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Abstract

Turbulence intensity (TI) is often used to quantify the strength of turbulence in wind energy
applications and serves as the basis of standards in wind turbine design. Thus, accurately characterizing
the spatiotemporal variability of TI should lead to improved predictions of power production.
Nevertheless, turbulence measurements over the ocean are far less prevalent than over land due to
challenges in instrumental deployment, maintenance, and operation. Atmospheric models such as
mesoscale (weather prediction) and large-eddy simulation (LES) models are commonly used in wind
energy industry to assess the spatial variability of a given site. However, the TI derivation from
atmospheric models have not been well examined. An algorithm is proposed in this study to realize online
calculation of TI in the Weather Research and Forecasting (WRF) model. Simulated TI is divided into
two components depending on scale, including sub-grid (parameterized based on turbulence kinetic
energy (TKE)) and grid resolved. Sensitivity of sea surface temperature (SST) on simulated TI is also
tested. An assessment is performed by using observations collected during a field campaign conducted
from February to June 2020 near the Woods Hole Oceanographic Institution ’s Martha’s Vineyard Coastal
Observatory. Results show while simulated TKE is generally smaller than lidar-observed value, wind
speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid scale estimated TI.
Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind
speed and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems
observed during the studied period pose a challenge to accurately estimate TI from models. Due to notable
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uncertainty in accurately simulating those events, it suggests summing up sub-grid and resolved TI may
not be an ideal solution. Efforts in further improving skills in simulating mesoscale flow and cloud

systems are necessary as the next steps.

1 Introduction

While the number of wind turbines installed offshore in U.S. waters is small, it is expected to
continuously escalate for the foreseeable future (U.S. Department of Energy (2021)). Therefore, it is
critical to accurately simulate the wind resource, as well as the turbulence in offshore environments. Wind
power generation is sensitive to atmospheric turbulence in addition to wind speed (Yang et al. 2017; Berg
et al. 2019; Vanderwende and Lundquist 2012; St Martin et al. 2016; Wharton and Lundquist 2012).
Atmospheric turbulence impacts the loads on the turbine and, ultimately, the life span of the wind turbine
(Mucke et al. (2011). Even in the ambient environment without any turbulence, the turbine itself generates
turbulence via its wake (Wu and Porté-Agel 2012; Brand et al. 2011; Porté-Agel et al. 2020; Hansen et
al. 2011).

Turbulence is generally largest near the surface where the wind shear and buoyancy are generally
largest and it is closely connected to stability in the planetary boundary layer (PBL) (Rodrigo et al. 2015;
Bardal et al. 2018; Garratt 1994). Compared to conditions over land, the sea surface is relatively smooth
leading to smaller amounts of shear-generated turbulence near the surface. In addition, while the

continental PBL is generally unstable during the day, the diurnal variation of marine PBL is not evident
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but dependent on thermal gradient between sea surface and atmosphere abave, Thus, the atmosphere is _

generally less turbulent offshore than onshore (e.g. Bodini et al. 2020). Nevertheless, strong turbulence-
producing events such as hurricanes, winter storms, and mesoscale convective systems can impact
offshore where wind farms.

In wind energy applications, turbulence is often quantified using the turbulence intensity (TI) (Bodini
et al. 2020; Barthelmie et al. 2007), and TI is the basis of standards used in wind turbine design (e.g.,
Shaw et al. 2022). Accurately characterizing the spatiotemporal variability of TI should lead to improved

predictions of power production. Earlier studies discussed how TI may influence power production of
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turbines (Bardal and Satran 2017; Kaiser et al. 2007; Saint-Drenan et al. 2020; Clifton and Wagner 2014).
It is shown that power production during periods of high or low TI can vary by up to 20% (Lundquist and
Clifton 2012). However, turbulence and stability measurements over the ocean are made far less
frequently than over land as it is challenging to maintain and operate instruments over the open ocean for
long durations.

Atmospheric models such as weather-prediction and large-eddy simulation (LES) models can
potentially bridge this gap as they can simulate turbulence based on atmospheric and surface conditions
for any region over the globe. While LES models are too computationally expensive to simulate long
periods of time, mesoscale meteorological models are much more efficient and can also estimate turbulent
properties such as turbulent kinetic energy (TKE) by applying an applicable turbulence parameterization.
Nevertheless, the derivation of TI from atmospheric models have been rarely examined. Since multiple
model uncertainties may contribute to TI bias under various conditions, comprehensive observational
datasets are desired for model validation and help quantify the errors.

This study addresses these shortcomings to derive TI from a mesoscale weather model and access its
performance in an offshore environment. We implement an online calculation of TI in the standard
version of the Weather Research and Forecasting (WRF) model and complete a quantitative assessment
of simulated TI using observations collected during a field campaign conducted from February to June
2020 near the Woods Hole Oceanographic Institution’s (WHOI)’s Martha’s Vineyard Coastal
Observatory (MVCO). Simulations incorporating high-resolution sea surface temperature (SST) are
performed to evaluate the impact of SST on changing the atmospheric stability and simulated values of
TIL.

The paper is organized as follows: Observational datasets used in this study are described in Section
2. Details of model configuration, TI derivations, and experimental design are provided in the Section 3.
Section 4 covers our primary findings including (a) wind and turbulence profiles near sea surface, along
with corresponding air-sea temperature difference; (b) the sensitivity of simulated wind and turbulence
to SST forcing; (c) the relationship between TI and bulk Richardson number; and (d) the role of model-

resolved TI. To conclude, summary and discussion are given in the Section 5.
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2 Observational data

A U.S. Department of Energy (DOE) and Bureau of Ocean Energy Management supported field
campaign was conducted from February through June 2020 near the Woods Hole Oceanographic
Institution’s (WHOI)’s Martha’s Vineyard Coastal Observatory (MVCO, Austin et al. 2000) with the goal
of evaluating the performance of DOE’s lidar buoys (Gorton and Shaw 2020; Krishnamurthy et al. 2021;
Sheridan et al. 2022). The MVCO is a purpose-built facility for conducting detailed atmospheric and
oceanic research. A major component of the MVCO is the Air-Sea Interaction Tower (ASIT), built near
the vicinity of the Rhode Island and Massachusetts Wind Energy Areas (Figure 1). At the site, a suite of
wind energy specific measurements were made, including a pair of cup anemometers at the top of the
tower [26 meters above mean sea level (ASL)], a wind vane at 23 meters ASL, and a Windcube v2
vertically profiling LIDAR (hereafter reference lidar) on the main platform located 13 meters ASL. The
centers of the reference lidar range gates are: 53, 60, 80, 90, 100, 120, 140, 160, 180, and 200 meters ASL.
Windcube v2 measures line-of-sight radial velocity sequentially along four cardinal directions, with a
zenith angle of 28 degrees, and a fifth beam is vertically pointed. The temporal resolution along each
beam direction is 1.25 Hz. A carrier-to-noise ratio of -23 dB was used to filter the raw radial velocity
measurements. Two DOE buoys equipped with a Doppler lidar (also a Windcube v2), surface met station,
wave sensors and current profilers were deployed within 200 m of the ASIT tower (hereafter buoy lidar).
With predominant summer winds from ~250 degrees and winter winds from ~320 degrees, the
configuration of the buoy lidar and ASIT was designed to minimize wind wakes on the buoys from the
tower. The reference heights of the buoy lidars matched the reference lidar heights. In addition, the air
temperature at 4 meters (using a Rotronic/MP101A sensor) and sea surface temperature was collected
using a YSI thermometer on the buoy lidar (41.33°N 70.57°E and 41.32°N 70.57°W) and are used to
determine the buoyancy component of local stability. In this analysis, we use the reference lidar TI
calculations for comparison to simulated TI, since the buoy induces additional motion which results in
higher uncertainty in TI estimates (Gottschall et al. 2017; Kelberlau et al. 2020). Additional research is

ongoing to improve TI calculations using buoy lidar measurements.
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TI is defined as the standard deviation of the horizontal wind speed (o) divided by the average

horizontal wind speed over a time interval (U):
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Horizontal wind vectors (u_and v) from the reference lidar were, calculated at ~1 Hz using the raw (DﬂEted: as
radial velocity measurements along the cardinal directions. Although the winds are reconstructed at 1 Hz,
the winds are a combined product of a trailing ~ 4 seconds of sampled radial velocity measurements. Any
radial velocity measurement below -23_dB signal to noise ratio threshold was filtered. The reconstructed
1 Hz horizontal wind speed measurements are used to calculate TI from the Doppler lidar as shown in Eq.
1 over 10-minutes. TKE is generally estimated as
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Figure 1: (a) map depicting the WRF domain used in this study. Red star denotes the location of
MVCO ASIT. Color shading represents the terrain height in kilometer. (b) schematics of WHOI’s
Air Sea Interaction Tower (ASIT) including all pertinent elevations and dimensions of the tower
structure and fixed MetOcean sensors. The reference lidar system is located outboard on the
platform deck.

3 Model descriptions
3.1 Configuration

The model configuration. including horizontal and vertical grid spacing. spin-up time and selections

of atmospheric, SST forcing, as well as PBL and surface layer parameterizations can contribute to the
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uncertainty in simulated offshore wind (Bodini et al. 2021: Siedersleben et al. 2020: Hahmann et al. 2015
Chang et al. 2015; Sward et al. 2023 Optis et al. 2021). In this study. the version 4.2 WRF model is used
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to simulate offshore near surface winds. A single model domain centered on the MVCO site is used that

encompasses part of the north-eastern U.S. and adjacent oceans (Figure 1). The choices of model physics
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parameterizations for this study are consistent with the setup for the 20-year wind resource dataset

released by the National Renewable Energy Laboratory (NREL) (Optis et al. 2020). Optis et al. (2020)

conducted a_ series of model sensitivity experiments with respect to surface layer and PBL
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parameterizations, reanalysis data, and SST forcing, The results of their model assessment indicated that
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the largest uncertainty is associated with the choice PBL parameterizations, and the Mellor-Yamada-

Nakanishi Niino (MYNN) boundary layer parameterization (Nakanishi and Niino 2009)_generally

outperforms the Yonsei University (YSU, Hong et al. 2006) scheme off the east coast of North America.

Hence the MYNN boundary layer parameterization, as well as other parameterizations described by Optis

et al. (2020) were used for generating the CA20 dataset as well as our simulations. The model, uses a
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horizontal grid spacing of 2 km and a stretched vertical coordinate with 60 levels. There are approximately

10 model levels between the surface and 200 m. The Eta (Ferrier) microphysics parameterization, MYNN
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surface layer parameterization, Unified Noah land-surface parameterization (Chen and Dudhia 2001), and

the RRTMG longwave and shortwave radiation parameterization (lacono et al. 2008) are employed. Initial
and boundary conditions are taken from the NOAA’s High-Resolution Rapid Refresh (HRRR; Benjamin

et al. (2016)) product, The HRRR analysis has several advantages over other coarse-resolution reanalysis

layer parameterization (Nakanishi and Niino 2009), Mellor-Yamada-
Janjic...
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products. For instance, 1) the model core of HRRR, the WRF model, is identical with what we use in this

study, and 2) it has a grid spacing of 3 km, which is very close to the grid spacing used here (2 km) to
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match the CA20 dataset, and 3) it is constrained hourly by assimilating radar observations including

Doppler velocity and reflectivity, which reduces the uncertainties in the prediction of precipitating clouds.

All these advantages would primarily mitigate model uncertainties in part due to issues in model balance
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spacing) constrained by ground-based scanning radar observations

Deleted: which provides convective-scale analysis (3-km grid
and other types of data over the continental U.S.

and spin-up.
3.2 Diagnostics of turbulence intensity (T1)

Realistically, observed TI occurs across a range of spatial and temporal scales. Application of the
WRF model leads to an artificial separation of motions that are explicitly represented by the model and
turbulence treated by the boundary-layer parameterization, thus both grid-resolved and sub-grid motions
can give rise to TI. These two contributions to TI will be referred to model-resolved and sub-grid TI,

respectively. A new algorithm is implemented to extract the wind variation and mean wind speed over a
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10-min window allowing for the calculation of both, sub-grid and model-resolved TI. Since the three- Deleted: the...sub-grid and model-resolved TL Since the three-
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| parameterization, the sub-grid TI is derived by leveraging, TKE (Eq. 2) prognosed by the MYNN
boundary-layer parameterization.
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horizontal wind into along- and cross-turbine wind components rather than zonal and meridional winds

P00 that used in WRF, we decided to apply the TI formula used in Shaw et al. (1974), Wharton and Lunquist
(2011), and Bodini et al. (2020):
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Table 1. Summary of comparison between two types of TI output from WRF model.

min window min window

3.3 Experimental design

To facilitate comparison against observations collected during the field campaign near the MVCO
ASIT, the WRF model simulations were performed for February through June of 2020. The “baseline”
experiment is a concatenation of a series of 36-hour simulations. Each of these simulations is initialized
at 00 UTC and continuously integrated for 36 hours. To avoid model spin-up issues, the first 12-hours
each individual simulation are discarded, and the resulting 24-hours results are retained for the analysis.
Since the near-surface atmospheric stability can strongly influence turbulence intensity at hub-height, the
uncertainty in representation of sea surface temperature should also be considered. Despite the HRRR

analysis better represents convective-scale structures that other coarse-resolution reanalysis products as

mentioned earlier in Section 3.1, it does not provide corresponding SST forcing data. Therefore, a

sensitivity experiment (named “sstupdate” hereafter) is conducted to examine the variability induced by

replacing the SST forcing in the model.

Note that Optis et al. (2020) used two SST products including the Operational Sea Surface{'v

Temperature and Sea Ice Analysis (OSTIA, resolution: 0.05°) data set (Donlon et al. 2012) and the 4

National Center for Environmental Prediction (NCEP) Real-Time Global (RTG) SST product (Grumbine

2020, resolution: ~0.083°). Here, we use the NASA Jet Propulsion Laboratory (JPL) Level 4 MUR Global

Foundation Sea Surface Temperature Analysis (V4.1, GHRSST; Chin et al. (2017)) which has an even

higher spatial resolution (0.01°) than either the OSTIA and NCEP RTG. The SST analysis product
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assimilates satellite data with a range of resolutions including the Moderate Resolution Imaging
Spectroradiometer (MODIS) infra-red (1-km), AVHRR infra-red (5 — 9 km), microwave (25 km) and in-
situ measurements (pointwise). The Multi-Resolution Variational Analysis (MRVA) technique is
employed to reconstruct fast-moving fine-scale features as well as fill the large-scale data void. Note that
since HRRR analysis data does not include SST, the baseline simulation uses the climatological SST

provided with WREF as its forcing,
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4 Results

4.1 Near sea-surface wind, turbulence, and air-sea temperature gradient

The simulated wind speed (WSPD), wind direction (WDIR), TI, TKE, and air-sea temperature
gradient (air temperature at 2m above the surface minus sea surface temperature (SST)) are compared
against data measured by tower-mounted lidar and buoy deployed at the ASIT site. We use the air-sea
temperature gradient as a proxy of atmospheric stability near the sea surface. Negative values indicate
unstable (convective) conditions, whereas stable conditions are likely when the temperature gradient is

positive.

Here we highlight the comparisons by showing the results from March and May in 2020 as examples.

The panels in Figures 3 and 4 show a composite month-long comparison of near-surface properties
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between “baseline” simulations and the tower-mounted lidar for March and May, respectively. Note the
model profiles in the figure only extend to 200 m to match the range of the lidar. The results show the
model reproduces the major “convective” (negative values of Tair—SST; red patches) events in March.
While the simulated TKE is generally smaller than observed, both observations and simulations have
larger TI and TKE during convective periods, indicating the model’s PBL scheme reacts reasonably well
in response to the varied lower boundary conditions. During stable periods (positive values of Tair—SST;
blue patches), simulated TKE and TI decrease dramatically with height. This indicates there is weak
turbulence and limited vertical mixing in these cases. In addition, the seasonal variability of air-sea

temperature gradient is evident. For instance, the convective events in May were much shorter and weaker
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than those seen in March. This is most likely due to more frequent cold air outbreak in March than in late
spring. The cold-air out breaks are likely strongly convective periods, due the advection of cold air over
relatively warm water. Cases with near-zero air-sea temperature gradients present a greater challenge as
they have less tolerance in modelling inaccurate air-sea temperature differences and fluxes within the

boundary layer.
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Figure 3: Time-height comparison of wind speed (WSPD), wind direction (WDIR), air-sea Deleted: 2
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temperature gradient (Tair-SST), turbulence Kkinetic energy (TKE), and sub-grid turbulent
intensity (TI). Results for lidar and buoy observations and “baseline” simulation during the period
of March are given in (a) and (b), respectively.
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Figure 4: Similar to Figure 3 but results for May 2020 are displayed.
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To quantify the model performance for the entire period of study, an assessment of the baseline
simulation is carried out that examines the 80-m TI, TKE, WSPD, and air-sea temperature gradients. Note
data points from simulations and observations are only counted when wind speed is between 5 m s! and
25 m s7!, which is consistent with turbine cut in and cut-out wind speeds of commercial wind turbines.

Three metrics including root mean square error (RMSE), bias, and correlation coefficient (CC), are
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computed for each variable and given in Table 1. The yoot mean squared error (RMSE) measures how

close, on average, the simulated quantities are to observations.
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y_denotes simulated result for variable of interest, o _represents corresponding observation. n_is the

number of data samples. The bias is also known as mean prediction error (MPE). It compares the

simulated against observed means of the evaluated dataset:
n
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The correlation coefficient (CC) is used to determine the similarity between the simulated and observed
data. The CC value always lies between -1 and +1, representing the range from dissimilarity to similar

relation.
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Overall, the WRF model slightly underestimates TI with a bias of -0.0061 (~ 5% relative to mean
value) and has a RMSE of 0.037 (~30% relative to mean value). The two main factors in computation of
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345 TI, TKE and WSPD, exhibit notable contrasts in their assessments. While simulated TKE is
underpredicted with a bias of -0.3804 m? s2 and RMSE of 0.914 m? s2, WSPD generally agrees well with
lidar observation as demonstrated by relatively larger correlation coefficient (0.83) in comparison to 0.74
for TKE. This implies that the errors in TI are likely driven by the differences in TKE as the WSPD is
generally well predicted. We further examine how TI and TKE errors change correspondingly with WSPD

|350 as given in Figure 5. The results confirm that, in most of the cases, large TI errors are associated with (Deletech 4
large TKE errors and have less dependency on WSPD. Lastly, the air-sea temperature gradient is

reasonably represented with the highest correlation coefficient of 0.92 among all the variables.
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Figure 5: Scatter plots depicting the relationship between simulated (baseline) WSPD and sub-grid (Deleted: 4

355 TI with color shadings for representing 80-m TI and TKE errors in (a) and (b), respectively.
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Table 1. Metrics including correlation coefficient (CC), root mean square error (RMSE), and bias,
of 80-m TI, TKE, WSPD, and air-sea temperature difference are given as computed for baseline

and sstupdate simulations.

TI TKE WSPD Tair - SST

baseline | sstupdate | baseline | sstupdate | baseline | sstupdate | baseline | sstupdate

CcC 0.56 0.59 0.74 0.74 0.83 0.84 0.92 0.94
RMSE 0.037 0.035 0.914 0.886 2.37 2.303 0.921 0.766
Bias -0.0061 -0.0023 -0.3804 -0.3526 0.3737 0.3165 0.3223 0.093

4.2 Sensitivity of SST forcing on modelled wind and turbulence

As described in Section 3.3, the default SST in the baseline simulation is replaced by the NASA JPL’s
SST analysis product (Chin et al. 2017) which has more fine-scale features as opposed to the SST
representation in the baseline simulation. This sensitivity experiment is named as “sstupdate” and the

impacts of SST forcing is examined in this section.

The same metrics used in previous section are applied to sstupdate simulation and given in Table 1.
It indicates the replacement of SST forcing has positive impacts on all the examined variables. For
instance, the CC, RMSE, and Bias for TI as simulated by sstupdate (baseline) are 0.59 (0.56), 0.035
(0.037), and -0.0023 (-0.0061). Similarly, the model skill improves simultaneously with respect to TKE,
WSPD, and T.i-SST. This implies more realistic SST forcing helps better represent spatiotemporal
evolution of stability and subsequently the surface fluxes. This then influences turbulent properties within
the boundary layer such as the TKE and WSPD. A comparison of vertical profiles of T RMSE between

the two simulations (Figure 6) further shows that SST representation in the model could affect skill in TI

(Deleted: 5

prediction from 60 to 190 meters and error generally increases with the heights. WSPD and TKE RMSE
profiles present similar trends despite the range of improvement vary with heights among the three
variables. Redfern et. al. (2021) shows impact of SST replacement on wind speed modeling can be seen
from 40 to 200 meters. The validation was done by comparing against lidar observations collected at three
locations off the Atlantic shores from June to July in 2022.
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simulations between 60 to 190 meters.

The power density functions (PDFs) are given in Figure 7, to help describe the similarities of each

(Deleted: 6

variable among the three datasets. Figure /a shows the distribution of observed TI has a wider peak

(Deleted: 6a

between 0.025 to 0.1 than the simulated distributions. While the baseline simulation has more points with
smaller TI values (peak around 0.04), the distributions of TI from the sstupdate show an additional peak
around 0.09 and 0.1 and there are more large values of TI. The median TI of sstupdate (0.066) is much
closer to observations (0.07) than the baseline (0.057), indicating that the SST representation has a notable
impact on TI simulation. The individual impact of SST on TKE, WSPD, and air-sea temperature

difference is displayed in Figures /b, c, and d, respectively. The model tends to produce more instances

(Deleted: 6b

with small TKE than was observed (0.67; Figure 7b), and sstupdate (0.4) has slightly larger median TKE

(Deleted: 6b

—/

than the baseline (0.377). Note part of the discrepancy in TKE may be attributed to varying uncertainty

in lidar turbulence retrievals as a function of atmospheric stability. Sathe et al. (2015) found hub-height

(Deleted: when in unstable conditions

turbulence (~ 80 m) measured by pulsed Doppler lidars could be significantly higher (lower) than what

(Deleted: larger

is pbserved by a sonic anemometer during unstable (stable) atmospheric conditions. The PDFs of WSPD |
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|410 in Figure 7c indicate while both simulations have relatively larger medians (10.94 and 10.86) than the

415

(Deleted: 6¢

observations (10.31), the additional SST information used in sstupdate slightly improve the simulations.

The overall improvement in WSPD may be attributed to more accurate representation of stability as the

PDF of simulated air-sea temperature gradient is improved when applying the improved SST forcing as

shown by Figure 7d. (Deleted: 6d
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Figure 7: Probability density function (PDF) plots illustrating the results of (a) subgrid turbulence (Deleted: 6

intensity (TI), (b) turbulence kinetic energy (TKE), (¢) wind speed (WSPD), and (d) air-sea

temperature difference among baseline, sstupdate simulations, and observations at hub-height (~
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80 m) though February to May of 2020. The median of each dataset is given in each panel with color
coded.

Application of the higher-resolution SST impacts the time of evolution of the winds and turbulence.

Figure 8 shows how the cold bias seen in the SST of baseline simulation is effectively reduced during

(Deleted: 7

May 2020, which subsequently fixes the cold bias in near-surface air temperature. While there are
relatively smaller differences between two simulations in the TKE and WSPD, we do find improvement
in TT over some periods. For example, during May 5 — 8, 13 — 14, 17 — 18, and 30 — 31, TI simulated by
sstupdate simulation are generally higher than what is simulated by baseline simulation and closer to the
observed values. The correction of TKE has a larger impact on TI when WSPD is relatively small (less

than 10 m s!), which can be explained by how TI is calculated in Eq. (4).
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Figure 8: Time-series display of data from baseline, sstupdate simulations and corresponding (Deleted: 7 )
observations for May,2020. From top to bottom rows, the near-surface air temperature, sea surface (Deleted: rch )
temperature, hub-height TKE, WSPD, and TI are arranged.
The impact of SST is also examined in the context of monthly variability. Figure 9 summarizes the (Deleted: 8 )
metrics calculated for each simulation, variable, and month with the observational data as reference. The
analysis suggests that the overall performance of simulated air-sea temperature gradient (TG) is improved
when the higher-resolution SST forcing is used, and the improvement is more prominent in the spring
months than in February. Despite only slight impact on the correlation for simulated TG by replacing the
default SST (Figure 9a), the corresponding RMSE (Figure 9b) and bias (Figure 9c) for TG are (Deleted: 8a )
. . . e . Deleted: 8b
considerably reduced. While relatively small positive impact is shown for TKE and WSPD, the . %D::ted . %
ed: 8c
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improvement in the bias of TI is prominent, as shown by the reduced RMSE and bias, particularly for

April and May.
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Figure 9: Metrics of (a) correlation coefficient between the observations and simulations, (b) root
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mean square error (RMSE), and (c) bias for variables (TI, WS, TKE, and air-sea temperature
gradient (TG)) computed against the observations for each month between February and May in
2020. The dots with solid line represent baseline result. The triangles with dashed line depict the

corresponding values from sstupdate simulation.
4.3 Relationship between turbulence intensity and bulk Richardson number

Many earlier studies showed that the bulk Richardson number (Rib) may be a good indicator turbulent
conditions as it considers stability associated with the temperature gradient, as well as the relative
contributions of buoyancy and shear (e.g. Rodrigo et al. 2015; Bardal et al. 2018; Hsu 1989; Zoumakis
and Kelessis 1991; Hansen et al. 2012). The equation we use for calculating the Rib is

gA8,Az

Rib= ———F—
0,(AU? + AV?

4)

where g denotes gravitational acceleration, A8, is virtual potential temperature difference across a vertical

layer of thickness Az, AU and AV represent the vertical gradient in horizontal wind components. The

virtual potential temperature gradient (A6,,) is computed by using the air temperature (4 m) and sea surface

temperature measurements on the buoy. The vertical gradients of horizontal wind components (AU and

AV) are obtained by using wind measurement at 100 m from the Doppler Lidar (DL) and 4 m from the
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buoy, We also applied a similar approach using the WRF model output. Note the wind and temperature
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to compute Rib

gradients are not computed from the same heights, and the bulk Richardson number calculated here will
only be used to inform stability qualitatively (Howland et al. 2020). As before, data for cases where the

wind speed was less than 5 m s™! and greater than 25 m s”! have been removed as described earlier. Figure

0Oa displays the calculated Rib in timeseries during February 2020 as an example. It shows that both (Deleted: 9

experiments reproduce the occurrence of observed events with unstable conditions (large negative Rib (Deleted= evident

values). For jnstance, jn February 14 — 15, 19 — 20, 21, the model was able to produce large TI (over 0.2, g::::::: :2'0: reductions of

: Ril

Figure 10d) when Rib approaches -10 (Figure 1 0a). -, (Deleted: instance

While simulated results show that the model has good skill for large TI (over 0.2) events, there are (peteted:
. (Deleted: a few of events, such as

periods with moderate TI (0.05 to 0.2) where the model misses the observed peaks as indicated by the (Deleted: 9
green arrows in Figure 10d. It is found in those time periods, the buoyancy component (A8,) are mostly %De'etem 9a
Deleted: 9d

near zero (neutral conditions) or even positive (stable), whereas the shear component (AU? + AV?) could
be more variable from time to time, indicating the model may have less skill in TI prediction when the

buoyant forcing is weak.
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Figure 10: Timeseries plots of observed and simulated (a) bulk Richardson number, (b) shear (Deleted: 5

component (m? s2), (¢) buoyancy component (K), and (d) sub-grid turbulence intensity (TI) during

February 2020. Green arrows in (d) indicate events with large contrast in TI between model and

observation. Filtered data points of sub-grid TI by using the thresholds of buoyancy > 0 K, shear <
510 20.0 m?s2, and TI > 0.06 are denoted in (e). Green line represents the model-resolved TI.
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To explore how TI can be related to the buoyancy and shear components of Rib, TI is mapped in

values of wind shear.
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regard to the two terms (Figure 11). Figure | 1a shows the observed TI is generally larger during periods (Deleted: 0
when conditions are unstable and there is a large magnitude of negative buoyancy component (SST is (Deteted: 100
larger than air temperature). It implies that in convective regimes (buoyancy component < 0), more
vigorous turbulence leads to stronger vertical mixing which significantly reduces the wind shear. On the
other hand, in stable regimes (buoyancy component > 0), less turbulent mixing often results in larger
Although in general, TI decreases as the buoyancy becomes more positive and the atmosphere
becomes stable as identified in the observations and the two WRF model configurations (Figures | 1a, b, (Deleted: 10a
and c), a population of reddish circles (large values of TI) in the lower-right quadrant of the figure does
not follow this relationship (Figure | 1a). While both simulations fail to represent these cases (Figures | 1b (Deleted: 10a
and c), the fractional difference of simulated TI between the two simulations indicates that the sstupdate (Deleted: 10
simulation generally has larger TI than the baseline simulation (Figure 11d). This can be attributed to (Deleted: 104
overall reduction of cold bias in the baseline simulation as shown in Figure 9. Furthermore, a larger (Deleted: 8
fractional increase of TI is found in the regime where the conditions are between neutral and slightly
stable (buoyancy component >= 0). This is most likely due to the weak negative temperature gradient in
baseline simulation becoming positive after replacing the SST forcing. Despite the correction, large T1 is
rarely simulated in the lower-right regime. This result is not surprising as the formulation in the MYNN
parameterization does not allow large values of TKE to be diagnosed in stable conditions. (Deleted= prognosed
The next step was to locate these specific data points in time by applying thresholds of buoyancy
component > 0 K, shear component < 20.0 m? s2, and TI > 0.06 (Figure [l 1a). It shows that features (Deleted: 10a
leading to the large values of TI in the observation and simulations may not overlap in time as the model
may fail to simulate realistic conditions (Figure |0c). Nevertheless, it is found that many of these cases (Deleted= 9e
with positive buoyancy component and large TI are aligned with periods that have notable differences
between observed and simulated TI, as denoted by green arrows in Figure 10d. Therefore, we conclude (Deleted: od
that the underrepresentation of this regime is likely responsible for the majority, of the model bias in TI. (Deleted: ost

24




550

OBS WRF (baseline)

120 0.10 120 0.10
(b)
- 100 0.08 = 100 N 0.08
< 80 w < I
~ 0.06 ﬁ g 0.06 ﬁ
< = < =
60 = =
S S S S
- 0042 0.042
o 40 e S =
G : 2 G 0.02
20 0.0 X
O 2 0 2 a ™ "2 o0 2 4 000
buoyancy [K] buoyancy [K]
120 WRF (sstupdate) 010 120 WREF (sstupdate -_b.aseline) 0.0100
(c) . (d) .
100 : oos 100 0.0075
: ~ 0.0050
—_ < 0
0'05§ o 80 0.0025 2
b= <E 60 00000 5
0042 _ E
F o540 0.00255
0.02 G -0.0050
201 ¢ -0.0075
0 —4 - 0 > 3 > 7 0.00 0 Za _2' . 0 - 3 - ) -0.0100
buoyancy [K] buoyancy [K]
Figure 11: Scatter plots mapping the hub-height sub-grid TI in the coordinates of buoyancy (A6,) (Deleted: 10
and shear (AU? + AV?) components for the entire period of study. Results of (a) observation (OBS),
(b) baseline simulation, (c) sstupdate simulation, and (d) percentage of fractional difference (%)
between sstupdate and baseline simulations are displayed. The black dashed-line box in (a)
indicates the regime that is used to extract the data points as shown in Figure 10e. (Deleted: 9
While some of the intermittent turbulent events may cause the occurrence of large TI under small (Deleted: low
shear and stable conditions, we find that most of the cases with large amounts of TI in stable conditions (Deleted: T
and weak shear can be Jinked to fluctuations in wind speed associated with mesoscale features of the flow (Deleted: could
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and they are partially resolved by mesoscale model, or for which there are timing errors. In Figure 10g, %Deleted gue
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the mesoscale (model-resolved) TI, described in Section 3.2, is denoted by the green line. For the periods
such as Feb. 3—4,6—7, 10— 11, when the simulated sub-grid TI is much smaller than observation, spikes
in mesoscale (model-resolved) TI have amplitudes similar to the observed values. This suggests the need
to consider both sub-grid and mesoscale TI when modelling TI derived from a mesoscale atmospheric
model. Furthermore, the uncertainties in the timing of simulated mesoscale weather events may lead to
notable contrasts between the timing of modelled and observed peaks in TI. This can impact the simulated
TI in two ways as the mesoscale activity not only generates variance in the winds over larger
spatiotemporal scales than the sub-grid turbulence, but also effectively offsets dynamic and
thermodynamic conditions near the sea surface in the boundary layer that influence the simulated sub-
grid TI generated by the boundary-layer parameterization. Our analysis demonstrates the utility of
identifying scale-dependent uncertainties of TI modelling, which allows us to isolate the causes of errors

in the simulated TI.

The metrics used in Table 1 are employed again to assess the impact of resolved TI on the TI
prediction and listed in Table 2. Results indicate the addition of resolved TI reduces the bias for baseline
configuration (-0.0061 to 0.0017) but enlarges the bias in the sstupdate configuration (-0.0023 to 0.0055).
Moreover, there is worse correlation and RMSE when both sub-grid and resolved TI are considered. For
instance, the correlation coefficients are reduced from 0.56 to 0.53 and 0.59 to 0.56 for baseline and
sstupdate configurations, respectively. Considering the effects of the higher-resolution SST forcing and
resolved TI can lead to an overestimate of the TI, as the bias changes sign and the RMSE increase slightly
compared to the sub-grid TI only. We suspect this could be associated with the uncertainties in simulating

mesoscale events as depicted in Figure |0e. The events with larger resolved TI are not necessarily

(Deleted: 9e

coincident with observations, which explains why simply summing up sub-grid and resolved TI in time

may introduce additional errors in the simulated TI.
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Table 2. Metrics including correlation coefficient (CC), root mean square error (RMSE), and bias,

for TI that are computed based on total (sub-grid and resolved) TI simulated by baseline and

sstupdate simulations.

baseline sstupdate
CC 0.53 0.56
RMSE 0.039 0.038
Bias 0.0017 0.0055

5 Summary and conclusion

Algorithms to derive TI are successfully implemented in the WRF model and tested offshore using

multi-month data set collected at MVCO using a combination of Doppler lidar, tower, and buoy data.

Simulated TI is divided into two components depending on scale, including sub-grid and grid resolved.

Sub-grid TI is diagnosed from parameterized turbulence kinetic energy (TKE) through the MYNN PBL

parameterization. Resolved TI is estimated by calculating the standard deviation of wind fluctuation that

is resolved by a mesoscale model over a period.

The modelled TI computed over a wide range atmospheric conditions are analyzed and validated by

using a variety of observations collected at the offshore tower at MVCO between February and May in

2020. The primary findings include:

The model’s PBL scheme reacts reasonably well to changes in the vertical temperature gradient
near sea surface despite the fact that the simulated TKE is generally smaller than what is observed
by the lidar, especially for events with large TKE values.

The modified WRF model slightly underestimates TI, and the error is mainly attributed to
relatively large negative bias in TKE as the predicted wind speed generally agrees with
observation.

The WRF model has difficulty predicting periods of weak TI due to smaller air-sea temperature
differences and fluxes within the simulated boundary layer.
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e Opverall cold bias in the SST of baseline simulation is effectively reduced by substituting it with
more accurate SST forcing. It subsequently reduces model biases in near-surface air temperature
as well as hub-height WSPD and TI.

e A regime of large observed values TI during periods with positive buoyancy and weak shear is
identified, but are not captured by the model. Many of the events occurred in conjunction with
mesoscale weather systems, but directly summing up sub-grid and resolved TI does not improve
the TI prediction. This is because the primary source of uncertainty in those events are caused by

the unrealistic representation of mesoscale weather systems, including timing errors, in the model.

Our analysis suggests additional model constraints are required to further improve model
representation of TI and TKE in mesoscale or finer-scale cloud (-system) processes. Approaches that
couple mesoscale model with data assimilation techniques to improve skill in the simulated mesoscale

flow features and cloud predictions (Tai et al. 2020, 2021; Gaudet et al. 2022) could be very beneficial.
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