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Abstract. Two models and a heuristic algorithm to address the wind farm layout optimization problem are presented. The
models are linear integer programming formulations where candidate locations of wind turbines are described by binary
variables. One formulation considers an approximation of the power curve by means of a step-wise constant function. The
other model is based on a power-curve-free model where minimization of a measure closely related to total wind speed
deficit is aimedoptimized. A special-purpose neighborhood search heuristic wraps the-fermulations-in-order-to-inerease-these
formulations increasing tractability and effectiveness compared to the full model that is not contained in the heuristic. The
heuristic iteratively searches neighborhoods around the incumbent using a branch-and-cut algorithm. The number of candidate
locations and neighborhood sizes are adjusted adaptively. Numerical results on a set of publicly available benchmark problems
indicate that a proxy for tetal-veloeity-defieittotal wind speed deficit as objective is a functional approach, since high-quality
solutions of an-annual energy production metric are mﬂm%mlw%mm Fur-
ng-provide
good results compared to a large set of distinctive approaches that consider the turbine positions as continuous variables.

thermore, the proposed heuristic is able to ma

1 Introduction
L.1  Motivation and Problem Definition

Cost reductions for renewable energy generation is on the top of political agendas, with the objective of supporting the world-
wide proliferation of clean energy production systems. Subsidy-free tendering processes become more frequent, as is the case
for offshore wind auctions in Germany since 2017 and in Netherlands since 2018, or in China for onshore wind from 2021
(GWEC, 2020a). The fast evolution of offshore wind in the last decade, with ar-a sharp growth of global installed capacity
(GWEC, 2020b), is yet another clear indicator of the-matarity-of-the-industry—As—wind-energy-is-unleashing-itspotential-to
contributefor-growth trend of wind energy. For wind energy to become the cornerstone of a successful green energy transition,

the-need-tofurther-economiecallyrefinefurther reduction in costs - partly achievable by economically optimized wind farm
designs turns-into-a-eruetal-task- will play an important role.

The basic Wind Farm Layout Optimization (WFLO) problem eonsists-in-aims at deciding the positioning of Wind Turbines

(WTs) within a given project area to maximize the Annual Energy Production (AEP), while respecting a minimum separation
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distancebetween-the-generators. The classic problem definition is-te-place-aims at placing a fixed number 7t of typically homo-
geneous (single type) WTs. This problem has been studied broadly and intensively since at least three decades (Herbert-Acero

et al., 2014). The first effort in the topic was the pioneering work of Mesetti-et-al(Mosetti-etal51994Mosetti et al. (1994),
where the Katic-Jensen wake decay model (Katic et al., 1986), implemented to compute wake losses, is coupled with a genetic

algorithm (Peb;2043)-as optimizer to iteratively improve the layout.

1.2 Optimization Workflow for WFLO

The main components when building an optimization workflow for the WFLO problem are the wake and-the-optimization
modelsmodels (deficit and superposition), the program formulation, and the associated numerical algorithms—For-the-first;
in-order—to-be-able—to—formulate—, For formulating tractable frameworks, the designer needs to rely on the so-called en-
gineering wake models. These are essentially mathematical representations which can be expressed in terms of analytical
equations after greatly-significantly simplifying complex physics modelling, while still capturing at-to a good extent the
underlying nature of the phenomenon under analysis. Reeently;—seientifie-Scientific articles in this field have proposed and
validated engineering wake models with smooth and differentiable velocity deficit shape, as-two_examples are the Bas-
tankhah’s Gaussian (Bastankhah and Porté-Agel, 2016) or its simplified version (Thomas-andNing,2018);-the Niayifar-and
Porté-AgeHNiayifar-and-Porté-Agel, 2045)-or-(IEA Wind Task 37, 2019), and the Jensen cosine model (Themas-et-al;2022b)
(Jensen, N.O., 1983). Likewise, the aggregation of individual wake velocity deficits can be done through linear superposi-
tion (Lissaman, 1979) or root sum squares (Porté-Agek-et at-—2020)(Voutsinas et al., 1990), with local or freestream velocity

1.3 Continuous Optimization for WFLO

Optimization techniques for the WFLO problem formulation can be classified, depending on the choice of variables, into
continuous and discrete optimization. In the field of continuous optimization, the location p; of a WT ¢, in terms of the abscissa
(x;) and ordinate variables (y;) in the Cartesian plane, p; = (z;,¥;), can take any real values, while ensuring that the point is
within the project area F, and simultaneously satisfying the minimum distance constraints. Several gradient-free algorithms
have been applied to this problem, including metaheuristics, as genetic algorithm (Réthoré et al., 2014) or particle swarm
optimization (Wan et al., 2010). Likewise, gradient-based methods can be utilized-for-this-problemused, as for example the
Sparse Nonlinear OPTimizer (SNOPT), that uses a Sequential Quadratic Programming (SQP) approach (Thomas et al., 2022a),
or interior-point solvers (Pérez et al., 2013). In general, gradient-free algorithms, although highly flexible for modelling aspects,
have considerably poorer scalability for larger problem sizes than gradient-based approaches. Re-parametrization approaches
aiming to reduce the number of variables through simplified geometrical representations of the problem, such as row and

column spacing or inclination angle, are also emerging within-this-context-bringing-alongvarious-enhaneements-(Stanley and

Ning, 2019). Additionally, multi-start strategies are frequently implemented as a workaround for the intrinsic multi-modal
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nature of the WFLO problem. Finally, hybrid methods combining gradient-free and gradient-based algorithms are-alse—an

alternative-able-to-come-up-with-competitive-have been proposed with good results (Mittal and Mitra, 2017).

The utilization of simplified objective functions closely related to more sophisticated AEP models is also an emerging
research field for continuous gradient-based optimization. In the recent work (LoCascio et al., 2022), a novel formulation for
time-averaged wake velocity incorporating an analytical integral of wake deficits across wind direction is proposed. This article
shows the application of this analytical formulation for WFLO using the Sequential Least Squares Quadratic Programmin
(SLSQP) as numerical algorithm. Computational results indicate the ability of this approach in finding WT layouts with energy.
production comparable to the alternative of optimizing directly more accurate AEP objectives.

1.4 Discrete Optimization for WFLO

Discrete optimization models can be formulated for this problem by means of sampling the available project area in form of
N candidate location points. Thus, only a set of finite options from the continuous search space are considered, where the nr
WTs are-instatlable;-with-in-prineiple-N->-nrto be installed are in principle nr < N. In contrast to continuous optimization,
a candidate point ¢ is then represented by a binary variable &;, that gets a value of one if a WT is installed at that location,

or zero otherwise. The vast majority of articles in the literature implement gradient-free algorithms for this technique, as

Mosetti et al. (1994

and Grady et al. (2005), both using genetic algorithms. Algorithms utilizing explicit gradients are also a valid approach in
this field (Pollini, 2022). This modelling technique ;heweverfits very well in the well-studied general framework of integer

programming. The main advantage of this approach is the possibility to utilize exact solvers based on branch-and-cut method;

the works of Mes

theoretically ;-being-able to solve a problem to optimality while supporting common engineering constraints (Wolsey, 2020).
Nevertheless, the low tractability and poor scalability of this method ir-as function of the size of /N and the number of state
variables is well-known.

A large number of benefits are implicit in the discrete modelling technique over the continuous counterpart, including: (i

capacity to include the number of WTs as a variable and to model overall economic metrics as Net Present Value (NPV),
(ii) ease of modelling any shape of project area or forbidden zones, convex or non-convex, (iii) capacity to model extensive
integrated models to support electrical systems optimization, (iv) ease of modelling terrain-based constraints or cost functions,
proposing new methods for the WELO problem in the area of discrete optimization. Moreover, in broader terms, since even the
basic definition of the WFLO problem translates into a non-convex formulation, new methods are required to efficiently obtain

1.5 Literature Review for Integer Programming within WFLO

Probably the first work within the context of integer programming for the WFLO problem was the thesis of Fagerfjill in
2010 (Fagerfjall, 2010), where a Mixed Integer Linear Program (MILP) is proposed, modelling the objective AEP func-

tion as a superposition of deficits defined in terms of power. Although physically inaccurate, as the deficit superposition
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should be computed for velocities, an important reduction in the number of variables is achieved that ultimately allow solv-
ing to optimality rather small problem instances. A similar approximation is carried out by Areheret-al«(Archeret-al; 204

5 s - 5 Archer et al. (2011), Fischetti et al. (2016), and
uan and Kim (2019), but introducing important modifications to the model by reducing number of constraints. The objective

function may also be formulated for aggregated velocity deficit (Turner et al., 2014; Kuo et al., 2016), but the imperfect cor-

respondence with AEP will result in not solving the-original-problem-to optimality, and-possibly-getting-possibly resulting in

final low-quality solutions. Another advantage of integer programming formulations is the chance of incorporating heuristic

routines in the top of such models, as for instance proximity search (Fischetti et al., 2016; Shaw, 1998), to quickly improve a

given starting feasible point.

1.6  Contributions

Several contributions to the field of discrete optimization for WFLO are proposed in the manuscript. The first contribution is the
proposition of new integer linear formulations which are able to capture to a good extent the underlying physics of the problem.
The main obstacles for a MILP representation of WFLO problem are the non-linearity of the power curves, and the choice of
wake velocity deficit superposition approach. Currently, the scientific literature in—this—eentext-has fundamental knowledge
gapsin-at-least-ene-of-these-aspeets. For example, previous works have considered aggregation of power deficits instead of
velocities, gaining a simplification on the mathematical formulation ;-in detriment of the physics modelling fidelity. This article
manuscript presents new strategies for modelling both facets in the class of MILP problems, one with explicit power curve and

wake superposition modelling, and another with a proxy objective function based on total wind speed, thus simplifying the

original formulation. In contrast to (LoCascio et al., 2022), this proxy objective is developed for MILP optimization, meanin
that the aim is to get a linear expression that does not need to be friendly for explicit gradient-based optimization.

The second main contribution is the proposition of a new special purpose neighborhood search heuristics in order to speed

up the generation of high-quality solutions. This heuristicwraps-both-formulationshaving-, wrapping both formulations, has

a twofold functionality;—; first to increase tractability, and second to redirect the optimization search in terms of a speci-

fied high-fidelity-objeetive-funetion-objective function with higher fidelity. Similar neighborhood search methods have been
roposed in the literature, as the Discrete exploration-based optimization (DEBO) (Thomas et al., 2022¢

rocess composed by a greedy initialization and a local search block. While the method proposed in this manuscript shares

which is a two-steps
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most of the advantages of the mentioned approach (no gradients required, can handle unconnected and non-convex bounda
constraints, and so on), it actually goes beyond the DEBO algorithm as among others, i) significantly less AEP function
evaluations are required, and ii) it is based on well-establish integer programming theory, relying in efficient implementations

of the branch-and-cut algorithm. —The main
numerical results indicate good computational performances for a set of publicly available benchmark case studies compared

to state-of-the-art gradient-free and gradient-based approaches (Baker et al., 2019).

The rest of the manuscript is structured as follows. Section 2 introduces the engineering models of the physical aspects of
interestin-the-article. Section 3 presents the two mathematical programs developed, and Sect. 4 unfolds-describes the proposed
heuristic framework wrapping both programs. Computational experiments are depleyed-shown in Sect. 5, followed up by

discussions in Sect. 6, and lastly the manuscript is finalized with the conclusions in Sect. 7.

2 Physics Modelling

The proposed MILP models and general optimization framework in this article-manuscript can be easily applied to many wake
deficit models. No particular properties on smoothness or differentiability s-or-are required from these models for optimization
purposes. Additionally, no specific demands on mathematical structure are-regtired-in connection with controlling wake di-
ameter and deficit (Thomas et al., 2022b) are stemming from the optimization programs proposed in this article. Since the
computational results in the article are obtained after solving open access case studies from the FEA37-IEA Wind Task 37
e-(Baker et al., 2019), the wake model

implemented there is presented in Sect. 2.1, along with the #sed-superposition techniques in Sect. 2.2, WT power curve in Sect.
2.3, and the AEP calculation procedure in Sect. 2.4. Variations on ways of computing the absolute velocity deficits and linear

wakes superposition under the framework of MILP are introdueed-as-welalso introduced.
2.1 Wake Deficit Model

A simplified version of the Bastankhah’s Gaussian is considered (Thomas-and-Ning;2048)(IEA Wind Task 37, 2019). The
relative velocity deficit o477 : - % U~ _behind a single WT
located at ¢, and evaluated at point 4, is described using the model and notation from dEA-Wind-Task-37,2019)—

Case Study I (IEA Wind Task 37, 2019).

o _\2
(1= /1= %57 ) exp (—0.5 () ) B~ >0
Suie = e y ()

0, otherwise.

oy = ky(Zi — Z0) + D/V8 2

where uo, is the inflow wind speed, Ct is the thrust coefficient,

the hub generating wake (Z,) to hub of interest (;) along freestream ﬁl—y—‘w (let this difference be d; I is the

‘X — Ty is the stream-wise distance from



span-wise distance from the hub generating wake to hub of interest perpendicular to freestream (let this difference be d-), o

is the standard deviation of the wake deficit, ky is a variable based on a turbulence intensity, and D is the WT diameter.

155 2.2 Wake veloeity-defieitsuperpeositionVelocity Deficit Superposition Model

The absolute velocity deficit A {644A (67, k) at wind direction 67 and wind speed index k s-A;{#1#);can be estimated
in two ways. Either #-is-based on the inflow wind speed threzgh-(Lissaman, 1979; Katic et al., 1986) through

Auig (07, k) = S (67, k)uk, 3)

or itis-based on the wind speed ug;), at WT £ creating the wake at point i for wind direction 67 and speed k +(Voutsinas et al., 1990; Niayifar
160

2

Auig (07, k) = Suie (67, k)ugjn “)

here du7r{64H1-0;0 (607, k) is the relative velocity deficit of +ever4-atsame-operation-condition- over i at operation condition

{j.k} after Eq.(1) and Eq.(2). Note that Eq. (3) leads to a greater value and therefore is considered a conservative approach
compared to (the potentially more realistic) Eq. (4)(Niayifar-and-Porté-Agel; 2015). Nonetheless, implementing Eq. (3) greatly

165 simplifies the resultant system of equations and allow for preprocessing calculations.
Let the set U?] collects the WTs creating wake over WT at point 4 for wind direction 67 and-speed-k-as-per-

as per.
U ?j = {/ | position £ is up-wind compared to position ¢ for wind direction 5} (5)

TFhe-the wake velocity deficit superposition, to calculate the total velocity deficit at WT i, Au{6-4}A, (67, k), can be ob-

170 tained through two mechanisms. Either it is based on linear superposition model threugh-(Lissaman, 1979; Niayifar and Porté-Agel, 2015)
through

Aui(07.k) = Y Auie(67,k) ©)

ecu?’

or it is based on the root sum squares superposition model (Katic et al., 1986; Voutsinas et al., 1990)

Aui(09,k)= | > A2u(07,k) | Y AZ(09,k) 7)

teu?’ teu?’

175 2.3 WT Power Curve

For-computing AEP-suttable-Suitable power curves are required for the-avaitable-turbine-types—Fhese-computing AEP, Often
power curves are ofter-not perfectly suitable for optimization, due to the usual non-differentiability atrated-wind-speed—The

general-characteristies-are-that-the-in several points throughout the function. Generally, a power curve is zero below cut-in
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wind speed, zero above the cut-out wind speed, and constant between the rated wind speed and the cut-out wind speed. Ia-In
this particular study, between the cut-in and rated wind speeds the curve is assumed to be smooth, convex and monotonically

increasing. The simplified power curve for a generic turbine as a function of wind speed « is modelled through

O7 u< ucut—m
; 3
rated u—ut" cut-in rated
p (urated_ucul-in bl U S u < u
p(u) = (®)
prated urated <u< ucul—out
) —
0, w> eut-out

where p™©d is the nominal power at (and above) rated wind speed u"d. The other turbine characteristics are the cut-in wind

speed u"“" and the cut-out wind speed u """, In this definition, the WT power curve is not differentiable at 1", ¢red
cut-out

U since in these points the left and right hand side derivatives are different. Be aware that the optimization programs
roposed in this manuscript are not dependent on WT power curve differentiability.

2.4 Annual Energy Production, AEP

The AEP is ebtained-afterthe-application-of-the following-expression-

calculated with

AEP =8760> > w;rp(uijk) ()

i=1 jk

where wjy, is the joint probability of wind direction j and wind speed £, and 8760 is the number of hours of a standard year.

3 Optimization Models

Fhe-Mi=P-model-The MILP program with explicit modelling of the WT power curve, wake meodel-deficit, and wakes superpo-
sitionis-first, is introduced in Sect. 3.1. Then, the power-curve-free formulation ;-based-on-total-wind-speed-within-the-farais
deployed-is described in Sect. 3.2.

For-both-medels;-the-The main type of variables &; € {0,1} represent presence or absence of turbines at the candidate
locationsas-mentioned-before, for both models. Given N points, i.e. candidate locations for turbine positions, with positions p;
inside the domain F (i.e. p; € F for all i WT candidate locations), binary variables &; € {0, 1} are associated with the following

interpretation

€ = 1, if a turbine is located at point ¢ with position p;, and (10)

0, otherwise.

Let the index sets IV; storing the candidate locations violating the minimum distance constraints for a WT ¢ be defined as



205

210

215

220

225

where d™* > ( is the minimum required distance between two turbines{2/5-in-this-study). If & = 1 then all binary variables
in the set IN; should be forced to zero, whereas if ¢; = 0 these variables should be free to take any value in {0,1}.

All relevant distances can be preproeessed-pre-processed for all combinations of points 4 and j—These-pertinent-q. These
parameters are then defined as function of the Cartesian plane positions p and wind direction 7, as the Euclidean dis-
tances di(p)r=1Pr—P712dig(P) = ||Pi — Pqll2. the stream-wise distances d%ﬂ%réj—}m and the span-wise distances
di{p:#1)d;. (p; 07), extending the concept introduced in Sect. 2.1.

3.1 Power-curve-based modelModel

s-Continuous state variables u;;;, are used for wake
modelling and power computation. A variable u; ), represents the wind speed at WT location ¢, for wind direction j, and wind
speed k.

-power curve is
approximated with a step-wise function. The cubic demain-part of the power curve is first partitioned into m intervals, plus one

interval from a negative point (—u™) to the cut-in speed, and a final one to cover the range from rated to cut-out speed. Each

isometric interval eftength-Aw-within the cubic domain of length Ay = (u™¢ — ") /;_is approximated with a constant

power value, see Fig. 1.

l

An interval [ of the whole domain is characterized by three parameters u!, ul, and u} with the next properties

ini & — ucul»m7u:n+2 — uraled’u}:n+2 — ucul»out (12)

ul = I L = qrated g0t — i 4 (g — DA ul T = M faAufora=1,...,m (13)
up S padufora =1 m s
ub, = 0.5(ul +u) (16)
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Figure 1. Piece-wise constant approximation of a wind turbine power curve through sampling with m = 10 intervals between the cut-in and

rated wind speeds.

Equation (12) defines the lower and upper limits for the extreme intervals [ = 1 and [ = m + 2, Eq. (13) formalizes them-for

a-interval-d-the lower and upper limits for the first interval in the cubic partef-the-eurve(2-<4<-m—+1-, and-a = 1, and the last
m), while Eq. (15)
does it for the upper limits. Equation (16) presents how to determine the extracted wind speed associated to the pewer-value-in

one a = m, respectively. Equation (14) expresses the lower limits for intervals in the cubic part (a =1, ...

interval [ of within whole domain, which is the average value of u! and u!.

Let define the binary state variables nﬁ ik € {0,1} forl =1,...,m + 2 with the interpretation

. 1, if ui <k < uﬁ, and
Mijk = : (a7
0, otherwise.
i.e. these variables indicate which of the wind speed intervals [ of the power curve approximation for WT ¢, operates at wind
direction j, and wind speed k.
Adter-the-presentation-of- With all the variables of the model 5- activation variables &, continuous state variables u, and binary
state variables 7 -the—- introduced, formulation in Eq. (18) collects the AEP objective function, the constraints of a generalized

version of the WFLO problem, and the variables’ domain definition.
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max1mlze 876022 Z wjknwkp (18a)

&mu

i=1 j,k =1
subject to: §; + &4 <1 Vi,jg€ N; (18b)
mm < Z pmax (180)
m+2 m+2
> bt Swige <Y 0kl Y (i,4, k) (18d)
=1 =1
m—+2
> =1 ¥ (i,5.k) (18e)
Uijk —U, Z 566“% )) V(’L,j,k’) (18f)
eeU?J
§&ne{0,1} ueR (18g)

The-the objective function in Eq. (18a) is an approximation of the AEP computation presented in Eq. (9). Equation (18b)
models the minimum distance constraints as explained in the introduction of Sect. 3. If a binary variable ¢; is active, then
all candidate points closer than d™™ should be excluded, i.e. set to zero. If a binary variable &; is inactive then the other
candidates are still eligible. The definition of the set IV; is provided in Eq. (11). Equation (18c) models the situation that the

min

designer requires at least n™™ and at most n™#* WTs to be located in the domain. Note that for the classic problem definition

it = pmax—y Equation (18d) connects both-state variables u and 7 as explained in Eq. (17) —while Eq. (18¢) forces that
there-is-one operation case active for each WT candidate at each wind direction and speed. The last constraint in Eq. (18f) is for
the wake velocity deficit and wakes superposition modelling to calculate wind speed for each candidate location at each wind
direction and inflow speed u’_. The presented model supports a conservative velocity deficit approach (Eq. (3)) with linear
superposition (Eq. (6)). The definition of set U f T s provided in Eq. (5). Note that an extension, consisting in creating extra
continuous state variables and associated constraints, could allow for considering the more realistic approach in Eq. (4). It is

still unknown if the root sum squares model of Eq. (7) could be implemented in the framework of MILP. Finally, Eq. (18f)

defines the domain of the required variables. A value for u™ of u"-°"* is set up.

3.2 Power-curve-free modelModel

Albeit the formulation of Sect. 3.1 suceeeds-atrepresenting-at-a-very-good-represents to a very large extent the physics ruling
the problem, it has a considerable number of variables and constraints that may hinder the capacity to tackle interestingly-sized

problems—Thenext-medel-thatlarger problems. The model presented in this section neglects power curve and AEP calculation
is-deployed;-is-intended-to-simplify-itand aims at simplifying the power-curve-based version.

10
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The model presented-in-this—sectiondeploys-introduces a strategy to account for the combination of Eq. (3) and Eq. (7)
to calculate velocities, since the case studies from the HTEA37-JEA Wind Task 37 follow this eutleekmethodology for AEP

computation. It would be possible though to consider the linear superposition model if reeessitatednecessary. However, this
modelthe power-curve-free model does not support the application of Eq. (4).

Combining Eq. (3) and Eq. (7) and extending the summation range in Eq. (7) to all candidate locations, the tetal-wind-speed
sum of wind speeds in the farm, U, can be modelled through

N

N N N
U:Zijkuﬁogi—Zijkuﬁo Z((Sum(ﬂf,uk )220 Z (609, uk )22, (19)

i=1 j,k i=1 j,k (=1 (=1

where new binary variables z;; are introduced. The variable z;; is equal to one if both WTs ¢ and ¢ are active (i.e. if
& =& =1) and zero otherwise. Nevertheless, the previous expression is not linear for variable z;; due to the presence of the

square root in each total relative velocity deficit term. Propping-By removing the square roots, the following expression is

obtained:
Total inflow wind speed Total wind speed deficit proxy
2
U § E w]ku gz E E E wjk)u zé 9] )) Zil (20)
i=1 j,k i=14=1 j,k

Eet-the-preproeessed-the arguments of the square roots in Eq. (19) define a function closely related to the full root-squared
expression. This linearization approach is similar to (Turner et al., 2014). Let the pre-processed coefficient in front of of z;; be

bie = wjkul, (Suse(0,uk))? @n

Jsk

Cembining-combining Eq. (20) and Eq. (21) results in

Total inflow wind speed ~ Total wind speed deficit proxy

N N N
= Zzwjkulgofi - ZZ(W +bei)zie (22)

i=1 jk i=1 £>i

Eq—~22)>-which defines the objective function to-be-maximized-of the power-curve-free model. In comparison to the objective
function in Eq. (18a), no power curve or continuous state variables are demandedrequired.

Nonetheless, the presence of variables z;, can be troublesome. For the complete model, in addition to having these variables
of combinatorial nature, constraints of the same kind must be incorporated: z;; > & +&; — 1, 235 — &, 2i; — &;. Experimental

results show the heavy computational burden incurred when solving this formulation, impeding-to-selve-impacting the ability
of solving large-scale problems (Fischetti et al., 2016). A-To circumvent this, a big-M trick is then-incorporated-to-come-tp

11



with-a-medel-whichis-exaetly-equivalentincorporated (Wolsey, 2020), resulting in an exactly equivalent model, as reflected in
formulation of Eq. (23).

Total inflow wind speed ~ Total wind speed deficit proxy

N N
maxgumze WikUse&i — T
T
> i=1

i=1 j,k

N

subject to: 7; > Y &b+ (& — 1)M; Vi
{=1:i7#L
N
290 n™t <N G <
1=1

¢e{0,1} 7eR:7>0

The new objective function in Eq. (23a) modifies the component linked to the total wind speed deficit proxy by creating
variables 7;; this variable means total wind speed deficit proxy for WT in candidate location ¢. Equation (23b) defines 7;, if a WT

295 candidate location is inactive §; = 0, then there is no deficit at this location, therefore 7; = 0, because of M; = Eé\’:l:i 20 bie,
and the minimization nature of the problem for wind speed deficits. Oppositely, if & =1, then 7; is forced to be equal to
Zé\]:l: i20&ebie. The next two equations are the same with those already presented in Sect. 3.1 for number of active WTs, and

minimum distance constraints. Finally, Eq. (23e) defines the domain of the required variables.

Note-
Total inflow wind speed ~ Total wind speed deficit proxy
N N
300 maximize) Y wjrul & — > (23a)
IS s i=1
N
subject to: 7; > Y &b+ (& — 1)M; Vi (23b)
L=1:i#4
N
n™t <Yy & <n™ (23¢)
i=1
§+6,<1 Vige N; (23d)
€e{0,1} 7eR:7>0 (23e)

12



note that for the classic problem definition n™™ = n™®=p7, the first part of the objective function becomes

N N
ke ok o ok _ tant
WikUse&s = WjkUse &= WjkUseMT = constan

i=1 3k

i=1 j,k 7.k

305 Ferfor this situation, the objective function is thus equivalent to

N
mmglgnze ; T (24)
this proxy objective function is very useful for formulating the program in the MILP category. While the work in (LoCascio et al., 2022)
focuses on a different formulation (likely more accurate analytically than the one presented here) that is non-linear but gradient
friendly, hence useful for continuous gradient-based optimization.
310 Compared to (Turner et al., 2014), the MILP program (23) with objective replaced by Eq. (24), linearizes the complexity of
its largest set of constraints and variables from N? to NV (Eq. (23b) and Eqg. (23¢)). Furthermore, the constraints in Eq. (23d),
which can lead to infeasible points, are not neglected as in (Turner et al., 2014)..

4 Neighborhood Search Heuristic

In-order-to-be-able-to-address-For addressing large-scale problems, a heuristic is-propesed-to-wrap-the-previously presented
315 MHEP-formutations-wrapping the MILP formulations given in Sect. 3 is introduced. It is based on neighborhood search and local
branching theory (Fischetti and Lodi, 2003). The algorithm solves a sequence of MILPs, with different candidates number N
and/or fandneighborhood search size K, taking advantage of robust and efficient implementations of branch-and-cut methods
for MILP.
The heuristic relies on the observation that for a fixed layout described by ¢ € {0,1}V, the other design-and-state vari-
320 ables are straight forward to determine. This ebservations-observation is valid for all presented-problem-formulations-problem
formulations presented in Sect. 3. Given & € {0,1}", for the power-curve-based model, the continuous state variables u can
be determined through classical wake analysis, and the binary state variables 7 are directly determined by inspection of the
velocities. Similarly, for the power-curve-free model, the 7 variables are trivially computed.

The pseudo code of the Neighborhood Search Heuristic (NSH) is described in detail in Algorithm 1.
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Algorithm 1 Neighborhood Search Heuristic (NSH) Algorithm

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:

C«+{Ny,---,N¢},NeC {Input candidates set}
T+ {Ty, -, Tc},T €T {Input times set}
V«—{Ky,---,Ky},KeV {Input neighborhood sizes set}

countern <1 counterv 1
Obtain initial incumbent of activation binary variables for WTs £ with objective value oy,
for (k=1:1:Kyy) do
N < Clcountern] T + T[countern] K <« V[counterv]
Formulate optimization model with N candidates (including the incumbent), either from Sect. 3.1 or Sect. 3.2
Add Hamming distance constraint centered around the incumbent &, Zi:&,:o &+ Zi:&:l (1-&) <K
Solve opt. model from algorithm lines (8) to (9) until optimality or computing time T with £ as warm-starter
Get the solution pool S, where é € S represents the activation binary variables for WTs of an individual solution
Apply true objective function over each solution é € S, and obtain objective values set O
Compute o; < max O, and i, < argmax O
if o, > o0, then
0p 04
& < Sli/]
else
counterv < counterv +1
end if
if counterv = |V |+ 1 then
counterv <—1 countern < countern + 1
end if
if countern = |C|+ 1 then
Break
end if

end for

set V. The first set contains the sizes N of the meshes to be considered, the second one is fer-the maximum computing time

T for the MILP solver for each size N s-and the last one is for the search size defined as the maximum number of changes K

The first three lines are for-the main inputs of the algorithm: the candidates set C, the times set T, and neighborhood sizes

allowed to the incumbent solution.

is increased. The first step (line 5) is to obtain an initial incumbent binary variables, with the set & storing the acquired value

(0 or 1) for each variable &; : ¢ < N. The incumbent has an objective value of o, calculated after the true objective function.

If the incumbent is improved, then the candidates set C, and neighborhood size K are kept, otherwise at least one of them
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The true objective function refers to the real equation that represents the ultimate aim to be optimized. For example, if this is
the AEP, then it is the product of the power calculation process, applying the considered wake and superposition models and
the original power curve, and not the objective function of the implemented formulation, as in Eq. (18a), which in-any-ease-is
always an approximation.

The next step is to start the iterative process in line 6. Values for N, T, and K are fetched in line 7, followed by the
formulation of the MILP model for candidates N accounting for the points of £&. The Hamming distance, see e.g. (Fischetti
and Lodi, 2003), centered around the incumbent point &, is added to the optimization model in line 9; this constraint reduces
the search space as the number of changes te-of ¢ are limited to K. The complete model is sent to the MILP solver with £ as
warm-starter, stopped unti-itreaches-when reaches either optimality or the assigned maximum computing time 7.

After solver termination, the solution pool S is retrieved in line 11. The solution pool contains all the feasible layouts obtained

in an iteration x from the MILP solver. These points are a result of a linear programming relaxation or from applying heuristics
in a given node, such as, relaxation induced search, polishing, and feasibility pump (IBM, 2022). It is very important to

emphasize the aim of getting the whole pool instead of the best solution. This is done because of the imperfect correspondence
between the true objective function and the objective function of the applied MILP model. For example, a solution which may
have worse objective value, may actually have a better AEP aceerdingto-based on the real model. tn-this-orderoftdeasthe

whele-peel-One of the advantages of the NSH compared to the DEBO algorithm (Thomas et al., 2022¢) is the reduced number

of AEP evaluations. In an iteration x, only |S| evaluations are required. Likewise, many of the other expensive calculations are
done in a pre-processing stage. The whole pool of solutions is examined, and the best solution indexed by #; with AEP of o, is

obtained in line 13. If o; is actually greater than oy, then the whole algorithm is recentered-re-centered around the new £ (lines

14 to 16) -and in the next iteration ~, the same values of IV and K are maintained. Otherwise, the next value of K is taken

(line 18), unless the set has been exhausted. In this case, the next candidates
size IV is considered given by countern, restarting the neighborhood set counter counterwv to one (lines 20 to 22). The NSH

algorithm is terminated when all candidates set C have been processed (line 23 to 25). Another difference between the NSH

and the DEBO is that the latter only changes the position of a single WT in a given iteration, while the former considers
simultaneous modifications of several WT positions.

5 Computational Experiments

As-mentioned-earhier-in-the-manuseript—in-order—to-have-For a transparent benchmark of the proposed methods, the open

access case studies from the HEA37IEA Wind Task 37 (Bakeret-al;2649; Dykes-etal;2645)(Baker et al., 2019) are used for
comparison. These-cases-have-The Task 37 cases consider circular project areas with three different radius (1300 m, 2000 m,

and 3000 m) and number of WTs (16, 36, and 64), nt. Thus, Case I has a radius of 1300 m and nt = 16 WTs, whereas Case
IT has radius 2000 m and nt = 36, and Case III has radius 3000 m and nt = 64, correspondingly.

The results of the statistical correlation between the proxy function given by the argument in Eq. (24) ;-and AEP of the

problem definition (Baker-etal;2019; Dykes-etal;2015)foreachease(Baker et al., 2019) are presented in Sect. 5.1 —Adfter
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this-the-performaneesfor each case. The performance of the proposed models in the case studies are deployed-shown in Sects.
5.2 (CaseI), 5.3 (Case II), 5.4 (Case III). The power-curve-free model of Eq. (23) is implemented with the Eq. (24) as objective

function in these three sections. The true objective function in the NSH Algorithm 1 for these cases is the AEP of the problem
definition. In the end, to prove the capabilities of power-curve-based model of Eq. (18), Sect. 5.5 displays results after applying
this formulation with a modified objective function to express a metric similar to NPV.

The main parameters of the wake model in Sect. 2.1 are fixed to Ct = 8/9 and ky = 0.0324555-Furthermore;a-wind-rose
using a wind rose s-approach where the wind resource is binned in .J directions, and for a specific direction j (69), wind speeds
are correspondingly-diseretized-in-1/-discretized in Y sectors. For the case studies, the wind rose is composed of 16 directions
and a single wind speed k of 9.8 ms™ 1 s i se-is-dis - shown in Fig. 2. Lasthyfor-the-purpese-of

repheability-of the-numerical resultsthe-The power curve from Eq. (8) modelling the IEA37 3.35 MW reference turbine (with
diameter of D = 130 m) is used in this-manuseript-the case studies, ensuring replicability of results (IEA Wind Task 37, 2019;

Baker et al., 2019). The main parameters are p™d = 3.35 MW, v = 9.8 ms~!, ui" =4 ms~?!, and ¢ = 25 ms~1-
TFhe-powercurvefor-these speeifie parameterchoices-, and is plotted in Fig. 1. The parameter d™" is set to 2D,
The-experiments-for-

72

e
FANS "
NN 129

180°

Figure 2. Wind rose used in the computational experiments. Taken from open access source (IEA Wind Task 37, 2019).

The experiments in Sects. 5.2, 5.3, and 5.4 have been carried out on an Intel Core i7-6600U CPU running at 2.80 GHz with
four logical processors and 16 GB of RAM. For the experiment in Sect. 5.5, a larger resource is usedfer-being-able-te-exploit
the-pewer-curve-based-medel-ecapabilities, an Intel Xeon Gold 6226R CPU running at 2.90 GHz with 32 virtual cores and 640
GB of RAM.

The selected MILP solver is the commercial branch-and-cut algorithm implemented in IBM ILOG CPLEX Optimiza-
tion Studio V20.1 (IBM, 2022). i i

theparameter-emphasizing-the-finding-of-Apart from the number of threads and time limit settings, a few other parameters are

also set to differently than default values. One is the parameter returning high-quality feasible solutions early in the process,
for which, the (CPX_MIPEMPHASIS_HEURISTIC) is activated. This-is-intended-The intention is to generate more feasible
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layouts eompared-to-the-default-setting-which is important for the neighborhood search algorithm. Additionally, strong branch-
ing is used for variable selection given the large size of the models (CPX_VARSEL_STRONG )—This-setting-is-intended-is
selected). The intention is to reduce the size of the search tree and thus the memory requirements compared to default settings.

The number N and positions p; for ¢ < N of the candidate locations are of course very important parameters for the
adepted-discrete modelling techniques. A customized automatic strategy has-beenemployed-based on independently sampling
the boundary and interior area of the circular domain F has been employed. An example of the sampling strategy for these
particular case studies giving N = 467 is illustrated in Fig. 3.

1300

650

Ordinate [m]
o

-650

-1300

Farm limits
Candidate WTs

-1300 -650 0 650 1300
Abcissa [m]

Figure 3. Example of generation of WTs candidate locations V.

In-the-abeve-figure-is-noeticeable-that-the- The boundary is densely sampled, as a candidate point is defined every natural angle
from 0° to 359°, i.e. 360 candidate points are provided —Fhis-is-dene-as-since it is intuitively expected that a good portion of
the WTs will be placed in the boundaries ;-as-WTs-will-be-spread-outin-the-available-area-as-much-as—possible-to decrease
wake losses. For the interior, a set of finite parallel line segments are generated in-between-of the-extreme-abseissa-and-ordinate
pefms—eﬁfhe—avaﬂab}epfejeetafe&—'l:heand the candidates pomts are then taken along those segments;-aceording-to-sampling

ines. In the example of Fig. 3, the
slope of the line segments is zero, and the distance between points and lines is equal to 1.7D. Altheugh-in-thisexample-a-cirele

5.1 Correlations

To validate the approach modelled by the MILP formulation of Eq. (23) (i.e. the power-curve-free model), 5000 random

feasible WT layouts are created. For each of them, the AEP (Bakeretal;2019; Dykesetal;2045)(Baker et al., 2019), the
total wind-speed-theoretiealtheoretical wind speed, U, given by Eq. (19), the total wind speed proxy, U , defined by Eq. (22),
and total wind speed deficit proxy, vazl 7;, argument of Eq. (24), are calculated. Although the random way of generating the
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layouts biases-the-obtention-of-is biased towards high-quality solutions, the general-trend-is-the-aspeet-ofinterest-interest is in
the general trend and can be assumed to be fairly representative for the whole domain.

In all cases Pearson product-moment linear correlation coefficients (Pearson, 1895) are used to extract information from the
data ;-the-results-are-and collected in Table 1 for every-single-pair-of-the-aforementioned-measuresall pairs. This coefficient
illustrates the degree to which the movement of pairs of variables is associated in a linear fashion. The correlation plots of Fig.
4 present the graphical representation of the relations for Case I.

The correlation between AEP and the total theoretical wind speed is shown in Fig. 4a for the Case I. The main observation
is the very strong linear relation between these two variables as illustrated by the correlation coefficient of 0.97. Interestingly,
this reflects the rather low influence of the WT power curve to-determine-in obtaining high-quality feasible points. The next
ton- i-Fi i relation between U and U is represented in Fig. 4b, resulting in almest-an

an almost identical linear connection between them, as in the previous graph. When one looks into AEP vs vazl T;, however,
it is noticeable that the Pearson coefficient worsens;-deereasing-decreases to —0.88. There is a wider area in the formed-body
of points that causes this behaviour. Note that in contrast to the previous two figures, there is a negative correlation because
the comparison is done in terms of wind speed deficit instead of total wind speed. In spite of this deterioration, the linear
correlation is still strong-enoughconsidered quite strong. These results motivate aa-the approach where the minimization of a
proxy total wind speed deficit can lead to high-quality AEP solutions. The NSH Algorithm 1 helps correcting the imperfect
correspondence between these two variables during the optimization routine as reflected in Sect. 4.
For-CaseH-the-

Table 1. Pearson product-moment linear correlation coefficients for all case studies.

Case  AEP vs Theoretical wind speed Theoretical vs Proxy wind speed AEP vs Proxy wind speed deficit
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Figure 4. Correlation plots for 5000 randomly generated wind turbine layouts for Case 1.

The general trends of the correlation plots for Case Il are very similarte-the-observed-in-the-previous—ease. Correlations
between AEP versus theoretical total wind speed theoretical-(0.97), and theoretical total wind speed theeretical-versus total
wind speed proxy (0.95) are still very strong. Nonetheless, there is a slight wersening-between-therelation-of-decrease between
AEP vs total wind speed proxy (it-meved-from—0-88-in-the-previous-ease-down to —0.85 from —0.88 previously), as the
spread for middle velocity values is entargedlarger. The linear relation is deemed as satisfactory enough to carry on with the
application of model of Eq. (23) —with objective function Eq. (24).

Lastly;for-Case-HH-yet-anotherverystrong-the-The very strong linear relation between AEP and the theoretical total wind
speed theoretical-(0.96) is observed ;just-as—for-the-two-previoussituations—This—is-also for Case III, prompting to a very
interesting outcome-of this-manuseript—Admestconclusion. Although almost all research in the WFLO problem-strietly-focuses
in-pewer-modeling—-space focuses strictly on power modelling (which brings a great deal in-of complexity due to the non-
linear and non-differentiable properties of a-typteal-WT power curve—Using-), using an exact model for determining total wind
speed as objective function alleviates the computational complexity, while being-able-to-find-finding high-quality solutions in
terms of AEPfer-the-elassie- WFEO-problem-
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Nevertheless-. However, one should note that deterioration in the correlation still exists, potentially leading to lower quality
results.

Likewise, correlations stemming from the proxy to calculate total wind speed deficit is-presentin-this-ease-Both-are lowered
in Case III. This is the case for both with the total wind speed theoretical (0.88) and the AEP (—0.72). Keep in mind that the
reason to formulate such approximation is to fit in the context of integer programming to leverage theory and state-of-the-art
algorithms of this mature fieldby-having-acompaetformulation. However, the price to pay is to lose fidelity to represent the
real (true) target to optimize. The deterioration in the correlation of these pairs of variables may also suggest the need to resort
to the power-curve-based model for some applications. Whether the price is too high or not is reflected in the reachable solution

quality. Sects. 5.2, 5.3, and 5.4 present the optimization results for the cases of fixed number of WTs that will ultimately help

to elaborate a final evaluation regarding the adopted modelling technique.

5.2 Casel: 16 WTs

The performanee-evolution of two of the proposed optimization frameworks ia-this-artiele-is-depieted-is given in Fig. 5 (clock
time given in the abscissa). The green line of the full model is obtained after solving the model of Eq. (23) with objective func-

tion as in Eq. (24) for N = 1014 without implementing the NSH. In-erderto-plotthisline;the- CPEEX s tog-ispostprocessed
by-finding-out-the It represents the incumbent solution in terms of AEP and-notfor-(not total wind speed deficit proxy) obtained
by post-processing the CPLEX’s log. The blue line results after applying the NSH with the model of Eq. (23) plus objective
Eq. (24), and AEP as true objective function in Algorithm 1. The main inputs are C = {467,590,1014} (set of candidate
locations). T = {1,1.5,2} h (set of max computing times for each candidate location), V' = {2,4,6,16} (set of neighborhood
search sizes). See Sect. 4. These inputs are tuned after evaluating the performance of the method using different values. In
general, the first two elements of C' consists of moderately big values, relatively close to each other, while the last element
is sizeably greater in the seek-search of the best possible solution. Each element N € C has associated a computing time 7.
Finally, the first elements of V" are relatively low values to favour termination of the solver due to optimality, and then they start
increasing to refine the search. The red line is for establishing a reference of AEP value, this comes from the best performing
method in the survey of HEA37-IEA Wind Task 37 (Baker et al., 2019), the SNOPT plus Wake Expansion Continuity (WEC)
(Thomas and Ning, 2018; Thomas et al., 2022b). Time evolution for the SNOPT+WEC is not reflected in this graph, as this

information is unavailable. Results for the benchmark against a testbed of different algorithms are available in Table 3.

The-yeHow-bexThe NSH computing time results in Fig. 5 do not reflect the instant where the incumbent is found, but the

AR AAAAAAANARAARAANAR AR AAAAAANANARAANARRSRAANAIANARANRAANRAANANAANRSK

time progress of this algorithm, which is dependent on the execution of the MILP solver at each iteration. Table 2 contains
information about the values of IV, K, T', and termination criterion of the solver after each iteration  of the NSH Algorithm 1

(beginning from point 2 where x = 1). This means that, in iterations where the termination criterion is time (and not optimality)
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one could fine-tune 7" for an earlier stop, shortening the total time. This is particularly more relevant in cases where internal
heuristics of the solver are activated at the root node of the search tree, coming up with the largest portion of solutions very earl

in the process. Consequently, the total computing time, for all cases, is conservative and should be taken as an approximated
reference.

The initial layout (point 1), which-is-graphed-labelled in Fig. 6a, is set up by arbitrarily by picking up candidate locations
around the circular boundary; this layout has an AEP of 86699—387 GWh, From now on, the presented percentages are
calculated with respect to the last commented AEP improvement. Between points 2 to 6-7 where N =467 and K = 2, the
models are solved to optimality (gap of 0%), and the solution is improved by 2.92% in only 56 s. After a short plateau, the
solution is markedly refined by 2.96% from point 10 to 13 by performing a search of the domain with K = 16, and restarting

the model every 1 h with a new warm-starting.
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Figure 5. Performance of two different optimization approaches for Case I and comparison with existing best benchmark results.

The next considerable jump happens for N =590 and 2 < K < 6 in around 20 min, elevating the AEP by 1.94%. After,
again, a plateau without improvements, when N reaches its maximum value of 1014, the solution is maximized to the final
value of 41:8559-44-418 GWh during the lowest values of K. For this particular instance, the greatest value of K =16 is

exploited for the lowest number of candidate points N, where the largest improvement comes up.

21



495

500 The benefit of the proposed neighborhood search strategy is shown in Fig. 5. Solving the full model is significantly slower,

leading actually to a worse solution (3.31% lower). The capacity of the NSH to iterate over different values of candidate points

N and search size-sizes K brings alone not only improvements in terms of solution time and solution quality, but also in-less
computational resources as the RAM memory generally esealates-scales faster when solving the single model.

The initial and final solution layouts for this case study are illustrated in Fig. 6. The importance of finely sampling the

505 boundaries of the available area is evident in Fig. 6b, because 7 out of the 16 WTs are placed in that subdomain.

Table 2. Information about the values of NV, K, T, and ter mination criterion of the solver after each point in Fig. 5.

Point K,N Termination criterion  Point K,N Termination criterion
1 Initial point - 17 K=4 N =590 ~opt. [0.24 min]
2 K=2 N=467  optl005min] 18 K=4 N=50  op.[046min]
3 K=2 N=467  opt[006min] 19  K=6 N=5%0  opt.[979min]
4 K=2 N=467  opt[004min] 20 K=6 N=500  opt.[L10min]
5 K=2 N=467  opt[006min] 2l K=6 N=500  opt.[1.29 min]
6 K=2 N=467  opl005min] 22 K=6 N=50  op.[664min]
7 K=2 N=467  opt[007min] 23 K=6 N=59 opt. [6 min]
§  K=4 N=467  optl049min] 24 K=16 N=59 15h
9 K=6 N=467  op.[1269min] 25 K=2 N=1014  opt.[0.53 min]
100 K=16 N=46T 1h 26, K=2 N=1014  opt[020min]
1 K=16 N=467 1h 27 K=2 N=1014  opt[020min]
12 K=16 N=46T 1h 28 K=4 N=1014  opt[095min]
13 K=16 N=46T 1h 29 K=4 N=1014  opt[L10min]
14 K=16 N=46T 1h 30, K=6 N=1014  opt[24.37 min]
15 K=2 N=5%0  opt[006min] 31 K=16 N=1014 2h
16 K=4 N=50  opt[0.43min]

Finally, Table 3 compares the proposed method to a large number of different approaches from the IEA37 reference study
(Baker et al., 2019). The results for all case studies are presentedin-this-table, where I, II, and III make reference to cases from

22



510

515

this section, Sect. 5.3, and Sect. 5.4, respectively.
mentionedreference—

The third column of Table 3 reports the difference of the AEP with respect to the proposed method for the smallest case
study. The ebtained-AEP-in-this-caseresulting AEP is better than almost all the other alternatives, except to the SNOPT+WEC,

where a nearly identical ObjeCtIVC value is achieved. When dlrectly comparing to the-gradient-free (GF)methodsthe-bestfound

anet to typical metaheuristics (genetic algorithm,
particles swarm optimization, etc), that do not use explicit gradients information, the presented method seems to perform
well, being able of determining a similar layout quality in less than 2 hby-the propesed-method, which is typieatty-way-faster
than-the-overall-performing-generally faster than average computing time of these kind of algorithms-—Biserete-, In a broader

context, beyond the presented numerical comparisons, discrete optimization approaches, as the MILP ones presented in this
artielemanuscript, could be formulated to cope with problem definitions with required functionalities that in theory continuous

optimization methods can not support (or at least the implementation becomes strenuous).

Table 3. Results for all three benchmark cases from other algorithms (G, gradient-based and GF, gradient-free) obtained while allowing,
WT locations to vary continuously. Values reproduced from (Baker et al., 2019). The difference column shows how the proposed heuristic
with the power-curve-free model performs in comparison. Negative percentages means that the proposed method performs better than the

AEPI1 Dift.1 AEPII Diff. I AEPII Diff. Il

Method T e e reeeeem e

[GWh]  [%] [GWh] [%]  [GWh]  [%]
SNOPT (G) 41225 -151 84636 147669 159,
SNOPT (G) 41118 -176 84428 144597 364

Preconditioned SQP (G 409.69 212 84937 150639 0.39

Mul.interior-point (G) 40836 244 85163 148085 131
Full pseudo-gradient (GF) 40232  -3.88 82875  -423 145508  -3.03

Basic genetic algorithm (GF 39259  -6.20 77748 -10.15 133288  -11.17

LR AR AR AR RS R AR

Simple particle swarm (GF)_ 38876 702 776 -1032 136494  -9.04
Simple pseudo-gradient (GF) 38834 722 81354 -598 142227 522
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(a) Initial wind farm layout provided to the heuristic.

(b) Final wind farm layout obtained by the heuristic.
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Figure 6. Generated wind farm layouts for the benchmark Case I with 16 turbines.

The power-curve-based model of Eq. (18) within the NSH using the same AEP formulation as true objective function,
provides a solution 1.18% lower in objective value in around 36 h using the computer system with 32 virtual cores. Although
the quality of the layout is very close to the one schematized in Fig. 6b, the need-for-larger computational resources tips-the
sealesfor-favour implementing the power-curve-free model for these-type-of-problems with fixed number of WTs. Fer-this
reason;ir-Therefore, Sects. 5.3 and 5.4 are presented-present only the results reached after the application of the power-curve-
free model embedded into the NSH.

5.3 Casell: 36 WTs

The performanee-evolution of the proposed methods, and the initial and final WT layouts are plotted in Fig. 7 and Fig. 8,
respectively. Table 4 displays the data linked to each point of Fig. 7. Main inputs are C' = {477,684,1907}, T'={1,1.5,2} h,
V ={2,4,8,16,36}. The blue line (model of Eq. (23) with objective function Eq. (24) plus NSH Algorithm 1) has clearly three
sectors stemming from each value of N € C'. The initial WT layout (Fig. 8a) - also determined by choosing roughly equidistant

candidate locations in the boundary - has an AEP of 796514-61—Afterseven-iterations-of-the NSH-796 GWh. As for Case I

R AARARAANTAAAAR
improvement percentages are calculated using the last commented step as the baseline. After seven NSH iterations (point 8)
in 41 s, the incumbent is improved by 1.84%, when N = 477 and 2 < K < 4, being able to solve each model instantation to
optimality.
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Figure 7. Performance of two different optimization approaches for Case II and comparison with existing best benchmark results.

After a three-hours-plateau linked to 8 < K < 36 (four iterations), N is raised to 684, resulting in the sharpest-AEP
enhanecementlargest AEP enhancement, as shown in Fig. 7. The energy production increases with 4.51% after only 23 min in
point 27. This noticeable improvement comes after solving to optimality models with rather small neighborhood search sizes
2 < K < 4. The convenience of allowing large neighborhood search sizes as K = 16 or K = 36 is reflected from this moment.
From point 30 to 33 (6 h) with K = 16 the incumbent is slowly boosted by nearly 1%. Again, after a three-hours-plateau, N
becomes equal to 1907, and in around 32 min for 2 < K < 4, the AEP is augmented by 0.41%. Then, the large neighborhood

search starts for X' = 16 and K = 36, and after a total of 16 h, the final solution of 865327-78-865 GWh (increment of 0.61%)
is achieved (Fig. 8b).
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Table 4. Performanee-Information about the values of twe-different-optimization-approachesfor Case 1N, K, T, and eemparisonwith
existing-bestbenehmarkresultster mination criterion of the solver after each point in Fig. 7.

Point K,N Termination criterion  Point K,N Termination criterion
1 Initial point - 25 K=4 N=684 opt. [1.15 min]
2 K=2 N=477  opt[003min] 26 K=4 N=684  opt.[1.90min]
3 K=2 N=477  optl003min] 27 K=4 N=634  opt[l38min]
4 K=2 N=477  op.[004min] 28 K=4 N=684  opt.[831min]
5 K=2 N=477  optl005min] 29 K=8 N=084 15h
6 K=2 N=477  optl00Smin] 30 K=16 N=684 15h
7 K=2 N=477  opt[004min] 31 K=16 N=684 15h
§ K=4 N=477  opt[037min] 32 K=16 N=084 15h
9 K=4 N=477  op[0A9min] 33 K=16 N=634 15h
10 E=8 N=477 1h 34 K=16 N=684 15h
U K=16 N=477 1h 35 K=36 N=0634 15h
12 K=36 N=4T7 1h 36 K=2 N=I197  opt[165min]
13 K=2 N=68  op.[0.07min] 37 K=2 N=1907 opt[L12min]
4 K=2 N=6s4  optl007min] 38 K=4 N=I1%7  opt [2840min]
15, K=2 N=684  opt.[0.07min] 39 K=4 N=1907 opt[5.97 min]
16 K=2 N=684  opt[008min] 40 K=8 N=1907_ 2h
17 K=2 N=6s4  optl009min] 41 K=16 N=I907 2h
18 K=4 N=6s4  opt.[lmin] 2 K=16 N=1907 2h
19 K=4 N=634 opt. [1 min] 43 K=36 N=1907 2h
20 K=4 N=0s4  optIl33min] 44 K=36 N=I97 2h
21 K=4 N=0s4  optl098min] 45 K=36 N=I907 2h
2 K=4 N=6s4  optl405min] 46 K =36 N=I1907 2h
23 K=4 N=684  opt[l47min] 47 K=36 N=I907 2h
24 K=4 N=684  opt[7.65min]

-The full model (i.e. without implement-implementing the NSH
550 algorithm) initially provides better solutions within the first 3 h, but then itremains-in-a-considerably-worstsolution-than-when
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applying-lags behind in solution quality compared to the NSH algorithm in the long run (lower 3.05%)-, as shown in in Fig. 7.

tn—Tor this case, the proposed method reaches the best solution, as given—shown in the fifth column of Table 3. The
SNOPT+WEC is again the closest contender. When uniquely comparing to GF methods, the proposed method matches the best
solution from those algorithms in around 3 h, which is generally a very-fastcomputing-time-when-contrasted-tootherreasonable
computing time compared to methods where gradients are not explicitly utilized in the optimization process, especially to
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(a) Initial wind farm layout provided to the heuristic. (b) Final wind farm layout obtained by the heuristic.

Figure 8. Generated wind farm layouts for the benchmark Case II with 36 wind turbines.

5.4 Caselll: 64 WTs

The performanee-evolution of the proposed methods, and the initial and final WT layouts are displayed in Fig. 9 and Fig. 10,
respectively. Table 5 displays the data linked to each point of Fig. 9. Main inputs are C' = {625,1017,2741}, T' = {1,1.5,2}
h, V' ={2,4,8,16,32,64}. Note that in comparison the number of elements of V" has been increased by one after each study
case. This has been done taking into account the number of WTs. Likewise, the values of N € C are greater-]larger to cover for

the wider project areas.

Comparing blue lines of Fig. 65, Fig. 87, and Fig. +0-9 is evident that for the last case the curve shows less sudden in-
creases. The sharpest-change-is-after-the-first-largest change occurs after 27 s where the initial solution (Fig. 10a) with AEP
of +395465:92-1395 GWh is improved by 3.18% for N = 625 and K = 2 up to point 9, reaching optimality in few seconds.
With 4 < K < 8 the model instantiations are solved to optimality in minutes, obtaining a solution improved by 0.18%.

After point 13 one notes a plateau without improvement proceeds—for N = 625 and K > 16, i.e. ;-a large neighborhood

search does not lead to further enhancements. Due to this, N is enlarged to 1017, where the total-second largest boost (increase
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of 2.12%) comes, with the largest search size (K = 64)

resulting in
the best improvement. This enhacement-enhancement occurs after 13 h of starting the NSH (point 26). Ne*t—freﬁﬁrELgMpomt

28, N = 2741 and for 2 < K < 4 the solver reaches optimality; the
very-slow-evolution-to-finally-converge-to-slowly converging to the final solution of +506544-26-1500 GWh (Fig. 10b).
575 Seventh column of Table 3 shows that the SNOPT+WEC and the preconditioned SQP provide slightly better layouts than

the proposed methodfer-this-ease. However, the algorithm provides feasible layouts that improve the objective compared to all
the listed-gradient-free approaches.
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Figure 9. Performance of two different optimization approaches for Case I1I and comparison with existing best benchmark results.
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Table 5. Information about the values of IV, K, T, and ter mination criterion of the solver after each point in Fig. 9.

1 Initial point N 26 K=64 N=1017 15h

2 K=2 N=62  optl003min] 27 K=64 N=101T 15h

3 K=2 N=62  opl003min] 28 K=2 N=274  op.[322min]
4  K=2 N=625  opt[0.03min] 29 K=2 N=2741 opt[293min]
5 K=2 N=62  opt[004min] 30 K=4 N=2741  opt [40.82 min]
6 K=2 N=062  op[005min] 31 K=4 N=2741  opt[47.99 min]
7 K=2 N=62  opl004min] 32 K=4 N=274  opt[5595min]
§ K=2 N=625  opt[004min] 33 K=4 N=2741  opt[54.74min]
9  K=2 N=62  opt.[005min] 34 K=4 N=2741  opt [7246 min]
10 K=2 N=62  op.[004min] 35 K=4 N=274  opt [69.85 min]
1 K=4 N=625  opt[033min] 36 K=8 N=2741 2h
12 K=8 N=62  opt[7.92min] 37 K=16 N=2741 2h
13 K=8 N=62  opt[83lmin] 38 K=16 N=2741 2h
4 E=8 N=62% 1h 39 K=16 N=2741 2h
15 K=16 N=625 1h 40 K=16 N=2741 2h
16 K=32 N=62 1h 41 K=16 N=2741 2h
17 K=64 N=62 1h £ K=16 N=2741 2h
18 K=2 N=1017  opt[017min] 43 K=16 N=2741 2h
19 K=2 N=1017  opt[026min] 44 K=16 N=2741 2h
20 K=4 N=1017  opt[l3Smin] 45 K=32 N=2741 2h
21 K=8 N=1017 15h 46 K=32 N=2741 2h
2 K=16 N=1017 15h 47 K=32 N=2741 2h
23 K=32 N=1017 15h 48 K=32 N=2741 2h
4 K=064 N=1017 15h 49 K=064 N=2741 2h
25 K=64 N=1017 15h

5.5 CaselV:10-50 WTs

580 Although in most projects today the total capacity for grid connection is decided already in the early planning phases, in the

future one can envisage situations where flexibility in optimizing the number of wind turbines in a project would yield benefits.

30



585

590

595

600

605

610

As-much-as-Even if the power-curve-free model presented-in-(Sect. 3.2) exhibits a quite good performance both-in terms of
AEP and computing time for the-seenarie-of-fixed number of WTs (when AEP and NPV are basically the same metric), it is

not very well suited

are considered. Based on computational experiments not included in the paper, the power-curve-free model embedded in the

NSH terminates too early in the search process, resulting in a worse solution than the alternative discussed in the following.
For such an optimization, the power-curve-based mathematical program of Sect. 3.1 may be handy as the number of gener-

Y:-when variable number of wind turbines

min and nmax

ators is allowed to vary between a lower and upper bound, n , respectively. For illustration, a domain defined by
a circle with radius 1300 m, and variable number of WTs between 10 and 50 are utilized. These parameters are set relatively
arbitrarily but with sufficient distance to reasonably expect that the limits are not reached. The aim is to illustrate the ability
of the method in reaching non-trivial solutions, resulting in a an optimized design with an an-intermediate number of wind
turbines.

Keep in mind that for this case, a linear superposition model for the AEP component in the NPV calculation is considered.
In this sense, the original WT power curve as deployed-depicted in Fig. 1 is suppertedused. NPV is the true objective function
when applying the NSH Algorithm 1. The modified objective function of MILP model of Eq. (18) for this case has the form

Cogency, 2014):

m—+2 )

max1mlze — Z cwi&; + 8760 Z Z Z Z dad' 1177_:_] ,;p (25)

&mu y=1li=1 j,k I=1

where cy, is the cost per WT in mEUR, c. the energy price in mEURMWh™!, r is the discount rate in %, and Y is
the number of years of lifetime of the project. For this case study, values of ¢y = 6.7 Millk-Eur-Nord-Pook2022)mEUR

(Mishnaevsky Jr and Thomsen, 2020), ¢, = 0.00015 (Mishnaevsky Jr-and Fhomsen; 2020ymEURMWh ! (Nord Pool, 2022)
»7=5%, andY" = 20 are assumed. The general form of the NPV equation (Cogency, 2014) is defined by the sum of the present
value of cash flows (Discounted Cash Flow, DCE) of a project under analysis. In Eq. (25), the first sum is a negative cash flow
representing purchase of the WTs at the construction stage of the project, while the next term represents positive cash flows
coming from trading the electricity in the market. Because of the additive nature of the NPV metric and since the focus is on

evaluating investment vs revenues, by maximizing Eq. (25)
TFhreerunstaunching-the- The model of Eq. (18) with modified objective function Eq. (25), embedded in the NSH Algorithm
1 with NPV as target function are-exeeuted-is executed in three runs. For the first examplerun the number of turbines is fixed

a fully comprehensive NPV metric is equivalently improved.

to ™M = pMax = 10Jn-the second-example-, while for the second the number of turbines remains fixed but is increased
to ™t = pmax = 50, For the final-example-third run_the number of wind turbines are-alowd-is allowed to vary between

™ =10 and n™a* = 50. The inputs-parametersfor-Algorithm+Algorithm 1 input parameters are C = {467,590,1014},
T= {1 1.5,2} h, V ={2,4,6,8, 24} Fhe-main-The results are plotted in Fi
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When the number of turbines is fixed to 10, the NPV evolution (Fig—2?green line in Fig. 11b) is driven by the AEP (Fig-

22green line in Fig. 11a). Both curves are monotonically increasing, reaching a final value of NPV of = 456.40 Mit—Eus-
mEUR. The same behaviour is visible for nt = 50, although the final NPV is greater (683.53 Mill-EurmEUR), see Figure
the revenues surpasses the associated extra investment costs from the additional aumber-of-wind-turbines—40 wind turbines

considered. The significant increase in the number of WTs doubles the computing time, due to the large increase in the number
of variables, selecting 50 WTs entails significantly more possible combinations of valid solutions.
Whether-An interesting question is whether there is a trade-eff pointin-between-of both-extreme-cases-is-the-main-question

to-answer—The-larger NPV in between the bounds of WT number. For the optimization program with variable number of WTs
the evolution of the WTs number in Fig. 11c and the AEP in Fig. 11a (see black lines in these figures) exhibits a perfect

correspondence. The more WTs the larger AEP, in spite of the increased wake losses. The curves increase in time, up to a
point where the model estimates that further increase of WTs would not lead to a better NPV. The final number of WTs is 34.
The NPV evolution in Fig. 11b (black line) naturally only improves with time, resulting in a final value of 795.86 Mill-—Eur:

mEUR, Note that the NPV in this case is greater than when a larger number of WTs (i.e. 50) was considered and of course

when only 10 were considered. Interestingly, the optimization program with 50 fixed number of WTs finds a final solution with
AEP very close to that from the variable number program, being the solution of the former 0.50% lower than the latter, but
requiring more WTs, and hence more investment (47% more). The final NPV value of the variable number model is 16.43%
greater than the one with fixed 50 WTs. These figures could be expected to be similar even in situations where lower AEPs are
obtained, if that compensates by augmenting overall financial metrics as the NPV.

This result shows the benefit of having optimization models that support variable number of WTs and accounting for metrics
beyond AEP. The advantages may become even more pronounced for more complex situations, as for instance, if the WT

investment costs are dependent on the exact installation area or different WT sizes are considered.

32



640

645

£550 800
= —_
o g
a 500 w
< £700
s 450 z
b5 =
.§ 400 g 600
S 350 z
> =
g 500
5300 o
w o
© —— Fixed 10 WTe ko] —— Fixed 10 WT
E 250 —_ F:i:d 50 wé % 400 —_ F::d 50 wé
g — Variable 10 - 50 WTs — Variable 10 - 50 WTs
0 10 20 30 40 0 10 20 30 40
Time [h] Time [h]
(a) AEP evolution. (b) NPV evolution.
50
45
40
@
S 35
230
£
225
20
15 —— Fixed 10 WTs
—— Fixed 50 WTs
10 —— Variable 10 - 50 WTs
0 10 20 30 40
Time [h]

(c) Number of WTs evolution.

Figure 11. Evolution of the AEP, NPV, and number of WTs for the three simulations. The green lines are results for the optimization program

with fixed number of WTs equal to 10, the blue ones equal to 50, and the black ones for the optimization program with variable number of
WTs between 10 and 50.

6 Discussionsand-future-werk

The two models proposed in this artiele-manuscript have many of the eemmen-characteristics of mixed integer linear program-
ming models. They require significant resourees-tike-computational time and memory —Furthermore;-they-and exhibit rather
low tractability and scalability for global optimization algorithms.

The power-curve-based model, albeit requiring large computational resourcesas-number-of-cores-and-RAM-memory, man-
ages to provide reasonably good solutions for small-sized probleminstances, being only 1.18% worse-lower than its power-
curve-free counterpart for the 16 WTs case and 4.41% for the 36 WTs case. This diminishing effeetivity-efficiency is to be
expected, given the large number of variables and constraints. The power-curve-free model on the other hand, along with the
heuristic, is much faster due to its asseetated-more compact formulation. This translates into the ability to be highly competitive

compared to a large set of benchmark algorithms. In situations where there is an interest for optimizing metrics beyond AEP,
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such as the NPV, the power-curve-based model becomes very useful given its intrinsic capacity to support this kind of objective
functions.-as-shown-in-the-final- test case.

It isrelevant-to-mention-should be mentioned that there are limitations in the used-wake-medels-wake models used compared
to recent models—from—thetiteratare-ones (Thomas et al., 2022b). For example, the used—wake-medel-wake model used in
this manuscript does not consider the medifications—of—changes in the turbulence intensity or thrust coefficient variations
from wind speed variations inside the wind farm. It is uncertain if these-modifications-using wake models like the ones in
(Thomas et al., 2022b) would still allow an integer linear programming formulation or approximation of the WFLO problem.
It is also uncertain what-the impact on the final solution quality these detailed modelling aspects imply. These questions are
left for future work.

Notwithstanding the listed shortcomings, it is very enthralling that these models, in combination with the neighborhood
search heuristic, are able to match and in some cases improve the results obtained when considering the turbine positions as

continuous variables (see Table 3). This opens the door to trying-eutnew-experimenting case studies with functionalities easily

adaptable to discrete parametrization techniques, which can be very challenging for continuous variable modelling approaches.

7 Conclusions

This manuscript contributes both methodologically and empirically to address the WFLO problem. Htis-very-difficulttocope

A neighborhood search heuristic embedding integer programming formulations is therefore-proposedto—satisty—these—new
demandsproposed. For both presented formulations presented in the manuscript, the step-wise power curve and power-curve-

free, the heuristic notably improves a single execution of full models when calling a state-of-the-art branch-and-cut solver in
terms of solution quality. An improvement of up to 3.42% in the AEP is achieved by applying the neighborhood search strategy
for cases where the WTs number is fixed compared to solving the full model.

Another important takeaway is the satisfactory performance of the power-curve-free model, which uses an approximation
of the total wind speed deficit, when (implicitly) optimizing for AEP. This is due to the good correlation between the two
measures, and the correction capability of the heuristic. For the classic WFLO problem definition, the proposed model is able to
considerably enhanee-improve (from 1% to around 10%) the AEP compared to benchmark layouts-obtained-byseveral-different
results by multiple gradient-based and gradient-free algorithms. Even when directly compared to methods implementing a
continuous variables technique, the proposed heuristic provides very-competitive-results;-being-able-to-come-up-with-layeuts
with-similar-ebjective funetion-values;-orevenimprovingitsimilar or even better results. These are very promising results that
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would enable to get high-quality solutions for problem instances where continuous variables modelling approaches may not be
able to run or eeme-up-provide with good incumbents.

Finally, the model with explicit representation of the power curve embedded within the neighborhood search heuristic is
able to propose non-trivial solutions when implementing an-ebjeetive-funetion-objective functions beyond AEP, such as NPV.
For these cases, the trade-off between energy revenues and investment costs is inherently studied. For the-ease-studyexample,

the model suggests that is #
installing a lower number of wind turbines than the allowed would results in a better NPV value, albeit a slightly lower AEP.
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