::::::
(Baker et al., 2019),

:::
the

:::::
wake

::::::
model140

::::::::::
implemented

:::::
there is presented in Sect. 2.1, along with the used superposition techniques in Sect. 2.2, WT power curve in Sect.

2.3, and the AEP calculation procedure in Sect. 2.4. Variations on ways of computing the absolute velocity deficits and linear

wakes superposition under the framework of MILP are introduced as well
:::
also

:::::::::
introduced.

2.1 Wake
:::::
Deficit Model

A simplified version of the Bastankhah’s Gaussian is considered (Thomas and Ning, 2018)
:::::::::::::::::::::
(IEA Wind Task 37, 2019). The145

relative velocity deficit δuiℓ =∆uiℓ/u∞ = (u∞−u(x̄i, ȳi))/u∞ :::::::::::::::::::::::::::::::
δiℓ =∆iℓ/u∞ = (u∞−u(x̄i, ȳi))/u∞:

behind a single WT

located at ℓ, and evaluated at point i, is described using the model and notation from (IEA Wind Task 37, 2019).

::::
Case

:::::
Study

:
I

:::::::::::::::::::::
(IEA Wind Task 37, 2019).

:

δuiℓ =





(
1−

√
1− CT

8σ2
y /D

2

)
exp

(
−0.5

(
ȳi−ȳℓ

σy

)2)
, x̄i− x̄ℓ > 0

0, otherwise.
(1)

σy = ky(x̄i− x̄ℓ)+D/
√
8 (2)150

where u∞ is the inflow wind speed, CT is the thrust coefficient, d∥ij = x̄i− x̄ℓ ::::::
x̄i− x̄ℓ:

is the stream-wise distance from

the hub generating wake (x̄ℓ) to hub of interest (x̄i) along freestream , d⊥ij = ȳi− ȳℓ :::
(let

:::
this

:::::::::
difference

:::
be

:::
d
∥
iℓ):, ::::::

ȳi− ȳℓ is the

5



span-wise distance from the hub generating wake to hub of interest perpendicular to freestream
:::
(let

:::
this

:::::::::
difference

::
be

::::
d⊥iℓ), σy

is the standard deviation of the wake deficit, ky is a variable based on a turbulence intensity, and D is the WT diameter.

2.2 Wake velocity deficit superposition
:::::::
Velocity

::::::
Deficit

::::::::::::
Superposition

::::::
Model155

The absolute velocity deficit ∆uiℓ(θ
j ,k)

::::::::
∆iℓ(θ

j ,k) at wind direction θj and wind speed
::::
index k , ∆uiℓ(θ

j ,k), can be estimated

in two ways. Either it is based on the inflow wind speed through
:::::::::::::::::::::::::::::
(Lissaman, 1979; Katic et al., 1986)

::::::
through

:

∆uiℓ(θ
j ,k) = δuiℓ(θ

j ,k)uk
∞ (3)

or it is based on the wind speed uℓjk at WT ℓ creating the wake at point i for wind direction θj and speed k ,
::::::::::::::::::::::::::::::::::::::::::::
(Voutsinas et al., 1990; Niayifar and Porté-Agel, 2015)

:
,160

∆uiℓ(θ
j ,k) = δuiℓ(θ

j ,k)uℓjk (4)

here δuiℓ(θ
j ,k)

::::::::
δiℓ(θ

j ,k) is the relative velocity deficit of i over j at same operation condition ℓ
::::
over

::
i
::
at

::::::::
operation

::::::::
condition

:::::
{j,k} after Eq.(1) and Eq.(2). Note that Eq. (3) leads to a greater value and therefore is considered a conservative approach

compared to (the potentially more realistic) Eq. (4)(Niayifar and Porté-Agel, 2015). Nonetheless, implementing Eq. (3) greatly

simplifies the resultant system of equations and allow for preprocessing calculations.165

Let the set Uθj

i collects the WTs creating wake over WT at point i for wind direction θj and speed k as per

::
as

:::
per

Uθj

i = {ℓ | position ℓ is up-wind compared to position i for wind direction j} (5)

The
::
the

:
wake velocity deficit superposition, to calculate the total velocity deficit at WT i, ∆ui(θ

j ,k)
:::::::
∆i(θ

j ,k), can be ob-

tained through two mechanisms. Either it is based on linear superposition model through
:::::::::::::::::::::::::::::::::::::::
(Lissaman, 1979; Niayifar and Porté-Agel, 2015)170

::::::
through

∆ui(θ
j ,k) =

∑

ℓ∈Uθj
i

∆uiℓ(θ
j ,k) (6)

or it is based on the root sum squares superposition model
:::::::::::::::::::::::::::::::::
(Katic et al., 1986; Voutsinas et al., 1990)

∆ui(θ
j ,k) =

√√√√
∑

ℓ∈Uθj
i

∆2uiℓ(θj ,k)

√√√√
∑

ℓ∈Uθj
i

∆2
iℓ(θ

j ,k)

:::::::::::::::

(7)

2.3 WT Power Curve175

For computing AEP suitable
:::::::
Suitable power curves are required for the available turbine types. These

:::::::::
computing

::::
AEP.

::::::
Often,

power curves are often not perfectly suitable for optimization, due to the
:::::
usual non-differentiability at rated wind speed. The

general characteristics are that the
:
in

::::::
several

::::::
points

:::::::::
throughout

::::
the

:::::::
function.

:::::::::
Generally,

::
a
:
power curve is zero below cut-in

6



wind speed, zero above the cut-out wind speed,
:::
and constant between the rated wind speed and the cut-out wind speed. In

::
In

:::
this

::::::::
particular

:::::
study,

:
between the cut-in and rated wind speeds the curve is assumed to be smooth, convex and monotonically180

increasing. The simplified power curve for a generic turbine as a function of wind speed u is modelled through

p(u) =





0, u < ucut-in

prated
(

u−ucut-in

urated−ucut-in

)3
, ucut-in ≤ u < urated

prated, urated ≤ u < ucut-out

0, u≥ ucut-out.

(8)

where prated is the nominal power at (and above) rated wind speed urated. The other turbine characteristics are the cut-in wind

speed ucut-in, and the cut-out wind speed ucut-out.
::
In

:::
this

:::::::::
definition,

:::
the

::::
WT

:::::
power

:::::
curve

::
is
:::
not

::::::::::::
differentiable

::
at

::::::
ucut-in,

:::::
urated,

::::::
ucut-out,

:::::
since

::
in

:::::
these

:::::
points

:::
the

::::
left

:::
and

:::::
right

::::
hand

::::
side

:::::::::
derivatives

::::
are

::::::::
different.

::
Be

::::::
aware

::::
that

:::
the

::::::::::
optimization

:::::::::
programs185

:::::::
proposed

::
in
::::
this

:::::::::
manuscript

:::
are

:::
not

:::::::::
dependent

::
on

::::
WT

:::::
power

:::::
curve

::::::::::::::
differentiability.

2.4 Annual Energy Production, AEP

The AEP is obtained after the application of the following expression

::::::::
calculated

::::
with

:

AEP = 8760

nT∑

i=1

∑

j,k

wjkp(uijk) (9)190

where wjk is the joint probability of wind direction j and wind speed k, and 8760 is the number of hours of a standard year.

3 Optimization Models

The MILP model
:::
The

::::::
MILP

:::::::
program with explicit modelling of the WT power curve, wake model

:::::
deficit,

:
and wakes superpo-

sitionis first ,
::
is
:
introduced in Sect. 3.1. Then, the power-curve-free formulation , based on total wind speed within the farm, is

deployed
:
is
::::::::
described

:
in Sect. 3.2.195

For both models, the
:::
The

:
main type of variables ξi ∈ {0,1} represent presence or absence of turbines at the candidate

locationsas mentioned before
:
,
:::
for

::::
both

::::::
models. Given N points, i.e. candidate locations for turbine positions, with positions pi

inside the domain F (i.e. pi ∈ F for all i WT candidate locations), binary variables ξi ∈ {0,1} are associated with the following

interpretation

ξi =





1, if a turbine is located at point i with position pi, and

0, otherwise.
(10)200

Let the index sets N i storing the candidate locations violating the minimum distance constraints for a WT i be defined as

7



N i = {jq ∈ {1, . . . ,nN: }, jq ̸= i | dij iq
:
(pi,pj)< dmin} (11)

where dmin > 0 is the minimum required distance between two turbines(2D in this study). If ξi = 1 then all binary variables

in the set N i should be forced to zero, whereas if ξi = 0 these variables should be free to take any value in {0,1}.

All relevant distances can be preprocessed
:::::::::::
pre-processed

:
for all combinations of points i and j. These pertinent

:
q.
::::::
These205

parameters are then defined as function of the Cartesian plane positions p and wind direction θj , as the Euclidean dis-

tances dij(p) = ∥pi−pj∥2:::::::::::::::::
diq(p) = ∥pi−pq∥2, the stream-wise distances d∥ij(p;θ

j)
::::::::
d
∥
iq(p;θ

j) and the span-wise distances

d⊥ij(p;θ
j)

::::::::
d⊥iq(p;θ

j), extending the concept introduced in Sect. 2.1.

3.1 Power-curve-based model
::::::
Model

For the purpose of wake modelling and power computation continuous
::::::::::
Continuous state variables uijk are used

:::
for

:::::
wake210

::::::::
modelling

:::
and

::::::
power

::::::::::
computation. A variable uijk represents the wind speed at WT location i, for wind direction j, and wind

speed k.

The general characteristics of the power curve outlined in Sect. 2.3 is used to approximate the curve by
:::::
power

:::::
curve

::
is

:::::::::::
approximated

::::
with a step-wise function. The cubic domain

:::
part

:
of the power curve is first partitioned into m intervals, plus one

interval from a negative point (−uini) to the cut-in speed, and a final one to cover the range from rated to cut-out speed. Each215

isometric interval of length ∆u
:::::
within

:::
the

:::::
cubic

::::::
domain

::
of

:::::
length

:::::::::::::::::::::
∆u= (urated−ucut-in)/m,

:
is approximated with a constant

power value, see Fig. 1.

An interval l
:
of

:::
the

::::::
whole

::::::
domain is characterized by three parameters ul

s, u
l
m, and ul

h with the next properties

u1
s =−uini,u1

h = ucut-in,um+2
s = urated,um+2

h = ucut-out (12)

u2
s = ucut-in,um+1

h = urated,ua+1
s = ucut-in +(a− 1)∆u,ua+1

h = ucut-in + a∆u for a= 1, . . . ,m (13)220

ua+1
s = ucut-in +(a− 1)∆u for a= 1, . . . ,m

:::::::::::::::::::::::::::::::::::
(14)

ua+1
h = ucut-in + a∆u for a= 1, . . . ,m

::::::::::::::::::::::::::::::
(15)

ul
m = 0.5(ul

s +ul
h) (16)225
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Figure 1. Piece-wise constant approximation of a wind turbine power curve through sampling with m= 10 intervals between the cut-in and

rated wind speeds.

Equation (12) defines the lower and upper limits for the extreme intervals l = 1 and l =m+2, Eq. (13) formalizes them for

a interval l
::
the

:::::
lower

::::
and

:::::
upper

:::::
limits

:::
for

::
the

::::
first

::::::
interval

:
in the cubic partof the curve (2≤ l ≤m+1) , and

:::::
a= 1,

::::
and

::
the

::::
last

:::
one

::::::
a=m,

::::::::::
respectively

:
.
:::::::
Equation

::::
(14)

::::::::
expresses

:::
the

:::::
lower

::::::
limits

::
for

::::::::
intervals

::
in

:::
the

:::::
cubic

:::
part

:::::::::::::
(a= 1, . . . ,m),

:::::
while Eq. (

:::
15)

::::
does

:
it
:::
for

:::
the

:::::
upper

::::::
limits.

:::::::
Equation

:
(16) presents how to determine the extracted wind speed associated to the power value in

::::::
interval

:
l

:
of

::::::
within

:::::
whole

:::::::
domain, which is the average value of ul

s and ul
h.230

Let define the binary state variables ηlijk ∈ {0,1} for l = 1, . . . ,m+2 with the interpretation

ηlijk =





1, if ul
s ≤ uijk ≤ ul

h, and

0, otherwise.
(17)

i.e. these variables indicate which of the wind speed intervals l of the power curve approximation for WT i, operates at wind

direction j, and wind speed k.

After the presentation of
::::
With all the variables of the model ,

:
-
:
activation variables ξ, continuous state variables u, and binary235

state variables η , the
:
-
:::::::::
introduced,

:
formulation in Eq. (18) collects the AEP objective function, the constraints of a generalized

version of the WFLO problem, and the variables’ domain definition.
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maximize
ξ,η,u

8760

N∑

i=1

∑

j,k

m+2∑

l=1

wjkη
l
ijkp(u

l
m) (18a)

subject to: ξi + ξjq ≤ 1 ∀ i, jq ∈N i (18b)

nmin ≤
N∑

j=1

ξj ≤ nmax (18c)240

m+2∑

l=1

ηlijku
l
s ≤ uijk ≤

m+2∑

l=1

ηlijku
l
h ∀ (i, j,k) (18d)

m+2∑

l=1

ηlijk = 1 ∀ (i, j,k) (18e)

uijk = uk
∞(ξi−

∑

ℓ∈Uθj
i

ξℓδuiℓ(θ
j ,uk

∞)) ∀ (i, j,k) (18f)

ξ,η ∈ {0,1} u ∈ R (18g)

The
::
the

:
objective function in Eq. (18a) is an approximation of the AEP computation presented in Eq. (9). Equation (18b)245

models the minimum distance constraints as explained in the introduction of Sect. 3. If a binary variable ξi is active, then

all candidate points closer than dmin should be excluded, i.e. set to zero. If a binary variable ξi is inactive then the other

candidates are still eligible. The definition of the set N i is provided in Eq. (11). Equation (18c) models the situation that the

designer requires at least nmin and at most nmax WTs to be located in the domain. Note that for the classic problem definition

nmin = nmax=nT. Equation (18d) connects both state variables u and η as explained in Eq. (17) .
:::::
while Eq. (18e) forces that250

there is one operation case active for each WT candidate at each wind direction and speed. The last constraint in Eq. (18f) is for

the wake velocity deficit and wakes superposition modelling to calculate wind speed for each candidate location at each wind

direction and inflow speed uk
∞. The presented model supports a conservative velocity deficit approach (Eq. (3)) with linear

superposition (Eq. (6)). The definition of set Uθj

i is provided in Eq. (5). Note that an extension, consisting in creating extra

continuous state variables and associated constraints, could allow for considering the more realistic approach in Eq. (4). It is255

still unknown if the root sum squares model of Eq. (7) could be implemented in the framework of MILP. Finally, Eq. (18f)

defines the domain of the required variables. A value for uini of ucut-out is set up.

3.2 Power-curve-free model
:::::
Model

Albeit the formulation of Sect. 3.1 succeeds at representing at a very good
::::::::
represents

:::
to

:
a
::::
very

::::
large

:
extent the physics ruling

the problem, it has a considerable number of variables and constraints that may hinder the capacity to tackle interestingly sized260

problems. The next model that
::::
larger

:::::::::
problems.

:::
The

::::::
model

::::::::
presented

::
in

:::
this

:::::::
section neglects power curve and AEP calculation

is deployed, is intended to simplify it.
:::
and

::::
aims

::
at
::::::::::
simplifying

:::
the

::::::::::::::::
power-curve-based

:::::::
version.
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The model presented in this section deploys
::::::::
introduces a strategy to account for the combination of Eq. (3) and Eq. (7)

to calculate velocities, since the case studies from the IEA37
:::
IEA

:
Wind Task 37 follow this outlook

::::::::::
methodology

:::
for

:::::
AEP

::::::::::
computation. It would be possible though to consider the linear superposition model if necessitated

:::::::
necessary. However, this265

model
::
the

:::::::::::::::
power-curve-free

:::::
model does not support the application of Eq. (4).

Combining Eq. (3) and Eq. (7) and extending the summation range in Eq. (7) to all candidate locations, the total wind speed

:::
sum

:::
of
:::::

wind
:::::::
speeds in the farm, U , can be modelled through

U =

N∑

i=1

∑

j,k

wjku
k
∞ξi−

N∑

i=1

∑

j,k

wjku
k
∞

√√√√
N∑

ℓ=1

(δuiℓ(θj ,uk∞))2ziℓ

√√√√
N∑

ℓ=1

(δiℓ(θj ,uk∞))2ziℓ

::::::::::::::::::

(19)

where new binary variables ziℓ are introduced. The variable ziℓ is equal to one if both WTs i and ℓ are active (i.e. if270

ξi = ξℓ = 1) and zero otherwise. Nevertheless, the previous expression is not linear for variable ziℓ due to the presence of the

square root in each total relative velocity deficit term. Dropping
::
By

:::::::::
removing the square roots, the following expression is

obtained:

Ũ =

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

N∑

ℓ=1

∑

j,k

wjku
k
∞(δiℓ(θ

j ,uk
∞))2ziℓ (20)

Let the preprocessed
:::
the

:::::::::
arguments

::
of

:::
the

:::::
square

:::::
roots

::
in

:::
Eq.

::::
(19)

::::::
define

:
a
:::::::
function

:::::::
closely

::::::
related

::
to

:::
the

:::
full

:::::::::::
root-squared275

:::::::::
expression.

:::
This

:::::::::::
linearization

:::::::
approach

::
is
::::::
similar

::
to

:::::::::::::::::
(Turner et al., 2014).

::
Let

:::
the

::::::::::::
pre-processed coefficient in front of of ziℓ be

biℓ =
∑

j,k

wjku
k
∞(δuiℓ(θ

j ,uk
∞))2 (21)

Combining
::::::::
combining

:
Eq. (20) and Eq. (21) results in

Ũ =

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

N∑

ℓ>i

(biℓ + bℓi)ziℓ (22)

Eq. (22)
:::::
which defines the objective function to be maximized of the power-curve-free model. In comparison to the objective280

function
::
in Eq. (18a), no power curve or continuous state variables are demanded

:::::::
required.

Nonetheless, the presence of variables ziℓ can be troublesome. For the complete model, in addition to having these variables

of combinatorial nature, constraints of the same kind must be incorporated: zij ≥ ξi + ξj − 1, zij − ξi, zij − ξj . Experimental

results show the heavy computational burden incurred when solving this formulation, impeding to solve
::::::::
impacting

:::
the

::::::
ability

::
of

::::::
solving

:
large-scale problems (Fischetti et al., 2016). A

::
To

::::::::::
circumvent

::::
this,

:
a
:
big-M trick is then incorporated to come up285
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with a model which is exactly equivalent
::::::::::
incorporated

:::::::::::::
(Wolsey, 2020),

::::::::
resulting

::
in

::
an

::::::
exactly

:::::::::
equivalent

::::::
model, as reflected in

formulation of Eq. (23).

maximize
ξ,τ

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

τi

subject to: τi ≥
N∑

ℓ=1:i ̸=ℓ

ξℓbiℓ +(ξi− 1)Mi ∀ i

nmin ≤
N∑

i=1

ξi ≤ nmax290

ξi + ξj ≤ 1 ∀ i, j ∈N i

ξ ∈ {0,1} τ ∈ R : τ ≥ 0

The new objective function in Eq. (23a) modifies the component linked to the total wind speed deficit proxy by creating

variables τi; this variable means total wind speed deficit proxy for WT in candidate location i. Equation (23b) defines τi, if a WT

candidate location is inactive ξi = 0, then there is no deficit at this location, therefore τi = 0, because of Mi =
∑N

ℓ=1:i ̸=ℓ biℓ,295

and the minimization nature of the problem for wind speed deficits. Oppositely, if ξi = 1, then τi is forced to be equal to
∑N

ℓ=1:i̸=ℓ ξℓbiℓ. The next two equations are the same with those already presented in Sect. 3.1 for number of active WTs, and

minimum distance constraints. Finally, Eq. (23e) defines the domain of the required variables.

Note

maximize
ξ,τ

:::::::

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

τi

::::::::::::::::::::::::::::::::

(23a)300

subject to:
::::::::

τi ≥
N∑

ℓ=1:i ̸=ℓ

ξℓbiℓ +(ξi− 1)Mi

::::::::::::::::::::::::

∀ i
::

(23b)

nmin ≤
N∑

i=1

ξi ≤ nmax

:::::::::::::::::

(23c)

ξi+
:::

ξq
:
≤ 1
:::

∀ i,
::

q∈N i
::::

(23d)

ξ ∈ {0,1} τ ∈ R : τ ≥ 0
::::::::::::::::::::

(23e)
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:::
note

:
that for the classic problem definition nmin = nmax=nT, the first part of the objective function becomes

N∑

i=1

∑

j,k

wjku
k
∞ξi =

∑

j,k

wjku
k
∞

N∑

i=1

ξi =
∑

j,k

wjku
k
∞nT = constant

For
:::
for this situation, the objective function is thus equivalent to305

minimize
ξ,τ

N∑

i=1

τi (24)

:::
this

:::::
proxy

::::::::
objective

:::::::
function

:
is
::::
very

:::::
useful

:::
for

::::::::::
formulating

:::
the

:::::::
program

::
in

:::
the

:::::
MILP

::::::::
category.

:::::
While

:::
the

::::
work

::
in

:::::::::::::::::::
(LoCascio et al., 2022)

::::::
focuses

::
on

::
a
:::::::
different

::::::::::
formulation

::::::
(likely

::::
more

:::::::
accurate

::::::::::
analytically

::::
than

:::
the

:::
one

::::::::
presented

:::::
here)

:::
that

::
is

:::::::::
non-linear

:::
but

:::::::
gradient

:::::::
friendly,

:::::
hence

:::::
useful

:::
for

:::::::::
continuous

:::::::::::::
gradient-based

:::::::::::
optimization.

::::::::
Compared

::
to
:::::::::::::::::
(Turner et al., 2014),

:::
the

::::::
MILP

:::::::
program

::::
(23)

::::
with

::::::::
objective

:::::::
replaced

::
by

::::
Eq.

::::
(24),

::::::::
linearizes

:::
the

::::::::::
complexity

::
of310

::
its

::::::
largest

:::
set

::
of

:::::::::
constraints

:::
and

::::::::
variables

:::::
from

:::
N2

::
to

::
N

::::
(Eq.

:::::
(23b)

::::
and

:::
Eq.

::::::
(23e)).

:::::::::::
Furthermore,

:::
the

:::::::::
constraints

::
in

:::
Eq.

::::::
(23d),

:::::
which

:::
can

::::
lead

::
to

::::::::
infeasible

::::::
points,

:::
are

:::
not

::::::::
neglected

:::
as

::
in

::::::::::::::::
(Turner et al., 2014)

:
.

4 Neighborhood Search Heuristic

In order to be able to address
::
For

::::::::::
addressing large-scale problems, a heuristic is proposed to wrap the previously presented

MILP formulations
:::::::
wrapping

:::
the

:::::
MILP

:::::::::::
formulations

:::::
given in Sect. 3

:
is

:::::::::
introduced. It is based on neighborhood search and local315

branching theory (Fischetti and Lodi, 2003). The algorithm solves a sequence of MILPs, with different candidates number N

:::
and/or /andneighborhood search size K, taking advantage of robust and efficient implementations of branch-and-cut methods

for MILP.

The heuristic relies on the observation that for a fixed layout described by ξ ∈ {0,1}N , the other design and state vari-

ables are straight forward to determine. This observations
:::::::::
observation is valid for all presented problem formulations

:::::::
problem320

::::::::::
formulations

::::::::
presented

:
in Sect. 3. Given ξ ∈ {0,1}N , for the power-curve-based model, the continuous state variables u can

be determined through classical wake analysis, and the binary state variables η are directly determined by inspection of the

velocities. Similarly, for the power-curve-free model, the τ variables are trivially computed.

The pseudo code of the Neighborhood Search Heuristic (NSH) is described in detail in Algorithm 1.

13



Algorithm 1 Neighborhood Search Heuristic (NSH) Algorithm

1: C←{N1, · · · ,NC} ,N ∈C {Input candidates set}

2: T ←{T1, · · · ,TC} ,T ∈ T {Input times set}

3: V ←{K1, · · · ,KV } ,K ∈ V {Input neighborhood sizes set}

4: countern← 1 counterv← 1

5: Obtain initial incumbent of activation binary variables for WTs ξ with objective value ob

6: for (κ= 1 : 1 : κmax) do

7: N ←C[countern] T ← T [countern] K← V [counterv]

8: Formulate optimization model with N candidates (including the incumbent), either from Sect. 3.1 or Sect. 3.2

9: Add Hamming distance constraint centered around the incumbent ξ,
∑

i:ξi=0 ξi +
∑

i:ξi=1(1− ξi)≤K

10: Solve opt. model from algorithm lines (8) to (9) until optimality or computing time T with ξ as warm-starter

11: Get the solution pool S, where ξ̂ ∈ S represents the activation binary variables for WTs of an individual solution

12: Apply true objective function over each solution ξ̂ ∈ S, and obtain objective values set O

13: Compute ot←maxO, and it← argmaxO

14: if ot > ob then

15: ob← ot

16: ξ← S[it]

17: else

18: counterv← counterv+1

19: end if

20: if counterv = |V |+1 then

21: counterv← 1 countern← countern+1

22: end if

23: if countern= |C|+1 then

24: Break

25: end if

26: end for

The first three lines are for the main inputs of the algorithm: the candidates set C, the times set T , and neighborhood sizes325

set V . The first set contains the sizes N of the meshes to be considered, the second one is for the maximum computing time

T for the MILP solver for each size N ,
:::
and the last one is for the search size defined as the maximum number of changes K

allowed to the incumbent solution.

If the incumbent is improved, then the candidates set C, and neighborhood size K are kept, otherwise at least one of them

is increased. The first step (line 5) is to obtain an initial incumbent binary variables, with the set ξ storing the acquired value330

(0 or 1) for each variable ξi : i≤N . The incumbent has an objective value of ob calculated after the true objective function.
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The true objective function refers to the real equation that represents the ultimate aim to be optimized. For example, if this is

the AEP, then it is the product of the power calculation process, applying the considered wake and superposition models and

the original power curve, and not the objective function of the implemented formulation, as in Eq. (18a), which in any case is

always an approximation.335

The next step is to start the iterative process in line 6. Values for N , T , and K are fetched in line 7, followed by the

formulation of the MILP model for candidates N accounting for the points of ξ. The Hamming distance, see e.g. (Fischetti

and Lodi, 2003), centered around the incumbent point ξ, is added to the optimization model in line 9; this constraint reduces

the search space as the number of changes to
::
of ξ are limited to K. The complete model is sent to the MILP solver with ξ as

warm-starter, stopped until it reaches
::::
when

::::::
reaches

:::::
either optimality or the assigned maximum computing time T .340

After solver termination, the solution pool S is retrieved in line 11.
:::
The

::::::
solution

::::
pool

:::::::
contains

:::
all

:::
the

::::::
feasible

::::::
layouts

::::::::
obtained

::
in

::
an

:::::::
iteration

::
κ

::::
from

:::
the

:::::
MILP

::::::
solver.

:::::
These

:::::
points

:::
are

::
a

::::
result

:::
of

:
a
:::::
linear

:::::::::::
programming

:::::::::
relaxation

::
or

::::
from

::::::::
applying

::::::::
heuristics

::
in

:
a
:::::

given
::::::

node,
::::
such

:::
as,

:::::::::
relaxation

:::::::
induced

::::::
search,

:::::::::
polishing,

::::
and

:::::::::
feasibility

:::::
pump

:::::::::::
(IBM, 2022).

:
It is very important to

emphasize the aim of getting the whole pool instead of the best solution. This is done because of the imperfect correspondence

between the true objective function and the objective function of the applied MILP model. For example, a solution which may345

have worse objective value, may actually have a better AEP according to
::::
based

:::
on

:
the real model. In this order of ideas, the

whole pool
::::
One

::
of

:::
the

:::::::::
advantages

::
of

:::
the

:::::
NSH

::::::::
compared

::
to

:::
the

::::::
DEBO

::::::::
algorithm

:::::::::::::::::::
(Thomas et al., 2022c)

:
is
:::
the

:::::::
reduced

:::::::
number

::
of

::::
AEP

::::::::::
evaluations.

::
In

::
an

::::::::
iteration

::
κ,

::::
only

:::
|S|

:::::::::
evaluations

:::
are

::::::::
required.

::::::::
Likewise,

:::::
many

::
of

:::
the

::::
other

:::::::::
expensive

::::::::::
calculations

:::
are

::::
done

::
in

:
a
:::::::::::::
pre-processing

::::
stage

:
.
:::
The

::::::
whole

::::
pool

::
of

::::::::
solutions is examined, and the best solution indexed by it with AEP of ot is

obtained in line 13. If ot is actually greater than ob, then the whole algorithm is recentered
::::::::
re-centered

:
around the new ξ (lines350

14 to 16) , and in the next iteration κ, the same values of N and K are maintained. Otherwise, the next value of K is taken

(line 18), unless all of them have been traversed. In the last situation
::
the

:::
set

:::
has

::::
been

:::::::::
exhausted.

::
In

::::
this

::::
case, the next candidates

size N is considered given by countern, restarting the neighborhood set counter counterv to one (lines 20 to 22). The NSH

algorithm is terminated when all candidates set C have been processed (line 23 to 25).
::::::
Another

:::::::::
difference

:::::::
between

:::
the

:::::
NSH

:::
and

:::
the

::::::
DEBO

::
is
::::
that

:::
the

:::::
latter

::::
only

:::::::
changes

::::
the

:::::::
position

::
of

::
a
:::::
single

::::
WT

::
in
::

a
:::::
given

::::::::
iteration,

:::::
while

:::
the

::::::
former

:::::::::
considers355

:::::::::::
simultaneous

:::::::::::
modifications

::
of

::::::
several

::::
WT

::::::::
positions.

5 Computational Experiments

As mentioned earlier in the manuscript, in order to have
::
For

:
a transparent benchmark of the proposed methods, the open

access case studies from the IEA37
:::
IEA Wind Task 37 (Baker et al., 2019; Dykes et al., 2015)

::::::::::::::::
(Baker et al., 2019) are used for

comparison. Those cases have
:::
The

::::
Task

:::
37

::::
cases

::::::::
consider circular project areas with three different radius (1300 m, 2000 m,360

and 3000 m) and number of WTs (16, 36, and 64), nT. Thus, Case I has a radius of 1300 m and nT = 16 WTs, whereas Case

II has radius 2000 m and nT = 36, and Case III has radius 3000 m and nT = 64, correspondingly.

The results of the statistical correlation between the proxy function given by the argument in Eq. (24) , and AEP of the

problem definition (Baker et al., 2019; Dykes et al., 2015) for each case
::::::::::::::::
(Baker et al., 2019) are presented in Sect. 5.1 . After
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this, the performances
::
for

:::::
each

::::
case.

::::
The

::::::::::
performance

:
of the proposed models in the case studies are deployed

::::::
shown in Sects.365

5.2 (Case I), 5.3 (Case II), 5.4 (Case III). The power-curve-free model of Eq. (23) is implemented with the Eq. (24) as objective

function
::
in

::::
these

:::::
three

:::::::
sections. The true objective function in the NSH Algorithm 1 for these cases is the AEP of the problem

definition. In the end, to prove the capabilities of power-curve-based model of Eq. (18), Sect. 5.5 displays results after applying

this formulation with a modified objective function to express a metric similar to NPV.

The main parameters of the wake model in Sect. 2.1 are fixed to CT = 8/9 and ky = 0.0324555. Furthermore, a wind rose370

approach for modelling wind resource is utilized in this work. In ,
:::::::::
according

::
to

:::::::::::::::
(Baker et al., 2019)

:
.
:::::
Wind

:::::::
resource

::
is

::::::::
modelled

::::
using

:
a wind rose ,

::::::::
approach

:::::
where

:
the wind resource is binned in J directions, and for a specific direction j (θj), wind speeds

are correspondingly discretized in V
::::::::
discretized

:::
in

::
Υ sectors. For the case studies, the wind rose is composed of 16 directions

and a single wind speed k of 9.8 ms−1. The considered wind rose is displayed
:
,
:::::
shown

:
in Fig. 2. Lastly, for the purpose of

replicability of the numerical results, the
:::
The power curve from Eq. (8) modelling the IEA37 3.35 MW reference turbine (with375

diameter of D = 130 m) is used in this manuscript
::
the

::::
case

:::::::
studies,

:::::::
ensuring

::::::::::
replicability

::
of

::::::
results

:
(IEA Wind Task 37, 2019;

Baker et al., 2019). The main parameters are prated = 3.35 MW, urated = 9.8 ms−1, ucut-in = 4 ms−1, and ucut-out = 25 ms−1.

The power curve for these specific parameter choices
:
,
:::
and is plotted in Fig. 1.

:::
The

:::::::::
parameter

::::
dmin

::
is

::
set

:::
to

:::
2D.

:

The experiments for

Parameters

The wind turbine is the IEA37 3.35 MW onshore reference turbine [1] with the following characteristics:

Rotor Diameter 130 m
Turbine Rating 3.35 MW
Cut-In Wind Speed 4 m/s
Rated Wind Speed 9.8 m/s
Cut-Out Wind Speed 25 m/s

All turbine data is also contained in the enclosed iea37-335mw.yaml. The power curve is defined as:

P (V ) =





0 V < Vcut-in

Prated ·
(

V−Vcut-in
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)3
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The farm wind speed for all scenarios is constant at 9.8 m/s. The +y axis is coincident with 0◦, and the
CW wind rose is defined by 16 discrete bins tabulated in iea37-windrose.yaml, depicted pictorially below:
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2.1 Case Study 1: Optimization Only

This problem defines three different wind farm sizes, and corresponding number of turbines, intended to test
scalability of your optimization approach. The three scenarios are:

1. 16 turbines, boundary radius of 1,300 m.

2. 36 turbines, boundary radius of 2,000 m.

3. 64 turbines, boundary radius of 3,000 m.

For this Case Study the user is only free to choose the optimization approach. The wake model is fixed and
is a simplified version of Bastankhah’s Gaussian wake model [2, 3, 4]. A Python implementation is supplied
for convenience (iea37-aepcalc.py). Alterations to this implementation are permitted, as long as the

2

Figure 2.
::::
Wind

::::
rose

:::
used

::
in
:::
the

:::::::::::
computational

:::::::::
experiments.

:::::
Taken

::::
from

::::
open

:::::
access

:::::
source

::::::::::::::::::::
(IEA Wind Task 37, 2019).

:::
The

::::::::::
experiments

::
in
:
Sects. 5.2, 5.3, and 5.4 have been carried out on an Intel Core i7-6600U CPU running at 2.80 GHz with380

four logical processors and 16 GB of RAM. For the
:::::::::
experiment

::
in

:
Sect. 5.5,

:
a larger resource is usedfor being able to exploit

the power-curve-based model capabilities, an Intel Xeon Gold 6226R CPU running at 2.90 GHz with 32 virtual cores and 640

GB of RAM.

The selected MILP solver is the commercial branch-and-cut algorithm implemented in IBM ILOG CPLEX Optimiza-

tion Studio V20.1 (IBM, 2022). Some parameters are set to different values compared to the default choices. For example,385

theparameter emphasizing the finding of
:::::
Apart

::::
from

:::
the

:::::::
number

::
of

::::::
threads

:::
and

:::::
time

::::
limit

:::::::
settings,

:
a
::::
few

::::
other

:::::::::
parameters

:::
are

:::
also

::
set

::
to

:::::::::
differently

::::
than

::::::
default

::::::
values.

::::
One

::
is
:::
the

::::::::
parameter

::::::::
returning high-quality feasible solutions early in the process

:
,

::
for

::::::
which,

:::
the (CPX_MIPEMPHASIS_HEURISTIC) is activated. This is intended

:::
The

::::::::
intention

::
is to generate more feasible
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layouts compared to the default setting which is important for the neighborhood search algorithm. Additionally, strong branch-

ing is used for variable selection given the large size of the models (CPX_VARSEL_STRONG ). This setting is intended
::
is390

::::::
selected

::
).

:::
The

::::::::
intention

::
is to reduce the size of the search tree and thus the memory requirements compared to default settings.

Wind rose used in the computational experiments. Taken from open access source (IEA Wind Task 37, 2019).

The number N and positions pi for i≤N of the candidate locations are of course very important parameters for the

adopted discrete modelling techniques. A customized automatic strategy has been employed based on independently sampling

the boundary and interior area of the circular domain F
:::
has

::::
been

:::::::::
employed. An example of the sampling strategy for these395

particular case studies giving N = 467 is illustrated in Fig. 3.

-1300 -650 0 650 1300
Abcissa [m]

-1300

-650
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Or
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]

N = 467

Farm limits
Candidate WTs

Figure 3. Example of generation of WTs candidate locations N .

In the above figure is noticeable that the
:::
The

:
boundary is densely sampled, as a candidate point is defined every natural angle

from 0◦ to 359◦, i.e. 360 candidate points are provided . This is done as
::::
since it is intuitively expected that a good portion of

the WTs will be placed in the boundaries , as WTs will be spread out in the available area as much as possible to decrease

wake losses. For the interior, a set of finite parallel line segments are generated in between of the extreme abscissa and ordinate400

points of the available project area. The
:::
and

:::
the

:
candidates points are then taken along those segments, according to sampling

parameters, such as, distance between the points along a line, and vertical distance between lines. In the example of Fig. 3, the

slope of the line segments is zero, and the distance between points and lines is equal to 1.7D. Although in this example a circle

with radius of 1300 is displayed, the underlying principles apply for any project area shape.

5.1 Correlations405

To validate the approach modelled by the MILP formulation of Eq. (23) (i.e. the power-curve-free model), 5000 random

feasible WT layouts are created. For each of them, the AEP (Baker et al., 2019; Dykes et al., 2015)
:::::::::::::::
(Baker et al., 2019), the

total wind speed theoretical
:::::::::
theoretical

::::
wind

:::::
speed, U , given by Eq. (19), the total wind speed proxy, Ũ , defined by Eq. (22),

and total wind speed deficit proxy,
∑N

i=1 τi, argument of Eq. (24), are calculated. Although the random way of generating the
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layouts biases the obtention of
:
is
::::::
biased

:::::::
towards high-quality solutions, the general trend is the aspect of interest

::::::
interest

::
is

::
in410

::
the

:::::::
general

::::
trend

:
and can be assumed to be fairly representative for the whole domain.

In all cases Pearson product-moment linear correlation coefficients (Pearson, 1895) are used to extract information from the

data , the results are
:::
and

:
collected in Table 1 for every single pair of the aforementioned measures

::
all

:::::
pairs. This coefficient

illustrates the degree to which the movement of pairs of variables is associated in a linear fashion. The correlation plots of Fig.

4 present the graphical representation of the relations for Case I.415

The correlation between AEP and the total theoretical wind speed is shown in Fig. 4a for the Case I. The main observation

is the very strong linear relation between these two variables as illustrated by the correlation coefficient of 0.97. Interestingly,

this reflects the rather low influence of the WT power curve to determine
::
in

::::::::
obtaining high-quality feasible points. The next

observation is present in Fig. 4b. In this plot, the relation between U and Ũ is represented
::
in

:::
Fig.

:::
4b, resulting in almost an

::
an

::::::
almost identical linear connection between them, as in the previous graph. When one looks into AEP vs

∑N
i=1 τi, however,420

it is noticeable that the Pearson coefficient worsens, decreasing
::::::::
decreases

:
to −0.88. There is a wider area in the formed body

of points that causes this behaviour. Note that in contrast to the previous two figures, there is a negative correlation because

the comparison is done in terms of wind speed deficit instead of total wind speed. In spite of this deterioration, the linear

correlation is still strong enough
:::::::::
considered

::::
quite

:::::
strong. These results motivate an

::
the

:
approach where the minimization of a

proxy total wind speed deficit can lead to high-quality AEP solutions. The NSH Algorithm 1 helps correcting the imperfect425

correspondence between these two variables during the optimization routine as reflected in Sect. 4.

For Case II the

Table 1.
::::::
Pearson

:::::::::::::
product-moment

::::
linear

::::::::
correlation

:::::::::
coefficients

:::
for

::
all

:::
case

::::::
studies.

::::
Case

::::
AEP

::
vs

:::::::::::
Theoretical

::::
wind

::::::
speed

::::::::::
Theoretical

::
vs

::::::
Proxy

:::::
wind

:::::
speed

::::
AEP

::
vs

::::::
Proxy

:::::
wind

:::::
speed

::::::
deficit

::::
Case

:
I

::::
0.97

:::
0.96

: ::::
-0.88

:::
Case

::
II
: ::::

0.97
:::
0.95

: ::::
-0.85

::::
Case

:::
III

::::
0.96

:::
0.88

: ::::
-0.72
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(a) Correlation between AEP and the theoretical wind speed.
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(b) Correlation between the theoretical and approximated wind speeds.
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(c) Correlation between AEP and the approximated wind speed deficit.

Figure 4.
:::::::::
Correlation

:::
plots

:::
for

::::
5000

:::::::
randomly

::::::::
generated

::::
wind

:::::
turbine

::::::
layouts

:::
for

::::
Case

:
I.

:::
The

:
general trends of the correlation plots

:::
for

::::
Case

::
II
:

are very similarto the observed in the previous case. Correlations

between AEP versus
:::::::::
theoretical

:
total wind speed theoretical (0.97), and

:::::::::
theoretical total wind speed theoretical versus total

wind speed proxy (0.95) are still very strong. Nonetheless, there is a slight worsening between the relation of
:::::::
decrease

:::::::
between430

AEP vs total wind speed proxy (it moved from −0.88 in the previous case
:::::
down to −0.85

::::
from

::::::
−0.88

:::::::::
previously), as the

spread for middle velocity values is enlarged
:::::
larger. The linear relation is deemed as satisfactory enough to carry on with the

application of model of Eq. (23) .
::::
with

::::::::
objective

:::::::
function

:::
Eq.

::::
(24).

:

Lastly, for Case III yet another very strong the
:::
The

::::
very

::::::
strong

:
linear relation between AEP and the

::::::::
theoretical

:
total wind

speed theoretical (0.96) is observed , just as for the two previous situations. This is
:::
also

:::
for

::::
Case

::::
III,

:::::::::
prompting

::
to

:
a very435

interesting outcome of this manuscript. Almost
:::::::::
conclusion.

::::::::
Although

::::::
almost all research in the WFLO problem strictly focuses

in power modelling ,
::::
space

:::::::
focuses

::::::
strictly

::
on

::::::
power

:::::::::
modelling

:
(which brings a great deal in

::
of

:
complexity due to the non-

linear and non-differentiable properties of a typical WT power curve. Using
:
),

:::::
using an exact model for determining total wind

speed as objective function alleviates the computational complexity, while being able to find
::::::
finding high-quality solutions in

terms of AEPfor the classic WFLO problem.440
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Nevertheless,
:
.
::::::::
However,

:::
one

::::::
should

::::
note

:::
that

:
deterioration in the

::::::::
correlation

::::
still

:::::
exists,

:::::::::
potentially

:::::::
leading

::
to

:::::
lower

::::::
quality

::::::
results.

::::::::
Likewise, correlations stemming from the proxy to calculate total wind speed deficit is present in this case. Both

:::
are

:::::::
lowered

::
in

::::
Case

:::
III.

::::
This

::
is

:::
the

::::
case

:::
for

::::
both

:
with the total wind speed theoretical (0.88) and the AEP (−0.72). Keep in mind that the

reason to formulate such approximation is to fit in the context of integer programming to leverage theory and state-of-the-art445

algorithms of this mature fieldby having a compact formulation. However, the price to pay is to lose fidelity to represent the

real (true) target to optimize. The deterioration in the correlation of these pairs of variables may also suggest the need to resort

to the power-curve-based model for some applications. Whether the price is too high or not is reflected in the reachable solution

quality. Sects. 5.2, 5.3, and 5.4 present the optimization results for the cases of fixed number of WTs that will ultimately help

to elaborate a final evaluation regarding the adopted modelling technique.450

Pearson product-moment linear correlation coefficients for all case studies. Case AEP vs Theoretical wind speed Theoretical

vs Proxy wind speed AEP vs Proxy wind speed deficit Case I 0.97 0.96 -0.88Case II 0.97 0.95 -0.85Case III 0.96 0.88 -0.72

Correlation plots for 5000 randomly generated wind turbine layouts for Case I.

5.2 Case I: 16 WTs

The performance evolution of two of the proposed optimization frameworks in this article is depicted
:
is

:::::
given in Fig. 5 (

:::::
clock455

::::
time

::::
given

::
in
:::
the

:::::::
abscissa

:
). The green line of the full model is obtained after solving the model of Eq. (23) with objective func-

tion as in Eq. (24) for N = 1014 without implementing the NSH. In order to plot this line, the CPLEX’s log is postprocessed

by finding out the
::
It

::::::::
represents

:::
the

:
incumbent solution in terms of AEP and not for

:::
(not total wind speed deficit proxy)

::::::::
obtained

::
by

:::::::::::::
post-processing

:::
the

::::::::
CPLEX’s

::::
log. The blue line results after applying the NSH with the model of Eq. (23) plus objective

Eq. (24), and AEP as true objective function in Algorithm 1. The main inputs are C = {467,590,1014}
:::
(set

::
of

:::::::::
candidate460

::::::::
locations), T = {1,1.5,2} h

:::
(set

::
of

::::
max

:::::::::
computing

:::::
times

:::
for

::::
each

::::::::
candidate

::::::::
location), V = {2,4,6,16}

:::
(set

::
of

::::::::::::
neighborhood

:::::
search

:::::
sizes)

:
.
:::
See

:::::
Sect.

::
4. These inputs are tuned after evaluating the performance of the method using different values. In

general, the first two elements of C consists of moderately big values, relatively close to each other, while the last element

is sizeably greater in the seek
:::::
search of the best possible solution. Each element N ∈C has associated a computing time T .

Finally, the first elements of V are relatively low values to favour termination of the solver due to optimality, and then they start465

increasing to refine the search. The red line is for establishing a reference of AEP value, this comes from the best performing

method in the survey of IEA37
:::
IEA

:
Wind Task 37 (Baker et al., 2019), the SNOPT plus Wake Expansion Continuity (WEC)

(Thomas and Ning, 2018; Thomas et al., 2022b). Time evolution for the SNOPT+WEC is not reflected in this graph, as this

information is unavailable. Results for the benchmark against a testbed of different algorithms are available in Table 3.

Performance of two different optimization approaches for Case I and comparison with existing best benchmark results.470

The yellow box
:::
The

:::::
NSH

:::::::::
computing

::::
time

::::::
results in Fig. 5

::
do

:::
not

::::::
reflect

:::
the

::::::
instant

:::::
where

:::
the

:::::::::
incumbent

::
is

::::::
found,

:::
but

:::
the

::::
time

:::::::
progress

::
of

::::
this

:::::::::
algorithm,

:::::
which

::
is
:::::::::
dependent

:::
on

:::
the

::::::::
execution

:::
of

:::
the

:::::
MILP

::::::
solver

::
at

::::
each

::::::::
iteration.

:::::
Table

:
2
:

contains

information about the values of N ,
:::
K, T , and termination criterion of the solver after each iteration κ of the NSH Algorithm 1

(beginning from point 2 where κ= 1).
:::
This

::::::
means

::::
that,

::
in

:::::::
iterations

::::::
where

:::
the

:::::::::
termination

:::::::
criterion

::
is

::::
time

::::
(and

:::
not

::::::::::
optimality),
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:::
one

:::::
could

::::::::
fine-tune

::
T

:::
for

::
an

::::::
earlier

::::
stop,

:::::::::
shortening

:::
the

::::
total

:::::
time.

::::
This

::
is
::::::::::
particularly

:::::
more

:::::::
relevant

::
in

:::::
cases

:::::
where

:::::::
internal475

::::::::
heuristics

::
of

:::
the

:::::
solver

:::
are

:::::::
activated

::
at

:::
the

::::
root

::::
node

::
of

:::
the

:::::
search

::::
tree,

:::::::
coming

::
up

::::
with

:::
the

::::::
largest

::::::
portion

::
of

:::::::
solutions

::::
very

:::::
early

::
in

:::
the

:::::::
process.

::::::::::::
Consequently,

:::
the

::::
total

:::::::::
computing

::::
time,

:::
for

:::
all

:::::
cases,

::
is
:::::::::::
conservative

:::
and

::::::
should

:::
be

::::
taken

:::
as

::
an

::::::::::::
approximated

::::::::
reference.

The initial layout (point 1), which is graphed
::::::
labelled

:
in Fig. 6a, is set up by arbitrarily

::
by

:
picking up candidate locations

around the circular boundary; this layout has an AEP of 86699 .
:::
387

:
GWh.

:::::
From

:::::
now

:::
on,

:::
the

::::::::
presented

:::::::::::
percentages

:::
are480

::::::::
calculated

::::
with

:::::::
respect

::
to

:::
the

:::
last

::::::::::
commented

:::::
AEP

::::::::::::
improvement. Between points 2 to 6

:
7
:
where N = 467 and K = 2, the

models are solved to optimality (gap of 0%), and the solution is improved by 2.92% in only 56 s. After a short plateau, the

solution is markedly refined by 2.96% from point 10 to 13 by performing a search of the domain with K = 16, and restarting

the model every 1 h with a new warm-starting. The percentages are calculated with respect to the last commented improvement.
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Figure 5.
::::::::::
Performance

:
of
::::

two
::::::
different

::::::::::
optimization

::::::::
approaches

:::
for

::::
Case

:
I
:::
and

:::::::::
comparison

:::
with

:::::::
existing

:::
best

::::::::
benchmark

::::::
results.

The next considerable jump happens for N = 590 and 2≤K ≤ 6 in around 20 min, elevating the AEP by 1.94%. After,

again, a plateau without improvements, when N reaches its maximum value of 1014, the solution is maximized to the final

value of 418559.44
:::
418 GWh during the lowest values of K. For this particular instance, the greatest value of K = 16 is

exploited for the lowest number of candidate points N , where the largest improvement comes up.

Results for all three benchmark cases from other algorithms (G, gradient-based and GF, gradient-free) obtained while490

allowing turbine locations to vary continuously. The AEP values for each case/algorithm in are reproduced from the IEA37

study (Baker et al., 2019). The difference column shows how the proposed heuristic with the power-curve-free model performs
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in comparison in %. Negative percentages means that the proposed method performs better than the corresponding algorithm.

Method AEP I Diff. I AEP II Diff. II AEP III Diff. III SNOPT+WEC (G) 418.92 0.09 863.68 -0.19 1513.31 0.85fmincon

(G) 414.14 -1.06 820.39 -5.19 1336.16 -10.95SNOPT (G) 412.25 -1.51 846.36 -2.19 1476.69 -1.59 SNOPT (G) 411.18 -1.76495

844.28 -2.43 1445.97 -3.64 Preconditioned SQP (G) 409.69 -2.12 849.37 -1.84 1506.39 0.39Mul.interior-point (G) 408.36

-2.44 851.63 -1.58 1480.85 -1.31 Full pseudo-gradient (GF) 402.32 -3.88 828.75 -4.23 1455.08 -3.03 Basic genetic algorithm

(GF) 392.59 -6.20 777.48 -10.15 1332.88 -11.17 Simple particle swarm (GF) 388.76 -7.12 776 -10.32 1364.94 -9.04 Simple

pseudo-gradient (GF) 388.34 -7.22 813.54 -5.98 1422.27 -5.22

The benefit of the proposed neighborhood search strategy is shown in Fig. 5. Solving the full model is significantly slower,500

leading actually to a worse solution (3.31% lower). The capacity of the NSH to iterate over different values of candidate points

N and search size
::::
sizes

:
K brings alone not only improvements in terms of solution time and solution quality, but also in less

computational resources as the RAM memory generally escalates
:::::
scales faster when solving the single model.

The initial and final solution layouts for this case study are illustrated in Fig. 6. The importance of finely sampling the

boundaries of the available area is evident in Fig. 6b, because 7 out of the 16 WTs are placed in that subdomain.505

Table 2.
:::::::::
Information

:::::
about

::
the

:::::
values

::
of

:::
N ,

::
K,

:::
T ,

:::
and

::
ter min

::::
ation

:::::::
criterion

::
of

::
the

:::::
solver

::::
after

::::
each

::::
point

::
in

:::
Fig.

::
5.

:::::
Point K, N

:::::::::::
Termination

::::::::
criterion

:::::
Point K, N

:::::::::::
Termination

::::::::
criterion

:
1 Initial point

:
-

::
17

: :::::
K = 4

:::::::
N = 590

:::
opt.

:
[
:::
0.24

:
min]

:
2

:::::
K = 2

:::::::
N = 467

: :::
opt.

:
[
:::
0.05

:
min]

::
18

: :::::
K = 4

:::::::
N = 590

:::
opt.

:
[
:::
0.46

:
min]

:
3

:::::
K = 2

:::::::
N = 467

: :::
opt.

:
[
:::
0.06

:
min]

::
19

: :::::
K = 6

:::::::
N = 590

:::
opt.

:
[
:::
9.79

:
min]

:
4

:::::
K = 2

:::::::
N = 467

: :::
opt.

:
[
:::
0.04

:
min]

::
20

: :::::
K = 6

:::::::
N = 590

:::
opt.

:
[
:::
1.10

:
min]

:
5

:::::
K = 2

:::::::
N = 467

: :::
opt.

:
[
:::
0.06

:
min]

::
21

: :::::
K = 6

:::::::
N = 590

:::
opt.

:
[
:::
1.29

:
min]

:
6

:::::
K = 2

:::::::
N = 467

: :::
opt.

:
[
:::
0.05

:
min]

::
22

: :::::
K = 6

:::::::
N = 590

:::
opt.

:
[
:::
6.64

:
min]

:
7

:::::
K = 2

:::::::
N = 467

: :::
opt.

:
[
:::
0.07

:
min]

::
23

: :::::
K = 6

:::::::
N = 590

:::
opt. [

:
6 min]

:
8

:::::
K = 4

:::::::
N = 467

: :::
opt.

:
[
:::
0.49

:
min]

::
24

: ::::::
K = 16

: :::::::
N = 590

:::
1.5 h

:
9

:::::
K = 6

:::::::
N = 467

: :::
opt. [

:::::
12.69 min]

::
25

: :::::
K = 2

::::::::
N = 1014

: :::
opt.

:
[
:::
0.53

:
min]

::
10

: ::::::
K = 16

: :::::::
N = 467

: :
1
:
h

::
26

: :::::
K = 2

::::::::
N = 1014

: :::
opt.

:
[
:::
0.20

:
min]

::
11

: ::::::
K = 16

: :::::::
N = 467

: :
1
:
h

::
27

: :::::
K = 2

::::::::
N = 1014

: :::
opt.

:
[
:::
0.20

:
min]

::
12

: ::::::
K = 16

: :::::::
N = 467

: :
1
:
h

::
28

: :::::
K = 4

::::::::
N = 1014

: :::
opt.

:
[
:::
0.95

:
min]

::
13

: ::::::
K = 16

: :::::::
N = 467

: :
1
:
h

::
29

: :::::
K = 4

::::::::
N = 1014

: :::
opt.

:
[
:::
1.10

:
min]

::
14

: ::::::
K = 16

: :::::::
N = 467

: :
1
:
h

::
30

: :::::
K = 6

::::::::
N = 1014

: :::
opt. [

:::::
24.37 min]

::
15

: :::::
K = 2

:::::::
N = 590

: :::
opt.

:
[
:::
0.06

:
min]

::
31

: ::::::
K = 16

: ::::::::
N = 1014

: :
2
:
h

::
16

: :::::
K = 4

:::::::
N = 590

: :::
opt.

:
[
:::
0.43

:
min]

Finally, Table 3 compares the proposed method to a large number of different approaches from the IEA37 reference study

(Baker et al., 2019). The results for all case studies are presentedin this table, where I, II, and III make reference to cases from
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this section, Sect. 5.3, and Sect. 5.4, respectively. For details of each of the benchmark algorithms, the reader is referred to the

mentioned reference.

The third column of Table 3 reports the difference of the AEP with respect to the proposed method for the smallest case510

study. The obtained AEP in this case
:::::::
resulting

::::
AEP is better than almost all the other alternatives, except to the SNOPT+WEC,

where a nearly identical objective value is achieved. When directly comparing to the gradient-free (GF)methods, the best found

solution by them (full pseudo-gradient with 402318.75 ) is determined in around
::
to

::::::
typical

::::::::::::
metaheuristics

:::::::
(genetic

:::::::::
algorithm,

:::::::
particles

::::::
swarm

:::::::::::
optimization,

::::
etc),

::::
that

:::
do

:::
not

::::
use

::::::
explicit

:::::::::
gradients

::::::::::
information,

:::
the

:::::::::
presented

:::::::
method

:::::
seems

:::
to

:::::::
perform

::::
well,

:::::
being

::::
able

::
of

::::::::::
determining

::
a

::::::
similar

:::::
layout

::::::
quality

::
in
::::

less
::::
than

:
2 hby the proposed method, which is typically way faster515

than the overall performing
:::::::
generally

:::::
faster

::::
than

:::::::
average computing time of these kind of algorithms. Discrete .

:::
In

:
a
:::::::
broader

::::::
context,

:::::::
beyond

:::
the

::::::::
presented

:::::::::
numerical

:::::::::::
comparisons,

:::::::
discrete optimization approaches, as the MILP ones presented in this

article
:::::::::
manuscript, could be formulated to cope with problem definitions with required functionalities that in theory continuous

optimization methods can not support (or at least the implementation becomes strenuous).

Table 3.
:::::
Results

:::
for

::
all

::::
three

:::::::::
benchmark

:::::
cases

::::
from

::::
other

::::::::
algorithms

:::
(G,

:::::::::::
gradient-based

::::
and

:::
GF,

::::::::::
gradient-free)

:::::::
obtained

:::::
while

:::::::
allowing

:::
WT

:::::::
locations

::
to

:::
vary

:::::::::::
continuously.

:::::
Values

:::::::::
reproduced

::::
from

::::::::::::::
(Baker et al., 2019)

:
.
:::
The

::::::::
difference

::::::
column

:::::
shows

:::
how

:::
the

:::::::
proposed

:::::::
heuristic

:::
with

:::
the

:::::::::::::
power-curve-free

:::::
model

:::::::
performs

::
in

:::::::::
comparison.

:::::::
Negative

:::::::::
percentages

:::::
means

::::
that

:::
the

:::::::
proposed

::::::
method

:::::::
performs

::::
better

::::
than

:::
the

::::::::::
corresponding

::::::::
algorithm.

Method ::::
AEP

:
I

::::
Diff.

:
I

::::
AEP

::
II

::::
Diff.

::
II

::::
AEP

:::
III

::::
Diff.

:::
III

[GWh] [
::
%] [GWh] [

::
%] [GWh] [

:
%]

::::::::::::
SNOPT+WEC

::::
(G)

::::::
418.92

:::
0.09

: ::::::
863.68

::::
-0.19

:::::::
1513.31

:::
0.85

:::::::
fmincon

:::
(G)

::::::
414.14

:::::
-1.06

::::::
820.39

::::
-5.19

:::::::
1336.16

:::::
-10.95

::::::
SNOPT

::::
(G)

::::::
412.25

:::::
-1.51

::::::
846.36

::::
-2.19

:::::::
1476.69

::::
-1.59

:

::::::
SNOPT

::::
(G)

::::::
411.18

:::::
-1.76

::::::
844.28

::::
-2.43

:::::::
1445.97

::::
-3.64

:

::::::::::::
Preconditioned

::::
SQP

::::
(G)

::::::
409.69

:::::
-2.12

::::::
849.37

::::
-1.84

:::::::
1506.39

:::
0.39

:::::::::::::::
Mul.interior-point

:::
(G)

::::::
408.36

:::::
-2.44

::::::
851.63

::::
-1.58

:::::::
1480.85

::::
-1.31

:

::::
Full

:::::::::::::
pseudo-gradient

::::
(GF)

: ::::::
402.32

:::::
-3.88

::::::
828.75

::::
-4.23

:::::::
1455.08

::::
-3.03

:

:::::
Basic

::::::
genetic

::::::::
algorithm

:::::
(GF)

::::::
392.59

:::::
-6.20

::::::
777.48

:::::
-10.15

: :::::::
1332.88

:::::
-11.17

:::::
Simple

:::::::
particle

::::::
swarm

::::
(GF)

: ::::::
388.76

:::::
-7.12

:::
776

: :::::
-10.32

: :::::::
1364.94

::::
-9.04

:

::::::
Simple

:::::::::::::
pseudo-gradient

:::::
(GF)

::::::
388.34

:::::
-7.22

::::::
813.54

::::
-5.98

:::::::
1422.27

::::
-5.22

:
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(a) Initial wind farm layout provided to the heuristic.
:::::
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(b) Final wind farm layout obtained by the heuristic.

Figure 6.
::::::::
Generated

::::
wind

::::
farm

:::::
layouts

:::
for

::
the

:::::::::
benchmark

::::
Case

:
I
::::
with

::
16

::::::
turbines.

The power-curve-based model of Eq. (18) within the NSH using the same AEP formulation as true objective function,520

provides a solution 1.18% lower in objective value in around 36 h using the computer system with 32 virtual cores. Although

the quality of the layout is very close to the one schematized in Fig. 6b, the need for larger computational resources tips the

scales for
::::::
favour implementing the power-curve-free model for these type of problems with fixed number of WTs. For this

reason, in
:::::::::
Therefore, Sects. 5.3 and 5.4 are presented

::::::
present only the results reached after the application of the power-curve-

free model embedded into the NSH.525

Generated wind farm layouts for the benchmark Case I with 16 turbines.

5.3 Case II: 36 WTs

The performance evolution of the proposed methods, and the initial and final WT layouts are plotted in Fig. 7 and Fig. 8,

respectively.
:::::
Table

:
4
:::::::
displays

:::
the

::::
data

::::::
linked

::
to

::::
each

::::
point

:::
of

:::
Fig.

::
7.

:
Main inputs are C = {477,684,1907}, T = {1,1.5,2} h,

V = {2,4,8,16,36}. The blue line (model of Eq. (23) with objective function Eq. (24) plus NSH Algorithm 1) has clearly three530

sectors stemming from each value of N ∈C. The initial WT layout (Fig. 8a) - also determined by choosing roughly equidistant

candidate locations in the boundary - has an AEP of 796514.61 . After seven iterations of the NSH
:::
796

:
GWh

:
.
:::
As

:::
for

::::
Case

::
I,

:::::::::::
improvement

::::::::::
percentages

:::
are

::::::::
calculated

:::::
using

:::
the

::::
last

::::::::::
commented

::::
step

::
as

:::
the

:::::::
baseline

:
.
::::
After

:::::
seven

:::::
NSH

::::::::
iterations

:
(point 8)

in 41 s, the incumbent is improved by 1.84%, when N = 477 and 2≤K ≤ 4, being able to solve each model instantation to

optimality.535

As shown in Fig. 7, after
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Figure 7.
::::::::::
Performance

:
of
::::

two
::::::
different

::::::::::
optimization

::::::::
approaches

:::
for

::::
Case

:
II
:::
and

:::::::::
comparison

::::
with

::::::
existing

:::
best

:::::::::
benchmark

::::::
results.

::::
After

:
a three-hours-plateau linked to 8≤K ≤ 36 (four iterations), N is raised to 684, resulting in the sharpest AEP

enhancement
:::::
largest

::::
AEP

::::::::::::
enhancement,

::
as

::::::
shown

::
in

:::
Fig.

::
7. The energy production increases with 4.51% after only 23 min in

point 27. This noticeable improvement comes after solving to optimality models with rather small neighborhood search sizes

2≤K ≤ 4. The convenience of allowing large neighborhood search sizes as K = 16 or K = 36 is reflected from this moment.540

From point 30 to 33 (6 h) with K = 16 the incumbent is slowly boosted by nearly 1%. Again, after a three-hours-plateau, N

becomes equal to 1907, and in around 32 min for 2≤K ≤ 4, the AEP is augmented by 0.41%. Then, the large neighborhood

search starts for K = 16 and K = 36, and after a total of 16 h, the final solution of 865327.78
:::
865 GWh (increment of 0.61%)

is achieved (Fig. 8b).
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Table 4. Performance
::::::::
Information

:::::
about

:::
the

:::::
values of two different optimization approaches for Case II

:::
N ,

::
K,

:::
T , and comparison with

existing best benchmark results
::
ter min

::::
ation

::::::
criterion

::
of

:::
the

:::::
solver

:::
after

::::
each

::::
point

::
in

:::
Fig.

:
7.

:::::
Point K, N

:::::::::::
Termination

::::::::
criterion

:::::
Point K, N

:::::::::::
Termination

::::::::
criterion

:
1 Initial point

:
-

::
25

: :::::
K = 4

:::::::
N = 684

: :::
opt.

:
[
:::
1.15

:
min]

:
2

:::::
K = 2

:::::::
N = 477

: :::
opt.

:
[
:::
0.03

:
min]

::
26

: :::::
K = 4

:::::::
N = 684

: :::
opt.

:
[
:::
1.90

:
min]

:
3

:::::
K = 2

:::::::
N = 477

: :::
opt.

:
[
:::
0.03

:
min]

::
27

: :::::
K = 4

:::::::
N = 684

: :::
opt.

:
[
:::
1.38

:
min]

:
4

:::::
K = 2

:::::::
N = 477

: :::
opt.

:
[
:::
0.04

:
min]

::
28

: :::::
K = 4

:::::::
N = 684

: :::
opt.

:
[
:::
8.31

:
min]

:
5

:::::
K = 2

:::::::
N = 477

: :::
opt.

:
[
:::
0.05

:
min]

::
29

: :::::
K = 8

:::::::
N = 684

: :::
1.5 h

:
6

:::::
K = 2

:::::::
N = 477

: :::
opt.

:
[
:::
0.05

:
min]

::
30

: ::::::
K = 16

: :::::::
N = 684

: :::
1.5 h

:
7

:::::
K = 2

:::::::
N = 477

: :::
opt.

:
[
:::
0.04

:
min]

::
31

: ::::::
K = 16

: :::::::
N = 684

: :::
1.5 h

:
8

:::::
K = 4

:::::::
N = 477

: :::
opt.

:
[
:::
0.37

:
min]

::
32

: ::::::
K = 16

: :::::::
N = 684

: :::
1.5 h

:
9

:::::
K = 4

:::::::
N = 477

: :::
opt.

:
[
:::
0.49

:
min]

::
33

: ::::::
K = 16

: :::::::
N = 684

: :::
1.5 h

::
10

: :::::
K = 8

:::::::
N = 477

: :
1
:
h

::
34

: ::::::
K = 16

: :::::::
N = 684

: :::
1.5 h

::
11

: ::::::
K = 16

: :::::::
N = 477

: :
1
:
h

::
35

: ::::::
K = 36

: :::::::
N = 684

: :::
1.5 h

::
12

: ::::::
K = 36

: :::::::
N = 477

: :
1
:
h

::
36

: :::::
K = 2

::::::
N=1907

: :::
opt.

:
[
:::
1.65

:
min]

::
13

: :::::
K = 2

:::::::
N = 684

: :::
opt.

:
[
:::
0.07

:
min]

::
37

: :::::
K = 2

::::::
N=1907

: :::
opt.

:
[
:::
1.12

:
min]

::
14

: :::::
K = 2

:::::::
N = 684

: :::
opt.

:
[
:::
0.07

:
min]

::
38

: :::::
K = 4

::::::
N=1907

: :::
opt. [

:::::
28.40 min]

::
15

: :::::
K = 2

:::::::
N = 684

: :::
opt.

:
[
:::
0.07

:
min]

::
39

: :::::
K = 4

::::::
N=1907

: :::
opt.

:
[
:::
5.97

:
min]

::
16

: :::::
K = 2

:::::::
N = 684

: :::
opt.

:
[
:::
0.08

:
min]

::
40

: :::::
K = 8

::::::
N=1907

: :
2
:
h

::
17

: :::::
K = 2

:::::::
N = 684

: :::
opt.

:
[
:::
0.09

:
min]

::
41

: ::::::
K = 16

: ::::::
N=1907

: :
2
:
h

::
18

: :::::
K = 4
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Generated wind farm layouts for the benchmark Case II with 36 wind turbines.545

At this point is possible to establish a pattern in the operation of the NSH algorithm. Small neighborhood search sizes result

in the fastest enhancement of the objective function, but large neighborhood search is very important as a slow cook refinement

for reaching the final high-quality solutions.

Opposed to Fig. 5, in Fig. 7 is distinguishable that the
:::
The

:
full model (i.e. without implement

:::::::::::
implementing

:
the NSH

algorithm) initially provides better solutions within the first 3 h, but then it remains in a considerably worst solution than when550
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applying
::::
lags

::::::
behind

::
in

:::::::
solution

::::::
quality

::::::::
compared

::
to the NSH algorithm in the long run (lower 3.05%). ,

::
as

::::::
shown

::
in

::
in

::::
Fig.

::
7.

In
::
For

:
this case, the proposed method reaches the best solution, as given

:::::
shown

:
in the fifth column of Table 3. The

SNOPT+WEC is again the closest contender. When uniquely comparing to GF methods, the proposed method matches the best

solution from those algorithms in around 3 h, which is generally a very fast computing time when contrasted toother
:::::::::
reasonable555

:::::::::
computing

::::
time

::::::::
compared

:::
to methods where gradients are not explicitly utilized in the optimization process

:
,
::::::::
especially

:::
to

::::::::::::
metaheuristics

::
as

::::::
genetic

::::::::
algorithm

::
or

::::::
swarm

:::::::::::
optimization.
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout obtained by the heuristic.

Figure 8.
::::::::
Generated

::::
wind

::::
farm

:::::
layouts

:::
for

::
the

:::::::::
benchmark

::::
Case

:
II
::::

with
::
36

::::
wind

:::::::
turbines.

5.4 Case III: 64 WTs

The performance evolution of the proposed methods, and the initial and final WT layouts are displayed in Fig. 9 and Fig. 10,

respectively.
::::
Table

:
5
::::::::

displays
:::
the

:::
data

::::::
linked

::
to

::::
each

:::::
point

::
of

::::
Fig.

:
9
:
.
:
Main inputs are C = {625,1017,2741}, T = {1,1.5,2}560

h, V = {2,4,8,16,32,64}. Note that in comparison the number of elements of V has been increased by one after each study

case. This has been done taking into account the number of WTs. Likewise, the values of N ∈C are greater
:::::
larger

:
to cover for

the wider project areas.

Performance of two different optimization approaches for Case III and comparison with existing best benchmark results.

Comparing blue lines of Fig. 6
:
5, Fig. 8

:
7, and Fig. 10

:
9
:
is evident that for the last case the curve shows less sudden in-565

creases. The sharpest change is after the first
:::::
largest

:::::::
change

:::::
occurs

:::::
after 27 s where the initial solution (Fig. 10a) with AEP

of 1395165.92
::::
1395

:
GWh is improved by 3.18% for N = 625 and K = 2 up to point 9, reaching optimality in few seconds.

With 4≤K ≤ 8 the model instantiations are solved to optimality in minutes, obtaining a solution improved by 0.18%.

After point 13
:::
one

:::::
notes

:
a plateau without improvement proceeds for N = 625 and K ≥ 16, i.e. , a large neighborhood

search does not lead to further enhancements. Due to this, N is enlarged to 1017, where the total second largest boost (increase570
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of 2.12%) comes, with the largest search size (K = 64) particularly fruitful, as in this instantiation brings along
:::::::
resulting

::
in

the best improvement. This enhacement
::::::::::
enhancement

:
occurs after 13 h of starting the NSH (point 26). Next from

::::
From

:
point

28, N = 2741 and for 2≤K ≤ 4 the solver reaches optimality; the following greater neighborhood search sizes permit for a

very slow evolution to finally converge to
:::::
slowly

:::::::::
converging

::
to

:
the final solution of 1500544.26

::::
1500 GWh (Fig. 10b).

Seventh column of Table 3 shows that the SNOPT+WEC and the preconditioned SQP provide slightly better layouts than575

the proposed methodfor this case. However, the algorithm provides feasible layouts that improve the objective compared to all

the listed gradient-free approaches.
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Figure 9.
::::::::::
Performance

:
of
::::

two
::::::
different

::::::::::
optimization

::::::::
approaches

:::
for

::::
Case

::
III

:::
and

:::::::::
comparison

::::
with

::::::
existing

:::
best

:::::::::
benchmark

:::::
results.
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout proposed by the heuristic.

Figure 10.
::::::::
Generated

::::
wind

:::
farm

::::::
layouts

:::
for

::::::::
benchmark

::::
Case

::
III

::::
with

::
64

::::
wind

:::::::
turbines.
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Table 5.
:::::::::
Information

:::::
about

::
the

:::::
values

::
of

:::
N ,

::
K,

:::
T ,

:::
and

::
ter min

::::
ation

:::::::
criterion

::
of

::
the

:::::
solver

::::
after

::::
each

::::
point

::
in

:::
Fig.

::
9.

:::::
Point K, N

:::::::::::
Termination

::::::::
criterion

:::::
Point K, N

:::::::::::
Termination

::::::::
criterion

:
1 Initial point

: ::
26

: ::::::
K = 64

: ::::::::
N = 1017

: :::
1.5 h

:
2

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.03

:
min]

::
27

: ::::::
K = 64

: ::::::::
N = 1017

: :::
1.5 h

:
3

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.03

:
min]

::
28

: :::::
K = 2

::::::::
N = 2741

: :::
opt.

:
[
:::
3.22

:
min]

:
4

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.03

:
min]

::
29

: :::::
K = 2

::::::::
N = 2741

: :::
opt.

:
[
:::
2.93

:
min]

:
5

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.04

:
min]

::
30

: :::::
K = 4

::::::::
N = 2741

: :::
opt. [

:::::
40.82 min]

:
6

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.05

:
min]

::
31

: :::::
K = 4

::::::::
N = 2741

: :::
opt. [

:::::
47.99 min]

:
7

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.04

:
min]

::
32

: :::::
K = 4

::::::::
N = 2741

: :::
opt. [

:::::
55.95 min]

:
8

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.04

:
min]

::
33

: :::::
K = 4

::::::::
N = 2741

: :::
opt. [

:::::
54.74 min]

:
9

:::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.05

:
min]

::
34

: :::::
K = 4

::::::::
N = 2741

: :::
opt. [

:::::
72.46 min]

::
10

: :::::
K = 2

:::::::
N = 625

:::
opt.

:
[
:::
0.04

:
min]

::
35

: :::::
K = 4

::::::::
N = 2741

: :::
opt. [

:::::
69.85 min]

::
11

: :::::
K = 4

:::::::
N = 625

:::
opt.

:
[
:::
0.33

:
min]

::
36

: :::::
K = 8

::::::::
N = 2741

: :
2
:
h
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Generated wind farm layouts for benchmark Case III with 64 wind turbines.

5.5 Case IV: 10-50 WTs

Although in most projects today the total capacity for grid connection is decided already in the early planning phases, in the580

future one can envisage situations where flexibility in optimizing the number of wind turbines in a project would yield benefits.
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As much as
::::
Even

::
if the power-curve-free model presented in

:
(Sect. 3.2

:
) exhibits a quite good performance both in terms of

AEP and computing time for the scenario of fixed number of WTs
:::::
(when

:::::
AEP

:::
and

:::::
NPV

:::
are

::::::::
basically

:::
the

::::
same

:::::::
metric), it is

not very well suited for optimizations aiming at improving economic indices, like NPV.
:::::
when

:::::::
variable

::::::
number

::
of

:::::
wind

:::::::
turbines

::
are

::::::::::
considered.

::::::
Based

::
on

::::::::::::
computational

:::::::::::
experiments

:::
not

:::::::
included

::
in

:::
the

::::::
paper,

:::
the

::::::::::::::
power-curve-free

::::::
model

:::::::::
embedded

::
in

:::
the585

::::
NSH

:::::::::
terminates

:::
too

::::
early

::
in
:::
the

::::::
search

:::::::
process,

:::::::
resulting

:::
in

:
a
:::::
worse

:::::::
solution

::::
than

:::
the

:::::::::
alternative

::::::::
discussed

::
in

:::
the

:::::::::
following.

For such an optimization, the power-curve-based mathematical program of Sect. 3.1 may be handy as the number of gener-

ators is allowed to vary between a lower and upper bound, nmin and nmax, respectively. For illustration, a domain defined by

a circle with radius 1300 m, and variable number of WTs between 10 and 50 are utilized. These parameters are set relatively

arbitrarily but with sufficient distance to reasonably expect that the limits are not reached. The aim is to illustrate the ability590

of the method in reaching non-trivial solutions, resulting in a an optimized design with an an intermediate number of wind

turbines.

Keep in mind that for this case, a linear superposition model for the AEP component in the NPV calculation is considered.

In this sense, the original WT power curve as deployed
::::::
depicted in Fig. 1 is supported

:::
used. NPV is the true objective function

when applying the NSH Algorithm 1. The modified objective function of MILP model of Eq. (18) for this case has the form595

(Investopedia, 2022):

:::::::::::::
(Cogency, 2014)

:
:

maximize
ξ,η,u

−
N∑

i=1

cwtξi +8760

Y∑

y=1

N∑

i=1

∑

j,k

m+2∑

l=1

cewjkη
l
ijkp(u

l
m)

(1+ r)y
(25)

where cwt is the cost per WT in mEUR, ce the energy price in mEURMWh−1, r is the discount rate in %, and Y is

the number of years of lifetime of the project. For this case study, values of cwt = 6.7 Mill. Eur (Nord Pool, 2022)mEUR600

::::::::::::::::::::::::::::::
(Mishnaevsky Jr and Thomsen, 2020), ce = 0.00015 (Mishnaevsky Jr and Thomsen, 2020)mEURMWh−1

:::::::::::::::
(Nord Pool, 2022)

, r = 5%, and Y = 20 are assumed.
:::
The

:::::::
general

::::
form

::
of

:::
the

::::
NPV

::::::::
equation

::::::::::::::
(Cogency, 2014)

:
is
:::::::
defined

::
by

:::
the

::::
sum

::
of

:::
the

::::::
present

::::
value

::
of

:::::
cash

::::
flows

:::::::::::
(Discounted

::::
Cash

:::::
Flow,

:::::
DCF)

::
of

::
a

::::::
project

:::::
under

:::::::
analysis.

::
In

::::
Eq.

::::
(25),

:::
the

:::
first

::::
sum

::
is

::
a

:::::::
negative

::::
cash

::::
flow

::::::::::
representing

::::::::
purchase

::
of

:::
the

::::
WTs

::
at
::::

the
::::::::::
construction

:::::
stage

::
of

:::
the

:::::::
project,

:::::
while

:::
the

::::
next

::::
term

:::::::::
represents

:::::::
positive

::::
cash

:::::
flows

::::::
coming

::::
from

:::::::
trading

:::
the

::::::::
electricity

::
in

:::
the

:::::::
market.

:::::::
Because

::
of

:::
the

:::::::
additive

::::::
nature

::
of

:::
the

:::::
NPV

:::::
metric

::::
and

::::
since

:::
the

:::::
focus

::
is
:::
on605

::::::::
evaluating

:::::::::
investment

:::
vs

::::::::
revenues,

::
by

::::::::::
maximizing

:::
Eq.

:::::
(25),

:
a
::::
fully

:::::::::::::
comprehensive

:::::
NPV

:::::
metric

::
is

::::::::::
equivalently

:::::::::
improved.

Three runs launching the
:::
The

:
model of Eq. (18) with modified objective function Eq. (25), embedded in the NSH Algorithm

1 with NPV as target function are executed
:
is
::::::::

executed
::
in

:::::
three

::::
runs. For the first example

:::
run the number of turbines is fixed

to nmin = nmax = 10. In the second example ,
:::::

while
::::

for
:::
the

::::::
second

:
the number of turbines remains fixed but is increased

to nmin = nmax = 50. For the final example
::::
third

:::
run

:
the number of wind turbines are allowd

::
is

:::::::
allowed

:
to vary between610

nmin = 10 and nmax = 50. The inputs parameters for Algorithm 1
::::::::
Algorithm

::
1

::::
input

::::::::::
parameters are C = {467,590,1014},

T = {1,1.5,2} h, V = {2,4,6,8,24}. The main
:::
The

:
results are plotted in Figures ??, ??, and ??, respectively

:::::
Figure

:::
11.

Evolution of the AEP and NPV with number of wind turbines fixed to 10 applying the power-curve-based model.

Evolution of the AEP and NPV with number of wind turbines fixed to 50 applying the power-curve-based model.
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Evolution of the AEP and NPV with variable number of wind turbines between 10 and 50 applying the power-curve-based615

model.

When the number of turbines is fixed to 10, the NPV evolution (Fig. ??
:::::
green

:::
line

:::
in

:::
Fig.

::::
11b) is driven by the AEP (Fig.

??
::::
green

::::
line

::
in
::::

Fig.
::::
11a). Both curves are monotonically increasing, reaching a final value of NPV of = 456.40 Mill. Eur.

mEUR
:
. The same behaviour is visible for nT = 50, although the final NPV is greater (683.53 Mill. EurmEUR), see Figure

??. The difference in discounted cash flow
:::
blue

::::
line

::::::
Figure

::::
11b.

:::
In

:::
the

::::::
second

:::::
study,

::::
the

:::::::
positive

::::::::
difference

:::
in

::::
DCF

:::::
from620

::
the

:
revenues surpasses the associated extra investment costs from the additional number of wind turbines .

::
40

:::::
wind

:::::::
turbines

:::::::::
considered.

::::
The

:::::::::
significant

:::::::
increase

::
in

::
the

:::::::
number

::
of

::::
WTs

:::::::
doubles

:::
the

:::::::::
computing

:::::
time,

:::
due

::
to

:::
the

::::
large

:::::::
increase

::
in

:::
the

:::::::
number

::
of

::::::::
variables,

:::::::
selecting

:::
50

::::
WTs

::::::
entails

::::::::::
significantly

:::::
more

:::::::
possible

:::::::::::
combinations

:::
of

::::
valid

::::::::
solutions.

Whether
:::
An

:::::::::
interesting

:::::::
question

::
is

:::::::
whether there is a trade-off point in between of both extreme cases is the main question

to answer. The
:::::
larger

::::
NPV

:
in

:::::::
between

:::
the

:::::::
bounds

::
of

:::
WT

:::::::
number.

::::
For

::
the

:::::::::::
optimization

:::::::
program

::::
with

:::::::
variable

:::::::
number

::
of

:::::
WTs,625

::
the

:
evolution of the WTs number in Fig. 11c and the AEP in Fig. 11a

:::
(see

:::::
black

:::::
lines

::
in

:::::
these

:::::::
figures)

:
exhibits a perfect

correspondence. The more WTs the larger AEP, in spite of the increased wake losses. The curves increase in time, up to a

point where the model estimates that further increase of WTs would not lead to a better NPV. The final number of WTs is 34.

The NPV evolution in Fig. 11b
:
(
::::
black

:::
line

:
)
:
naturally only improves with time, resulting in a final value of 795.86 Mill. Eur.

mEUR
:
. Note that the NPV in this case is greater than when a larger number of WTs (i.e. 50) was considered and of course630

when only 10 were considered.
:::::::::::
Interestingly,

:::
the

::::::::::
optimization

:::::::
program

::::
with

:::
50

::::
fixed

:::::::
number

::
of

::::
WTs

::::
finds

::
a
::::
final

:::::::
solution

::::
with

::::
AEP

::::
very

:::::
close

::
to

:::
that

:::::
from

:::
the

:::::::
variable

:::::::
number

::::::::
program,

:::::
being

:::
the

:::::::
solution

::
of

:::
the

::::::
former

::::::
0.50%

:::::
lower

::::
than

:::
the

::::::
latter,

:::
but

:::::::
requiring

:::::
more

:::::
WTs,

:::
and

::::::
hence

::::
more

::::::::::
investment

::::
(47%

::::::
more).

::::
The

::::
final

:::::
NPV

:::::
value

::
of

:::
the

:::::::
variable

::::::
number

::::::
model

::
is

:::::::
16.43%

::::::
greater

:::
than

:::
the

::::
one

::::
with

::::
fixed

:::
50

:::::
WTs.

:::::
These

::::::
figures

:::::
could

::
be

::::::::
expected

::
to

::
be

::::::
similar

::::
even

::
in

::::::::
situations

::::::
where

:::::
lower

:::::
AEPs

:::
are

:::::::
obtained,

::
if
::::
that

::::::::::
compensates

:::
by

::::::::::
augmenting

::::::
overall

:::::::
financial

:::::::
metrics

::
as

:::
the

::::
NPV.635

This result shows the benefit of having optimization models that support variable number of WTs
::
and

:
accounting for metrics

beyond AEP. The advantages may become even more pronounced for more complex situations, as for instance, if the WT

investment costs are dependent on the exact installation area or different WT sizes are considered.
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Figure 11.
:::::::
Evolution

::
of

:::
the

::::
AEP,

::::
NPV,

:::
and

::::::
number

::
of

:::
WTs

:::
for

:::
the

::::
three

:::::::::
simulations.

:::
The

::::
green

::::
lines

:::
are

:::::
results

::
for

:::
the

:::::::::
optimization

:::::::
program

:::
with

::::
fixed

::::::
number

::
of

::::
WTs

:::::
equal

::
to

::
10,

:::
the

::::
blue

:::
ones

:::::
equal

::
to

::
50,

::::
and

::
the

:::::
black

:::
ones

:::
for

:::
the

:::::::::
optimization

:::::::
program

::::
with

::::::
variable

::::::
number

::
of

:::
WTs

:::::::
between

::
10

:::
and

:::
50.

6 Discussionsand future work

The two models proposed in this article
:::::::::
manuscript have many of the common characteristics of mixed integer linear program-640

ming models. They require significant resources like computational time and memory . Furthermore, they
:::
and

:
exhibit rather

low tractability and scalability for global optimization algorithms.

The power-curve-based model, albeit requiring large computational resourcesas number of cores and RAM memory, man-

ages to provide reasonably good solutions for small-sized probleminstances, being only 1.18% worse
:::::
lower

:
than its power-

curve-free counterpart for the 16 WTs case and 4.41% for the 36 WTs case. This diminishing effectivity
::::::::
efficiency

:
is to be645

expected, given the large number of variables and constraints. The power-curve-free model on the other hand
:
, along with the

heuristic,
:
is much faster due to its associated more compact formulation. This translates into the ability to be highly competitive

compared to a large set of benchmark algorithms. In situations where there is an interest for optimizing metrics beyond AEP,
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such as the NPV, the power-curve-based model becomes very useful given its intrinsic capacity to support this kind of objective

functions, as shown in the final test case.650

It is relevant to mention
::::::
should

::
be

:::::::::
mentioned that there are limitations in the used wake models

::::
wake

::::::
models

::::
used

:
compared

to recent models from the literature
::::
ones (Thomas et al., 2022b). For example, the used wake model

::::
wake

::::::
model

::::
used

:::
in

:::
this

::::::::::
manuscript does not consider the modifications of

:::::::
changes

::
in

:
the turbulence intensity or thrust coefficient variations

from wind speed
:::::::
variations

:
inside the wind farm. It is uncertain if these modifications

::::
using

:::::
wake

::::::
models

::::
like

:::
the

::::
ones

:::
in

:::::::::::::::::::
(Thomas et al., 2022b) would still allow an integer linear programming formulation or approximation of the WFLO problem.655

It is also uncertain what
:::
the impact on the final solution quality these detailed modelling aspects imply. These questions are

left for future work.

Notwithstanding the listed shortcomings, it is very enthralling that these models
:
, in combination with the neighborhood

search heuristic,
:
are able to match and in some cases improve the results obtained when considering the turbine positions as

continuous variables (see Table 3). This opens the door to trying out new
::::::::::::
experimenting case studies with functionalities easily660

adaptable to discrete parametrization techniques, which can be very challenging for continuous variable modelling approaches.

Future work can include the application of the proposed methods to real-world problem instances with for example, forbidden

areas, complex turbine cost functions or integrated optimization with electrical systems. Furthermore, the assessment of the

robustness of the method for different initial layouts can be assessed in following studies.

7 Conclusions665

This manuscript contributes both methodologically and empirically to address the WFLO problem. It is very difficult to cope

with extended versions of the classic problem definition. Relevant extensions include variable number of WTs or complex

forbidden areas. For these situations there is a need to develop new modeling and algorithmic approaches in this direction.

A neighborhood search heuristic embedding integer programming formulations is therefore proposedto satisfy these new

demands
:::::::
proposed. For both presented formulations

::::::::
presented

::
in

:::
the

:::::::::
manuscript, the step-wise power curve and power-curve-670

free, the heuristic notably improves a single execution of full models when calling a state-of-the-art branch-and-cut solver in

terms of solution quality. An improvement of up to 3.42% in the AEP is achieved by applying the neighborhood search strategy

for cases where the WTs number is fixed compared to solving the full model.

Another important takeaway is the satisfactory performance of the power-curve-free model, which uses an approximation

of the total wind speed deficit, when (implicitly) optimizing for AEP. This is due to the good correlation between the two675

measures, and the correction capability of the heuristic. For the classic WFLO problem definition, the proposed model is able to

considerably enhance
::::::
improve

:
(from 1% to around 10%) the AEP compared to benchmark layouts obtained by several different

:::::
results

:::
by

:::::::
multiple

:
gradient-based and gradient-free algorithms. Even when directly compared to methods implementing a

continuous variables technique, the proposed heuristic provides very competitive results, being able to come up with layouts

with similar objective function values, or even improving it
::::::
similar

::
or

::::
even

:::::
better

::::::
results. These are very promising results that680

34



would enable to get high-quality solutions for problem instances where continuous variables modelling approaches may not be

able to run or come up
::::::
provide with good incumbents.

Finally, the model with explicit representation of the power curve embedded within the neighborhood search heuristic is

able to propose non-trivial solutions when implementing an objective function
::::::::
objective

::::::::
functions beyond AEP, such as NPV.

For these cases
:
, the trade-off between energy revenues and investment costs is inherently studied. For the case study

:::::::
example,685

the model suggests that is not worth to install the maximum number of allowed wind turbines , but a lower value that reflects a

:::::::
installing

::
a
:::::
lower

::::::
number

:::
of

::::
wind

:::::::
turbines

::::
than

:::
the

:::::::
allowed

:::::
would

::::::
results

::
in

:
a
:
better NPV value,

:::::
albeit

::
a

::::::
slightly

:::::
lower

::::
AEP.
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