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Abstract. This is a development of the preceding paper that introduced the idea and methodology of population-based struc-

tural health monitoring (PBSHM). PBSHM involves transferring knowledge from one structure to a different structure so that

predictions about the structural health on each of the members in the population can be inferred. One of the most important

aspects of PBSHM involves using the information on the source domain structure and the target domain structure to create an

effective classifier. Domain adaptation is a subcategory of transfer learning that can create a general classifier using both the5

source and target domain structures to create an enhanced overall classifier of the entire population. This paper presents a novel

domain adaptation model for PBSHM in offshore wind.

1 Introduction

Moving beyond detecting damage on a single structure, to diagnosing damage in an entire population raises the issue of

acquiring data relating to each of the structures. One of the main concerns with this is the large cost associated with obtaining10

the information necessary to determine any damage to the structures. Population-based structural health monitoring (PBSHM)

seeks to reduce this cost by developing methods that share the information between the structures. The concept of PBSHM is

introduced in Bull et al. (2021),Gosliga et al. (2021),Gardner et al. (2021). If the population of the structures is homogeneous,

where the structures are nominally identical, then it may be possible to establish a general model which is common across all

structures. Conversely, even if the models are heterogeneous, disparate structures, it may be possible to transfer select types15

of damage across the structures. The most promising technology that will allow for this transfer of information is found in the

machine learning discipline of Transfer Learning.

The standard of similarity between the structures is indicative of the level of knowledge transfer between the structures. This

can be achieved through quantifying the way in which the structures are similar, and where the similarities lie. This determines

what type of machine learning approach is necessary. For this study, the method analyzed the geometry, topology, operation,20

and material of the offshore structures in the prerequisite to this paper Innes Murdo Black. The main observation from the case

study of the structures for this population is that the data is of a strong homogeneous nature. Within a strongly homogeneous

population, all the structures have the same material, geometry, and topology (this refers to the components for all the parts in
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the structure). This implies that all the structures are the same model and make in the wind farm. The variation within the wind

farm is due to the operational state, the location of the wind turbine and manufacturing defects.25

This work focuses on the case of strong homogeneous transfer, with four different machine learning models under consid-

eration. Three models employ supervised domain adaptation techniques, a subcategory from the transfer learning branch, and

the last model utilises ensemble learning. Transfer learning is one approach with the purpose of improving the performance of

the learner by transferring between different domains. Domain adaptation assumes that there is labeled data data in the source

domain that can be utilised to aid in the regression of the target domain, by mapping the two domains into a common latent30

space on which the data distributions are coincident. There are assumptions of domain adaptation, where the input and output

feature dimensions are consistent in the source and target domain. This means that structure one must have the same features

as structure two in the wind farm. The former method of using an ensemble technique aims to improve the final prediction by

grouping the views from the regression models and taking the consensus.

2 Population-Based Structural health monitoring35

PBSHM involves mapping data and labels from different structures within the population so that a general classifier can be

inferred across the entire population. As a result, the asset management can potentially be performed digitally for any individual

in the population. This section intends to define applicable forms of PBSHM.

For PBSHM it is pertinent to define the contextual difference between homogeneous and heterogeneous populations. This

syntax is borrowed from graph theory where the names clearly explain how structures can be represented by attributes. To40

determine whether two systems are similar enough for knowledge transfer, it is unpracticable to consider every property

or dimension of the structure - e.g., comparing the geometric similarity of two structures using 3D, finite element (FE) or

computer-aided design (CAD) models of the structure directly would be computationally inefficient. For this study’s desired

goal, it is more efficient to consider only the properties and dimensions that have a significant effect on the transferability of

knowledge.45

Differences within the population occur for a magnitude of reasons, and structures are deemed different due to various

properties. This can lead to groups of heterogeneous populations. The aspects of homogeneity are visualised in Figure 1. This

approach will highlight the four main sources of differences within a structure which are geometry, topology, material, and

operation:

– Geometry links to the shape and size of the structure within the population.50

– Topology depicts the construction, the connection, and location of the components in the structure.

– Material relates to the different, materials classes and specific materials with the associated properties for the structure

in the population.

– Operation refers to the different states the operator can curtail the asset too.
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Figure 1. Categories of heterogeneous populations within the PBSHM framework. In the centre, all four categories are alike to a sufficient

degree indicating a homogeneous population exists. It is noted that all four attributes can influence each other separately to create independent

heterogeneous populations.

Adapting the definitions from graph theory for PBSHM, where a topologically homogenous population is defined as a55

group of structures where the geometry σm and the material σm properties for the nodes and edges of the associated graph

can be taken from the base distribution p(σm), the probability mass of the distribution p(σm), defines the small differences

between the individuals within the population. A strong homogeneous population would have a uni-modal distribution with

low dispersion for the geometrical, topological, and material properties. With the strictest, perfect, form of homogeneous

composition the underlying distribution of the population is identical. The latter is uncommon, but this assumption can be60

made if you want to apply conventional Machine Learning (ML) methods trained on one structure and apply this to another.

Applying these conventions to the population and categorizing the individuals within the populations helps determine the

difficulty of transferability.

Notable differences in the observable data may occur outside the structural properties of the individuals within the population

beyond the categories previously discussed. These differences relate to how the data acquisition and any processing to obtain65

the features are carried out. A classic example of this would be sensor placement. This will lead to differences in the distribution

of the data even though it is placed in the ‘same’ position. Manufacturing and installation differences will also contribute to

small variations in the homogeneity of the data distribution.
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2.1 The Data

The measurement data used as input for the low-cost monitoring technique takes high frequency 25Hz CMS data that is70

processed into 10-minute averages. The process of determining the damage equivalent moments (DEM) is in WP 4.4.3 and the

features used are shown in Table 3.1. The WTGs available for this study that are both equipped and unequipped with strain

gauges (SG). The three positions with SG are WT 1, 2 and 3.

SCADA systems are equipped on all WTGs and, depending on the feature, the resolution varies. This encompasses meteo-

rological information at the hub height, such as wind speed, wind direction, temperature, and pressure. The SCADA data also75

covers the operational signals such as power production, the pitch angle of the individual blades and the rotor rotational speed.

To increase the value of a low-cost monitoring program, transferring knowledge that is unavailable in other wind turbines

can provide insight and confidence on other assets. If one can infer knowledge accurately on another WT, then one can save

money by installing strain gauges on a fraction of the WTG. Based on this principle, the population form is the DEM where

only four WTGs have the CMS strain gauges installed.80

3 Transfer Learning

Transfer learning technologies offer several opportunities for dealing with scenarios where the population form domains and

distributions are different for each member when training and testing the model Pan and Yang (2009). Separate from multi-task

learning, where the objective is to lean multiple tasks across different domains Zhang and Yang (2017), transfer learning utilises

knowledge from the source to improve predictions on the target task, in our case, using the DEM from two sperate WTGs to85

create an improved general model. This type of learning is what makes PBSHM achievable. Even when performing in the

homogeneous population scenario, variations in the structure, such as location, will lead to differences in the data distributions.

Learners trained on one structure will not apply to another structure in the population. Formal definitions of transfer learning

and transfer learning technologies are discussed in this section with domain adaptation having an entire subsection.

3.1 Definitions90

Domain - A domain D = [X,p(X)] is an object made up of a feature space X and a marginal probability distribution p(X)

over feature data X = xN
i=1, which is a bounded sample from X . The is the SCADA data for one structure in the context of

this report.

Task – A task T = [y,f(X)], this would be the DEM for one structure, is an object made up of a label space y and predictive

function f(X)(p(x|Y )) in probabilistic terms, can be inferred from training data X = xN
x=i,y=i, with Xi =

∑
X and yi =95

∑
Y , noting that both x and y are distributions not individual observations, which are build-up of finite samples sets X and

Y. In the case of source domain data-sets Ds = X = Xi,s,yi,s)N and with xi,s =
∑

Xs and with yi,s =
∑

Ys and similarly

for the target domain Dt = (Xi,t,yi,t)N and with xi,t =
∑

Xt and yi,t =
∑

Yt . Given these artifacts, one can theoretically

conduct transfer learning.
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Transfer Learning – For transfer learning there must be a given source domain Ds and associated task Ts and a target domain100

Dt and task Tt. The objective is to improving the target predictive function ft(X) in Tt by utilising the knowledge from the

source, assuming Ds ̸= Dt and or Ts ̸= Tt [13].

Homogeneous transfer – Homogeneous transfer learning assumes that Ds = Dt and Ts = Tt meaning the attributes are the

exact same. A sub-category of this strong homogeneous transfer, where the domain and task are similar hence, Dst and Tst.

Heterogeneous transfer – Heterogeneous transfer learning is when the domain, feature, and task space are non-identical105

hence,Ds ̸= Dt, Ts ̸= Tt, and xs ̸= xt, respectively. It can also assume thatys ̸= yt.

Domain adaptation – domain adaptation is relevant when the inference for the target domain Dt and Tt, and the target

predictive function ft is improved given the source domain Ds and Ts. Assuming xs = xt and ys = yt but the distributions

p(xs) ̸= p(xt).

To contextualize these definitions in the form of PBSHM for wind turbines, homogeneous transfer learning is a situation110

where both the source space and target space are the same. This is a situation where the context is the problem between similar

assets. This could be where the wind turbines are exactly the same, but have different distribution due to sensor placement,

location, to name a few. Hence Ds
∼= Dt and Ts

∼= Tt. Heterogeneous transfer learning is applied when the features are dissim-

ilar. A situation in the wind turbine industry would be when using data of two different wind turbine designs, e.g. a monopile

foundation and a jacket structure. In this case the features will be dissimilar and the tasks dissimilar, hence Ds ̸= Dt and115

Ts ̸= Tt.

3.2 Transfer Learning Technologies

There is a continually growing verity of transfer leering technologies. This section aims to briefly describe transfer learning, but

the focus is on fundamental differences in the approaches of a subcategory of called domain adaptation where parameter, in-

stance, and feature Based approaches are described. Visit Friedjungová and Jiřina (2018) for a more comprehensive discussion120

on transfer learning.

Starting off with a typical approach of deep learning and artificial neural networks, transfer learning technologies have been

developed using fine-tuning. This methodology seeks to learn based on the parameter weights during a particular set of layers

in the artificial neural network. The artificial neural network is trained on the domain Ds and some of the layers are fixed. The

remaining un-fixed layers are trained using target domain Dt. Examples of this are conducted in Innes Murdo Black (2022a)125

,Gao and Mosalam (2018), and Dorafshan et al. (2018).

Another approach to transfer learning is knowledge graphs, where the aim is to find objects that define specific entities

and the interrelationships. This has been particularly successful in search engines, incorporating semantic searches. Currently,

knowledge graphs have been integrated as training data for machine learning models Hamaguchi et al. (2018), Nickel et al.

(2016).130

Similar to knowledge graphs, the ontologies’ goal is to give representations of entities that describe all the interdependences

and interactions. Ontologies are useful in outlining knowledge about specific domains. Most importantly ontologies are helpful

for explaining concepts and sharing information. If a new project is undertaken ontologies can be reused or transferred to help
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identify more efficient processes. In the context of PBSHM, an ontology is knowing what types of techniques and methods are

most appropriate for one system to another. Ontologies have been explored in multiple industries, including structural health135

monitoring Li et al. (2021),Tsialiamanis et al. (2020),Anderlik et al. (2010).

3.3 Domain Adaptation

Domain adaptation is a subclass of transfer learning with the aim to transfer the feature space between the source and the target

domains, based on the assumption that the marginal distributions of p(xs) ̸= p(xt)are not the same. This type of technique is

primarily used in homogeneous transfer learning where the source domain and target domain are similar. There are three main140

approaches to domain adaptation which are parameter, feature, and instance based. Parameter-based domain adaptation takes

the parameters of a pretrained model, is built using the source domain Ds data, and is then adapted to suit a model for the task

domain Dt.

Feature-based domain adaptation techniques are designed on the research of common features which have similar attributes

with respect to the source Ts s and target Tt task. A new feature, often called the encoded feature space, is built with a145

projecting application, which aims to correct the difference between the source p(xs) and target p(xt) distributions. The task

is then considered to be in an encoded space.

For instance-based domain adaptation the general principle is to rewrite the labeled training data to correct the differences

between the source p(xs) and target p(xt) distributions. This reweighting consists of multiplying, during the training process,

the individual loss of each training instance by a positive weight. The reweighted training instances are then directly used to150

learn the task.

3.4 Negative Transfer

One of the major drawbacks, when performing transfer learning between WTGs, is if the information is incorrectly detailed

from one domain to another as this can reduce the performance of the general learner when compared to the learning from

the target domain alone. This phenomenon is known as negative transfer and is most prominent when the source, Ds and the155

target, Dt domain is most dissimilar, e.g. heterogeneous. The fundamental idea of transfer learning is that there must be some

shared information across domains. This may be hard to contextualize when data is unlabeled, or the tasks are dissimilar.

Negative transfer raises the important question: When is it right to transfer knowledge? This motivates the reasoning behind

developing a measure of similarity of structures. The case study provides information on the heterogeneity of the data used in

this work. This study reinforces our understanding of the data and helps mitigate the issue of negative transfer as we become160

aware of where differences in the distributions lie.

4 Population Bases Structural Health Monitoring

This study uses data from the Wikinger wind farm, where there is only a select amount of the operational wind turbines that

have CMS with strain gauges installed; to be specific, four out of 64. This section aims to develop a verity of models that can
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perform PBSHM using structures 64 and 45 as the source and target respectively in the pursuit of a general classifier for the165

entire farm. The population form is the DEM on the foundation of the structure which can be used in determining the fatigue

life. This section starts off with how the SHM (Structural Health Monitoring) is conducted, what the population form is for this

study, then what the definition of the population is. Bases on the population form from the domain adaptation models are then

described.

4.1 Fatigue Damage Equivalent Moments170

There are a great number of model and feature spaces that can be applied to represent a population form. For a wind turbine,

the form could be wind turbine power curves to frequency responses. But, in this case, the form is fatigue damage equivalent

moments for the jacket support structure. The entire population in this study has the same geometry and material, with small

deviations in topology due to the location.

The condition monitoring system calculates the forces from the strain gauges on the foundation of the structure. From these175

forces, the damage equivalent loads are produced. The two-phase operation is as follows:

Phase 1 - Calculation of forces from strain.

1. Run dynamic ROSA simulation Ramboll (2018)

2. Extract stress at selected element via Fatima

3. Calculate strain using Hooke’s law180

4. Calculate forces with internal functionality

5. Compare forces with extracted forces

Phase 2 - Calculation of DEM from forces

1. Gather applicable force location from the sensor location

2. Calculate the cyclical forces at that sensor185

3. Apply ASTM E1049-85 rain-flow cycle counting algorithm ASTM (2017)

4. Apply a scale factor to force accumulation.

5. Sum the damage accumulation over the cycles to calculate the DEM

4.2 Homogeneous Population

A homogeneous population in the context of offshore wind is one where the task distributions are similar for all WTGs which,190

depending on the features selected, may have similar feature spaces. This makes homogeneous populations ideal candidates

for domain adaptation methods, and to demonstrate the effectiveness of transfer learning for PBSHM. This section presents a
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homogeneous population of three wind turbines located in the Wikinger wind farm. All the structures are of the same design

and capacity, hence, they have the same material and geometry. The damage equivalent loads histogram is presented in Figure

3.195

Figure 2. Normalized damage equivalent moments box plot of the two orthogonal directions for all three of the wind turbines

The three structures can be considered as a homogeneous population, as they are structurally similar in their representation

and the material and geometry parameters can be described by a uni-modal distribution with low deviation. The SHM problem

presented here is due to small deviations in the DEM which arise from the location and the operational context of the indi-

vidual wind turbines within the wind farm. Figure 4 displays two-dimensional heatmaps of the DEM amplitudes for various

operational features for the three wind turbines.200

Small deviations in the overall distributions are highlighted in Figure 4. One of the contributors to these results is the location

as the entire wind farm has deviations on the water depth. The design of the individual WTs does not require the topology and

geomoetry to be altered for single locations but rather in design clusters spanning a range of water depths. One consistency is

the height of the transition piece. It needs to be at a constant height across the population, meaning that there are variations

in the length of the foundation which influences the dynamics. Another aspect is the operation and metrological differences.205

Figure 5 displays a heatmap of these features for each of the WTs which are influenced by the location and the degree of
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turbulence intensity based on the direction of the wind. Navigating these deviations in the distribution is the aim of the general

model development.

Figure 3. This series of figures highlights the operational and environmental effects on the population of the wind farm. This includes the

power, blade position, wind speed, rotor speed, and temperature against the fatigue damage equivalent moments in direction 1.
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The Fréchet number is numerical method of determining the similarity of a population form for a given domain in a metric

space. The Fréchet distance is a popular measure of similarity between the two domains and is calculated by:210

∆ = ∥νs−µt| 2
2 + Tr(|Σs + ΣT − 2(Σs ·ΣT )1/2) (1)

Where µs, µT are the mean along the source and target along the first axis, Σs and Σtare the covariance matrix of the source

and target domain datasets. This considers the location and the ordering of the points along the points of both domains. For

homogeneous populations the value of the Fréchet distance will be 0, for strong homogeneous distributions the value will be

small, and heterogeneous will be large. The value is dependent on the length of the instances in the domain and the magnitude215

of the values.

Table 1. Fréchet Distance for all three wind turbines

Fréchet Distance

WT1 0.00

WT2 13.48 0.00

WT3 14.48 14.92 0.00

WT1 WT2 WT3

By applying this to the DEM for each of the wind turbines, the results in Table 1 indicate that the population form is

homogeneous with values close to 0. This is a numerical representation, and it is limited in the scope of interpretation on the

homogeneity. This is a technique that mathematically reinforces the decision after observation of the data. Nevertheless, in the

following section, the location is the main source of heterogeneity for this population form and breaking this down into more220

detail will provide greater insight into the small deviations in heterogeneity observed in Table 1

Table 2. Statistical values of both DEM for all three wind turbines.

DEM 1 DEM 2

WT1 WT2 WT3 WT1 WT2 WT3

Mean 0.1193 0.1193 0.1193 0.1049 0.1049 0.1049

Std 0.0629 0.0629 0.0629 0.0623 0.0623 0.0623

Min 0.0015 0.0015 0.0015 0.0017 0.0015 0.0017

Max 0.9024 0.9024 0.9024 0.6494 0.6494 0.6494

To contextualize this, some statistical measures have been calculated based on the normalized DEM and these are represented

in Table 2. This includes the mean, standard deviation (Std), and minimum and maximum of the DEM in both orthogonal

directions. There is an almost identical nature to the three WTGs; WT2 does have higher and lower maximums and minimums,

but both the mean and standard deviations are identical to four significant figures.225
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4.3 Models

An artificial neural network (ANN) is an optimal base model suited for stochastic problems to estimate the DEM without direct

measurement. Sensors often cannot be placed on structures, and SCADA does not provide direct information on important

parameters on the structural behaviour. Therefore, a general model using the SCADA data to determine the DEM would

provide excellent potential in the application on wind turbine foundation monitoring. This subsection will briefly describe an230

ANN and the differences that the domain adaptation models make to the original ANN model.

Three domain adaptation methods are implemented in this study that all use a base model of an artificial neural network and

are altered based on their specific procedures. However, before these procedures are explained, the original model is developed

using the data from one wind turbine only. No transfer learning is carried out to generate this model; only hyper parameter

optimization using wind turbine 64.235

The architecture of an ANN is built up of hidden layers where each layer has a density of neurons attached to that. Techniques

such as dropout can be introduced to aid in removing bias within the architecture, increasing weights (w) to 0 and 1 such

that the sum of the weights remains constant. The individual neurons have a synaptic weight associated on them which can

be represented as an activation function. For this type of problem, the Rectified Linear Unit (RELU) is used. Weights w are

associated to each activation function and the entire network is curated based using the Adam Kingma and Ba (2015) Optimizer.240

4.3.1 CORrelation Alignment (CORAL)

CORAL Sun et al. (2015)is a feature-based domain adaptation method, with the aim of minimizing the domain shift from the

source Ds to the target Dtby aligning the second-order statistics of the source and target distributions. The method transforms

the source features to minimisze the Frobenius norm Lord (1999) between the correlation matrix o the input target data and the

transformed input source data. The transformation is described by the following optimization:245

min
A
||AT CSA−CT ||2F (2)

Where, A is the feature transformation matrix such that Cs and Ctis the correlation matrices of the source and target data,

respectively. The solution of this operation can be written in explicit form and the feature transformation is computed in four

steps:

CS = Cov(XS) +λIP (3)250

CT = Cov(XT ) +λIP (4)

Xs = XSCS
−1/2
S (5)
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255

Xs = XSCS
1/2
T (6)

Where λ is the regularization parameter.

4.3.2 TwoStageTrAdaBoostR2

TwoStageTrAdaBoostR2 algorithm, Pardoe and Stone (2010), is an instance-based domain adaptation method suited to regres-

sion tasks. This method is characterized by the ‘reverse boosting’ principle where the weights of the source instances predicted260

decrease at each boosting iteration, and one of the instances increase. The ‘two stages’ version of TRAdaBoostR2, Pardoe and

Stone (2010), algorithm is where the weights of the source and target instances are carried out separately. In the first stage,

the weights from the source instances are frozen, but the ones on the target instances are updated according to the classical

AdaBoostR2 ?. In the second stage the weights of the target instance are now fixed whereas the ones on the source are updated

according to TrAdaBoostR2. During each first stage, a cross-validation score is computed with the labeled target data. The265

cross-validation score is used to determine the most effective estimator within all boosting iterations. This algorithm performs

the following steps:

– Normalise the weights
∑

ws +
∑

wt = 1

– Fit an AdaBoostR2 estimator fs( ) on the source and target labelled data (xs,ys), (xt,yt) with the respective importance

initial weights ws, wt. During the training of AdaBoostR2 the weights of ws is frozen.270

– Compute the cross-validation score on (xt,yt).

– Compute the error vectors

es = L(f(Xs),ys) (7)

es = L(f(Xs),ys) (8)275

Normalise the vectors

es = es/maxe∈es∪et
(9)

es = es maxe∈es∪et (10)
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– Update the source and target weight280

ws = wsβ
es
s /Z (11)

wt = wt/Z (12)

Where Z is the normalizing constant Bs is chosen so that the sum of the weights is equal to nt

nt+ns
+ t

N−1 (1− nt

nt+ns
)with

t the current boosting iteration number. Bs is located with a binary search.285

– • Return to the first step and loop until the number of boosting iterations is reached.

The general model is selected by the best estimator according to the cross-validation.

4.3.3 RegulartransferANN

RegulartransferANN Chelba and Acero (2004) is a parameter-based domain adaptation method. This assumes that an effective

global estimator can be obtained using ladled target data. The aim consists of fitting the neural network on the target data based290

on the objective function which is regularized by the Euclidean distance of both the source and target parameters:

βt =β1,.....βD
||f(Xt,β)− yt||2 +

D∑

i=1

λi||βi−βSi||2 (13)

Where the estimation function is f with D network layers. Bt is related to the target parameters, βs is the source neural

network parameters:

βs =β ||f(Xs,β)− ys||2 (14)295

The trade-off parameter is λi is, where training is biased towards source or target domains depending on the associated

weighting.

5 Methodology

The following section discusses the process of creating a PBSHM model and the comparison of domain adaptation models

used. This process is about coordinating the data stream and effective use of metrics to determine an optimal model out of the300

technologies utilized. This section includes how the data is pre-processed, the model development and the error metrics used.

5.1 Pre-Processing

The task of training models for predictions that involve multiple different data streams from different structures requires

coordination so that effective ML modeling can take place. Several issues arose when working with different data streams in
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ML. This section discusses the process of dealing with these issues by using feature, selection, projection, and data cleaning.305

The first barrier that prevents effective ML modeling in this problem is that sensors tend to break, just like most industrial

components. This meant identifying a suitable timeframe, where the maximum period of operational uptime should be met.

The optimal period took place between 02/10/2018 and 02/07/2019 (nine months). Secondly, synchronizing the CMS data to

the SCADA data had to be conducted and matching the instances of 10-minute intervals was the next step.

After synchronizing the data matching instances for all WTs, the next stage was to perform data cleaning. This procedure310

involved implementing previous value imputation in place of missing values and NaNs. At this point there were zero missing

values and over 300 features. The next step was to reduce this to suit the needs of the ML task. For the feature selection

process, the inputs were taken from the SCADA data since this is equipped on all WTGs. The final features comprised hand-

picked features and statistically relevant features. Based on the Pearson’s correlation the explicit features used are represented

in Figures 5 and 6. The outputs are the DEM in the two orthogonal directions from the CMS systems’ strain gauge rings.315

Now that both the input and output data have been established, the feature projection is implemented where the features are

normalized from 0 – 1.

Lastly, the datasets were split into training and test data to a ratio of 80% to 20%, respectively. The source domain was WT1,

and the target domain was WT2 using 80% of the datasets for the domain adaptation model. Testing was carried out using the

subsequent 20% of both the source and domain datasets and the entirety of WT3. In summary, SCADA data features were used320

as inputs, with WT1 as the source domain and WT2 as the target domain, where the general model makes estimations on the

DEM in the two orthogonal directions. Testing takes the remaining 20% of the source and target domain and the entire dataset

of WT3 using the same input and output features for all WTGs.

5.2 Model Development

The method implemented involves three stages. Stage one involves defining the most suitable ANN and source domain and325

this became the basis for all the subsequent experiments as the architecture is mimicked. Stage two entailed hyper-parameter

tuning the remaining experiments using the same architecture from the ANN and application of the three domain adaptation

algorithms. Stage three will investigate the optimal model further by altering the source and domain data.

To establish a standardized process for all the experiments, the pre-processing procedure was applied to all three WTGs as

this provides a standard platform for model development and increases the performance of the model. This also provides a330

consistent feature for training and testing since all three WTG domains consist of the same input SCADA features and output

DEMs based on CMS data. To train all the domain adaptation models, the source domain dataset and features are made up of

the data from WT1, the target domain dataset with features from WT2. WT3 is not used in any of the training and is only used

for validating the model.

Stage one, an optimal model was produced by carrying out an exhaustive search iterating the number of hidden layers,335

density of neurons on each layer, ratio of drop out, batch size, and the degree of convolution. The final form of the ANN is

displayed in figure 5.
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Figure 4. An artificial neural network architecture with 2 hidden layers of density 64 and 32 respectively, batch size of 1, and a dropout ratio

of 0.2.

Stage two, the experiments were set-up to firstly investigate the performance of each of the techniques and secondly to es-

tablish what the most suitable method would be to carry forward for further testing. Techniques from all the main approaches

of domain adaptation are implemented which include parameter, feature, and instance-based methods; these are Regular-340

TransferNN Chelba and Acero (2004) , CORAL Sun et al. (2015),and TwoStageTrAdaBoostR2 Pardoe and Stone (2010)

respectively. In each instance the model is tuned using their distinct hyper parameters for each of the methodologies.

The goal for the experiments is to transfer knowledge between all three WTGs using a single general model by taking

SCADA data and making inferences on the DEM such that a low-cost monitoring methodology can be applied to the entire

wind farm. The RegularTransferNN is the most accurate model on all three metrics for this architecture, with input data and345

output data for WT1 as the source domain and WT3 as the target domain. Further testing was conducted to investigate what is

the most suitable target and source domain by altering them.

5.3 Error Assessment

The performance of the regression algorithms is based on how the general classifier can make predictions on DEM for all three

wind turbines. In this case common KPI’s are implemented which provide a percentage of the performance.350
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Mean absolute error (MAE) this is a measure of the errors between the paired observations. This is the arithmetic average

of the absolute error where ŷi is the prediction, and yi is the true value.

MAE =
n∑

i=1

|yi− ŷi|
n

(15)

Coefficient of determination (R2) this represents the proportion of the variation from the predicate value to the actual value

and µ is the arithmetic mean.355

R2 =
∑n

i=1(yi− ŷi)2∑n
i=1(yi−µ)2

(16)

Cumulative error (CFPE) this encompasses the total error for all instances used in the model. Where a conservative result

would be a negative % value and an underestimate would have a positive % value. Where m is the power factor, in this case its

set to 4.

CFPE =
∑n

i=1( m
√

yi
m)−∑n

i=1
m
√

ŷi
m)∑n

i=1
m
√

yi
m)

(17)360

6 Results

The results section is broken down into three sections in the pursuit of an optimal model. Stage one aims to determine the

most suitable ANN architecture for traditional SHM, training on one structure only, then applying the remaining WTGs to this

model for comparison. Stage two takes the model from stage one and applies it to all three of the domain adaptation techniques.

Stage 3 alternates the domain adaptation techniques of the optimal model.365

6.1 Stage 1

To demonstrate the applied form of strong-homogeneous populations, three structurally equivalent WTGs are applied to an

ANN using standard SHM techniques. The ANN is trained on one structure and then the trained model is applied to the other

WTGs. The data used is the test dataset during normal operation for all three WTGs. The results are summarized in Table 3

with all three metrics presented.370

Table 3. Standard SHM approach to PBSHM, table indicating the test results from the ANN trained on one WTGand tested on the resulting

two WTGs.

MAE CFPE R2

WTG WT3 WT2 WT1 WT3 WT2 WT1 WT3 WT2 WT1

WT3 0.025 0.031 0.029 -16.12 -29.43 -18.71 0.65 0.51 0.54

WT2 0.037 0.030 0.042 -7.37 -22.80 -31.56 0.31 0.45 0.15

WT1 0.034 0.030 0.029 -17.04 -29.06 -21.81 0.42 0.45 0.55
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The normal operation test using the standard approach of training on one structure then applying the resultant WTGs provides

varying degrees of accuracy. All of the tests in this case fall below the threshold for the CFPE of ±10%This is expected as

there are small perturbations in label space due to manufacturing tolerances and location-specific effects.

6.2 Stage 2

One of the main challenges of PBSHM is performing damage identification on the population with different label spaces375

ys ̸= yt. However, in this case the label spaces are strongly homogeneous but we have identified that the general classifier

using the standard approach to SHM does not provide adequate inferences from section 1. The results of applying the three

domain adaptation techniques using WT1 as the source domain and WT3 as the target domain are displayed in Tables 4, 5, and

6.

Table 4. Cumulative error for the optimal models during the model development stage. The test data sets are used to determine the error for

both DEMs.

Accumulative Error

Model WT1 WT2 WT3 avg

Artificual Neural Network -21.806 -31.558 -18.712 -24.025

CORR -23.400 -34.475 -23.239 -27.038

RegularTransferNN -2.225 -18.216 -5.639 -8.693

TwoStageTrAdaBoostR2 -8.626 -17.240 -4.338 -10.068

Table 5. Mean Absolute error for the optimal models during model development stage. The test data sets are used to determine the error for

both DEMs.

MAE

Model WT1 WT2 WT3 avg

Artificual Neural Network 0.026 0.043 0.030 0.033

CORR 0.037 0.029 0.034 0.034

RegularTransferNN 0.033 0.030 0.031 0.031

TwoStageTrAdaBoostR2 0.034 0.050 0.039 0.041

The goal for the experiments is to transfer knowledge between all three WTGs using a single general model by taking380

SCADA data and making inferences on the DEM such that a low-cost monitoring methodology can be applied to the entire

wind farm. Tables 4, 5, and 6 highlight the variation in the accuracy from the ANN to the three domain adaptation techniques.

The RegularTransferNN is the most accurate model on all three metrics for this architecture, input data and output data, and is

the only model that reaches the target CFPE of ±10%.
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Table 6. R2 Score for the optimal models during the model development stage. The test data sets are used to determine the error for both

DEMs.

R2 Score

Model WT1 WT2 WT3 avg

Artificual Neural Network 0.546 0.151 0.538 0.412

CORR 0.637 0.191 0.564 0.464

RegularTransferNN 0.594 0.338 0.553 0.495

TwoStageTrAdaBoostR2 0.431 0.158 0.310 0.300

6.3 Stage 3385

In the pursuit of an optimal general classifier for the Wikinger wind farm, the first two stages are set up to determine the optimal

choice of model. Stage three investigates what model data sources are best suited to achieve an average optimal score in all

three metrics. The aim of this is to determine the sensitivity of the model’s accuracy with the input data. If there is a large

difference in the results then this may constitute to a large degree of variance by the general model for an entire wind farm.

Table 7. Comparison of the test results from the RegulartransferANN using different source and target data sets.

MAE CFPE R2

Training Data WK(Source/Target)

WTG 64/45 45/10 64/10 64/45 45/10 64/10 64/45 45/10 64/10

WT3 0.031 0.029 0.023 -5.64 -18.02 -20.24 0.55 0.49 0.63

WT2 0.030 0.029 0.041 -18.22 -25.48 -10.36 0.34 0.57 0.17

WT1 0.033 0.034 0.025 -2.23 -26.10 -18.58 0.59 0.42 0.69

Average 0.031 0.031 0.030 -8.69 -23.20 -16.39 0.49 0.49 0.50

The selection process for determining the optimal model is to have the least CFPE and the highest R2 and MAE. A390

threshold is places on the CFPE of ±10% since the purpose of this type of model is to predict the DEM which in-turn is

used to determine the fatigue life estimations of the structure. With a high or low estimation of the accumulation of DEM will

directly link to poor fatigue life estimations. Ideally one would e conservative in the prediction of the accumulated DEM as

one would not like to over sell. There is only one setup in this entire process that achieves this, unfortunately it does not have

the highest average R2 or MAE as seen in Table 7 with the 64/10 source domain and target domain setup. However, this395

particular set-up achieves higher results when making inferences on both the source and target domain but is less accurate in

the inferences on WT2. Thus, not achieving the desired goal of a general classifier.

In contrast to the high consistency of the MAE of around 3% Figure 7-8 display the evaluation of the general model estima-

tions. The hyper parameter λ was altered from 0.1 – 0.99, varying the bias general model training from the source domain data

to the target. The optimal model presented has a 50/50 split with λ = 0.5. One aspect of the final general model is the lack of400
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Figure 5. Error plot showing the predictions from the general model against the actual value for the DEM 1 of all three WTGs.

Figure 6. Error plot showing the predictions from the general model against the actual value for the DEM 2 of all three WTGs.

accuracy at high DEM values, where one sees the highest deviation from the real value and is the main constituting factor to

the reduced performance of the CFPE.

7 Conclusions

Knowledge transfer is an important process in PBSHM. The benefit of transferring knowledge about the structural health from

one structure to another within the population is imperative to the progress of low-cost digital enabled asset management for405

WTGs. It is important when applying this technique that a process is conducted to determine what similarities exist within the

population so that negative transfer can be avoided. In this text two categories of structures have been discussed: homogeneous

and heterogeneous.
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Implementing transfer learning in the form of domain adaptation has been demonstrated to effectively mitigate problems

where both the features and label spaces are consistent. This paper has demonstrated that domain adaptation is applicable to410

homogeneous populations where there are small deviations in the geometry due to the water depth, manufacturing tolerances

and sensor placement.

If a higher accuracy of model is required to determine the remaining fatigue life, further optimization measures can be taken:

These would include: 1 - separating the general model into discrete models for operational modes; 2 - discreet model develop-

ment based on the wind direction; 3 - further studies on the feature selection and hyper parameter tuning; 4 - implementation of415

high frequency SCADA data for higher order statistics. Measures 1 and 2 may lead to developing specific models and increase

bias within the estimation. As such a less accurate but more general model may produce greater estimations on unforeseen

events.
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