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Abstract 

Turbulence intensity (TI) is often used to quantify the strength of turbulence in wind energy 

applications and serves as the basis of standards in wind turbine design. Thus, accurately characterizing 

the spatiotemporal variability of TI should lead to improved predictions of power production. 10 

Nevertheless, turbulence measurements over the ocean are far less prevalent than over land due to 

challenges in instrumental deployment, maintenance, and operation. Atmospheric models such as 

mesoscale (weather prediction) and large-eddy simulation (LES) models are commonly used in wind 

energy industry to assess the spatial variability of a given site. However, the TI derivation from 

atmospheric models have not been well examined. An algorithm is proposed in this study to realize online 15 

calculation of TI in the Weather Research and Forecasting (WRF) model. Simulated TI is divided into 

two components depending on scale, including sub-grid (parameterized based on turbulence kinetic 

energy (TKE)) and grid resolved. Sensitivity of sea surface temperature (SST) on simulated TI is also 

tested. An assessment is performed by using observations collected during a field campaign conducted 

from February to June 2020 near the Woods Hole Oceanographic Institution ’s Martha’s Vineyard Coastal 20 

Observatory. Results show while simulated TKE is generally smaller than lidar-observed value, wind 

speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid scale estimated TI. 

Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind 

speed and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems 

observed during the studied period pose a challenge to accurately estimate TI from models. Due to notable 25 
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uncertainty in accurately simulating those events, it suggests summing up sub-grid and resolved TI may 

not be an ideal solution. Efforts in further improving skills in simulating mesoscale flow and cloud 

systems are necessary as the next steps. 

1 Introduction 

While the number of wind turbines installed offshore in U.S. waters is small, it is expected to 30 

continuously escalate for the foreseeable future (U.S. Department of Energy (2021)). Therefore, it is 

critical to accurately simulate the wind resource, as well as the turbulence in offshore environments. Wind 

power generation is sensitive to atmospheric turbulence in addition to wind speed (Yang et al. 2017; Berg 

et al. 2019; Vanderwende and Lundquist 2012; St Martin et al. 2016; Wharton and Lundquist 2012). 

Atmospheric turbulence impacts the loads on the turbine and, ultimately, the life span of the wind turbine 35 

(Mucke et al. (2011). Even in the ambient environment without any turbulence, the turbine itself generates 

turbulence via its wake (Wu and Porté-Agel 2012; Brand et al. 2011; Porté-Agel et al. 2020; Hansen et 

al. 2011). 

Turbulence is generally largest near the surface where the wind shear and buoyancy are generally 

largest and it is closely connected to stability in the planetary boundary layer (PBL) (Rodrigo et al. 2015; 40 

Bardal et al. 2018; Garratt 1994). Compared to conditions over land, the sea surface is relatively smooth 

leading to smaller amounts of shear-generated turbulence near the surface. In addition, while the 

continental PBL is generally unstable during the day, the diurnal variation of marine PBL is not evident 

but dependent on thermal gradient between sea surface and atmosphere above. Thus, the atmosphere is 

generally less turbulent offshore than onshore (e.g. Bodini et al. 2020). Nevertheless, strong turbulence-45 

producing events such as hurricanes, winter storms, and mesoscale convective systems can impact 

offshore where wind farms.  

In wind energy applications, turbulence is often quantified using the turbulence intensity (TI) (Bodini 

et al. 2020; Barthelmie et al. 2007), and TI is the basis of standards used in wind turbine design (e.g., 

Shaw et al. 2022). Accurately characterizing the spatiotemporal variability of TI should lead to improved 50 

predictions of power production. Earlier studies discussed how TI may influence power production of 
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turbines (Bardal and Sætran 2017; Kaiser et al. 2007; Saint-Drenan et al. 2020; Clifton and Wagner 2014). 

It is shown that power production during periods of high or low TI can vary by up to 20% (Lundquist and 

Clifton 2012). However, turbulence and stability measurements over the ocean are made far less 

frequently than over land as it is challenging to maintain and operate instruments over the open ocean for 55 

long durations.  

Atmospheric models such as weather-prediction and large-eddy simulation (LES) models can 

potentially bridge this gap as they can simulate turbulence based on atmospheric and surface conditions 

for any region over the globe. While LES models are too computationally expensive to simulate long 

periods of time, mesoscale meteorological models are much more efficient and can also estimate turbulent 60 

properties such as turbulent kinetic energy (TKE) by applying an applicable turbulence parameterization. 

Nevertheless, the derivation of TI from atmospheric models have been rarely examined. Since multiple 

model uncertainties may contribute to TI bias under various conditions, comprehensive observational 

datasets are desired for model validation and help quantify the errors.  

This study addresses these shortcomings to derive TI from a mesoscale weather model and access its 65 

performance in an offshore environment. We implement an online calculation of TI in the standard 

version of the Weather Research and Forecasting (WRF) model and complete a quantitative assessment 

of simulated TI using observations collected during a field campaign conducted from February to June 

2020 near the Woods Hole Oceanographic Institution’s (WHOI)’s Martha’s Vineyard Coastal 

Observatory (MVCO). Simulations incorporating high-resolution sea surface temperature (SST) are 70 

performed to evaluate the impact of SST on changing the atmospheric stability and simulated values of 

TI.  

The paper is organized as follows: Observational datasets used in this study are described in Section 

2. Details of model configuration, TI derivations, and experimental design are provided in the Section 3. 

Section 4 covers our primary findings including (a) wind and turbulence profiles near sea surface, along 75 

with corresponding air-sea temperature difference; (b) the sensitivity of simulated wind and turbulence 

to SST forcing; (c) the relationship between TI and bulk Richardson number; and (d) the role of model-

resolved TI. To conclude, summary and discussion are given in the Section 5.  
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2 Observational data 

A U.S. Department of Energy (DOE) and Bureau of Ocean Energy Management supported field 80 

campaign was conducted from February through June 2020 near the Woods Hole Oceanographic 

Institution’s (WHOI)’s Martha’s Vineyard Coastal Observatory (MVCO, Austin et al. 2000) with the goal 

of evaluating the performance of DOE’s lidar buoys (Gorton and Shaw 2020; Krishnamurthy et al. 2021; 

Sheridan et al. 2022). The MVCO is a purpose-built facility for conducting detailed atmospheric and 

oceanic research. A major component of the MVCO is the Air-Sea Interaction Tower (ASIT), built near 85 

the vicinity of the Rhode Island and Massachusetts Wind Energy Areas (Figure 1). At the site, a suite of 

wind energy specific measurements were made, including a pair of cup anemometers at the top of the 

tower [26 meters above mean sea level (ASL)], a wind vane at 23 meters ASL, and a Windcube v2 

vertically profiling LIDAR (hereafter reference lidar) on the main platform located 13 meters ASL. The 

centers of the reference lidar range gates are: 53, 60, 80, 90, 100, 120, 140, 160, 180, and 200 meters ASL. 90 

Windcube v2 measures line-of-sight radial velocity sequentially along four cardinal directions, with a 

zenith angle of 28 degrees, and a fifth beam is vertically pointed.  The temporal resolution along each 

beam direction is 1.25 Hz. A carrier-to-noise ratio of -23 dB was used to filter the raw radial velocity 

measurements. Two DOE buoys equipped with a Doppler lidar (also a Windcube v2), surface met station, 

wave sensors and current profilers were deployed within 200 m of the ASIT tower (hereafter buoy lidar). 95 

With predominant summer winds from ~250 degrees and winter winds from ~320 degrees, the 

configuration of the buoy lidar and ASIT was designed to minimize wind wakes on the buoys from the 

tower. The reference heights of the buoy lidars matched the reference lidar heights.  In addition, the air 

temperature at 4 meters (using a Rotronic/MP101A sensor) and sea surface temperature was collected 

using a YSI thermometer on the buoy lidar (41.33°N 70.57°E and 41.32°N 70.57°W) and are used to 100 

determine the buoyancy component of local stability. In this analysis, we use the reference lidar TI 

calculations for comparison to simulated TI, since the buoy induces additional motion which results in 

higher uncertainty in TI estimates (Gottschall et al. 2017; Kelberlau et al. 2020). Additional research is 

ongoing to improve TI calculations using buoy lidar measurements.   
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TI is defined as the standard deviation of the horizontal wind speed (𝜎!) divided by the average 105 

horizontal wind speed over a time interval (U#): 

Horizontal wind vectors (𝑢 and 𝑣) from the reference lidar were calculated at ~1 Hz using the raw 

radial velocity measurements along the cardinal directions.  Although the winds are reconstructed at 1 Hz, 

the winds are a combined product of a trailing ~ 4 seconds of sampled radial velocity measurements.  Any 

radial velocity measurement below -23 dB signal to noise ratio threshold was filtered. The reconstructed 110 

1 Hz horizontal wind speed measurements are used to calculate TI from the Doppler lidar as shown in Eq. 

1 over 10-minutes.  TKE is generally estimated as  

𝑇𝐾𝐸 = 	 "
#
(𝜎$# + 𝜎%# + 𝜎&#),	 (2) 

where 𝜎$# 𝜎%# and 𝜎&# 	are the variances of zonal, meridional, and vertical wind components, respectively. 

For 10-minute averaged TKE from reference lidar profilers, horizontal velocity variance was estimated 

using the 1Hz u and v components of velocity and the vertical velocity variance was estimated using the 115 

lidar central beam staring vertically up (like Arthur et al. 2022). Only the measurements with greater than 

90% data availability over the 10-minute averaging periods are used. 

𝑇𝐼 = 	
𝜎!
𝑈#
, 𝑈 = 1𝑢# + 𝑣#	 (1) 
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Figure 1: (a) map depicting the WRF domain used in this study. Red star denotes the location of 
MVCO ASIT. Color shading represents the terrain height in kilometer. (b) schematics of WHOI’s 120 
Air Sea Interaction Tower (ASIT) including all pertinent elevations and dimensions of the tower 
structure and fixed MetOcean sensors. The reference lidar system is located outboard on the 
platform deck. 
 

3 Model descriptions 125 

3.1 Configuration 

The model configuration, including  horizontal and vertical grid spacing, spin-up time and selections 

of atmospheric, SST forcing, as well as PBL and surface layer parameterizations can contribute to the 

uncertainty in simulated offshore wind (Bodini et al. 2021; Siedersleben et al. 2020; Hahmann et al. 2015; 

Chang et al. 2015; Sward et al. 2023; Optis et al. 2021). In this study, the version 4.2 WRF model is used 130 

to simulate offshore near surface winds. A single model domain centered on the MVCO site is used that 

encompasses part of the north-eastern U.S. and adjacent oceans (Figure 1). The choices of model physics 
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parameterizations for this study are consistent with the setup for the 20-year wind resource dataset 

released by the National Renewable Energy Laboratory (NREL) (Optis et al. 2020). Optis et al. (2020) 

conducted a series of model sensitivity experiments with respect to surface layer and PBL 135 

parameterizations, reanalysis data, and SST forcing. The results of their model assessment indicated that 

the largest uncertainty is associated with the choice PBL parameterizations, and the Mellor-Yamada-

Nakanishi Niino (MYNN) boundary layer parameterization (Nakanishi and Niino 2009) generally 

outperforms the Yonsei University (YSU, Hong et al. 2006) scheme off the east coast of North America. 

Hence the MYNN boundary layer parameterization, as well as other parameterizations described by Optis 140 

et al. (2020) were used for generating the CA20 dataset as well as our simulations. The model uses a 

horizontal grid spacing of 2 km and a stretched vertical coordinate with 60 levels. There are approximately 

10 model levels between the surface and 200 m. The Eta (Ferrier) microphysics parameterization, MYNN 

surface layer parameterization, Unified Noah land-surface parameterization (Chen and Dudhia 2001), and 

the RRTMG longwave and shortwave radiation parameterization (Iacono et al. 2008) are employed. Initial 145 

and boundary conditions are taken from the NOAA’s High-Resolution Rapid Refresh (HRRR; Benjamin 

et al. (2016)) product. The HRRR analysis has several advantages over other coarse-resolution reanalysis 

products. For instance, 1) the model core of HRRR, the WRF model, is identical with what we use in this 

study, and 2) it has a grid spacing of 3 km, which is very close to the grid spacing used here (2 km) to 

match the CA20 dataset, and 3) it is constrained hourly by assimilating radar observations including 150 

Doppler velocity and reflectivity, which reduces the uncertainties in the prediction of precipitating clouds. 

All these advantages would primarily mitigate model uncertainties in part due to issues in model balance 

and spin-up. 

3.2 Diagnostics of turbulence intensity (TI)  

Realistically, observed TI occurs across a range of spatial and temporal scales. Application of the 155 

WRF model leads to an artificial separation of motions that are explicitly represented by the model and 

turbulence treated by the boundary-layer parameterization, thus both grid-resolved and sub-grid motions 

can give rise to TI. These two contributions to TI will be referred to model-resolved and sub-grid TI, 

respectively. A new algorithm is implemented to extract the wind variation and mean wind speed over a 
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10-min window allowing for the calculation of both sub-grid and model-resolved TI. Since the three-160 

dimensional components of turbulent wind speed cannot be obtained through the boundary layer 

parameterization, the sub-grid TI is derived by leveraging TKE (Eq. 2) prognosed by the MYNN 

boundary-layer parameterization. 

 

The derivation of TI has been proposed in several studies including a recent document of Larsén 165 

(2022). In this report, the relation between TI and TKE is derived using the Kaimal boundary-layer 

turbulence model (Kaimal and Finnigan 1994). However, since the TI derivation in that work divides 

horizontal wind into along- and cross-turbine wind components rather than zonal and meridional winds 

that used in WRF, we decided to apply the TI formula used in Shaw et al. (1974), Wharton and Lunquist 

(2011), and Bodini et al. (2020): 170 

Our  analysis using the lidar-measured wind variances collected at the MVCO ASIT over the study period 

indicates 𝜎&#  (variance of vertical wind) is generally much smaller than 𝜎$# and 𝜎%# (Figure 2a) regardless 

of stability (Figure 2b). In most of the conditions, the fraction of 𝜎&#  in total wind variance ( '!"

'#"('$"('!"
) is 

no greater than 0.2 (not shown). Moreover, it is found the data points exceed 0.2 mostly occur during 

neutral conditions, rather than during periods of unstable conditions that we normally would expect.  175 

 

𝑇𝐼 =
1𝜎$# + 𝜎%#

𝑈#
	 (3) 
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Figure 2: The lidar-measured wind variances (𝜎$#, 𝜎%#, and 𝜎&# ) collected at the MVCO ASIT from 

January to mid-June in 2020. The data is displayed in the format of (a) power density and (b) in 

function of air-sea temperature difference. 180 

   
Therefore, Eq. (3) can be approximated by the form of 

The instantaneous sub-grid TI at any model time step can then be obtained by a scaling of the mean wind 

speed in a 10-min window following Eq. (4). A new variable was added to store the sub-grid TI and to 

have values written to the WRF model output files. In addition, the model was also modified to compute 185 

the model-resolved TI by adding calculations of running means and variances of the horizontal velocity 

components (zonal and meridional) within 10-min window that are then used to compute and output the 

resolved TI. A summary of two components of TI from WRF model is given in Table 1. 

 

  190 

𝑇𝐼 ≅ 	
√2 ∗ 𝑇𝐾𝐸

𝑈#
	 (4) 
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Table 1. Summary of comparison between two types of TI output from WRF model. 

 Sub-grid TI Model-resolved TI 

Dynamic scale Turbulence Mesoscale wind fluctuation 

Solution in model PBL scheme (MYNN) Resolved wind components 

1𝝈𝒖𝟐 + 𝝈𝒗𝟐 TKE (assume 𝜎&#  is negligible) Variance of u, v in 10-min window 

𝑼#  
Mean horizontal wind speed in 10-

min window 

Mean horizontal wind speed in 10-

min window 

 

3.3 Experimental design 

To facilitate comparison against observations collected during the field campaign near the MVCO 

ASIT, the WRF model simulations were performed for February through June of 2020. The “baseline” 195 

experiment is a concatenation of a series of 36-hour simulations. Each of these simulations is initialized 

at 00 UTC and continuously integrated for 36 hours. To avoid model spin-up issues, the first 12-hours 

each individual simulation are discarded, and the resulting 24-hours results are retained for the analysis. 

Since the near-surface atmospheric stability can strongly influence turbulence intensity at hub-height, the 

uncertainty in representation of sea surface temperature should also be considered. Despite the HRRR 200 

analysis better represents convective-scale structures that other coarse-resolution reanalysis products as 

mentioned earlier in Section 3.1, it does not provide corresponding SST forcing data. Therefore, a 

sensitivity experiment (named “sstupdate” hereafter) is conducted to examine the variability induced by 

replacing the SST forcing in the model.  

 205 

Note that Optis et al. (2020) used two SST products including the Operational Sea Surface 

Temperature and Sea Ice Analysis (OSTIA, resolution: 0.05°) data set (Donlon et al. 2012) and the 

National Center for Environmental Prediction (NCEP) Real-Time Global (RTG) SST product (Grumbine 

2020, resolution: ~0.083°). Here, we use the NASA Jet Propulsion Laboratory (JPL) Level 4 MUR Global 

Foundation Sea Surface Temperature Analysis (V4.1, GHRSST; Chin et al. (2017)) which has an even 210 

higher spatial resolution (0.01°) than either the OSTIA and NCEP RTG. The SST analysis product 
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assimilates satellite data with a range of resolutions including the Moderate Resolution Imaging 

Spectroradiometer (MODIS) infra-red (1-km), AVHRR infra-red (5 – 9 km), microwave (25 km) and in-

situ measurements (pointwise). The Multi-Resolution Variational Analysis (MRVA) technique is 

employed to reconstruct fast-moving fine-scale features as well as fill the large-scale data void. Note that 215 

since HRRR analysis data does not include SST, the baseline simulation uses the climatological SST 

provided with WRF as its forcing. 

 

4 Results 

4.1 Near sea-surface wind, turbulence, and air-sea temperature gradient 220 

The simulated wind speed (WSPD), wind direction (WDIR), TI, TKE, and air-sea temperature 

gradient (air temperature at 2m above the surface minus sea surface temperature (SST)) are compared 

against data measured by tower-mounted lidar and buoy deployed at the ASIT site. We use the air-sea 

temperature gradient as a proxy of atmospheric stability near the sea surface. Negative values indicate 

unstable (convective) conditions, whereas stable conditions are likely when the temperature gradient is 225 

positive.  

 

Here we highlight the comparisons by showing the results from March and May in 2020 as examples. 

The panels in Figures 3 and 4 show a composite month-long comparison of near-surface properties 

between “baseline” simulations and the tower-mounted lidar for March and May, respectively. Note the 230 

model profiles in the figure only extend to 200 m to match the range of the lidar. The results show the 

model reproduces the major “convective” (negative values of Tair–SST; red patches) events in March. 

While the simulated TKE is generally smaller than observed, both observations and simulations have 

larger TI and TKE during convective periods, indicating the model’s PBL scheme reacts reasonably well 

in response to the varied lower boundary conditions. During stable periods (positive values of Tair–SST; 235 

blue patches), simulated TKE and TI decrease dramatically with height. This indicates there is weak 

turbulence and limited vertical mixing in these cases. In addition, the seasonal variability of air-sea 

temperature gradient is evident. For instance, the convective events in May were much shorter and weaker 
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than those seen in March. This is most likely due to more frequent cold air outbreak in March than in late 

spring. The cold-air out breaks are likely strongly convective periods, due the advection of cold air over 240 

relatively warm water. Cases with near-zero air-sea temperature gradients present a greater challenge as 

they have less tolerance in modelling inaccurate air-sea temperature differences and fluxes within the 

boundary layer. 

 

(a) OBS

(b) WRF (baseline)
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Figure 3: Time-height comparison of wind speed (WSPD), wind direction (WDIR), air-sea 245 

temperature gradient (Tair-SST), turbulence kinetic energy (TKE), and sub-grid turbulent 

intensity (TI). Results for lidar and buoy observations and “baseline” simulation during the period 

of March are given in (a) and (b), respectively.  

 
Figure 4: Similar to Figure 3 but results for May 2020 are displayed.  250 

(a) OBS

(b) WRF (baseline)
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To quantify the model performance for the entire period of study, an assessment of the baseline 

simulation is carried out that examines the 80-m TI, TKE, WSPD, and air-sea temperature gradients. Note 

data points from simulations and observations are only counted when wind speed is between 5 m s-1 and 

25 m s-1, which is consistent with turbine cut in and cut-out wind speeds of commercial wind turbines. 255 

Three metrics including root mean square error (RMSE), bias, and correlation coefficient (CC), are 

computed for each variable and given in Table 1. The root mean squared error (RMSE) measures how 

close, on average, the simulated quantities are to observations. 

𝑦  denotes simulated result for variable of interest,  𝑜  represents corresponding observation. 𝑛  is the 

number of data samples. The bias is also known as mean prediction error (MPE). It compares the 260 

simulated against observed means of the evaluated dataset: 

The correlation coefficient (CC) is used to determine the similarity between the simulated and observed 

data. The CC value always lies between -1 and +1, representing the range from dissimilarity to similar 

relation.  

Overall, the WRF model slightly underestimates TI with a bias of -0.0061 (~ 5% relative to mean 265 

value) and has a RMSE of 0.037 (~30% relative to mean value). The two main factors in computation of 

𝑅𝑀𝑆𝐸 = 	 ?
1
𝑛A(𝑦, − 𝑜,)#

-

,."

C

"
#

 (5) 

𝑏𝑖𝑎𝑠 =
1
𝑛A(𝑦, − 𝑜,)

-

,."

	 (6) 

𝐶𝐶 =
∑ (𝑦, − 𝑦J)(𝑜, 	− 	 �̅�)-
,."

1∑ (𝑦, − 𝑦J)#-
,." ∑ (𝑜, − �̅�)#-

,."
	 

𝑦J =
∑ 𝑦,-
,."

𝑛 , �̅� =
∑ 𝑜,-
,."

𝑛  

(7) 



15 
 

TI, TKE and WSPD, exhibit notable contrasts in their assessments. While simulated TKE is 

underpredicted with a bias of -0.3804 m2 s-2 and RMSE of 0.914 m2 s-2, WSPD generally agrees well with 

lidar observation as demonstrated by relatively larger correlation coefficient (0.83) in comparison to 0.74 

for TKE. This implies that the errors in TI are likely driven by the differences in TKE as the WSPD is 270 

generally well predicted. We further examine how TI and TKE errors change correspondingly with WSPD 

as given in Figure 5. The results confirm that, in most of the cases, large TI errors are associated with 

large TKE errors and have less dependency on WSPD. Lastly, the air-sea temperature gradient is 

reasonably represented with the highest correlation coefficient of 0.92 among all the variables. 

 275 
Figure 5: Scatter plots depicting the relationship between simulated (baseline) WSPD and sub-grid 

TI with color shadings for representing 80-m TI and TKE errors in (a) and (b), respectively.  

 
 

  280 
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Table 1. Metrics including correlation coefficient (CC), root mean square error (RMSE), and bias, 

of 80-m TI, TKE, WSPD, and air-sea temperature difference are given as computed for baseline 

and sstupdate simulations. 

 
TI TKE WSPD Tair - SST 

baseline sstupdate baseline sstupdate baseline sstupdate baseline sstupdate 

CC 0.56 0.59 0.74 0.74 0.83 0.84 0.92 0.94 

RMSE 0.037 0.035 0.914 0.886 2.37 2.303 0.921 0.766 

Bias -0.0061 -0.0023 -0.3804 -0.3526 0.3737 0.3165 0.3223 0.093 

 

4.2 Sensitivity of SST forcing on modelled wind and turbulence  285 

As described in Section 3.3, the default SST in the baseline simulation is replaced by the NASA JPL’s 

SST analysis product (Chin et al. 2017) which has more fine-scale features as opposed to the SST 

representation in the baseline simulation. This sensitivity experiment is named as “sstupdate” and the 

impacts of SST forcing is examined in this section.  

The same metrics used in previous section are applied to sstupdate simulation and given in Table 1. 290 

It indicates the replacement of SST forcing has positive impacts on all the examined variables. For 

instance, the CC, RMSE, and Bias for TI as simulated by sstupdate (baseline) are 0.59 (0.56), 0.035 

(0.037), and -0.0023 (-0.0061). Similarly, the model skill improves simultaneously with respect to TKE, 

WSPD, and Tair-SST. This implies more realistic SST forcing helps better represent spatiotemporal 

evolution of stability and subsequently the surface fluxes. This then influences turbulent properties within 295 

the boundary layer such as the TKE and WSPD. A comparison of vertical profiles of TI RMSE between 

the two simulations (Figure 6) further shows that SST representation in the model could affect skill in TI 

prediction from 60 to 190 meters and error generally increases with the heights. WSPD and TKE RMSE 

profiles present similar trends despite the range of improvement vary with heights among the three 

variables. Redfern et. al. (2021) shows impact of SST replacement on wind speed modeling can be seen 300 

from 40 to 200 meters. The validation was done by comparing against lidar observations collected at three 

locations off the Atlantic shores from June to July in 2022.  
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Figure 6:  RMSE profiles of (a)TI, (b)WSPD, and (c)TKE for baseline (blue) and sstupdate (orange) 

simulations between 60 to 190 meters.  305 

 

The power density functions (PDFs) are given in Figure 7 to help describe the similarities of each 

variable among the three datasets. Figure 7a shows the distribution of observed TI has a wider peak 

between 0.025 to 0.1 than the simulated distributions. While the baseline simulation has more points with 

smaller TI values (peak around 0.04), the distributions of TI from the sstupdate show an additional peak 310 

around 0.09 and 0.1 and there are more large values of TI. The median TI of sstupdate (0.066) is much 

closer to observations (0.07) than the baseline (0.057), indicating that the SST representation has a notable 

impact on TI simulation. The individual impact of SST on TKE, WSPD, and air-sea temperature 

difference is displayed in Figures 7b, c, and d, respectively. The model tends to produce more instances 

with small TKE than was observed (0.67; Figure 7b), and sstupdate (0.4) has slightly larger median TKE 315 

than the baseline (0.377). Note part of the discrepancy in TKE may be attributed to varying uncertainty 

in lidar turbulence retrievals as a function of atmospheric stability. Sathe et al. (2015) found hub-height 

turbulence (~ 80 m) measured by pulsed Doppler lidars could be significantly higher (lower) than what 

is observed by a sonic anemometer during unstable (stable) atmospheric conditions. The PDFs of WSPD 

(a) (b) (c)
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in Figure 7c indicate while both simulations have relatively larger medians (10.94 and 10.86) than the 320 

observations (10.31), the additional SST information used in sstupdate slightly improve the simulations. 

The overall improvement in WSPD may be attributed to more accurate representation of stability as the 

PDF of simulated air-sea temperature gradient is improved when applying the improved SST forcing as 

shown by Figure 7d. 

 325 
Figure 7: Probability density function (PDF) plots illustrating the results of (a) subgrid turbulence 

intensity (TI), (b) turbulence kinetic energy (TKE), (c) wind speed (WSPD), and (d) air-sea 

temperature difference among baseline, sstupdate simulations, and observations at hub-height (~ 
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80 m) though February to May of 2020. The median of each dataset is given in each panel with color 

coded. 330 

 

Application of the higher-resolution SST impacts the time of evolution of the winds and turbulence. 

Figure 8 shows how the cold bias seen in the SST of baseline simulation is effectively reduced during 

May 2020, which subsequently fixes the cold bias in near-surface air temperature. While there are 

relatively smaller differences between two simulations in the TKE and WSPD, we do find improvement 335 

in TI over some periods. For example, during May 5 – 8, 13 – 14, 17 – 18, and 30 – 31, TI simulated by 

sstupdate simulation are generally higher than what is simulated by baseline simulation and closer to the 

observed values. The correction of TKE has a larger impact on TI when WSPD is relatively small (less 

than 10 m s-1), which can be explained by how TI is calculated in Eq. (4). 
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 340 
Figure 8: Time-series display of data from baseline, sstupdate simulations and corresponding 

observations for May 2020. From top to bottom rows, the near-surface air temperature, sea surface 

temperature, hub-height TKE, WSPD, and TI are arranged.  

 

The impact of SST is also examined in the context of monthly variability. Figure 9 summarizes the 345 

metrics calculated for each simulation, variable, and month with the observational data as reference. The 

analysis suggests that the overall performance of simulated air-sea temperature gradient (TG) is improved 

when the higher-resolution SST forcing is used, and the improvement is more prominent in the spring 

months than in February. Despite only slight impact on the correlation for simulated TG by replacing the 

default SST (Figure 9a), the corresponding RMSE (Figure 9b) and bias (Figure 9c) for TG are 350 

considerably reduced. While relatively small positive impact is shown for TKE and WSPD, the 
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improvement in the bias of TI is prominent, as shown by the reduced RMSE and bias, particularly for 

April and May.     

 
Figure 9: Metrics of (a) correlation coefficient between the observations and simulations, (b) root 355 

mean square error (RMSE), and (c) bias for variables (TI, WS, TKE, and air-sea temperature 

gradient (TG)) computed against the observations for each month between February and May in 

2020. The dots with solid line represent baseline result. The triangles with dashed line depict the 

corresponding values from sstupdate simulation. 

4.3 Relationship between turbulence intensity and bulk Richardson number 360 

Many earlier studies showed that the bulk Richardson number (Rib) may be a good indicator turbulent 

conditions as it considers stability associated with the temperature gradient, as well as the relative 

contributions of buoyancy and shear (e.g. Rodrigo et al. 2015; Bardal et al. 2018; Hsu 1989; Zoumakis 

and Kelessis 1991; Hansen et al. 2012). The equation we use for calculating the Rib is  

𝑅𝑖𝑏 = 	
𝑔∆𝜃%Δ𝑧

𝜃%JJJ(Δ𝑈# + Δ𝑉#)
 (4) 

where g denotes gravitational acceleration, ∆𝜃% is virtual potential temperature difference across a vertical 365 

layer of thickness ∆z, ∆U and ∆V represent the vertical gradient in horizontal wind components. The 

virtual potential temperature gradient (∆𝜃%) is computed by using the air temperature (4 m) and sea surface 

temperature measurements on the buoy. The vertical gradients of horizontal wind components (∆U and 

∆V) are obtained by using wind measurement at 100 m from the Doppler Lidar (DL) and 4 m from the 
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buoy. We also applied a similar approach using the WRF model output. Note the wind and temperature 370 

gradients are not computed from the same heights, and the bulk Richardson number calculated here will 

only be used to inform stability qualitatively (Howland et al. 2020). As before, data for cases where the 

wind speed was less than 5 m s-1 and greater than 25 m s-1 have been removed as described earlier. Figure 

10a displays the calculated Rib in timeseries during February 2020 as an example. It shows that both 

experiments reproduce the occurrence of observed events with unstable conditions (large negative Rib 375 

values). For instance, in February 14 – 15, 19 – 20, 21, the model was able to produce large TI (over 0.2, 

Figure 10d) when Rib approaches -10 (Figure 10a).  

While simulated results show that the model has good skill for large TI (over 0.2) events, there are 

periods with moderate TI (0.05 to 0.2) where the model misses the observed peaks as indicated by the 

green arrows in Figure 10d. It is found in those time periods, the buoyancy component (∆𝜃%) are mostly 380 

near zero (neutral conditions) or even positive (stable), whereas the shear component (Δ𝑈# + Δ𝑉#) could 

be more variable from time to time, indicating the model may have less skill in TI prediction when the 

buoyant forcing is weak.  



23 
 

 
Figure 10: Timeseries plots of observed and simulated (a) bulk Richardson number, (b) shear 385 

component (m2 s-2), (c) buoyancy component (K), and (d) sub-grid turbulence intensity (TI) during 

February 2020. Green arrows in (d) indicate events with large contrast in TI between model and 

observation. Filtered data points of sub-grid TI by using the thresholds of buoyancy > 0 K, shear < 

20.0 m2 s-2, and TI > 0.06 are denoted in (e). Green line represents the model-resolved TI.     
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To explore how TI can be related to the buoyancy and shear components of Rib, TI is mapped in 390 

regard to the two terms (Figure 11). Figure 11a shows the observed TI is generally larger during periods 

when conditions are unstable and there is a large magnitude of negative buoyancy component (SST is 

larger than air temperature). It implies that in convective regimes (buoyancy component < 0), more 

vigorous turbulence leads to stronger vertical mixing which significantly reduces the wind shear. On the 

other hand, in stable regimes (buoyancy component > 0), less turbulent mixing often results in larger 395 

values of wind shear.  

Although in general, TI decreases as the buoyancy becomes more positive and the atmosphere 

becomes stable as identified in the observations and the two WRF model configurations (Figures 11a, b, 

and c), a population of reddish circles (large values of TI) in the lower-right quadrant of the figure does 

not follow this relationship (Figure 11a). While both simulations fail to represent these cases (Figures 11b 400 

and c), the fractional difference of simulated TI between the two simulations indicates that the sstupdate 

simulation generally has larger TI than the baseline simulation (Figure 11d). This can be attributed to 

overall reduction of cold bias in the baseline simulation as shown in Figure 9. Furthermore, a larger 

fractional increase of TI is found in the regime where the conditions are between neutral and slightly 

stable (buoyancy component >= 0). This is most likely due to the weak negative temperature gradient in 405 

baseline simulation becoming positive after replacing the SST forcing. Despite the correction, large TI is 

rarely simulated in the lower-right regime. This result is not surprising as the formulation in the MYNN 

parameterization does not allow large values of TKE to be diagnosed in stable conditions.  

The next step was to locate these specific data points in time by applying thresholds of buoyancy 

component > 0 K, shear component < 20.0 m2 s-2, and TI > 0.06 (Figure 11a). It shows that features 410 

leading to the large values of TI in the observation and simulations may not overlap in time as the model 

may fail to simulate realistic conditions (Figure 10e). Nevertheless, it is found that many of these cases 

with positive buoyancy component and large TI are aligned with periods that have notable differences 

between observed and simulated TI, as denoted by green arrows in Figure 10d. Therefore, we conclude 

that the underrepresentation of this regime is likely responsible for the majority of the model bias in TI.  415 
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Figure 11: Scatter plots mapping the hub-height sub-grid TI in the coordinates of buoyancy (∆𝜃%) 

and shear (Δ𝑈# + Δ𝑉#) components for the entire period of study. Results of (a) observation (OBS), 

(b) baseline simulation, (c) sstupdate simulation, and (d) percentage of fractional difference (%) 

between sstupdate and baseline simulations are displayed. The black dashed-line box in (a) 420 

indicates the regime that is used to extract the data points as shown in Figure 10e.  

While some of the intermittent turbulent events may cause the occurrence of large TI under small 

shear and stable conditions, we find that most of the cases with large amounts of TI in stable conditions 

and weak shear can be linked to fluctuations in wind speed associated with mesoscale features of the flow 

and they are partially resolved by mesoscale model, or for which there are timing errors. In Figure 10e, 425 
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the mesoscale (model-resolved) TI, described in Section 3.2, is denoted by the green line. For the periods 

such as Feb. 3 – 4, 6 – 7, 10 – 11, when the simulated sub-grid TI is much smaller than observation, spikes 

in mesoscale (model-resolved) TI have amplitudes similar to the observed values. This suggests the need 

to consider both sub-grid and mesoscale TI when modelling TI derived from a mesoscale atmospheric 

model. Furthermore, the uncertainties in the timing of simulated mesoscale weather events may lead to 430 

notable contrasts between the timing of modelled and observed peaks in TI. This can impact the simulated 

TI in two ways as the mesoscale activity not only generates variance in the winds over larger 

spatiotemporal scales than the sub-grid turbulence, but also effectively offsets dynamic and 

thermodynamic conditions near the sea surface in the boundary layer that influence the simulated sub-

grid TI generated by the boundary-layer parameterization. Our analysis demonstrates the utility of 435 

identifying scale-dependent uncertainties of TI modelling, which allows us to isolate the causes of errors 

in the simulated TI. 

The metrics used in Table 1 are employed again to assess the impact of resolved TI on the TI 

prediction and listed in Table 2. Results indicate the addition of resolved TI reduces the bias for baseline 

configuration (-0.0061 to 0.0017) but enlarges the bias in the sstupdate configuration (-0.0023 to 0.0055). 440 

Moreover, there is worse correlation and RMSE when both sub-grid and resolved TI are considered. For 

instance, the correlation coefficients are reduced from 0.56 to 0.53 and 0.59 to 0.56 for baseline and 

sstupdate configurations, respectively. Considering the effects of the higher-resolution SST forcing and 

resolved TI can lead to an overestimate of the TI, as the bias changes sign and the RMSE increase slightly 

compared to the sub-grid TI only. We suspect this could be associated with the uncertainties in simulating 445 

mesoscale events as depicted in Figure 10e. The events with larger resolved TI are not necessarily 

coincident with observations, which explains why simply summing up sub-grid and resolved TI in time 

may introduce additional errors in the simulated TI. 

 

  450 
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Table 2. Metrics including correlation coefficient (CC), root mean square error (RMSE), and bias, 

for TI that are computed based on total (sub-grid and resolved) TI simulated by baseline and 

sstupdate simulations. 

 baseline sstupdate 

CC 0.53 0.56 

RMSE 0.039 0.038 

Bias 0.0017 0.0055 

 

5 Summary and conclusion 455 

Algorithms to derive TI are successfully implemented in the WRF model and tested offshore using 

multi-month data set collected at MVCO using a combination of Doppler lidar, tower, and buoy data. 

Simulated TI is divided into two components depending on scale, including sub-grid and grid resolved. 

Sub-grid TI is diagnosed from parameterized turbulence kinetic energy (TKE) through the MYNN PBL 

parameterization. Resolved TI is estimated by calculating the standard deviation of wind fluctuation that 460 

is resolved by a mesoscale model over a period.   

The modelled TI computed over a wide range atmospheric conditions are analyzed and validated by 

using a variety of observations collected at the offshore tower at MVCO between February and May in 

2020. The primary findings include: 

• The model’s PBL scheme reacts reasonably well to changes in the vertical temperature gradient 465 

near sea surface despite the fact that the simulated TKE is generally smaller than what is observed 

by the lidar, especially for events with large TKE values. 

• The modified WRF model slightly underestimates TI, and the error is mainly attributed to 

relatively large negative bias in TKE as the predicted wind speed generally agrees with 

observation. 470 

• The WRF model has difficulty predicting periods of weak TI due to smaller air-sea temperature 

differences and fluxes within the simulated boundary layer. 
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• Overall cold bias in the SST of baseline simulation is effectively reduced by substituting it with 

more accurate SST forcing. It subsequently reduces model biases in near-surface air temperature 

as well as hub-height WSPD and TI. 475 

• A regime of large observed values TI during periods with positive buoyancy and weak shear is 

identified, but are not captured by the model. Many of the events occurred in conjunction with 

mesoscale weather systems, but directly summing up sub-grid and resolved TI does not improve 

the TI prediction. This is because the primary source of uncertainty in those events are caused by 

the unrealistic representation of mesoscale weather systems, including timing errors, in the model.  480 

Our analysis suggests additional model constraints are required to further improve model 

representation of TI and TKE in mesoscale or finer-scale cloud (-system) processes. Approaches that 

couple mesoscale model with data assimilation techniques to improve skill in the simulated mesoscale 

flow features and  cloud predictions (Tai et al. 2020, 2021; Gaudet et al. 2022) could be very beneficial. 

 485 
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