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Abstract. Two models and a heuristic algorithm to address the wind farm layout optimization problem are presented. The mod-

els are linear integer programming formulations where candidate locations of wind turbines are described by binary variables.

One formulation considers an approximation of the power curve by means of a step-wise constant function. The other model is

based on a power-curve-free model where minimization of a measure closely related to total wind speed deficit is optimized.

A special-purpose neighborhood search heuristic wraps these formulations increasing tractability and effectiveness compared5

to the full model that is not contained in the heuristic. The heuristic iteratively searches neighborhoods around the incumbent

using a branch-and-cut algorithm. The number of candidate locations and neighborhood sizes are adjusted adaptively. Numer-

ical results on a set of publicly available benchmark problems indicate that a proxy for total wind speed deficit as objective

is a functional approach, since high-quality solutions of annual energy production metric are obtained, when using the latter

function as substitute objective. Furthermore, the proposed heuristic is able to provide good results compared to a large set of10

distinctive approaches that consider the turbine positions as continuous variables.

1 Introduction

1.1 Motivation and Problem Definition

Cost reductions for renewable energy generation is on the top of political agendas, with the objective of supporting the world-

wide proliferation of clean energy production systems. Subsidy-free tendering processes become more frequent, as is the case15

for offshore wind auctions in Germany since 2017 and in Netherlands since 2018, or in China for onshore wind from 2021

(GWEC, 2020a). The fast evolution of offshore wind in the last decade, with a sharp growth of global installed capacity

(GWEC, 2020b), is yet another clear indicator of growth trend of wind energy. For wind energy to become the cornerstone of a

successful green energy transition, further reduction in costs - partly achievable by economically optimized wind farm designs

- will play an important role.20

The basic Wind Farm Layout Optimization (WFLO) problem aims at deciding the positioning of Wind Turbines (WTs)

within a given project area to maximize the Annual Energy Production (AEP), while respecting a minimum separation distance.

The classic problem definition aims at placing a fixed number nT of typically homogeneous (single type) WTs. This problem

has been studied broadly and intensively since at least three decades (Herbert-Acero et al., 2014). The first effort in the topic
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was the pioneering work of Mosetti et al. (1994), where the Katic-Jensen wake decay model (Katic et al., 1986), implemented25

to compute wake losses, is coupled with a genetic algorithm as optimizer to iteratively improve the layout.

1.2 Optimization Workflow for WFLO

The main components when building an optimization workflow for the WFLO problem are the wake models (deficit and

superposition), the program formulation, and the associated numerical algorithms. For formulating tractable frameworks, the

designer needs to rely on the so-called engineering wake models. These are essentially mathematical representations which can30

be expressed in terms of analytical equations after significantly simplifying complex physics modelling, while still capturing

to a good extent the underlying nature of the phenomenon under analysis. Scientific articles in this field have proposed and

validated engineering wake models with smooth and differentiable velocity deficit shape, two examples are Bastankhah’s

Gaussian (Bastankhah and Porté-Agel, 2016) or its simplified version (IEA Wind Task 37, 2019), and the Jensen cosine model

(Jensen, N.O., 1983). Likewise, the aggregation of individual wake velocity deficits can be done through linear superposition35

(Lissaman, 1979) or root sum squares (Voutsinas et al., 1990), with local or freestream velocity conditions (Porté-Agel et al.,

2020).

1.3 Continuous Optimization for WFLO

Optimization techniques for the WFLO problem formulation can be classified, depending on the choice of variables, into

continuous and discrete optimization. In the field of continuous optimization, the location pi of a WT i, in terms of the40

abscissa (xi) and ordinate variables (yi) in the Cartesian plane, pi = (xi,yi), can take any real values, while ensuring that

the point is within the project area F, and simultaneously satisfying the minimum distance constraints. Several gradient-

free algorithms have been applied to this problem, including metaheuristics, as genetic algorithm (Réthoré et al., 2014) or

particle swarm optimization (Wan et al., 2010). Likewise, gradient-based methods can be used, as for example the Sparse

Nonlinear OPTimizer (SNOPT), that uses a Sequential Quadratic Programming (SQP) approach (Thomas et al., 2022a), or45

interior-point solvers (Pérez et al., 2013). In general, metaheuristic algorithms, although highly flexible for modelling aspects,

have considerably poorer scalability for larger problem sizes than gradient-based approaches (Stanley and Ning, 2019). Re-

parametrization approaches aiming to reduce the number of variables through simplified geometrical representations of the

problem, such as row and column spacing or inclination angle, are also emerging (Stanley and Ning, 2019). Additionally,

multi-start strategies are frequently implemented as a workaround for the intrinsic multi-modal nature of the WFLO problem.50

Finally, hybrid methods combining gradient-free and gradient-based algorithms have been proposed with good results (Mittal

and Mitra, 2017).

The utilization of simplified objective functions closely related to more sophisticated AEP models is also an emerging

research field for continuous gradient-based optimization. In the recent work of LoCascio et al. (2022), a novel formulation for

time-averaged wake velocity incorporating an analytical integral of wake deficits across wind direction is proposed. This article55

shows the application of this analytical formulation for WFLO using the Sequential Least Squares Quadratic Programming
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(SLSQP) as numerical algorithm. Computational results indicate the ability of this approach in finding WT layouts with energy

production comparable to the alternative of optimizing directly more accurate AEP objectives.

1.4 Discrete Optimization for WFLO

Discrete optimization models can be formulated for this problem by means of sampling the available project area in form of60

N candidate location points. Thus, only a set of finite options from the continuous search space are considered, where the nT

WTs to be installed are in principle nT≪N . In contrast to continuous optimization, a candidate point i is then represented

by a binary variable ξi, that gets a value of one if a WT is installed at that location, or zero otherwise. The vast majority

of articles in the literature implement gradient-free algorithms for this technique, as the works of Mosetti et al. (1994) and

Grady et al. (2005), both using genetic algorithms. Algorithms utilizing explicit gradients are also a valid approach in this65

field (Pollini, 2022). This modelling technique fits very well in the well-studied general framework of integer programming.

The main advantage of this approach is the possibility to utilize exact solvers based on branch-and-cut method; theoretically

able to solve a problem to optimality while supporting common engineering constraints (Wolsey, 2020). Nevertheless, the low

tractability and poor scalability of this method as function of the size of N and the number of state variables is well-known.

A large number of benefits are implicit in the discrete modelling technique over the continuous counterpart, including: (i)70

capacity to include the number of WTs as a variable and to model overall economic metrics as Net Present Value (NPV)

(Pollini, 2022), (ii) ease of modelling any shape of project area or forbidden zones, convex or non-convex, (iii) capacity to

model extensive integrated models to support electrical systems optimization (Pérez-Rúa and Cutululis, 2022; Cazzaro et al.,

2023), (iv) ease of modelling terrain-based constraints or cost functions (Cazzaro and Pisinger, 2022), (v) ease of incorporating

multiple WT types, among others. These functionalities are the main motivation for focusing on proposing new methods for the75

WFLO problem in the area of discrete optimization. Moreover, in broader terms, since even the basic definition of the WFLO

problem translates into a non-convex formulation, new methods are required to efficiently obtain high-quality solutions.

1.5 Literature Review for Integer Programming within WFLO

Probably the first work within the context of integer programming for the WFLO problem was the thesis of Fagerfjäll in

2010 (Fagerfjäll, 2010), where a Mixed Integer Linear Program (MILP) is proposed, modelling the objective AEP function80

as a superposition of deficits defined in terms of power. Although physically inaccurate, as the deficit superposition should

be computed for velocities, an important reduction in the number of variables is achieved that ultimately allow solving to

optimality rather small problem instances. A similar approximation is carried out by Archer et al. (2011), Fischetti et al.

(2016), and Quan and Kim (2019), but introducing important modifications to the model by reducing number of constraints.

The objective function may also be formulated for aggregated velocity deficit (Turner et al., 2014; Kuo et al., 2016), but the85

imperfect correspondence with AEP will result in not solving to optimality, possibly resulting in final low-quality solutions.

Another advantage of integer programming formulations is the chance of incorporating heuristic routines in the top of such

models, as for instance proximity search (Fischetti et al., 2016; Shaw, 1998), to quickly improve a given starting feasible point.
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1.6 Contributions

Several contributions to the field of discrete optimization for WFLO are proposed in the manuscript. The first contribution is90

the proposition of new integer linear formulations which are able to capture to a good extent the underlying physics of the

problem. The main obstacles for a MILP representation of WFLO problem are the non-linearity of the power curves, and the

choice of wake velocity deficit superposition approach. Currently, the scientific literature has fundamental knowledge gaps.

For example, as discussed before, previous works have considered aggregation of power deficits instead of velocities, gaining

a simplification on the mathematical formulation in detriment of the physics modelling fidelity. This manuscript presents new95

strategies for modelling both facets in the class of MILP problems, one with explicit power curve and wake superposition

modelling, and another with a proxy objective function based on total wind speed, thus simplifying the original formulation.

In contrast to LoCascio et al. (2022), this proxy objective is developed for MILP optimization, meaning that the aim is to get a

linear expression that does not need to be friendly for explicit gradient-based optimization.

The second main contribution is the proposition of a new special purpose neighborhood search heuristics in order to speed up100

the generation of high-quality solutions. This heuristic, wrapping both formulations, has a twofold functionality; first to increase

tractability, and second to redirect the optimization search in terms of a specified objective function with higher fidelity. Similar

neighborhood search methods have been proposed in the literature, as the Discrete exploration-based optimization (DEBO)

(Thomas et al., 2022c), which is a two-steps process composed by a greedy initialization and a local search block. While the

method proposed in this manuscript shares most of the advantages of the mentioned approach (no gradients required, can handle105

unconnected and non-convex boundary constraints, and so on), it actually goes beyond the DEBO algorithm as among others,

i) significantly less AEP function evaluations are required, and ii) it is based on well-establish integer programming theory,

relying in efficient implementations of the branch-and-cut algorithm. The main numerical results indicate good computational

performances for a set of publicly available benchmark case studies compared to state-of-the-art gradient-free and gradient-

based approaches (Baker et al., 2019).110

The rest of the manuscript is structured as follows. Section 2 introduces the engineering models of the physical aspects of

interest. Section 3 presents the two mathematical programs developed, and Sect. 4 describes the proposed heuristic framework

wrapping both programs. Computational experiments are shown in Sect. 5, followed up by discussions in Sect. 6, and lastly

the manuscript is finalized with the conclusions in Sect. 7.

2 Physics Modelling115

The proposed MILP models and general optimization framework in this manuscript can be easily applied to many wake deficit

models. No particular properties on smoothness or differentiability are required from these models for optimization purposes.

Additionally, no specific demands on mathematical structure in connection with controlling wake diameter and deficit (Thomas

et al., 2022b) are stemming from the optimization programs proposed in this article. Since the computational results in the

article are obtained after solving open access case studies from the IEA Wind Task 37 (Baker et al., 2019), the wake model120

implemented there is presented in Sect. 2.1, along with the superposition techniques in Sect. 2.2, WT power curve in Sect.
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2.3, and the AEP calculation procedure in Sect. 2.4. Variations on ways of computing the absolute velocity deficits and linear

wakes superposition under the framework of MILP are also introduced.

2.1 Wake Deficit Model

A simplified version of Bastankhah’s Gaussian is considered (IEA Wind Task 37, 2019). The relative velocity deficit δiℓ =125

∆iℓ/u∞ = (u∞−u(x̄i, ȳi))/u∞ behind a single WT located at ℓ, and evaluated at point i, is described using the model and

notation from Case Study I (IEA Wind Task 37, 2019).

δiℓ =





(
1−

√
1− CT

8σ2
y /D

2

)
exp

(
−0.5

(
ȳi−ȳℓ

σy

)2)
, x̄i− x̄ℓ > 0

0, otherwise.
(1)

σy = ky(x̄i− x̄ℓ)+D/
√
8 (2)130

where u∞ is the inflow wind speed, CT is the thrust coefficient, x̄i− x̄ℓ is the stream-wise distance from the hub generating

wake (x̄ℓ) to hub of interest (x̄i) along freestream (let this difference be d
∥
iℓ), ȳi− ȳℓ is the span-wise distance from the hub

generating wake to hub of interest perpendicular to freestream (let this difference be d⊥iℓ), σy is the standard deviation of the

wake deficit, ky is a variable based on a turbulence intensity, and D is the WT diameter.

2.2 Wake Velocity Deficit Superposition Model135

The absolute velocity deficit ∆iℓ(θ
j ,k) at wind direction θj and wind speed index k can be estimated in two ways. Either based

on the inflow wind speed (Lissaman, 1979; Katic et al., 1986) through

∆iℓ(θ
j ,k) = δiℓ(θ

j ,k)uk
∞ (3)

or based on the wind speed uℓjk at WT ℓ creating the wake at point i for wind direction θj and speed k (Voutsinas et al., 1990;

Niayifar and Porté-Agel, 2015),140

∆iℓ(θ
j ,k) = δiℓ(θ

j ,k)uℓjk (4)

here δiℓ(θ
j ,k) is the relative velocity deficit of ℓ over i at operation condition {j,k} after Eq.(1) and Eq.(2). Note that Eq.

(3) leads to a greater value and therefore is considered a conservative approach compared to (the potentially more realistic)

Eq. (4). Nonetheless, implementing Eq. (3) greatly simplifies the resultant system of equations and allow for preprocessing

calculations.145

Let the set Uθj

i collect the WTs creating wake over WT at point i for wind direction θj as per

Uθj

i = {ℓ | position ℓ is up-wind compared to position i for wind direction j} (5)
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The wake velocity deficit superposition, to calculate the total velocity deficit at WT i, ∆i(θ
j ,k), can be obtained through

two mechanisms. Either it is based on linear superposition model (Lissaman, 1979; Niayifar and Porté-Agel, 2015) through

∆i(θ
j ,k) =

∑

ℓ∈Uθj
i

∆iℓ(θ
j ,k) (6)150

or it is based on the root sum squares superposition model (Katic et al., 1986; Voutsinas et al., 1990)

∆i(θ
j ,k) =

√√√√
∑

ℓ∈Uθj
i

∆2
iℓ(θ

j ,k) (7)

2.3 WT Power Curve

Suitable power curves are required for computing AEP. Often, power curves are not perfectly suitable for optimization, due

to the usual non-differentiability in several points throughout the function. Generally, a power curve is zero below cut-in wind155

speed, zero above the cut-out wind speed, and constant between the rated wind speed and the cut-out wind speed. In this

particular study, between the cut-in and rated wind speeds the curve is assumed to be smooth, convex and monotonically

increasing. The simplified power curve for a generic turbine as a function of wind speed u is modelled through

p(u) =





0, u < ucut-in

prated
(

u−ucut-in

urated−ucut-in

)3
, ucut-in ≤ u < urated

prated, urated ≤ u < ucut-out

0, u≥ ucut-out.

(8)

where prated is the nominal power at (and above) rated wind speed urated. The other turbine characteristics are the cut-in wind160

speed ucut-in, and the cut-out wind speed ucut-out. In this definition, the WT power curve is not differentiable at ucut-in, urated,

ucut-out, since in these points the left and right hand side derivatives are different. Be aware that the optimization programs

proposed in this manuscript are not dependent on WT power curve differentiability.

2.4 Annual Energy Production, AEP

The AEP is calculated with165

AEP = 8760

nT∑

i=1

∑

j,k

wjkp(uijk) (9)

where wjk is the joint probability of wind direction j and wind speed k, and 8760 is the number of hours of a standard year.

3 Optimization Models

The MILP program with explicit modelling of the WT power curve, wake deficit, and wakes superposition, is introduced in

Sect. 3.1. Then, the power-curve-free formulation is described in Sect. 3.2.170
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The main type of variables ξi ∈ {0,1} represent presence or absence of turbines at the candidate locations, for both models.

Given N points, i.e. candidate locations for turbine positions, with positions pi inside the domain F (i.e. pi ∈ F for all i WT

candidate locations), binary variables ξi ∈ {0,1} are associated with the following interpretation

ξi =





1, if a turbine is located at point i with position pi, and

0, otherwise.
(10)

Let the index sets N i storing the candidate locations violating the minimum distance constraints for a WT i be defined as175

N i = {q ∈ {1, . . . ,N}, q ̸= i | diq(pi,pq)< dmin} (11)

where dmin > 0 is the minimum required distance between two turbines. If ξi = 1 then all binary variables in the set N i should

be forced to zero, whereas if ξi = 0 these variables should be free to take any value in {0,1}.

All relevant distances can be pre-processed for all combinations of points i and q. These parameters are then defined as

function of the Cartesian plane positions p and wind direction θj , as the Euclidean distances diq(p) = ∥pi−pq∥2, the stream-180

wise distances d∥iq(p;θ
j) and the span-wise distances d⊥iq(p;θ

j), extending the concept introduced in Sect. 2.1.

3.1 Power-curve-based Model

Continuous state variables uijk are used for wake modelling and power computation. A variable uijk represents the wind speed

at WT location i, for wind direction j, and wind speed k.

The power curve is approximated with a step-wise function. The cubic part of the power curve is first partitioned into m185

intervals, plus one interval from a negative point (−uini) to the cut-in speed, and a final one to cover the range from rated to

cut-out speed. Each isometric interval within the cubic domain of length ∆u= (urated−ucut-in)/m, is approximated with a

constant power value, see Fig. 1.

An interval l of the whole domain is characterized by three parameters ul
s, u

l
m, and ul

h with the next properties

u1
s =−uini,u1

h = ucut-in,um+2
s = urated,um+2

h = ucut-out (12)190

u2
s = ucut-in,um+1

h = urated (13)

ua+1
s = ucut-in +(a− 1)∆u for a= 1, . . . ,m (14)

ua+1
h = ucut-in + a∆u for a= 1, . . . ,m (15)

ul
m = 0.5(ul

s +ul
h) (16)

equation (12) defines the lower and upper limits for the extreme intervals l = 1 and l =m+2, Eq. (13) formalizes the lower195

and upper limits for the first interval in the cubic part, a= 1, and the last one a=m, respectively. Equation (14) expresses the

lower limits for intervals in the cubic part (a= 1, . . . ,m), while Eq. (15) does it for the upper limits. Equation (16) presents

how to determine the extracted wind speed associated to the interval l of within whole domain, which is the average value of

ul
s and ul

h.
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Figure 1. Piece-wise constant approximation of a wind turbine power curve through sampling with m= 10 intervals between the cut-in and

rated wind speeds.

Let binary state variables ηlijk ∈ {0,1} for l = 1, . . . ,m+2 be defined with the interpretation200

ηlijk =





1, if ul
s ≤ uijk ≤ ul

h, and

0, otherwise.
(17)

i.e. these variables indicate which of the wind speed intervals l of the power curve approximation for WT i, operates at wind

direction j, and wind speed k.

With all the variables of the model - activation variables ξ, continuous state variables u, and binary state variables η -

introduced, formulation in Eq. (18) follows,205

maximize
ξ,η,u

8760

N∑

i=1

∑

j,k

m+2∑

l=1

wjkη
l
ijkp(u

l
m) (18a)

subject to: ξi + ξq ≤ 1 ∀ i,q ∈N i (18b)

nmin ≤
N∑

i=1

ξj ≤ nmax (18c)

m+2∑

l=1

ηlijku
l
s ≤ uijk ≤

m+2∑

l=1

ηlijku
l
h ∀ (i, j,k) (18d)

m+2∑

l=1

ηlijk = 1 ∀ (i, j,k) (18e)210

uijk = uk
∞(ξi−

∑

ℓ∈Uθj
i

ξℓδiℓ(θ
j ,uk

∞)) ∀ (i, j,k) (18f)

ξ,η ∈ {0,1} u ∈ R (18g)
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This program collects the AEP objective function, the constraints of a generalized version of the WFLO problem, and the

variables’ domain definition. The objective function in Eq. (18a) is an approximation of the AEP computation presented in Eq.

(9). Equation (18b) models the minimum distance constraints as explained in the introduction of Sect. 3. If a binary variable215

ξi is active, then all candidate points closer than dmin should be excluded, i.e. set to zero. If a binary variable ξi is inactive

then the other candidates are still eligible. The definition of the set N i is provided in Eq. (11). Equation (18c) models the

situation that the designer requires at least nmin and at most nmax WTs to be located in the domain. Note that for the classic

problem definition nmin = nmax=nT. Equation (18d) connects state variables u and η as explained in Eq. (17) while Eq. (18e)

forces one operation case active for each WT candidate at each wind direction and speed. The last constraint in Eq. (18f) is for220

the wake velocity deficit and wakes superposition modelling to calculate wind speed for each candidate location at each wind

direction and inflow speed uk
∞. The presented model supports a conservative velocity deficit approach (Eq. (3)) with linear

superposition (Eq. (6)). The definition of set Uθj

i is provided in Eq. (5). Note that an extension, consisting in creating extra

continuous state variables and associated constraints, could allow for considering the more realistic approach in Eq. (4). It is

still unknown if the root sum squares model of Eq. (7) could be implemented in the framework of MILP. Finally, Eq. (18g)225

defines the domain of the required variables. A value for uini of ucut-out is set up.

3.2 Power-curve-free Model

Albeit the formulation of Sect. 3.1 represents to a very large extent the physics ruling the problem, it has a considerable number

of variables and constraints that may hinder the capacity to tackle larger problems. The model presented in this section neglects

the power curve and AEP calculation and aims at simplifying the power-curve-based version.230

The power-curve-free model introduces a strategy to account for the combination of Eq. (3) and Eq. (7) to calculate velocities,

since the case studies from the IEA Wind Task 37 follow this methodology for AEP computation. It would be possible though

to consider the linear superposition model if necessary. However, the power-curve-free model does not support the application

of Eq. (4).

Combining Eq. (3) and Eq. (7) and extending the summation range in Eq. (7) to all candidate locations, the sum of wind235

speeds in the farm, U , can be modelled through

U =

N∑

i=1

∑

j,k

wjku
k
∞ξi−

N∑

i=1

∑

j,k

wjku
k
∞

√√√√
N∑

ℓ=1

(δiℓ(θj ,uk∞))2ziℓ (19)

where new binary variables ziℓ are introduced. The variable ziℓ is equal to one if both WTs i and ℓ are active (i.e. if ξi = ξℓ = 1)

and zero otherwise. Nevertheless, the previous expression is not linear for variable ziℓ due to the presence of the square root in

each total relative velocity deficit term. By removing the square roots, the following expression is obtained:240

Ũ =

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

N∑

ℓ=1

∑

j,k

wjku
k
∞(δiℓ(θ

j ,uk
∞))2ziℓ (20)
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the arguments of the square roots in Eq. (19) define a function closely related to the full root-squared expression. This lin-

earization approach is similar to the one proposed by Turner et al. (2014). Let the pre-processed coefficient in front of of ziℓ be

biℓ =
∑

j,k

wjku
k
∞(δiℓ(θ

j ,uk
∞))2 (21)245

combining Eq. (20) and Eq. (21) results in

Ũ =

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

N∑

ℓ>i

(biℓ + bℓi)ziℓ (22)

which defines the objective function of the power-curve-free model. In comparison to the objective function in Eq. (18a), no

power curve or continuous state variables are required.

Nonetheless, the presence of variables ziℓ can be troublesome. For the complete model, in addition to having these variables250

of combinatorial nature, constraints of the same kind must be incorporated: zij ≥ ξi+ξj−1, zij ≤ ξi, zij ≤ ξj ,zij ≥ 0. Exper-

imental results show the heavy computational burden incurred when solving this formulation, impacting the ability of solving

large-scale problems (Fischetti et al., 2016). To circumvent this, a big-M trick is incorporated (Wolsey, 2020), resulting in an

exactly equivalent model, as reflected in formulation of Eq. (23).

The new objective function in Eq. (23a) modifies the component linked to the total wind speed deficit proxy by creating255

variables τi; this variable means total wind speed deficit proxy for WT in candidate location i. Equation (23b) defines τi, if a WT

candidate location is inactive ξi = 0, then there is no deficit at this location, therefore τi = 0, because of Mi =
∑N

ℓ=1:i ̸=ℓ biℓ,

and the minimization nature of the problem for wind speed deficits. Oppositely, if ξi = 1, then τi is forced to be equal to
∑N

ℓ=1:i̸=ℓ ξℓbiℓ. The next two equations are the same with those already presented in Sect. 3.1 for number of active WTs, and

minimum distance constraints. Finally, Eq. (23e) defines the domain of the required variables.260

maximize
ξ,τ

Total inflow wind speed︷ ︸︸ ︷
N∑

i=1

∑

j,k

wjku
k
∞ξi−

Total wind speed deficit proxy︷ ︸︸ ︷
N∑

i=1

τi (23a)

subject to: τi ≥
N∑

ℓ=1:i ̸=ℓ

ξℓbiℓ +(ξi− 1)Mi ∀ i (23b)

nmin ≤
N∑

i=1

ξi ≤ nmax (23c)

ξi + ξq ≤ 1 ∀ i,q ∈N i (23d)

ξ ∈ {0,1} τ ∈ R : τ ≥ 0 (23e)265

note that for the classic problem definition nmin = nmax=nT, the first part of the objective function becomes
N∑

i=1

∑

j,k

wjku
k
∞ξi =

∑

j,k

wjku
k
∞

N∑

i=1

ξi =
∑

j,k

wjku
k
∞nT = constant
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for this situation, the objective function is thus equivalent to

minimize
ξ,τ

N∑

i=1

τi (24)

this proxy objective function is very useful for formulating the program in the MILP category. While the work by LoCascio

et al. (2022) focuses on a different formulation (likely more accurate analytically than the one presented here) that is non-linear

but gradient friendly, hence useful for continuous gradient-based optimization.270

Compared to Turner et al. (2014), the MILP program (23) with objective replaced by Eq. (24), linearizes the complexity of

its largest set of constraints and variables from N2 to N (Eq. (23b) and Eq. (23e)). Furthermore, the constraints in Eq. (23d),

which can lead to infeasible points, are not neglected as by Turner et al. (2014).

4 Neighborhood Search Heuristic

For addressing large-scale problems, a heuristic wrapping the MILP formulations given in Sect. 3 is introduced. It is based on275

neighborhood search and local branching theory (Fischetti and Lodi, 2003). The algorithm solves a sequence of MILPs, with

different candidates number N and/or neighborhood search size K, taking advantage of robust and efficient implementations

of branch-and-cut methods for MILP. The heuristic relies on the observation that for a fixed layout described by ξ ∈ {0,1}N ,

the other state variables are straightforward to determine. This observation is valid for all problem formulations presented in

Sect. 3. Given ξ ∈ {0,1}N , for the power-curve-based model, the value of continuous state variables u can be found through280

classical wake analysis, and the binary state variables η are directly determined by inspection of the velocities. Similarly, for

the power-curve-free model, the τ variables are trivially computed. The pseudo code of the Neighborhood Search Heuristic

(NSH) is described in detail in Algorithm 1.

The first three lines are the main inputs of the algorithm: the candidates set C, the times set T , and neighborhood sizes set

V . The first set contains the sizes N of the meshes to be considered, the second one is the maximum computing time T for285

the MILP solver for each size N and the last one is for the search size defined as the maximum number of changes K allowed

to the incumbent. If the incumbent is improved, then the candidates set C, and neighborhood size K are kept, otherwise at

least one of them is increased. The first step (line 5) is to obtain an initial incumbent binary variables, with the set ξ storing

the acquired value (0 or 1) for each variable ξi : i≤N . The incumbent has an objective value of ob calculated after the true

objective function. The true objective function refers to the real equation that represents the ultimate aim to be optimized.290

For example, if this is the AEP, then it is the product of the power calculation process, applying the considered wake and

superposition models and the original power curve, and not the objective function of the implemented formulation, as in Eq.

(18a), which is always an approximation.

The next step is to start the iterative process in line 6. Values for N , T , and K are fetched in line 7, followed by the

formulation of the MILP model for candidates N accounting for the active locations in ξ. The Hamming distance, see e.g.295

Fischetti and Lodi (2003), centered around the incumbent point ξ, is added to the optimization model in line 9; this constraint
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reduces the search space as the number of changes of ξ are limited to K. The complete model is sent to the MILP solver with

ξ as warm-starter, stopped when reaches either optimality or the assigned maximum computing time T .

Algorithm 1 Neighborhood Search Heuristic (NSH) Algorithm

1: C←{N1, · · · ,NC} ,N ∈C {Input candidates set}

2: T ←{T1, · · · ,TC} ,T ∈ T {Input times set}

3: V ←{K1, · · · ,KV } ,K ∈ V {Input neighborhood sizes set}

4: countern← 1 counterv← 1

5: Obtain initial incumbent of activation binary variables for WTs ξ with objective value ob

6: for (κ= 1 : 1 : κmax) do

7: N ←C[countern] T ← T [countern] K← V [counterv]

8: Formulate optimization model with N candidates (including the incumbent), either from Sect. 3.1 or Sect. 3.2

9: Add Hamming distance constraint centered around the incumbent ξ,
∑

i:ξi=0 ξi +
∑

i:ξi=1(1− ξi)≤K

10: Solve opt. model from algorithm lines (8) to (9) until optimality or computing time T with ξ as warm-starter

11: Get the solution pool S, where ξ̂ ∈ S represents the activation binary variables for WTs of an individual point

12: Apply true objective function over each point ξ̂ ∈ S, and obtain objective values set O

13: Compute ot←maxO, and it← argmaxO

14: if ot > ob then

15: ob← ot

16: ξ← S[it]

17: else

18: counterv← counterv+1

19: end if

20: if counterv = |V |+1 then

21: counterv← 1 countern← countern+1

22: end if

23: if countern= |C|+1 then

24: Break

25: end if

26: end for

After solver termination, the solution pool S is retrieved in line 11. The solution pool contains all the feasible layouts

obtained in an iteration κ from the MILP solver. These points are a result of a linear programming relaxation or from applying300

heuristics in a given node, such as, relaxation induced search, polishing, and feasibility pump (IBM, 2022). It is very important

to emphasize the aim of getting the whole pool instead of the best point. This is done because of the imperfect correspondence

between the true objective function and the objective function of the applied MILP model. For example, a solution which
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may have worse objective value, may actually have a better AEP based on the real model. One of the advantages of the NSH

compared to the DEBO algorithm by Thomas et al. (2022c) is the reduced number of AEP evaluations. In an iteration κ, only305

|S| evaluations are required. Likewise, many of the other expensive calculations are done in a pre-processing stage. The whole

pool of solutions is examined, and the best solution indexed by it with AEP of ot is obtained in line 13. If ot is actually greater

than ob, then the whole algorithm is re-centered around the new ξ (lines 14 to 16) and in the next iteration κ, the same values

of N and K are maintained. Otherwise, the next value of K is taken (line 18), unless the set has been exhausted. In this case,

the next candidates size N is considered given by countern, restarting the neighborhood set counter counterv to one (lines310

20 to 22). The NSH algorithm is terminated when all candidates set C have been processed (line 23 to 25). Another difference

between the NSH and the DEBO is that the latter only changes the position of a single WT in a given iteration, while the former

considers simultaneous modifications of several WT positions.

5 Computational Experiments

For a transparent benchmark of the proposed methods, the open access case studies from the IEA Wind Task 37 in Baker et al.315

(2019) are used for comparison. The Task 37 cases consider circular project areas with three different radius (1300 m, 2000 m,

and 3000 m) and number of WTs (16, 36, and 64), nT. Thus, Case I has a radius of 1300 m and nT = 16 WTs, whereas Case

II has radius 2000 m and nT = 36, and Case III has radius 3000 m and nT = 64, correspondingly.

The results of the statistical correlation between the proxy function given by the argument in Eq. (24) and AEP of the

problem definition of Baker et al. (2019) are presented in Sect. 5.1 for each case. The performance of the proposed models320

in the case studies are shown in Sects. 5.2 (Case I), 5.3 (Case II), 5.4 (Case III). The power-curve-free model of Eq. (23) is

implemented with the Eq. (24) as objective function in these three sections. The true objective function in the NSH Algorithm

1 for these cases is the AEP of the problem definition. In the end, to prove the capabilities of power-curve-based model of Eq.

(18), Sect. 5.5 displays results after applying this formulation with a modified objective function to express a metric similar to

NPV.325

The main parameters of the wake model in Sect. 2.1 are fixed to CT = 8/9 and ky = 0.0324555, according to Baker et al.

(2019). The wind resource is modelled using a wind rose approach where the wind resource is binned in J directions, and

for a specific direction j (θj), wind speeds are discretized in Υ sectors. For the case studies, the wind rose is composed of

16 directions and a single wind speed k of 9.8 ms−1, shown in Fig. 2. The power curve from Eq. (8) modelling the IEA37

3.35 MW reference turbine (with diameter of D = 130 m) is used in the case studies, ensuring replicability of results (IEA330

Wind Task 37, 2019; Baker et al., 2019). The main parameters are prated = 3.35 MW, urated = 9.8 ms−1, ucut-in = 4 ms−1, and

ucut-out = 25 ms−1, and is plotted in Fig. 1. The parameter dmin is set to 2D.

The experiments in Sects. 5.2, 5.3, and 5.4 have been carried out on an Intel Core i7-6600U CPU running at 2.80 GHz with

four logical processors and 16 GB of RAM. For the experiment in Sect. 5.5, a larger resource is used, an Intel Xeon Gold

6226R CPU running at 2.90 GHz with 32 virtual cores and 640 GB of RAM (DTU Computing Center, 2022).335
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The selected MILP solver is the commercial branch-and-cut algorithm implemented in IBM ILOG CPLEX Optimization

Studio V20.1 (IBM, 2022). Apart from the number of threads and time limit settings, a few other parameters are also set to

differently than default values. One is the parameter returning high-quality feasible solutions early in the process, for which,

the (CPX_MIPEMPHASIS_HEURISTIC) is activated. The intention is to generate more feasible layouts which is important

for the neighborhood search algorithm. Additionally, strong branching is used for variable selection given the large size of340

the models (CPX_VARSEL_STRONG is selected). The intention is to reduce the size of the search tree and thus the memory

requirements compared to default settings.

The number N and positions pi for i≤N of the candidate locations are of course very important parameters for the discrete

modelling techniques. A customized automatic strategy based on independently sampling the boundary and interior area of the

circular domain F has been employed. An example of the sampling strategy for these particular case studies giving N = 467345

is illustrated in Fig. 3.

Parameters

The wind turbine is the IEA37 3.35 MW onshore reference turbine [1] with the following characteristics:

Rotor Diameter 130 m
Turbine Rating 3.35 MW
Cut-In Wind Speed 4 m/s
Rated Wind Speed 9.8 m/s
Cut-Out Wind Speed 25 m/s

All turbine data is also contained in the enclosed iea37-335mw.yaml. The power curve is defined as:

P (V ) =





0 V < Vcut-in

Prated ·
(

V−Vcut-in

Vrated−Vcut-in

)3

Vcut-in ≤ V < Vrated
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The farm wind speed for all scenarios is constant at 9.8 m/s. The +y axis is coincident with 0◦, and the
CW wind rose is defined by 16 discrete bins tabulated in iea37-windrose.yaml, depicted pictorially below:
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2.1 Case Study 1: Optimization Only

This problem defines three different wind farm sizes, and corresponding number of turbines, intended to test
scalability of your optimization approach. The three scenarios are:

1. 16 turbines, boundary radius of 1,300 m.

2. 36 turbines, boundary radius of 2,000 m.

3. 64 turbines, boundary radius of 3,000 m.

For this Case Study the user is only free to choose the optimization approach. The wake model is fixed and
is a simplified version of Bastankhah’s Gaussian wake model [2, 3, 4]. A Python implementation is supplied
for convenience (iea37-aepcalc.py). Alterations to this implementation are permitted, as long as the

2

Figure 2. Wind rose used in the computational experiments. Taken from open access source IEA Wind Task 37 (2019).
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Figure 3. Example of generation of WTs candidate locations N .

14



In Fig. 3, the boundary of the circular shape is densely sampled, as a candidate point is defined every natural angle from 0◦

to 359◦, i.e. 360 candidate points are provided since it is intuitively expected that a good portion of the WTs will be placed in

the boundaries to decrease wake losses. For the interior, a set of finite parallel line segments are generated and the candidates

points are then taken along those segments. In the example of Fig. 3, the slope of the line segments is zero, and the distance350

between points and lines is equal to 1.7D.

5.1 Correlations

To validate the approach modelled by the MILP formulation of Eq. (23) (i.e. the power-curve-free model), 5000 random

feasible WT layouts are created. For each of them, the AEP of Baker et al. (2019), the total theoretical wind speed, U , given

by Eq. (19), the total wind speed proxy, Ũ , defined by Eq. (22), and total wind speed deficit proxy,
∑N

i=1 τi, argument of Eq.355

(24), are calculated. Although the random way of generating the layouts is biased against high-quality points, the interest is in

the general trend in order to assess whether it makes sense to implement the linear proxy objective
∑N

i=1 τi when optimizing

AEP.

In all cases Pearson product-moment linear correlation coefficients from Pearson (1895) are used to extract information from

the data and collected in Table 1 for all pairs. This coefficient illustrates the degree to which the movement of pairs of variables360

is associated in a linear fashion. The correlation plots of Fig. 4 present the graphical representation of the relations for Case I.

The correlation between AEP and the total theoretical wind speed is shown in Fig. 4a for the Case I. The main observation is

the very strong linear relation between these two variables as illustrated by the correlation coefficient of 0.97. Interestingly, this

reflects the rather low influence of the WT power curve in obtaining high-quality feasible points. The relation between U and

Ũ is represented in Fig. 4b, resulting in an almost identical linear connection between them, as in the previous graph. When365

one looks into AEP vs
∑N

i=1 τi, however, it is noticeable that the Pearson coefficient decreases to −0.88. There is a wider area

in the body of points that causes this behaviour. Note that in contrast to the previous two figures, there is a negative correlation

because the comparison is done in terms of wind speed deficit instead of total wind speed. In spite of this deterioration, the

linear correlation is still considered quite strong. These results motivate the approach where the minimization of a proxy total

wind speed deficit can lead to high-quality AEP solutions. The NSH Algorithm 1 helps correcting the imperfect correspondence370

between these two variables during the optimization routine as reflected in Sect. 4.

Table 1. Pearson product-moment linear correlation coefficients for all case studies.

Case AEP vs Theoretical wind speed Theoretical vs Proxy wind speed AEP vs Proxy wind speed deficit

Case I 0.97 0.96 -0.88

Case II 0.97 0.95 -0.85

Case III 0.96 0.88 -0.72
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(a) Correlation between AEP and the theoretical wind speed.
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(b) Correlation between the theoretical and approximated wind speeds.
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(c) Correlation between AEP and the approximated wind speed deficit.

Figure 4. Correlation plots for 5000 randomly generated wind turbine layouts for Case I.

The general trends of the correlation plots for Case II are very similar. Correlations between AEP versus theoretical total

wind speed (0.97), and theoretical total wind speed versus total wind speed proxy (0.95) are still very strong. Nonetheless,

there is a slight decrease between AEP vs total wind speed proxy (down to −0.85 from −0.88 previously), as the spread for

middle velocity values is larger. The linear relation is deemed as satisfactory enough to carry on with the application of model375

of Eq. (23) with objective function Eq. (24).

The very strong linear relation between AEP and the theoretical total wind speed (0.96) is observed also for Case III, prompt-

ing to a very interesting conclusion. Although almost all research in the WFLO space focuses strictly on power modelling

(which brings a great deal of complexity due to the non-linear and non-differentiable properties of WT power curve), using

an exact model for determining total wind speed as objective function alleviates the computational complexity, while finding380

high-quality solutions in terms of AEP. However, one should note that deterioration in the correlation still exists, potentially

leading to lower quality results.

Likewise, correlations stemming from the proxy to calculate total wind speed deficit are lowered in Case III. This is the

case for both with the total wind speed theoretical (0.88) and the AEP (−0.72). Keep in mind that the reason to formulate

such approximation is to fit in the context of integer programming to leverage theory and state-of-the-art algorithms of this385
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mature field. However, the price to pay is to lose fidelity to represent the real (true) target to optimize. The deterioration

in the correlation of these pairs of variables may also suggest the need to resort to the power-curve-based model for some

applications. Whether the price is too high or not is reflected in the reachable solution quality. Sects. 5.2, 5.3, and 5.4 present

the optimization results for the cases of fixed number of WTs that will ultimately help to elaborate a final evaluation regarding

the adopted modelling technique.390

5.2 Case I: 16 WTs

This case has a round shape of 1300 m radius and nT = 16 WTs. The evolution of two of the proposed optimization frameworks

is given in Fig. 5 (clock time given in the abscissa). The green line of the full model is obtained after solving the model of Eq.

(23) with objective function as in Eq. (24) for N = 1014 without implementing the NSH. It represents the incumbent solution

in terms of AEP (not total wind speed deficit proxy) obtained by post-processing the CPLEX’s log. The blue line results after395

applying the NSH with the model of Eq. (23) plus objective Eq. (24), and AEP as true objective function in Algorithm 1. The

main inputs are C = {467,590,1014} (set of candidate locations), T = {1,1.5,2} h (set of max computing times for each

candidate location), V = {2,4,6,16} (set of neighborhood search sizes). See Sect. 4. These inputs are tuned after evaluating

the performance of the method using different values. In general, the first two elements of C consists of moderately big values,

relatively close to each other, while the last element is sizeably greater in the search of the best possible solution. Each element400

N ∈C has associated a computing time T . Finally, the first elements of V are relatively low values to favour termination of the

solver due to optimality, and then they start increasing to refine the search. The red line is for establishing a reference of AEP

value, this comes from the best performing method in the survey of IEA Wind Task 37 of Baker et al. (2019), the SNOPT plus

Wake Expansion Continuity (WEC) (Thomas and Ning, 2018; Thomas et al., 2022b). Time evolution for the SNOPT+WEC is

not reflected in this graph, as this information is unavailable. Results for the benchmark against a testbed of different algorithms405

are available in Table 2.

The NSH computing time results in Fig. 5 do not reflect the instant where the incumbent is found, but the time progress of

this algorithm, which is dependent on the execution of the MILP solver at each iteration. Table A1 contains information about

the values of N , K, T , and termination criterion of the solver after each iteration κ of the NSH Algorithm 1 (beginning from

point 2 where κ= 1). This means that, in iterations where the termination criterion is time (and not optimality), one could fine-410

tune T for an earlier stop, shortening the total time. This is particularly more relevant in cases where internal heuristics of the

solver are activated at the root node of the search tree, coming up with the largest portion of solutions very early in the process.

Consequently, the total computing time, for all cases, is conservative and should be taken as an approximated reference.

The initial layout (point 1), labelled in Fig. 6a, is set up by arbitrarily by picking up candidate locations around the circular

boundary; this layout has an AEP of 387 GWh. From now on, the presented percentages are calculated with respect to the last415

commented AEP improvement. Between points 2 to 7 where N = 467 and K = 2, the models are solved to optimality (gap of

0%), and the solution is improved by 2.92% in only 56 s. After a short plateau, the solution is markedly refined by 2.96% from

point 10 to 13 by performing a search of the domain with K = 16, and restarting the model every 1 h with a new warm-starting.
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Figure 5. Performance of two different optimization approaches for Case I and comparison with existing best benchmark results. See Table

A1 for detailed information about each numbered point in the blue curve.

The next considerable jump happens for N = 590 and 2≤K ≤ 6 in around 20 min, elevating the AEP by 1.94%. After,

again, a plateau without improvements, when N reaches its maximum value of 1014, the solution is maximized to the final420

value of 418 GWh during the lowest values of K. For this particular instance, the greatest value of K = 16 is exploited for the

lowest number of candidate points N , where the largest improvement comes up.

The benefit of the proposed neighborhood search strategy is shown in Fig. 5. Solving the full model is significantly slower,

leading actually to a worse solution (3.31% lower). The capacity of the NSH to iterate over different values of candidate

points N and search sizes K brings alone not only improvements in terms of solution time and solution quality, but also less425

computational resources as the RAM memory generally scales faster when solving the single model.

The initial and final solution layouts for this case study are illustrated in Fig. 6. The importance of finely sampling the

boundaries of the available area is evident in Fig. 6b, because 7 out of the 16 WTs are placed in that subdomain.

Finally, Table 2 compares the proposed method to a large number of different approaches from the IEA37 reference study

(Baker et al., 2019). The results for all case studies are presented, where I, II, and III make reference to cases from this section,430

Sect. 5.3, and Sect. 5.4, respectively.

The third column of Table 2 reports the difference of the AEP with respect to the proposed method for the smallest case study.

The resulting AEP is better than almost all the other alternatives, except to the SNOPT+WEC, where a nearly identical objective

value is achieved. When directly comparing to to typical metaheuristics (genetic algorithm, particles swarm optimization, etc),

that do not use explicit gradients information, the presented method seems to perform well, being able of determining a similar435
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layout quality in less than 2 h, which is usually a competitive time compared to these kinds of population-based algorithms. In

a broader context, beyond the presented numerical comparisons, discrete optimization approaches, as the MILP ones presented

in this manuscript, could be formulated to cope with problem definitions with required functionalities that in theory continuous

optimization methods can not support (or at least the implementation becomes strenuous).
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout obtained by the heuristic.

Figure 6. Generated wind farm layouts for the benchmark Case I with 16 turbines.

Table 2. Results for all three benchmark cases from other algorithms (G, gradient-based and GF, gradient-free) obtained while allowing

WT locations to vary continuously. Values reproduced from Baker et al. (2019). The difference column shows how the proposed heuristic

with the power-curve-free model performs in comparison. Negative percentages means that the proposed method performs better than the

corresponding algorithm.

Method
AEP I Diff. I AEP II Diff. II AEP III Diff. III

[GWh] [%] [GWh] [%] [GWh] [%]

SNOPT+WEC (G) 418.92 0.09 863.68 -0.19 1513.31 0.85

fmincon (G) 414.14 -1.06 820.39 -5.19 1336.16 -10.95

SNOPT (G) 412.25 -1.51 846.36 -2.19 1476.69 -1.59

SNOPT (G) 411.18 -1.76 844.28 -2.43 1445.97 -3.64

Preconditioned SQP (G) 409.69 -2.12 849.37 -1.84 1506.39 0.39

Mul.interior-point (G) 408.36 -2.44 851.63 -1.58 1480.85 -1.31

Full pseudo-gradient (GF) 402.32 -3.88 828.75 -4.23 1455.08 -3.03

Basic genetic algorithm (GF) 392.59 -6.20 777.48 -10.15 1332.88 -11.17

Simple particle swarm (GF) 388.76 -7.12 776 -10.32 1364.94 -9.04

Simple pseudo-gradient (GF) 388.34 -7.22 813.54 -5.98 1422.27 -5.22
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The power-curve-based model of Eq. (18) within the NSH using the same AEP formulation as true objective function,440

provides a solution 1.18% lower in objective value in around 36 h using the computer system with 32 virtual cores. Although

the quality of the layout is very close to the one schematized in Fig. 6b, the larger computational resources favour implementing

the power-curve-free model for problems with fixed number of WTs. Therefore, Sects. 5.3 and 5.4 present only the results

reached after the application of the power-curve-free model embedded into the NSH.

5.3 Case II: 36 WTs445

This case has a round shape of 2000m radius and nT = 36 WTs. The evolution of the proposed methods, and the initial and final

WT layouts are plotted in Fig. 7 and Fig. 8, respectively. Table B1 displays the data linked to each point of Fig. 7. Main inputs

are C = {477,684,1907}, T = {1,1.5,2} h, V = {2,4,8,16,36}. The blue line (model of Eq. (23) with objective function

Eq. (24) plus NSH Algorithm 1) has clearly three sectors stemming from each value of N ∈C. The initial WT layout (Fig. 8a)

- also determined by choosing roughly equidistant candidate locations in the boundary - has an AEP of 796 GWh. As for Case450

I, improvement percentages are calculated using the last commented step as the baseline. After seven NSH iterations (point 8)

in 41 s, the incumbent is improved by 1.84%, when N = 477 and 2≤K ≤ 4, being able to solve each model instantation to

optimality.
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Figure 7. Performance of two different optimization approaches for Case II and comparison with existing best benchmark results. See Table

B1 for detailed information about each numbered point in the blue curve.

After a three-hours-plateau linked to 8≤K ≤ 36 (four iterations), N is raised to 684, resulting in the largest AEP en-

hancement, as shown in Fig. 7. The energy production increases with 4.51% after only 23 min in point 27. This noticeable455
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improvement comes after solving to optimality models with rather small neighborhood search sizes 2≤K ≤ 4. The conve-

nience of allowing large neighborhood search sizes as K = 16 or K = 36 is reflected from this moment. From point 30 to 33 (6

h) with K = 16 the incumbent is slowly boosted by nearly 1%. Again, after a three-hours-plateau, N becomes equal to 1907,

and in around 32 min for 2≤K ≤ 4, the AEP is augmented by 0.41%. Then, the large neighborhood search starts for K = 16

and K = 36, and after a total of 16 h, the final solution of 865 GWh (increment of 0.61%) is achieved (Fig. 8b).460

The full model (i.e. without implementing the NSH algorithm) initially provides better solutions within the first 3 h, but then

lags behind in solution quality compared to the NSH algorithm in the long run (lower 3.05%), as shown in in Fig. 7.

For this case, the proposed method reaches the best solution, as shown in the fifth column of Table 2. The SNOPT+WEC is

again the closest contender. When uniquely comparing to GF methods, the proposed method matches the best solution from

those algorithms in around 3 h, which is generally a reasonable computing time compared to methods where gradients are not465

explicitly utilized in the optimization process, especially to metaheuristics as genetic algorithm or swarm optimization.
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout obtained by the heuristic.

Figure 8. Generated wind farm layouts for the benchmark Case II with 36 wind turbines.

5.4 Case III: 64 WTs

This case has a round shape of 3000 m radius and nT = 64 WTs. The evolution of the proposed methods, and the initial and

final WT layouts are displayed in Fig. 9 and Fig. 10, respectively. Table C1 displays the data linked to each point of Fig. 9.

Main inputs are C = {625,1017,2741}, T = {1,1.5,2} h, V = {2,4,8,16,32,64}. Note that in comparison the number of470

elements of V has been increased by one after each study case. This has been done taking into account the number of WTs.

Likewise, the values of N ∈C are larger to cover for the wider project areas.

Comparing blue lines of Fig. 5, Fig. 7, and Fig. 9 is evident that for the last case the curve shows less sudden increases.

The largest change occurs after 27 s where the initial solution (Fig. 10a) with AEP of 1395 GWh is improved by 3.18% for
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N = 625 and K = 2 up to point 9, reaching optimality in few seconds. With 4≤K ≤ 8 the model instantiations are solved to475

optimality in minutes, obtaining a solution improved by 0.18%.
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Figure 9. Performance of two different optimization approaches for Case III and comparison with existing best benchmark results. See Table

C1 for detailed information about each numbered point in the blue curve.
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(a) Initial wind farm layout provided to the heuristic.
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(b) Final wind farm layout proposed by the heuristic.

Figure 10. Generated wind farm layouts for benchmark Case III with 64 wind turbines.
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After point 13 in Fig. 9, one notes a plateau without improvement for N = 625 and K ≥ 16, i.e. a large neighborhood search

does not lead to further enhancements. Due to this, N is enlarged to 1017, where the second largest boost (increase of 2.12%)

comes, with the largest search size (K = 64) resulting in the best improvement. This enhancement occurs after 13 h of starting

the NSH (point 26). From point 28, N = 2741 and for 2≤K ≤ 4 the solver reaches optimality; slowly converging to the final480

solution of 1500 GWh (Fig. 10b).

Seventh column of Table 2 shows that the SNOPT+WEC and the preconditioned SQP provide slightly better layouts than the

proposed method. However, the algorithm provides feasible layouts that improve the objective compared to all the gradient-free

approaches.

5.5 Case IV: 10-50 WTs485

Although in most projects today the total capacity for grid connection is decided already in the early planning phases, in the

future one can envisage situations where flexibility in optimizing the number of wind turbines in a project would yield benefits.

Even if the power-curve-free model (Sect. 3.2) exhibits a quite good performance in terms of AEP and computing time for

fixed number of WTs (when AEP and NPV are basically the same metric), it is not very well suited when variable number

of wind turbines are considered. Based on computational experiments not included in the paper, the power-curve-free model490

embedded in the NSH terminates too early in the search process, resulting in a worse solution than the alternative discussed

below.

For such an optimization, the power-curve-based mathematical program of Sect. 3.1 may be handy as the number of gener-

ators is allowed to vary between a lower and upper bound, nmin and nmax, respectively. For illustration, a domain defined by

a circle with radius 1300 m, and variable number of WTs between 10 and 50 are utilized. These parameters are set relatively495

arbitrarily but with sufficient distance to reasonably expect that the limits are not reached. The aim is to illustrate the ability of

the method in reaching non-trivial solutions, resulting in a an optimized design with an intermediate number of wind turbines.

Keep in mind that for this case, a linear superposition model for the AEP component in the NPV calculation is considered.

In this sense, the original WT power curve as depicted in Fig. 1 is used. NPV is the true objective function when applying the

NSH Algorithm 1. The modified objective function of MILP model of Eq. (18) for this case has the form (Cogency, 2014):500

maximize
ξ,η,u

−
N∑

i=1

cwtξi +8760

Y∑

y=1

N∑

i=1

∑

j,k

m+2∑

l=1

cewjkη
l
ijkp(u

l
m)

(1+ r)y
(25)

where cwt is the cost per WT in mEUR, ce the energy price in mEURMWh−1, r is the discount rate in %, and Y is the number

of years of lifetime of the project. For this case study, values of cwt = 6.7 mEUR (Mishnaevsky Jr and Thomsen, 2020),

ce = 0.00015 mEURMWh−1 (Nord Pool, 2022), r = 5%, and Y = 20 are assumed. The general form of the NPV equation as

per Cogency (2014) is defined by the sum of the present value of cash flows (Discounted Cash Flow, DCF) of a project under505

analysis. In Eq. (25), the first sum is a negative cash flow representing purchase of the WTs at the construction stage of the

project, while the next term represents positive cash flows coming from trading the electricity in the market. Because of the
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additive nature of the NPV metric and since the focus is on evaluating investment vs revenues, by maximizing Eq. (25), a fully

comprehensive NPV metric is equivalently improved.

The model of Eq. (18) with modified objective function Eq. (25), embedded in the NSH Algorithm 1 with NPV as the510

target function is executed in three runs. For the first run the number of turbines is fixed to nmin = nmax = 10, while for the

second the number of turbines remains fixed but is increased to nmin = nmax = 50. For the third run the number of wind

turbines is allowed to vary between nmin = 10 and nmax = 50. The Algorithm 1 input parameters are C = {467,590,1014},
T = {1,1.5,2} h, V = {2,4,6,8,24}. The results are plotted in Figure 11.
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Figure 11. Evolution of the AEP, NPV, and number of WTs for the three simulations. The green lines are results for the optimization program

with fixed number of WTs equal to 10, the blue ones equal to 50, and the black ones for the optimization program with variable number of

WTs between 10 and 50.

When the number of turbines is fixed to 10, the NPV evolution (green line in Fig. 11b) is driven by the AEP (green line in515

Fig. 11a). Both curves are monotonically increasing, reaching a final value of NPV of = 456.40 mEUR. The same behaviour

is visible for nT = 50, although the final NPV is greater (683.53 mEUR), see blue line Figure 11b. In the second study, the

positive difference in DCF from the revenues surpasses the associated extra investment costs from the additional 40 wind
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turbines considered. The significant increase in the number of WTs doubles the computing time, due to the large increase in

the number of variables, selecting 50 WTs entails significantly more possible combinations of valid points.520

An interesting question is whether there is a larger NPV in between the bounds of WT number. For the optimization program

with variable number of WTs, the evolution of the WTs number in Fig. 11c and the AEP in Fig. 11a (see black lines in these

figures) exhibits a perfect correspondence. The more WTs the larger AEP, in spite of the increased wake losses. The curves

increase in time, up to a point where the model estimates that further increase of WTs would not lead to a better NPV. The final

number of WTs is 34. The NPV evolution in Fig. 11b (black line) naturally only improves with time, resulting in a final value525

of 795.86 mEUR. Note that the NPV in this case is greater than when a larger number of WTs (i.e. 50) was considered and

of course when only 10 were considered. Interestingly, the optimization program with 50 fixed number of WTs finds a final

solution with AEP very close to that from the variable number program, being the solution of the former 0.50% lower than the

latter, but requiring more WTs, and hence more investment (47% more). The final NPV value of the variable number model is

16.43% greater than the one with fixed 50 WTs. These figures could be expected to be similar even in situations where lower530

AEPs are obtained, if that compensates by augmenting overall financial metrics as the NPV.

This result shows the benefit of having optimization models that support variable number of WTs and accounting for metrics

beyond AEP. The advantages may become even more pronounced for more complex situations, as for instance, if the WT

investment costs are dependent on the exact installation area or different WT sizes are considered.

6 Discussions535

The two models proposed in this manuscript have many of the characteristics of mixed integer linear programming models.

They require significant computational time and memory and exhibit rather low tractability and scalability for global optimiza-

tion algorithms.

The power-curve-based model, albeit requiring large computational resources, manages to provide reasonably good solutions

for small-sized problem, being only 1.18% lower than its power-curve-free counterpart for the 16 WTs case and 4.41% for540

the 36 WTs case. This diminishing efficiency is to be expected, given the large number of variables and constraints. The

power-curve-free model on the other hand, along with the heuristic, is much faster due to its more compact formulation. This

translates into the ability to be highly competitive compared to a large set of benchmark algorithms. In situations where there

is an interest for optimizing metrics beyond AEP, such as the NPV, the power-curve-based model becomes very useful given

its intrinsic capacity to support this kind of objective functions.545

It should be mentioned that there are limitations in the wake models used compared to recent ones (Thomas et al., 2022b).

For example, the wake model used in this manuscript does not consider the changes in the turbulence intensity or thrust

coefficient variations from wind speed variations inside the wind farm. It is uncertain if using wake models like the ones in

Thomas et al. (2022b) would still allow an integer linear programming formulation or approximation of the WFLO problem.

It is also uncertain the impact on the final solution quality these detailed modelling aspects imply. These questions are left for550

future work.
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Notwithstanding the listed shortcomings, it is enthralling that these models, in combination with the neighborhood search

heuristic, are able to match and in some cases improve the results obtained when considering the turbine positions as continuous

variables (see Table 2). This opens the door to experimenting case studies with functionalities easily adaptable to discrete

parametrization techniques, which can be very challenging for continuous variable modelling approaches.555

7 Conclusions

This manuscript contributes both methodologically and empirically to address the WFLO problem. A neighborhood search

heuristic embedding integer programming formulations is proposed. For both presented formulations presented in the manuscript,

the step-wise power curve and power-curve-free, the heuristic notably improves a single execution of full models when calling

a state-of-the-art branch-and-cut solver in terms of solution quality. An improvement of up to 3.42% in the AEP is achieved by560

applying the neighborhood search strategy for cases where the WTs number is fixed compared to solving the full model.

Another important takeaway is the satisfactory performance of the power-curve-free model, which uses an approximation

of the total wind speed deficit, when (implicitly) optimizing for AEP. This is due to the good correlation between the two

measures, and the correction capability of the heuristic. For the classic WFLO problem definition, the proposed model is

able to considerably improve (from 1% to around 10%) the AEP compared to benchmark results by multiple gradient-based565

and gradient-free algorithms. Even when directly compared to methods implementing a continuous variables technique, the

proposed heuristic provides similar or even better results. These are very promising results that would enable to get high-quality

solutions for problem instances where continuous variables modelling approaches may not be able to run or provide with good

incumbents.

Finally, the model with explicit representation of the power curve embedded within the neighborhood search heuristic is570

able to propose non-trivial solutions when implementing objective functions beyond AEP, such as NPV. For these cases, the

trade-off between energy revenues and investment costs is studied. For example, the model suggests that is installing a lower

number of wind turbines than the allowed would results in a better NPV value, with comparable AEP.

26



Appendix A: Case I

Table A1. Information about the values of N , K, T , and termination criterion of the solver after each point in Fig. 5.

Point K, N Termination criterion Point K, N Termination criterion

1 Initial point - 17 K = 4 N = 590 opt. [0.24 min]

2 K = 2 N = 467 opt. [0.05 min] 18 K = 4 N = 590 opt. [0.46 min]

3 K = 2 N = 467 opt. [0.06 min] 19 K = 6 N = 590 opt. [9.79 min]

4 K = 2 N = 467 opt. [0.04 min] 20 K = 6 N = 590 opt. [1.10 min]

5 K = 2 N = 467 opt. [0.06 min] 21 K = 6 N = 590 opt. [1.29 min]

6 K = 2 N = 467 opt. [0.05 min] 22 K = 6 N = 590 opt. [6.64 min]

7 K = 2 N = 467 opt. [0.07 min] 23 K = 6 N = 590 opt. [6 min]

8 K = 4 N = 467 opt. [0.49 min] 24 K = 16 N = 590 1.5 h

9 K = 6 N = 467 opt. [12.69 min] 25 K = 2 N = 1014 opt. [0.53 min]

10 K = 16 N = 467 1 h 26 K = 2 N = 1014 opt. [0.20 min]

11 K = 16 N = 467 1 h 27 K = 2 N = 1014 opt. [0.20 min]

12 K = 16 N = 467 1 h 28 K = 4 N = 1014 opt. [0.95 min]

13 K = 16 N = 467 1 h 29 K = 4 N = 1014 opt. [1.10 min]

14 K = 16 N = 467 1 h 30 K = 6 N = 1014 opt. [24.37 min]

15 K = 2 N = 590 opt. [0.06 min] 31 K = 16 N = 1014 2 h

16 K = 4 N = 590 opt. [0.43 min]
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Appendix B: Case II575

Table B1. Information about the values of N , K, T , and termination criterion of the solver after each point in Fig. 7.

Point K, N Termination criterion Point K, N Termination criterion

1 Initial point - 25 K = 4 N = 684 opt. [1.15 min]

2 K = 2 N = 477 opt. [0.03 min] 26 K = 4 N = 684 opt. [1.90 min]

3 K = 2 N = 477 opt. [0.03 min] 27 K = 4 N = 684 opt. [1.38 min]

4 K = 2 N = 477 opt. [0.04 min] 28 K = 4 N = 684 opt. [8.31 min]

5 K = 2 N = 477 opt. [0.05 min] 29 K = 8 N = 684 1.5 h

6 K = 2 N = 477 opt. [0.05 min] 30 K = 16 N = 684 1.5 h

7 K = 2 N = 477 opt. [0.04 min] 31 K = 16 N = 684 1.5 h

8 K = 4 N = 477 opt. [0.37 min] 32 K = 16 N = 684 1.5 h

9 K = 4 N = 477 opt. [0.49 min] 33 K = 16 N = 684 1.5 h

10 K = 8 N = 477 1 h 34 K = 16 N = 684 1.5 h

11 K = 16 N = 477 1 h 35 K = 36 N = 684 1.5 h

12 K = 36 N = 477 1 h 36 K = 2 N=1907 opt. [1.65 min]

13 K = 2 N = 684 opt. [0.07 min] 37 K = 2 N=1907 opt. [1.12 min]

14 K = 2 N = 684 opt. [0.07 min] 38 K = 4 N=1907 opt. [28.40 min]

15 K = 2 N = 684 opt. [0.07 min] 39 K = 4 N=1907 opt. [5.97 min]

16 K = 2 N = 684 opt. [0.08 min] 40 K = 8 N=1907 2 h

17 K = 2 N = 684 opt. [0.09 min] 41 K = 16 N=1907 2 h

18 K = 4 N = 684 opt. [1 min] 42 K = 16 N=1907 2 h

19 K = 4 N = 684 opt. [1 min] 43 K = 36 N=1907 2 h

20 K = 4 N = 684 opt. [1.33 min] 44 K = 36 N=1907 2 h

21 K = 4 N = 684 opt. [0.98 min] 45 K = 36 N=1907 2 h

22 K = 4 N = 684 opt. [4.05 min] 46 K = 36 N=1907 2 h

23 K = 4 N = 684 opt. [1.47 min] 47 K = 36 N=1907 2 h

24 K = 4 N = 684 opt. [7.65 min]
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Appendix C: Case III

Table C1. Information about the values of N , K, T , and termination criterion of the solver after each point in Fig. 9.

Point K, N Termination criterion Point K, N Termination criterion

1 Initial point 26 K = 64 N = 1017 1.5 h

2 K = 2 N = 625 opt. [0.03 min] 27 K = 64 N = 1017 1.5 h

3 K = 2 N = 625 opt. [0.03 min] 28 K = 2 N = 2741 opt. [3.22 min]

4 K = 2 N = 625 opt. [0.03 min] 29 K = 2 N = 2741 opt. [2.93 min]

5 K = 2 N = 625 opt. [0.04 min] 30 K = 4 N = 2741 opt. [40.82 min]

6 K = 2 N = 625 opt. [0.05 min] 31 K = 4 N = 2741 opt. [47.99 min]

7 K = 2 N = 625 opt. [0.04 min] 32 K = 4 N = 2741 opt. [55.95 min]

8 K = 2 N = 625 opt. [0.04 min] 33 K = 4 N = 2741 opt. [54.74 min]

9 K = 2 N = 625 opt. [0.05 min] 34 K = 4 N = 2741 opt. [72.46 min]

10 K = 2 N = 625 opt. [0.04 min] 35 K = 4 N = 2741 opt. [69.85 min]

11 K = 4 N = 625 opt. [0.33 min] 36 K = 8 N = 2741 2 h

12 K = 8 N = 625 opt. [7.92 min] 37 K = 16 N = 2741 2 h

13 K = 8 N = 625 opt. [8.31 min] 38 K = 16 N = 2741 2 h

14 K = 8 N = 625 1 h 39 K = 16 N = 2741 2 h

15 K = 16 N = 625 1 h 40 K = 16 N = 2741 2 h

16 K = 32 N = 625 1 h 41 K = 16 N = 2741 2 h

17 K = 64 N = 625 1 h 42 K = 16 N = 2741 2 h

18 K = 2 N = 1017 opt. [0.17 min] 43 K = 16 N = 2741 2 h

19 K = 2 N = 1017 opt. [0.26 min] 44 K = 16 N = 2741 2 h

20 K = 4 N = 1017 opt. [1.35 min] 45 K = 32 N = 2741 2 h

21 K = 8 N = 1017 1.5 h 46 K = 32 N = 2741 2 h

22 K = 16 N = 1017 1.5 h 47 K = 32 N = 2741 2 h

23 K = 32 N = 1017 1.5 h 48 K = 32 N = 2741 2 h

24 K = 64 N = 1017 1.5 h 49 K = 64 N = 2741 2 h

25 K = 64 N = 1017 1.5 h

Code availability. Available upon request.
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