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Abstract. Renewable energies have an entirely different cost structure than fossil fuel-based electricity generation. This is

mainly due to the operation at zero marginal cost, whereas for fossil fuel plants, the fuel itself is a major driver of the entire

cost of energy. For a wind turbine, most of the materials and resources are spent up front. Over its lifetime, this initial capital

and material investment is converted into usable energy. Therefore, it is desirable to gain the maximum benefit from the utilized

materials for each individual turbine over its entire operating lifetime. Material usage is closely linked to individual damage5

progression of various turbine components and their respective failure modes. Within this work, we present a novel approach

for an optimal long-term planning of the operation of wind energy systems over their entire lifetime. It is based on a process for

setting up a mathematical optimization problem that optimally distributes the available damage budget of a given failure mode

over the entire lifetime. The complete process ranges from an adaptation of real-time wind turbine control to the evaluation

of long-term goals and requirements. During this process, relevant deterministic external conditions and real-time controller10

setpoints influence the damage progression with equal importance. Finally, the selection of optimal planning strategies is

based on an economic evaluation. The method is applied to an example for demonstration. It shows the high potential of the

approach for an effective damage reduction on different use cases. The focus of the example is to effectively reduce power

of a turbine under conditions where high loads are induced from wake-induced turbulence of neighbouring turbines. Through

the optimization approach, the damage budget can be saved or spent under conditions where it pays off most in the long-term15

perspective. This way, it is possible to gain more energy from a given system and thus to reduce cost and ecological impact by

a better usage of materials.

1 Introduction

Meeting the rising demand for energy without using fossil fuels is probably one of the greatest challenges of our time. Wind

energy plays a key role in achieving this worldwide, and the wind industry has been developing to a mature and effective branch20

of technology. Nevertheless, energy production will always involve the use of materials and resources. For a wind turbine, this

includes the production of large complex components like the tower, the rotor blades and the generator, but also the use of land

on- and offshore as well as continuous operating costs due to maintenance and repair activities.
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Therefore, it is desired to gain the maximum benefit from the utilized materials for each individual turbine over its entire

lifetime. Materials will be used up through the operation in many different ways. The usage is closely linked to individual25

failure modes of various turbine components. While some of these failure modes need to be avoided through advancements in

design and robustness to environmental conditions, other failure modes are highly influenced through the operational strategy.

Especially fatigue damage is strongly influenced by induced loads which depend on the external conditions in combination with

the operational control of the turbine. Even with the smartest individual control solutions for load reduction like e.g. individual

pitch control and active damping, there will always be some trade-off between power production and induced damage which30

cannot be fully prevented. Additionally, load reducing effects for some failure modes might have negative effects on others.

With the development of a maturing wind industry, standard procedures for the design of wind turbines have been established

for finding a reasonable trade-off between induced damage and power production. This way, wind turbines be operated for at

least 20 years under various conditions from the environment and the grid. While the external conditions of each turbine are

highly individual, wind turbine design can only consider site-specific conditions to some extent, e.g. by type certificates for35

different wind classes IEC (2019). In order to operate each turbine at its individual optimal balance of induced damage and

power production, an adaptive operation based on information of the current condition and performance is required. A concept

for such an operation is proposed through reliability(-adaptive) control which can principally be applied to any system where

components are used up from operation, i.e. are subject to degradation. The reliability controller is implemented as a closed-

loop supervisory controller which adapts the system such that it meets predetermined reliability objectives. Within this concept,40

it is important to distinguish between the real-time controller directly interacting with the actuators of a system and the outer

supervisory control. The outer loop runs on a slower time scale and can send setpoints to the real-time controller.

Within this work, a method for finding an optimal long-term operational planning which already includes the available

setpoints for the wind turbine real-time controller is presented. Thus, it contributes to the development of a reliability(-adaptive)

control loop for wind turbines by creating a desired operation which is necessary for a closed-loop operation. It also brings45

advantages in itself for an open-loop operation.

1.1 State of the art

A concept for a Safety and Reliability Control Engeneering (SRCE) including a supervisory reliability controller, which uses

information about the current state-of-health, was introduced in Söffker and Rakowsky (1997) and further discussed e.g. in

Rakowsky (2005) and Rakowsky (2006). In Meyer (2016) a reliability controller based on the health index, used as a measure50

for the state-of-health, for a mechatronic system was implemented and validated. On the one hand, the application of such

an approach for wind energy systems has a high potential due to the highly individual site and turbine specific operating and

environmental conditions as well as ageing characteristics of various components (Meyer et al., 2017). On the other hand,

the complexity of the coupled system, the interaction of wind turbines in a wind farm as well as constraints from operating

and maintenance strategies, market conditions, grid requirement and nevertheless certification processes lead to a challenging55

interaction of different areas. One of the major aspects for the operation of a reliability controller in a closed-loop is the

information about the state-of-health of the considered system. While wind turbines are equipped with various sensors and
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associated condition monitoring systems (CMS) or structural health monitoring (SHM) systems, the prognosis of the actual

state-of-health and the associated remaining useful lifetime (RUL) still requires a lot of research and development. In Beganovic

and Söffker (2016), an overview of signal-based monitoring methods with a focus on the usage for online fault detection and60

advanced control is provided. In Do and Söffker (2021), an overview of management and control strategies for wind turbines

based on health prognostics is provided. Both papers clearly state that further investigation is needed to determine the state-of-

health. Additionally, the high requirements for an adaptive controller due to the multi-objective nature of the problem under

various loading condition is also mentioned. Nevertheless, the full advantage of health monitoring combined with advanced

reliability control strategies can only be fully exploited with further development in each of the fields, which can later be65

combined to an integrated approach.

There are two major advantages which result from the use of closed-loop structure for controlling the reliability. On the

one hand, it enables a synchronization with maintenance strategies or planned decommissioning. On the other hand, it allows

extending the lifetime of a system by switching to a load reducing control configuration at any point in time. The latter point

is specifically addressed in the concept of life extending control, where a concept was introduced in Lorenzo and Merrill70

(1991). This concept is more oriented towards fatigue damage and thus also well applicable for wind turbines. The approach

was pursued for wind turbine operation in Santos (2006) and the associated patent (Santos, 2008). In the study, the wind

turbine actuators are directly modified by a model predictive control algorithm, which receives setpoints for the degradation

of the turbine from a supervisory control loop. Comparable concepts based on an online fatigue accumulation using online

rainflow counting were also followed by Loew et al. (2020) and Njiri et al. (2019). The latter is clearly related to the concept75

of reliability adaptive control, which was explained above. In all three of the applications, the controllers are tested on rather

short timeframes of at maximum 600 seconds so that long-term benefits from thSe methods can not yet be fully considered.

Long-term effects of adapting control strategies during operation for lifetime extension are examined in Pettas et al. (2018) and

Pettas and Cheng (2018). In Requate and Meyer (2020), the concept of reliability control is implemented by switching between

different down- and uprating configurations to follow a predetermined desired degradation for several years. Dependent on the80

desired target, a lifetime extension by several years can be reached. While the concept of directly adapting the turbine actuators

according to the desired planning targets might have a higher theoretical potential because its reaction is more flexible, the

concept of switching between different configurations seems to be more straightforward to implement for existing structures

for wind turbine and wind farm control concepts. It also facilities a guarantee for a safeguarded operation in all of the selected

configurations. The combination of both concepts might offer additional advantages in the future.85

In all of the mentioned work, the aspect of planning the operation up until the end of a wind turbine’s lifetime has not yet

been addressed in much detail. This becomes even more relevant in the context of wind farm control where the higher level

constraints like the market prices, maintenance strategies, planning of decommissioning are relevant. In Kölle et al. (2022a), the

results of several participants on showcases for wind farm flow control under consideration of electricity prices are discussed.

The influence of operation on loads and damage is only considered by one of the five participants for a single turbine. In general,90

wind farm control has gained growing interest of research and also industry in recent years. One major focus of research was

the mitigation of wake effects, which decrease power production but increase loads on downstream turbines (Dimitrov, 2019).
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Wake steering by yaw, but also derating1 of the upstream turbines can be used, to increase the overall power production of

a wind farm. In addition to increasing the power production, the influence on the loads and lifetime of the wind turbines of

such methods are also examined (Andersson et al., 2021; Nash et al., 2021; Meyers et al., 2022; Houck, 2022). At first, the95

focus is not to increase the loads above the limits of certification, but the use of wind farm control for active load reduction is

also examined in several studies (Bossanyi, 2018; Kanev et al., 2018, 2020; Harrison et al., 2020). Concepts for an integrated

control of wind farms covering the complete range from short-term demands for grid services up to long-term objectives for

reliability are required (Eguinoa et al., 2021; Kölle et al., 2022b). Therefore, combining the approaches of wind farm control

with reliability adaptive control offers a high potential for a truly optimal operation, e.g. by intelligently managing which100

turbines should take over grid services in certain situations based on their current state-of-health and a planning until the end

of the desired lifetime. For future energy systems, the interconnection to storage systems or power-to-X technologies and their

reliability and degradation mechanisms also need to be considered.

Since the future damage progression of a system depends on the way it is operated, it is important to integrate the adaptive

control behaviour into the planning process. Implicitly, this is done when sector management is applied to avoid high loads105

from an upstream turbine. Previous studies have shown, that it is possible to balance energy and loads with sector management

strategies using derating (Bossanyi and Jorge, 2016). A method for derating a wind turbine is integrated into any modern

wind turbine to comply with grid requirements in one way or the other. Additionally, it can be used as an instrument to either

reduce the effects from wake on the downstream turbine or to reduce loads of the turbine itself. The derating of the turbine

is a setpoint to the wind turbine’s real-time controller. The implementation of the derating method by parameters within the110

real-time controller thus depends on the objective and also on the individual dynamic behaviour of each turbine (Meyers et al.,

2022; Houck, 2022). Even reducing damage from heavy rain on the leading edge of the blades might be a possible objective

for rotor speed reduction, besides the more common fatigue damage (Bech et al., 2018).

1.2 Objectives

We assume a basic setup for a supervisory reliability control loop of a wind turbine or a complete wind farm by separating115

into different stages acting on different time scales. On the real-time stage, the dynamic loads of a wind turbine result from

the interaction between the real-time wind turbine controller and the external conditions from the environment and the grid.

Those loads slowly induce damage to the wind turbine. The supervisory reliability control loop acts on a time scope of 10

minutes up to several days because such a time scope allows for an appropriate performance evaluation of the wind turbine in

terms of damage progression and power production. On this operating stage, setpoints are sent to the real-time controller of120

the wind turbine. The planned desired operation determines the targets for this stage which result from the long-term reliability

objectives, i.e. the planned damage progression. Because of the dependency between reliability and operation, the desired

operation already needs to consider the influence of adaptive control on the damage while at the same time focusing on long-

1In general, there are various terms for reducing the power of a wind turbine and the usage often depends on the context. In wind farm control, the term

axial-induction control is often used. Also, down-regulation or curtailment are prominent terms. The latter is often referred to in the context of requests by the

grid operator. The term derating is used throughout this work.

4



Figure 1. Overview of adaptive wind farm operation separated in to planning and operating stage

term planning decisions and economic benefits. An overview of a wind farm which is operated using adaptive operation on these

two stages is given in Fig. 1. The long-term planning (Planning stage on left-hand side of the figure) can either be used in an125

open-loop by providing setpoints to the wind turbine controller for specific input conditions or a target damage progression of

the reliability control loop. In both cases, it should cover most relevant deterministic effects on long-term damage progression

in an optimal way. Through a closed-loop behaviour on the operating stage, it is additionally possible to react to the actual

performance of the wind turbine, including the current state-of-health and additional current inputs from weather or market

price conditions (Right-hand side of the figure). At the same time, the long-term objectives are still met. A re-adaption of the130

planning required when large deviations of the original plannings occur or if the long-term objectives change. Thus, it is not

a real closed loop operation, but it can also be applied when open-loop setpoints are sent to the real-time controller. It should

just be applied after longer time periods of months or several years.

The long-term objectives for wind turbine operation are specifically driven by fatigue damage progression, which is an

important failure mode for wind turbine principal components like the tower and the blades. For an optimal material usage,135

fatigue budget is ideally fully used up at the desired lifetime while a maximum amount of energy has been produced during this

time. Thus, balancing the trade-off between induced damage and power production over the whole range of external conditions

and under consideration of their frequency of occurrence is required. The goal is to find a planning method, which distributes

the fatigue damage optimally over the planned operating time by saving the fatigue budget where it pays off most, i.e. where

loads are high, but energy production is low. This is possible because of the nonlinear relationship between external conditions,140

load reducing control features and induced damage. When a turbine is subjected to high wake induced turbulence, for example,

the relationship between induced damage and produced energy is definitely worse than for a turbine operating at the same wind

speed at a low turbulence. The key question for an optimally planned target distribution is to decide by how much the damage
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should be reduced through adaptive control so that the long-term objectives are met. To answer this question, a method to find

an optimal planning through mathematical optimization for an individual wind turbine is built up.145

1.3 Methodology

In order to create a planning method which fulfills the objectives, the complete process from an adaptation of real-time wind

turbine control to the evaluation of long-term goals and requirements needs to be covered. During this process, the influence on

damage progression of relevant deterministic external conditions is just as important as that of real-time controller setpoints.

The key part of our proposed method consists of the formulation of a mathematical optimization problem, where the aim is150

to meet long-term objectives, such as maximum power or revenue over the entire lifetime, by finding an individual trade-off

between induced damage and power production for each relevant operational condition.

For application of our method to a given system, it is crucial to know how it interacts with its environment. For this, the

system boundary must be well-defined beforehand. It forms the basis for definition of environmental inputs, for setpoints of the

real-time controller, as well as for the damage of different failure modes and performance measures such as energy production.155

We identified a four-step process to create the optimal planning for this well-defined system within its boundaries, cf. in

Fig. 2. For optimizing the distribution of the fatigue budget over the system’s lifetime, it must be possible to evaluate the effect

of changes in the setpoints of the adaptable real-time controllers with low computational effort. The setpoints of the real-time

controller of the system directly influence the trade-off between induced damage and energy production. Once the adaptable

real-time controller is provided, surrogate models, can be set up. They represent the relationship between external conditions160

and setpoints of the controller to damage and energy. These first to steps 1 and 2 are necessary but existing prerequisites for

the long-term optimization of the operation. They need a careful selection and have a strong influence on the quality and the

validity of the results. The optimal operational planning is found by steps 3 and 4 of the process. Both of the steps are part of

the proposed long-term planning method which we name VIOLA (Value Integrated Optimization of Lifetime Asset operation).

The optimization problem is built up in step 3. This step still yields multiple results, where each one represents an individual165

trade-off between energy production and damage. The selection of a single optimal planning becomes possible, by evaluating

Figure 2. Four-step process for optimal planning, subdivided into prerequisites and new method
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Figure 3. Illustration of damage progression over time for a reference (green) and an optimized operational strategy (yellow). Solid lines:

Representation of continuous damage progression at a time scope of minutes. Dashed lines: Linear approximation of damage progression at

a time scope of ∆τ ≈ 1year.

economic aspects of the results from step 3. The four steps not only allow for a feasible computation time, but they also lead

to an easily explainable result after each step, which is in high contrast to more integrated approaches. The four steps can

principally be applied to any system which is subject to a strong coupling of control setpoints and external conditions. Due to

the high influence of wind conditions on the fatigue damage of wind turbines, wind energy systems represent a prime example170

for its application.

1.4 Outline of the remaining paper

The above-mentioned four-step process forms the core of the remaining paper. At first, the theoretical background and a more

in-depth explanation for the approach are given in Sect. 2. The process is demonstrated with an application example. The

focus of the example is to effectively reduce power of a considered turbine under conditions where high loads are induced175

from wake-induced turbulence of neighboring turbines. In Sect. 3, the considered system is defined. Also, its prerequisites are

introduced and implemented, resulting in surrogate models usable for the optimization. Afterwards, the long-term optimization

process VIOLA is presented and applied to the example in Sect. 4 The process and the results are discussed in Sect. 5 before

the findings are concluded, and an outlook is given in Sect. 6.

2 Theoretical background180

The basic idea of our method is to optimally distribute the induced damage over the operating time. With this, we assume a

continuous and deterministic increase in damage over time, as depicted in Fig. 3.
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Damage always refers to damage which directly and exclusively contributes to a certain failure mode fm . The lifetime of a

system or a component is reached when the damage for a failure mode Dfm reaches the value 1, which is equivalent to 100%

of the available damage budget. Using a reference operational strategy ūref , the value Dfm(τ ref ; ūref , ·)2 is reached at the185

reference lifetime τ ref . Our goal is to use a modified operational strategy ūopt over a freely chosen operation period τ life to

distribute the damage Dfm(τ life ; ūopt , ·) in such a way that maximum energy yield or largest economic profit is obtained. Fig. 3

also depicts a time span ∆τ , which for wind energy problems is commonly selected as one calendar year because it captures

the seasonal variations of the wind. Thus, the damage over this time span is referred to as annual damage ∆Dfm(ū, ·) for any

operating strategy ū. Within the time span ∆τ , the damage increment on the minutes scope is not constant. Instead, it changes190

over time due to the variation of environmental conditions, and correspondingly varying control setpoints. The continuous

damage progression at the more detailed minutes scope is indicated in Fig. 3 by the wave-like behavior of the increasing

damage value (solid curves). This relationship from environmental input conditions and setpoints to damage increment is

highly nonlinear in both dimensions, which makes it possible to compensate for high-damage environmental conditions by

using low-damage setpoints. For now, the effect of seasonal variation on damage and energy yield is fully included in the final195

value after the time span ∆τ . We use this as the basis of our optimization.

It is immediately apparent that there is a linear relationship between the total damage Dfm(τ ; ū, ·) and time τ for any

operational strategy ū. But this holds for given values at discrete time points ∆τ only, i.e. for τ = Y ·∆τ . The value Y is the

number of time spans to the full time period τ , i.e., the number of operating years when ∆τ represents one year with the annual

damage being the slope of the linear function. This is expressed by200

Dfm(τ ; ū, ·) =Dfm(∆τ ; ū, ·) ·Y =∆Dfm(ū, ·) · τ. (1)

We now assume that using an optimal operating strategy ūopt , we achieve an optimized lifetime τ life . During this changed

lifetime, the entire damage budget is spent, i.e., Dfm(τ life ; ūopt , ·) = 1. The modified lifetime period using ūopt is then simply

given by inserting the optimized values in Eq. (1) and resolving for τ life :

τ life =
Dfm(τ life ; ūopt , ·)
∆Dfm(ūopt)

=
1

∆Dfm(ūopt , ·)
. (2)205

Thus, our aim is now to find a strategy ūopt which optimally changes the annual damage to ∆Dfm(ūopt , ·).
Computing the modified lifetime with Eq. (2) can result in any timespan τ life . However, due to seasonality and the associated

nonlinearity within the time span ∆τ , Eq. (1) only holds true for Y ∈ N. This applies for τ ref , but the resulting value τ life from

Eq. (2) depends on the optimized damage increment ∆Dfm(ūopt , ·), and can take up any value. It is in turn not restricted

to natural numbers. For a long timespan τ life , the resulting error is small in comparison to uncertainties resulting from the210

assumptions for the deterministic long-term fatigue modelling approach.

2Note that in our notation we distinguish between inputs and parameters of the defined function. Parameters are assumed to be fixed for a specific use case.

They are separated by a semicolon, where the function inputs are in front of the semicolon. If additional parameters exist but are not important for a certain

passage, we omit them to improve readability and replace them with a central dot (·). So for Dfm (τ ref ; ūref , ·), τ ref is an input, ūref is a set of parameters

and · denotes that additional parameters are omitted.

8



That the assumption

τ ref = Y ·∆τ, Y ∈ N. (3)

holds is due to a suitable scaling of ∆Dfm(ūref , ·). Among other things, this includes the assumptions that the damage budget is

completely used up under the reference strategy ūref and that the damage increment is always the same for each time increment215

∆τ . The latter is based on the standard approach in the design process of wind turbines, where the damage increment of a short

time interval ∆t (10 min to 1 hour) is extrapolated to the annual damage progression using a frequency distribution of the

input conditions, i.e. to the time periods ∆τ and τ life respectively. Therefore, the damage increment dfm(x,u) under the

external input conditions x ∈X and the control setpoints u ∈ U needs to be known. Here, X defines the space of selected

input conditions for the specified system boundaries and U is the space of possible control setpoints. In principle, dfm(x,u)220

can be obtained from an arbitrary method for a specific failure mode. Within this work, we use the standard approach for wind

turbine fatigue modelling based on the assumption of a linear damage accumulation by Palmgren and Miner (Miner, 1945;

Sutherland, 1999).

For the long-term calculation of damage and fatigue, different time scopes are relevant. Fig. 4 shows an overview of the

different time scopes in interaction with the surrogate models. It also gives an overview of terms and symbols used. For225

the surrogate models, inputs and outputs on the minute scope are decisive. This relation is generated by using high-fidelity

simulations on the second seconds and their evaluation. At the seconds scope, the control setpoints u are transferred into the

real-time controller of the wind turbine. Multiple of such simulations are carried out to create the surrogate models. Thus, the

creation of the models finalizes the required prerequisites of steps 1 and 2 according to Fig. 2. The optimization process is

later carried out on the annual scope, where the surrogates are evaluated to calculate the annual damage and the annual energy230

depending on different operational strategies. Finally, the annual values can be used, to compute the lifetime total energy and

total damage. Before those can be used for the long-term optimization process in steps 3 and 4, we explain the relationship

between the different time scopes with respect to loads, fatigue damage, lifetime, and energy production on a theoretical level.

2.1 Long-term fatigue damage progression and energy production depending on external conditions and operational

planning235

The standard approach in wind turbine design is the extrapolation of wind turbine loads from simulations to the design lifetime

of, e.g., 20 or 25 years. It is also a requirement for the certification of a turbine, defined in standards like (IEC, 2019; DNV

GL, 2016). In the standards, design load cases (DLCs) determine the external conditions. To cover a wide range of sites,

reference classes of wind conditions are defined, and conservative assumptions are often made. Currently, a fixed operational

strategy is assumed for each turbine. The major difference between standard design calculations for fatigue damage and the240

presented approach for optimal planning is the explicit integration of the control setpoints as a dependent variable on the

external conditions, which can adaptively be selected and thus used as an optimization variable. To cover the dependency of

control on the external conditions, we assume that for each external input condition x ∈X , there are one or multiple setpoints

for the real-time controller u(x) ∈ U that can be selected. Both are defined on the minutes scope and thus valid over the time

9



Figure 4. Overview of time scopes for creation and usage of surrogate models. The white rectangles with rounded curves denote in- and

outputs on different time scopes. The white arrows describe a transition from input to output with a corresponding model. The rectangle

in the center contains the prerequisites and ends with the creation of surrogate models which can be evaluated on the minutes scope. The

creation process is depicted by the bright blue arrows, starting from the pool of input samples. Within the annual scope, the surrogate models

are used to compute the annual value with the frequency distribution as an additional input.

increment ∆t, i.e., between minutes and hours. To determine the relative frequency for each combination of input conditions,245

a binning is required. Each combination of conditions is allocated to a separate bin j. The vector of input conditions is denoted

as xj for a corresponding bin j = 1, . . . ,Bx, where Bx is the total number of all bins of all input conditions.

The dimension of xj is given by the number of input conditions w =Dim(X). The entire set of input conditions is denoted

as x̄ := {xj}B
x

j=1. For each combination of input conditions, a separate operational strategy, i.e., setpoints of the system within

the specified system boundaries, ū := {u(xj)}B
x

j=1 is defined. The total number of bins Bx is usually defined as a fullfactorial250

multiplication Bx =Bx(1) · . . . ·Bx(w)

, where Bx(i)

denotes the number of bins defined for each condition x(i).

In order to extrapolate the effects of the input conditions over long periods of time, it is usually made use of a relative

frequency distribution p∆τ , which is representative of the input conditions within a period ∆τ . Hence,

Bx∑
j=1

p∆τ (xj) = 1, (4)

which can be scaled to an (absolute) frequency distribution255

hτ (x) = p∆τ · τ (5)

10



for a time period

τ = Y∆τ,Y ∈ N. (6)

For wind turbines, an annual distribution for the wind conditions, i.e., ∆τ = 1year, is able to represent the variations through

the different seasons. With the frequency distribution and the planned operational strategy, a damage ∆Dfm(ū,h∆τ ) can then260

be determined over the period ∆τ , i.e., an annual damage progress assuming an annual wind distribution.

Using this and the assumption of a linear damage accumulation, damage can also be defined as a function of τ depending

on the defined frequency distribution over that period and the operational strategy

Dfm(τ ; ū,hτ ) :=

Bx∑
j=1

dfm(xj ,uj)hτ (xj) =

Bx∑
j=1

dfm(xj ,uj)h∆τ (xj)︸ ︷︷ ︸
∆D(ū),h∆τ

Y. (7)

where dfm(x,u) is the damage increment under the external input conditions x and the control setpoints u. It is also possible265

to compute the energy production accordingly by

E(τ ; ū,hτ ) :=

Bx∑
j=1

P (xj ,uj)hτ (xj) =

Bx∑
j=1

P (xj ,uj)h∆τ (xj)︸ ︷︷ ︸
∆E(ū),h∆τ

Y. (8)

where P (x,u) = E(x,u)
∆t is the energy increment under the input conditions and ∆E(ū) the average annual energy within ∆τ .

With adapted operational control for modified lifetime, the time period over which energy is produced is changed as well.

The total lifetime energy yield can be computed by introducing a lifetime extension factor. It relates the lifetime with the270

reference operational strategy to the modified lifetime:

cext :=
τ life

τ ref
=

Dfm(τ ref ; ūref ,hτ )

Dfm(τ ref ; ū,hτ )
=

1

Dfm(τ ref ; ū,hτ )
=

∆Dfm(ūref ,h∆τ )

∆Dfm(ū,h∆τ )
. (9)

Until now, the resulting lifetime was denoted as τ life , but in fact, this value is computed from damage Dfm(·) relevant for

a certain failure mode fm and thus also only valid for this specific failure mode. For this reason, it is from now on denoted as

τ lifefm (ū) and the extension factor as cextfm (ū). With this, Eq. (9) can be expressed as275

τ lifefm (ū) =
1

∆Dfm(ū,h∆τ )
=

∆Dfm(ūref ,h∆τ ) · τ ref

∆Dfm(ū,h∆τ )
= cextfm (ū) · τ ref . (10)

The deterministic lifetime extension factor cextfm (ū) can thus be used to compute the potential for lifetime extension on any

time period where the damage increment is compared for two different strategies.

Then, the energy production from the optimized operational strategy ūopt is given by

E
(
τ lifefm (ūopt); ūopt ,hτ

)
= cextfm (ūopt) ·E

(
τ ref ; ūopt ,hτ

)
. (11)280
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Within the course of this work, Dfm(τ ref ; ū,hτ ) is later used within the optimization process. It is important to realize that

this value is actually closely to related to the damage computed with the reference strategy. This becomes more clear when the

damage increments are connected to the fatigue damage budget. Up to now, the assumed damage progression is applicable to

any failure mode where damage accumulates over time. With this, we implicitly also assume that the details about material

properties of the specific failure mode are included in dfm(xj ,uj).285

2.2 Relationship between fatigue damage and damage equivalent load (DEL)

Fatigue damage is typically based on the linear damage accumulation by Palmgren and Miner (Miner, 1945). Especially for

the comparison of loads under different environmental conditions or control approaches, it remains a useful approach as a first

step, before more advanced evaluations can be examined with further development. For the explanation of the general process,

the failure mode index fm is dropped. The fatigue damage increment of a load time series simulated on the seconds scope, with290

input conditions xj , is given by

d(xj ,uj) =

ncyc,j∑
i=1

nij

Nij
(12)

for i effective load collectives with a number of load cycles ni. Ni denotes the maximum bearable number of load cycles until

failure for the corresponding specific oscillation amplitude. The number of load cycles counted in the load time series of length

∆t is denoted with ncyc,j . The tolerable number of load cycles Nij depend on Dult and can be determined with295

Nij =

(
Dult

Lij

)m

. (13)

Lij represents the oscillation amplitude of a load cycle and are usually obtained from a rainflow counting algorithm. The

parameter m is the component specific Wöhler exponent describing the slope of the S-N curve as negative inverse on a double

logarithmic axis. In the formulation of Eq. (13), the mean load is neglected and no Goodman correction is performed. The

value Dult denotes the ultimate design load which would lead to a damage of D = 1 if it occurred once. Therefore, Dult300

is a design parameter which needs to be determined from the design process under consideration of all conditions and their

frequency for the desired reference design period τ ref . In addition, it normally includes safety margins and design reserves.

For simplification Dult can be scaled in such way, that

D(τ ref ; ūref ,href ) = 1 (14)

is valid, i.e. that fatigue damage is fully utilized with the reference operational strategy and under some site specific reference305

frequency distribution

href (x) := hτ ref (x) = p∆ττ
ref . (15)

In this case, Dult can be expressed by making use of the damage equivalent fatigue load (DEL). It is a representative value

which would yield the same damage as the considered time varying signal with a constant amplitude and frequency. This value
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is referred to an equivalent number of load cycles Neq . Then, the short-term DEL is computed by310

DELst(xj ,uj) =

(∑
inij(Lij)

m

Neq

) 1
m

(16)

and the total DEL over the time span τ is given by

DEL(τ ; ū) =

Bx∑
j=1

(
DELst(xj ,uj)

)m
(hτ (xj))

 1
m

. (17)

This can be used to solve Eq. (14) for Dult :

1 =

Bx∑
j=1

d(xj ,u
ref
j )href (xj) =

Bx∑
j=1

ncyc,j∑
i

nij

Nij
href (xj)315

=

Bx∑
j=1

ncyc,j∑
i

nij(Lij)
m

(Dult)m
href (xj) =

Bx∑
j=1

(
DELst(xj ,u

ref
j )

)m

href (xj)︸ ︷︷ ︸
DEL(href ;ū)m

Neq

(Dult)m

⇒Dult =DEL(href ; ūref )(Neq)
1
m =DELref (Neq)

1
m (18)

This can subsequently be inserted to Eq. (13) so that the damage can be expressed using the DELs as a relative value

d(xj ,uj) =

ncyc,j∑
i

nij

Nij
=

nij(Lij)
m

(DELref )m(Neq)
=

DELst(xj ,uj)
mNeq

(DELref )mNeq

=

(
DELst(xj ,uj)

DELref

)m

(19)

In order to model the non-linear damage increment for the external conditions, surrogate models can be created by using the320

relationship to the short-term DELs which is given by equation (19). In principle, surrogate models for the damage increments

could directly be computed, but building up the models for the DEL is more common and easier to interpret because the

Wöhler-exponent m adds additional non-linearity to the damage value.

3 Definition of example system and implementing prerequisites for optimization

Based on the theoretical background for fatigue calculation, the four-step process will be applied to a specific use case. There-325

fore, the system boundaries for the exemplary use case will be defined at first. Afterwards, the first two steps of the process are

explained and applied to the example.

3.1 System boundaries for application example

We want to focus on optimal operation of a single turbine within a wind farm. This means that effects from the surrounding

wind farm have to be taken into account as well. These include mainly the wake effects from other turbines, which act on the330

considered turbine and are, under normal operation, a significant driver of its loads. Each single considered turbine will thus

be able to react to the wake effects from the surrounding turbines, but the effect from changes in control on the wake cannot be

considered yet.
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3.1.1 Modelling of single turbine and its system boundaries

The generic direct-drive wind turbine IWT7.5 with a nominal power of 7.5 MW, rotor diameter of 164 m and a hub height335

of 100 m is used (Popko et al., 2018). To compute the loads of the turbine on the so-called seconds scope (∆t= 0.01s), the

aero-elastic load simulation tool "The Modelica library for Wind Turbines" (MoWiT) (Thomas, 2022) is employed. Three-

dimensional wind fields covering the properties of the external conditions within for simulation are used as input. They are

created with the software Turbsim (Jonkman, 2009). MoWiT is developed at Fraunhofer IWES as an object-oriented library

for fully-coupled aero-hydro-servo-elastic simulations of wind turbines. Detailed information on the development of MoWiT340

can be found in the literature (Thomas et al., 2014; Leimeister and Thomas, 2017). The tool covers on- and offshore turbines,

with bottom-fixed substructures and also floating wind turbines. It is coupled to the adaptable controller outlined in Sect. 3.2.

Two major environmental inputs influencing the wind turbine loads in power production mode are considered as local input

conditions: mean wind speed v and turbulence intensity at hub height TI . Those input conditions are defined locally as the

inflow to a single turbine which positioned its rotor perpendicular to the main inflow wind direction. All other parameters345

which define the inflow wind field, such as vertical and horizontal wind shear, are fixed at their IEC-standard values. The

local inflow on a turbine from wake effects is covered through an increase in turbulence intensity only and does not include

wake meandering effects. This simplification allows splitting the aero-elastic turbine simulations from the wake modelling,

and thus reduces simulation effort. Considering other effects like wake meandering for the creation of surrogate models is

possible through an extension of the load simulations but goes beyond the scope of this work because the major effect of an350

increase in loads is covered through the applied approach. For the demonstration of the approach, the structural loads of the

blades and the tower are considered. Both are supposed to last for the complete design lifetime of 20 or 25 years. Both are

also influenced by the turbine controller and the wake induced turbulence. For the blades, the flapwise and edgewise bending

moments (bm)3 are considered as separate failure modes, because they represent the two major load driving moments on the

rotor blades. For the tower, the combined bending moment at the bottom is utilized as failure mode. All these loads can be355

considered as representatives for the fatigue accumulation of different components that can be influenced by the wind turbine

controller and the environmental conditions in different ways. While the tower and the flapwise bending moment are more

strongly influenced by turbulence, the variations in the edgewise bm are driven by gravity loads dependent on the rotor speed,

i.e. the controller and the wind speed.

The considered loads, their corresponding abbreviations and the utilized Wöhler-exponent m are summarized in Table 1.360

Using linear fatigue accumulation by using DEL is a very strong simplification for the fatigue degradation of laminate, which is

a composite material containing fibre glass. Using this approach is still standard for design calculation and allows for a straight

forward use without detailed knowledge about the material properties. For the tower, an exponent of m= 3 is used, which is

representative for steel components and m= 10 for the blade loads as an approximate for fiber glass (Sutherland, 1999).
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Table 1. Summary of terms for the selected failure modes

Load Flapwise Bending Moment Edgewise Bending Moment Tower Bottom Bending Moment

Abbreviation Flapwise bm Edgewise bm Tower (bottom) bm

Wöhler Exponent 10 10 3

Short-Term DEL DELst
flap(x,u(x)) [Nm] DELst

edge(x,u(x)) [Nm] DELst
tower(x,u(x)) [Nm]

Damage Rate dflap(x,u(x)) [1/h] dedge(x,u(x)) [1/h] dtower(x,u(x)) [1/h]

3.1.2 Wind farm setup: From surrounding system to considered wind turbine365

The influences of the surrounding system on the considered wind turbine are covered by a site-specific wind distribution and

the wake influences from the surrounding turbines in the wind farm. The wind farm consists of 9 turbines with a regular 3× 3

layout, shown in Fig. 5a. It was already used in Schmidt et al. (2021). Within this work, we optimize operational strategies for

the turbine in the centre (index 4). Doing so, we can put a focus on the method for operational planning and the discussion

of derived results. There are various studies and models to illustrate the effects of wakes on the loads, ranging from wake370

meandering to partial wake effects (Mendez Reyes et al., 2019; Nash et al., 2021). Since the core of this work lies on the

optimization methods, we limit ourselves here to a simple steady-state modelling of the wake effects for wind and turbulence,

which cannot cover these effects yet. For this purpose, we use the IWES software FOXES (Schmidt, 2022). The local wind

speed is computed using the Gauss-type wake model by Bastankhah and Porté-Agel (2016). The wake-induced TI is calculated

using the top-hat wake model as described in IEC (2019). For the ambient TI, we use the wind-dependent Weibull distribution375

according to IEC (2019) with class B at the 50% quantile to cover the mean effects at such a site. For the superposition of

wakes, we use a linear superposition for the wind speed and the maximum-superposition for TI. Local TI depending on the

ambient wind speed and direction is shown in Fig. 5b.

The annual frequency distribution is derived from a 30-year time series of ERA5 data in the North Sea with a resolution

of 1h from 1990 to 2019 (Hersbach et al., 2018). The mean wind speed and wind direction at 100 m height are extracted to380

create a relative frequency distribution of ambient wind speed v̄amb and wind direction θ̄amb , which are both subdivided into

bins. Therefore, the reference relative wind distribution for the ambient wind conditions is pref
∆τ (v̄

amb , θ̄amb) with ∆τ = 1 year.

Because wind speed and direction are covered separately, the total number of bins Bx is subdivided into bins for each direction.

The wind speeds v̄amb are first binned with a resolution of 1 m/s from 1.5 to 49.5 m/s. Only values within the operating envelope

of the turbine (4.5m/s≤ vamb ≤ 23.5m/s, number of wind speed bins Bvamb

= 20), where derating can influence the turbine,385

are considered for optimization. It also means that pref
∆τ (v̄

amb , θ̄amb) does not sum up to 1 anymore. The wind direction is

binned with a resolution of 2◦ from 0◦ to 358◦ (Number of wind speed bins Bθamb

= 180). This results in a total number of

Bxamb

= 180 · 20 = 3600 bins. The percentage annual frequency for those bins is shown in Fig. 5c.

For a single turbine, the wake model represents a function which maps the ambient mean wind speed vamb and wind

direction θamb to the local mean wind speed v and turbulence intensity TI . Since the interaction of the turbines is only390

3bending moments are abbreviated with bm from this point onwards
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(b) Local TI for considered turbine (including wake effects)
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(c) Relative annual frequency for each combination of wind speed and

direction
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(d) Relative annual frequency for each combination of wind speed and

TI (inluding wake effects)

Figure 5. Setup for surrounding system of the wind turbine

modelled unidirectional, without considering the influence of the changed control setpoint on wake towards other turbines,

it is possible to create a local frequency distribution for each turbine, which only depends on the distribution of local wind

speeds and turbulence. To do so, the frequencies of pref
∆τ (v

amb ,θamb) are binned again into Bv = 20 wind bins, as before,

and BTI = 25 TI bins with a width of 1% starting from 5%, resulting in 500 total bins. The frequency distribution for the

additional binning is denoted as h̃ref
s , and is only valid separately for each turbine s= {1, . . . ,S} in an arbitrary wind farm395

with S turbines. The local frequency distribution of the centre turbine 4 is shown in Fig. 5d. The TI-values increase from the
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ambient TI, which still shows the highest relative frequency. The frequency of TI values increases for certain combinations, as

indicated from Fig. 5b. Then, the damage and energy calculation can be derived:

D̃fm(τ ; ū) =

Bv∑
j=1

BTI∑
i=1

dfm(vj ,T Ii,u(vj ,T Ii)h̃
ref
s (vj ,T Ii). (20)

and400

Ẽ(τ ; ū) =

Bv∑
j=1

BTI∑
i=1

P (vj ,T Ii,u(vj ,T Ii))h̃
ref
s (vj ,T Ii). (21)

This simplified form, which adds uncertainty to the optimization result, will be used in the results part during application of

our approach. The uncertainty can be influenced by the number of bins selected. It can be well estimated in comparison to the

original binning and lies below 1% for the considered cases.

3.2 Adaptable real-time controller of the wind turbine (Step 1)405

The primary objective of a wind turbine controller is to maximize power production while meeting the requirements of a

grid operator (Burton et al., 2011; Njiri and Söffker, 2016; Requate et al., 2020). Additionally, secondary objectives such as

load reduction are pursued during control design. This can be achieved, e.g., by implementing features for reduction of loads

on specific components. Examples are exclusion zones to reduce tower vibrations or individual pitch control (IPC) to reduce

fluctuations in blade root bending moments. However, these secondary objectives usually force the controller to deviate from410

optimal operation with regard to its primary objectives. Some secondary objectives might even compete with one another, e.g.,

blade root loads and pitch actuator activity for IPC. We now assume that the balance between primary objective and secondary

objectives can be selected externally by adapting the controller through a control setpoint.

In Sect. 2.1, we already introduced the control setpoint as u(x). We assume this to be an abstract value which can be selected

based on the external input conditions x. Thus, u is a vector of controller setpoints, which in turn reacts by adjusting its own415

internal parameters. In a larger wind farm system, which is composed of multiple turbines, which uses wake steering or wake

reduction, u(x) could be the yaw angle or the amount of power derating (Nash et al., 2021). Within the remainder of this paper,

we assume a one-dimensional control setpoint for the power derating of a single turbine. This is a commonly available input,

as reduced power capability is also requested by grid operators to mitigate grid congestion. There are several studies which

investigate derating methods with respect to various objectives. These include power regulation for the grid, wake reduction or420

loads. In Houck (2022), several studies on derating (or axial-induction control) are summarized and sorted into the mentioned

categories. Many studies investigate load reduction as a side effect, while the main objective is either the power regulation or

reducing the wake on the downstream turbine.

Within the system boundaries of this study, the main objective is not to determine the best fitting derating method for the

generic wind turbine, but to show the benefits of using derating for an optimal planning. Therefore, the choice is conducted425

based on the findings from literature and from previous experience with the generic IWT7.5 wind turbine and not through an

extensive study and tuning of the controller under various conditions. Also, no additional features like individual pitch control
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or active dampers are activated. For a real-world application, fine-tuning the controller for every derating configuration would

be beneficial and could lead to an improved performance with respect to loads and power. The IWT7.5 is controlled with the

IWES research controller (Wiens, 2021). The derating method is implemented such that it reduces power in partial and in full430

load by a percentage factor δP ∈ [δmin
P = 50 %,100 %]. Such a derating method is referred to as proportional delta control in

Elorza et al. (2019) or percentage reserve in van der Hoek et al. (2018).

In partial load, both tower and blade fatigue loads should be decreased. To do so, the constant-λ method is implemented

(Astrain Juangarcia et al., 2018), because we expect a positive effect on these loads based on the literature, and we avoid

potential negative effects like a near-stall operation as e.g., by using the minimum-thrust strategy. This is achieved by finding435

the steady-state pitch angle β so that the reduced power coefficient δP cp is found while λ is kept constant. From these values,

the parameters for derated operation can be computed.

In the full load region, the torque set point is normally reduced for derating. This allows for a fast recovery of power when

derating is no longer required, and is thus beneficial for ancillary services (Fleming et al., 2016; van der Hoek et al., 2018).

However, it only has a minor effect on the fatigue loads of the blade and the tower. Reducing the generator speed mainly has440

a strong positive effect on the blade loads in flapwise direction (Requate and Meyer, 2020), while reducing the torque has a

positive influence on the driving torque loads (Pettas et al., 2018). The effect on the tower loads are quite turbine dependent

because a reduction in generator speed can reduce oscillations to some extent but often also increases them due to the lowered

aerodynamic damping (van der Hoek et al., 2018). Therefore, a mixed method between reducing torque and speed might be

advantageous, again depending on individual objectives and turbine characteristics. Both methods are combined for reducing445

the rated generator torque Mr and ωr.

In Fig. 6, the operating points of the controller for the selected setpoints are presented. Figure 6a shows the speed-torque

curve of the controller. The end point of the curves always determines the combination of Mr and ωr. By comparing the

progression of these curves, the effect of both strategies can be observed. In partial load, the constant-λ strategy determines

a specific combination of parameters including the static pitch angle. The steady-state operating points of the pitch-angle are450

plotted over the wind speed in Fig. 6b. In combination, this results in the steady-state power curves which are shown in Fig. 6c.

The control setpoints can then be used as optimization variables in the formulation of a mathematical optimization problem.

However, using them directly within an optimization requires the full simulation of respective load cases, which is not feasible

due to the required computational effort. Instead, surrogate models can be setup which abstract the whole turbine-controller

interaction.455

3.3 Surrogate models for damage progression and energy production (Step 2)

Surrogate models, sometimes also called meta-models, are a necessary prerequisite for evaluating and optimizing different

influences on damage over long periods of time. For wind turbines, they have gained growing research interest to cover the

influences of various external conditions and control on fatigue damage. They have in common that aero-elastic simulations

are used to create a database of fatigue loads for various input conditions. In Fig. 4, those aero-elastic simulation models are460

denoted more generally as higher fidelity models on the seconds scope. The surrogate model is created by performing multiple
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(a) Generator torque over generator speed (b) Pitch angle over wind speed (c) Electrical power over wind speed

Figure 6. Operating points of the real-time controller for selected derating methods

simulations for a pool of input samples. Due to the relationship between damage increments and DELs, the surrogate models

can be calculated on the basis of the short term DELs. Thus, the strong non-linearity due to the wöhler exponent does not have

to be considered, and the damage increments can be calculated using Eq. (19). The short term DEL DELst
fm(z) is obtained

through aero-elastic simulations of the wind turbine model and a subsequent evaluation using the rainflow counting algorithm465

and Eq. (16).

By using surrogate models to compute damage and energy increment, additional uncertainties are inevitable when calculating

long periods of time. At the same time, the load calculation of wind turbines is always associated with uncertainties due to

the stochastic influences of the wind (Mozafari et al., 2023). This must be taken into account when creating surrogate models.

Depending on the application and effort, different requirements are made on the surrogate models. For example, more accurate470

models are required for fatigue tracking or for calculating the remaining service life than for use in an optimization. Here, fast

evaluation and good mapping of the correlations between optimization variables and initial values are of particular importance.

Within this work, the surrogate is considered as an existing prerequisite with various suitable approaches from the literature

ranging from gaussian regression (often referred to as Kriging), polynomial chaos expansion to artificial neural networks

(Dimitrov, 2019; Hübler, 2019; Slot et al., 2020; Gasparis et al., 2020; Debusscher et al., 2022; Singh et al., 2022). A good475

overview of different surrogate methods and a comparison of their performance is given in Dimitrov et al. (2018). Despite their

known lower accuracy compared to some of the other methods, we select multidimensional polynomial regression models for

the DELs due to their suitability for optimization, their simple usage, their differentiability and their fast training and evaluation

time. For the electrical power, a linear interpolation is used.

The pool of input conditions is created with a fullfactorial sampling for the wind conditions x together with the percentage480

power u(x) = δP (x). The sampling values are provided in Table 2. While wind speed and power are sampled equidistantly,

the sampling of the TI values is selected so that the distance between the samples increases exponentially, as indicated by the

formula in Table 2. This reduces simulation time and still creates enough data, in situations with high occurrence. To account for

the randomness in the incoming wind, various realizations of the same mean input characteristics are usually simulated. Those
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are determined through pseudo-random seeds. For the simulations performed in this work, 6 simulations of 10 minutes on the485

seconds scope are performed to obtain a damage increment in the minutes scope with the time increment ∆t= 60min= 1h

as it is standard for DEL-calculations.

Table 2. Input sampling for load simulations

Wind Speed v̂ Turbulence intensity T̂I Percentage power δ̂P

4,5,. . . ,25 m/s (
√
2)i%∀ i= 2, . . . ,11 50,60,. . . , 100 %

To obtain the parameters of the polynomial regression model for the DELs, a least squares approach is used. The maximum

order of the polynomial is set to 5. The value is found by cross validating different orders of the polynomial between 1 and 8. For

the further usage of the surrogate models, it is particularly important that the influence of the derating setpoint at the different490

input condition is correctly represented. For all three failure modes, a general agreement of the surrogate model to the data can

be observed. Fig. 7 and Fig. 8 exemplary show the evaluated surrogate model (solid lines) as well as the simulated training

data (dots in same colour as solid line) when one of the input conditions is set to a fixed value. The DELs are normalized with

respect to the fixed values (v = 8m/s and TI = 16%) at the nominal percentage power δP = 100%. The power is not explicitly

shown here, because its behaviour dependent on wind speed directly derives from the control setpoints (cf. Fig 6c). In general,495

the accuracy of the fit for the flapwise bm and the tower base bm is lower than that of the edgewise bm. These loads are more

strongly influenced by the turbulence of the wind and thus also have a higher uncertainty in the simulated DELs. Especially

for the tower, the high variation in the simulation data makes it difficult to create a surrogate model. Also, the relative mean

error on the complete dataset is highest for the tower bm (error=3.88%), compared to the error in flapwise bm (2.32%) and the

edgewise bm (0.23%).500

The behaviour of the DELs depending on the control setpoints will now be briefly discussed. Figure 7 shows the results with

the wind speed v on the x-axis for different values of percentage power δP = 100% with a fix TI = 16%. Both, the flapwise

and the tower DELs (DELst
flap and DELst

tower ) strongly increase with the wind speed (cf. Fig. 7b and Fig. 7c), while the DELs

of the edgewise bm DELst
edge reduce when the rated wind speed is reached at 12 m/s and the turbine starts pitching (cf. Fig. 7b).

The reduction in DELst
edge depending on δP = 100% directly relates to the lower rotational speed through the control setpoints505

at each wind speed. Thus, it has a stronger effect at 90 % and 80 % when the rotor speed is lowered by a higher amount than the

generator torque to achieve the power setpoint. The decrease of DELst
edge is also rather small compared to the other two failure

modes, where the relative difference in DELs is much higher. The DELst
flap can be reduced for almost all wind speeds (cf.

Fig. 7b), but not by the same amount. The DELs of the tower bm show a much less clear relation to the percentage of power.

For low wind speeds, the values of DELst
tower also decrease with the lower values of δP = 100%, but with some significant510

variation within the simulated data points. For higher wind speeds, reducing the power can even increase the tower loads, and

the relation is not completely deterministic. This effect is caused by the reduced aero-dynamic damping due to the rotor speed

reduction or from resonance effects.
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Figure 7. Evaluated surrogate models (solid curves) and simulated data points (dots) for a fix TI of 16% normalized with the short term DEL

of the nominal strategy δP = 100% at v=8m/s and TI=16%
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Figure 8. Evaluated surrogate models (solid curves) and simulated data points (dots) for a fix wind speed of 8 m/s normalized with the short

term DEL of the nominal strategy δP = 100% at v=8m/s and TI=16%

.

Figure 8 shows results with TI on the x-axis for different values of δP with a fix wind speed v = 8 %. The DELst
edge is not

significantly influenced by the turbulence. The load reduction of the edgewise DEL is low compared to the other two failure515

modes. For the flapwise bending moment and the tower bending moment, the strongest relative reduction can be achieved

by reducing the power to 90%, but more derating still decreases the DELs slightly further. The relative load reduction also

increases with increasing turbulence.

The results presented in this section show several aspects which are relevant for the optimal planning approach. The selected

method for derating is suitable to reduce the short term DELs and thus the damage increments of all the failure modes. Also,520

the surrogate models are able to cover the nonlinearity sufficiently to be used for further optimization. The optimal planning

approach can make use of this to determine when a load reduction should be favoured over a higher energy production. This can

especially be done by exploiting the fact that higher turbulence significantly increases loads, but the power production remains

almost the same. This effect is even strongly enforced from the relation of the short-term DEL to the damage increment because

the value is raised to higher power by the Wöhler-exponent (see Eq. (19)).525
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Figure 9. Process for computing the lifetime objectives dependent on operational strategy. The setpoints of the operational strategy define

the optimization variables. They are input to the annual scope calculation based on surrogate models and frequency distribution. With the

output of this calculation, annual damage and annual energy can be accumulated to a lifetime value. The lifetime is determined from the total

damage and thus and input for lifetime energy and lifetime value accumulation. The lifetime value is computed with additional inputs for the

specified value metric.

4 Method for optimal long-term planning: VIOLA (Value Integrated Optimization of Lifetime Asset operation)

Having created the surrogate models depending on the selected control setpoints as prerequisites, they can now be used to

determine how much derating is beneficial to apply, through the optimal operational planning method. The process for the

assessment of lifetime objectives dependent on the operational strategy is shown in Fig. 9. The lifetime objectives are modelled

by making use of the surrogate approach on the annual scope. The total damage determines the lifetime of the wind turbine,530

which influences total energy production and total value. While the total energy and damage define the objectives on a technical

level, maximizing the total value is the final goal. All of them are influenced by the setpoints for the operational strategy, which

determine the optimization variables. The key of the method is to formulate the problem in such way, that a control setpoint

is found for each external condition while these long-term objectives are fulfilled. We refer to value as a general measure for

the overall valuation of the considered wind energy system. It will usually contain an economic valuation, but my also include535

other factors such as environmental impact or contributions to grid stability. We call the framework for this method VIOLA

(Value integrated optimization of lifetime asset operation). The process shown in Fig. 9 forms the basis for the formulation of

the optimization problem which currently consists of the two separate steps, namely steps 3 and 4 of the complete process (cf.

Fig. 2).
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4.1 Condition-based optimization of operational planning (Step 3)540

Building up the mathematical optimization process for finding the operational strategies is the central part of this work. Neglect-

ing economic factors and other influences and restrictions for the total value of a farm at first, it is ecologically most beneficial

to get the maximum amount of energy over the lifetime τ life of the turbine while the fatigue budget of each component is fully

used up. Therefore, the total energy for a given target damage budget is maximized over the fixed reference time τ ref . The

operational strategy ū= {u(xj)}B
x

j=1 is optimized for each of the external conditions which were previously selected by the545

definition of the system boundaries. It follows, that the number of selected independent control setpoints, defined by Dim(U)

and the number of bins which are used for the external conditions Bx, determine the number of optimization variables, which

is equal to Bx ·Dim(U). Within the scope of this work Dim(U) is equal to 1 because a single derating strategy will be applied.

With a fixed known target fatigue budget Dtarget
fm for failure mode fm ∈ F , the optimization problem is formulated as

max
ū

Bx∑
j=1

P (xj ,u(xj))h
ref (xj)550

subset to
Bx∑
j=1

dfm(xj ,u(xj))h
ref (xj)≤Dtarget

fm , ∀fm ∈ F . (22)

Using this simple and compact formulation, it is possible to spare the fatigue budget when the damage increment is high

compared to the energy increment. When the damage of all failure modes is reduced compared to a baseline operation ūref ,

i.e. Dtarget
fm ≤Dref

fm , the turbine can be operated for a longer time and ultimately more energy can be produced.

The optimization problem is solved by using the gradient-based interior point algorithm for constrained non-linear opti-555

mization problems (Waechter and Laird, 2022). The process itself is formulated with Python and the optimizer is interfaced

through the library pygmo (Biscani and Izzo, 2020a) which builds on the C++ library pagmo (Biscani and Izzo, 2020b). Gra-

dients are computed using finite differences. Optimization runs were executed on a laptop with Intel i7 four-core processor,

2.1 GHz speed and 32 GB RAM. The execution time of each run ranges from several minutes to several hours, depending on

the specified target damages. The optimizer typically needs between 100 and 500 iterations to converge. As starting values,560

the reference strategy with 100% power production at each turbine was always used, which is a non-optimal but feasible solu-

tion. All optimization runs show plausible results in terms of an improved relationship between energy increment and damage

increment. For this reason, no explicit variations of the starting values were required to check for convergence to local minimal.

Clearly, the solution strongly depends on the selected failure modes, their behaviour of the damage rate determined from the

surrogate models and on the target fatigue budget. When several failure modes should be optimized simultaneously, it might be565

impossible to fulfill the constraints and no solution can be found. Therefore, the selection of the target budget strongly depends

on the specific problem which is individual for a specific wind farm or wind turbine respectively. The formulation in Eq. (22)

provides a clear separation of the technical aspect from the economic aspect, and therefore allows investigating the relationship

between damage progression and energy production for different components under consideration of the operational strategies

over long periods of time. It can also directly be used to create a Pareto-front between damage and energy production by570

principally applying the Epsilon-constraint method for multi-objective optimization (Chiandussi et al., 2012), i.e. by fixing
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various combinations of the target values Dtarget
fm . We pursue this approach within this work, and select a specific strategy

based on further in formation in the final step 4.

4.1.1 Creating Pareto-optimal solutions for the application example

We apply the optimization method to the considered turbine in the centre of the wind farm. To do so, we first need to define575

the reference design value DELref . It is computed with the site-specific wind distribution, including wake effects for wind and

TI and with the reference operational strategy ūref . Therefore, the total damage of the considered turbine is equal to 1 for all

failure modes in accordance with the explanation in Sect. 2. This is a strong assumption that will not hold true in reality for

different reasons. However, it allows a simpler interpretation of the results at this point. We limit ourselves to the factors that

can be influenced beyond design decisions and safety factors. Therefore, each reduction of damage of a failure mode results in580

an extended lifetime according to the deterministic assumption from Eq. (10).

By solving the problem for various values of Dtarget
fm ∈ [0,1], the maximum amount of energy for each of these values can

be found. For simplification, each failure mode is considered separately. On the one hand, this increases the interpretability

of the results. On the other hand, it would be applicable if the weakest failure mode of a turbine or component can clearly

be determined. For each failure mode fm ∈ {flap,edge, tower}, at first the minimum possible damage is computed as an585

orientation. Then the optimization problem

max
û

Bv∑
j=1

BTI∑
i=1

P (vj ,T Ii,u(vj ,T Ii))h̃
ref
4 (vj ,T Ii)

subset to
Bv∑
j=1

BTI∑
i=1

dfm(vj ,T Ii,u(vj ,T Ii))h̃
ref
4 (vj ,T Ii)≤Dtarget

fm . (23)

is solved with constraint between 0.3 and 1 depending on the failure mode to obtain desired points the three Pareto-fronts. Each

point yields an optimal planning strategy separately for each failure mode. Such a strategy is denoted as ūopt
fm .590

The results of the optimization, i.e. the Pareto-fronts, are shown in Fig. 10 where the relative percentage energy production

compared to the reference case is plotted over the total damage which is equal to 1 for the reference case. When comparing

the results, one can clearly see the different behaviour of the failure modes, which results from the determined relation of the

damage rates to the control setpoints and the external conditions. While it is possible to significantly decrease the damage of

the flapwise bm (Fig. 10c) and the tower bm (Fig. 10b) without losing much energy, the edgewise damage can only be reduced595

with comparable losses in the energy production. This is mainly due to the fact, that the dependency of the edgewise bm on TI

is lower and that damage can mainly be reduced by reducing the rotational speed.

Reducing the damage results in a factor for lifetime extension, which is approximately determined by Eq. (9). According

to Eq. (11), the energy yield after the extended lifetime τ lifefm (ūopt
fm ) is also increased by that factor. Additionally, the selected

failure mode is assumed to be the only one relevant to life extension so that the damage of the others can be neglected for600

this example. By directly maximizing the energy production, the maximum amount of energy can be produced while fully

using up the fatigue budget of the failure mode with a variable time span in this case. The result of this optimization is shown
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as a large blue dot in Fig. 10 and Fig. 11. Figure 11 additionally shows the relative energy production for each failure mode

plotted over the relative damage. For the edgewise bm, only a slight increase of the energy production of about 5% can be

obtained when the damage is reduced between 0.75 and 0.85. For the tower bm, the reduction of damage leads to a lower loss605

in energy than for the edgewise bm. Therefore, the overall energy production after the extended lifetime can be significantly

increased by up to 17% when damage is reduced down to 0.77. A further damage reduction reduces the effect significantly.

The strongest positive effect can be seen on the flapwise bm due to the combined influence of the selected control method, the

strong influence of high wind speeds and turbulence, as well as the high Wöhler-exponent. The damage can be reduced down

to a value of 0.25 resulting in an increase of energy by more than factor 3. While the additional energy production for the tower610

bm almost increases linear at first and then reaches the maximum value at 0.77, it clearly shows a more than linear growth for

the flapwise bm. The computed Pareto-fronts represent a trade-off between damage and energy production over a given time

period, of which a single value and corresponding strategy need to be selected to complete the 4-step process. Before we apply

this step, the resulting operational strategies for each result which yields the highest relationship between energy and damage

are investigated more closely (large blue dot).615
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(c) Flapwise bm

Figure 10. Pareto-front of relative energy production and damage for each failure mode separately
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Figure 11. Relative energy over damage plotted over the relative damage for each failure mode separately
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4.1.2 Detailed results of a single optimization run

To be able to interpret the optimized operational strategies, the distributions of damage with reference operation are shown

for each failure mode in Fig. 12. In each plot, the wind speed is plotted radially and the wind direction circumferentially. The

damage values are given by their total value share on the overall value during τ life .

The highest frequency in the wind distribution occurs in south-western direction (see Fig. 5c). This distribution is also620

strongly reflected the damage of the edgewise bm (Fig. 12a) and partially of the flapwise bm (Fig. 12b). While the highest

amount of damage is induced at wind speeds below rated for the edgewise bm, the flapwise damage distribution is dominated

by the high share at high wind speeds in south-western direction. For both, the flapwise bm and also the tower bm (Fig. 12c),

there is high share of damage when they are subject to wake from the upstream surrounding turbines. The resulting operational

strategies, which are optimized to reduce each of the failure modes while maximizing energy production, are shown in Fig. 13.625

The results depending on local wind speed and turbulence are transferred back to values depending on ambient wind speed

and wind direction by sorting the results into corresponding bins. While optimization based on local wind speed and direction

reduces the number of optimization variables, an implementation of the strategy based on wind direction is easier to apply in

reality in an open-loop setting of the planning approach. In all three operational strategies, the reaction to the high damage in

the situations, where the turbine is in the wake of other turbines, is visible. In such situations, the damage is increased due to630

the wake-induced turbulence while energy production is decreased due to reduced wind speeds. This leads to a high benefit

of reducing power in such situations. In addition, each of the strategies reflects the individual behaviour of the selected failure

modes and of the influence by the control setpoints under the specific conditions. While slight reduction in power, especially

at low wind speeds, maximizes the energy production with the constraint on the edgewise bm (Fig. 13a), the strategy with the

flapwise constraint mainly reduces power at high wind speeds (Fig. 13b). With the tower bm constraint, the selects the lowest635

possible setpoint of 50% at low wind speeds up to 8 m/s in addition to the slight reduction in waked situations (Fig. 13c).

Due to the selected method of the real-time controller, a significant load reduction can mainly be achieved at such low wind

speeds for the tower. The strategies thus result overall from the interaction of the selected method and setpoints of the real-time

controller, the derived surrogate models and the specified objectives of the optimizer.

4.2 Selection of best solution (Step 4)640

With the presented optimal planning approach, higher total energy yield can be achieved with lifetime extension, which is

made possible by accepting lower annual energy production throughout the lifetime. This reduction of annual energy has a

significant impact on the overall value of the wind farm, especially when taking into account economic factors that include loan

repayments and the value of money. This aspect is considered by for the evaluation and selection of the operational strategies

under consideration of a basic financing model. Through this first evaluation, the difference between a pure maximization of645

energy from the materials used, and additional factors can be emphasized. We use the net present value for this.
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Figure 12. Original distribution of damage (without applying derating) for all wind speeds (plotted radially in m/s) and all wind directions

(plotted circumferentially in degrees) of the considered turbine in the centre of the wind farm
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(a) Reducing edgewise bm to 0.8
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(b) Reducing flapwise bm to 0.3
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Figure 13. Selection of optimized operational strategies. Each of them maximizes the total relation of energy over damage for one of the

failure modes. The power percentage values are plotted for all wind speeds (radially in m/s) and directions (circumferentially in degrees)

4.2.1 Computation of net present value

The net present value NPV maps a future payment to its current value. We assume a constant interest rate CWACC covered

by the weighted average costs of capital (WACC), constant annual maintenance costs COPEX and a constant average price

of electricity CelPrice . The repayment can be variable over the entire operating period and is made depending on the annual650

energy yield E(∆τ ; ū,h∆τ ). Currently, it is assumed to be constant in each year, because we use the same operational strategy

27



and frequency distribution. With these parameters, the NPV can be computed for payments until a given year Y :

NPV (Y ) =

Y∑
t=0

CelPrice ·E(∆τ ; ū,h∆τ )−COpex

(1+CWACC )t
, (24)

The future value at the end of the lifetime of an adapted operating strategy is given by NPV (Y life) where the number of full

operating years with the strategy is defined as655

Y life :=

⌊
τ lifefm (ū)

∆τ

⌋
. (25)

This model maps all future payments to their current value, and thus also gives an upper bound to the initial investment that

is permissible. Any revenue above the initial investment leads to additional profit.

The average costs for a wind farm are taken from BVG Associates (2019); they are summarized in Table 3. All values are

scaled to a single turbine with 7.5MW power. The financial estimations refer to an entire wind farm, so that scaling it to a660

single turbine is not fully realistic. It can be interpreted as the "per turbine" costs of a farm. Therefore, all of these values are

very rough assumptions which just allow for the possibility to compute the potential increase in profit within a realistic range.

Table 3. Overview of parameters for financing model

CAPEX per MW OPEX Change rate WACC

2.37 Mio £/MW ≈ 2.73 Mio. e/MW 76 k£/MW ≈ 87.4e/MW 1.15 e/£. 6 %

The annual income is computed with the reference annual frequency distribution and the operational strategies from the

results. An availability factor of 0.95 is assumed. In addition, we assume an electricity price of 0.064 e/kWh at which the wind

farm is barely able to recover the investment cost after a lifetime of 25 years, when being operated with the reference strategy665

ūref .

4.2.2 Selection of strategy based on net present value

In Sect. 4.1.1, each of the three failure modes were already considered separately. We first make a preselection of the strategy by

limiting ourselves to a single failure mode. An economic evaluation is most important for tower damage. A tower replacement

is usually considered to be infeasible, which in turn determines the possible lifetime of the entire wind turbine. An exchange of670

the rotor blade, in contrast to this, can be a feasible approach to extend the turbine’s lifetime when one of its failure modes has

reached its fatigue budget. Having this in mind, it is still advantageous to create a planning for these replaceable components in

order to coordinate the replacement of several blades or to find the best timing. Considering all of these aspects would require

further detailed models on component costs and the specific situation of a wind farm.

The financing model using the NPV from Eq. (24) is applied to all of the derating strategies which were computed for the675

tower in Sect. 4.1.1. The lifetime of the turbine is always determined as the time after which the induced damage has reached

the fatigue budget, i.e., by Eq. (10). For the final year, the annual income is computed as a fractional value, depending on

relative damage increment before the value of 1 is reached. Here, the seasonal variations discussed in Sect. 2 are neglected.
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The results are shown in Fig. 14. In all three subfigures, the green dashed curves correspond to the Pareto-optimal points

from Fig. 10b. The blue curves highlight the one trade-off, where the maximum energy is being produced over the extended680

lifetime, which is almost 32 years. The light blue curves highlight the operational strategy with best economic results, i.e. the

highest NPV at the lifetime where the damage equals 1. It results in a relative damage value of 0.9 and an extended lifetime

of about 27 years. Since the same frequency distribution for wind conditions and the same operating strategy is assumed for

each year, also the annual damage and annual energy production are equal. This results in a linear increase of the damage in

Fig. 14a and the energy production in Fig. 14b. Fig. 14c shows the net present value representing the permissible investment if685

the system was operated until a certain year.

The assumed initial costs (CAPEX) are equal to about 7.5MW ·2.73 e/MW ≈ 20.4M e. It can be seen that for maximum

energy generation, the system is not economically viable even after its extended lifetime of 32 years (cf. Fig. 14c). The NPV

of that strategy is about 1.7 Me lower than the value with the reference strategy at 25 years. The reference strategy and the

economically optimal strategy require about 25 or 26 years of operation respectively to exceed the CAPEX. The strategy which690

maximizes NPV is achieved with a target damage of 0.9 at a lifetime of 27 years. The difference to the reference strategy at 25

years is about 0.5 Me. Also, the strategies with target damages of 0.95 and 0.9 reach a higher NPV compared to the reference

strategy. Therefore, these strategies will pay off after a longer operating time under the given circumstances. In contrast to this,

the reduced energy yield per year of the strategy maximizing total energy (bright blue curve with dots) leads to lower income,

lower repayment per year and in turn to lower NPV over the entire lifetime compared to the strategy which maximizes NPV695

(dark blue curve with crosses) and the reference strategy (dark green dashed curve). For all strategies, it must be noted that the

assumed WACC of 6% needs to be taken into account as well. while the net present value does not change significantly in later

years, the profit would increase strongly once the investment has been repaid. Thus, the actual profit can be multiplied with

(1,06)r where r is the number of years operating once the investment hast been returned. Therefore, a slightly higher NPV can

already result in much higher profits.700

Overall, the assessment of economic benefits always needs to be done under consideration of the specific assumptions and

parameters for a specific project and can be done in much more detail. Especially the price of electricity underlies a high

uncertainty and can hardly be predicted for 30 years in the future. Nevertheless, the exemplary evaluation shows how multiple

optimized planning strategies can be used to obtain an economically optimized solution, depending on the objectives and input

parameters.705

5 Discussion

The application of all four steps to the application example has shown the interaction of inputs (e.g., control setpoints), envi-

ronmental conditions, damage progression, energy production and economic value. The considered example mainly illustrates

that the mathematical optimization method is applicable for creating operational strategies and how the method can be used to

exploit the full load-bearing capacity of one component and to increase the value of the considered system. The mathematical710

optimization builds on the assumptions of the underlying models and their input data. It finds the best operational strategy un-
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Figure 14. Annual progression over time for accumulated damage, energy, and NPV for multiple optimized planning strategies (Green:

results of Pareto-front; Bright blue with dots: Maximum energy production; Dark blue with crosses: Maximum NPV)

der these assumptions in a deterministic way. The resulting deterministic lifetime extension factor includes these assumptions,

and should therefore be interpreted as a potential value that needs to be validated by further assessments.

The solution also includes the uncertainties resulting either from model inaccuracies or from uncertain assumptions in the

input data. This inherent limitation must always be taken into account when evaluating and discussing the results. For this715

reason, we have taken great care to describe the required prerequisites in detail. In addition, we have limited ourselves to the

technical level first when performing the optimization (step 3). The consideration of economic factors is subject to a high degree

of uncertainty due to the uncertainty of future electricity prices and other influences which are not considered. The selection of

an operational strategy must always be made for a specific application, taking into account the inherent uncertainties and risk.

The selection process applied in this work mainly aims at showing how the economic aspect can be taken into account and that720

an intelligent operational strategy can lead to higher economic profit when selected carefully.

The presented method VIOLA yields a deterministic optimal solution, which is intended as operational plan for an uncertain

future. Therefore, on the one hand, it has to be discussed how the uncertainties of the deterministic solution can be reduced by

improved partial models. On the other hand, current limitations of the method and possible extensions have to be named.

5.1 Limitations and possible improvements on partial models of the current approach725

The optimization process builds on the usage of surrogate models. They implement the deterministic relationship from inputs

to damage and energy increments on the minutes scope.Within these models, the limits and uncertainties of various partial

effects are aggregated. This includes the modeling of input conditions, the high fidelity simulation model on the seconds scope,

the calculation of damage increments and finally the selection and training of the surrogate models themselves. The modeling

approach for each of these is very closely linked to the specified system boundaries.730

For the application example, we have limited ourselves to two main environmental conditions and one controller setpoint

as considered input conditions. These inputs define a subset and can be extended for both, environmental conditions and

the possible setpoints. Fatigue damage of structural components is represented by three main failure modes. Discussing the
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complexity of fatigue damage modelling goes beyond the scope of this paper; instead, readers are referred to e.g., Liao et al.

(2022), which provides an overview about developments in this field.735

Regarding the environmental conditions, further influences like wind shear, yaw misalignment, wave effects for offshore

wind farms can be considered. In addition, the wake-effects of surrounding wind turbines can be modelled with a higher level

of details to cover effects like partial wake overlap or wake meandering. This requires an extension of the models on the

minutes as well as the seconds scope.

The control setpoints of the real-time controller act as inputs to the surrogate model and as influencing variables for the740

optimizer. Thus, by extending the number of controller features which can be adapted and used as optimization variables, the

possibilities for balancing damage under various environmental conditions increase. It would be ideal to directly optimize the

control parameters under all influencing load conditions and select the trade-off according to the overall objectives, including

their frequency of occurrence. Such an approach is not computationally feasible due to the need for load simulations under each

condition in combination with a control parameter. Therefore, extending the possibilities of the real-time controller combined745

with a smart pre-selection of further control setpoints, such as allowing for partial overload or wake steering, will lead to more

degrees of freedom for the long-term operational planning. With limited computational capacities, a balance between accuracy,

degrees of freedom, interpretability of results and also enhancement of the approach needs to be found for specific use cases

and for the optimization process itself. To assess the importance of various influences on the results, sensitivity analysis could

be performed, but this is beyond the scope of this paper.750

5.2 Long-term forecasting models and uncertainties

While partial models could theoretically be improved until they provide a perfect representation of reality, the forecasting over

long periods of time will always be subject to remaining uncertainties. Therefore, prediction of the future always contains

assumptions, which are usually modelled by a probabilistic approach. For the long-term forecast, one can distinguish between

the technical part, where the forecast of environmental conditions influences the fatigue damage calculation, and the forecasting755

of the economic developments. This is affected by many unknowns from the global market and even politics.

Regarding the technical part, we use the classical approach for the computation of fatigue damage by covering the long-

forecast by a relative frequency distribution derived from site-specific measurements from the past. In combination with partial

safety factors, such an approach is suitable for estimating a conservative design fatigue budget. Nevertheless, they neglect

some important influences like annual variations of the wind (Pryor et al., 2018). Also, long-term changes in the weather760

due to climate change could become relevant. Hübler and Rolfes (2021) found a low influence on fatigue life compared

to other influences, but pointed out their potential influence with improved methods. For a more detailed estimation for each

individual turbine, probabilistic approaches for the fatigue damage prediction using surrogate models can be used, e.g., by using

monte-carlo simulations with a representative time series (Hübler, 2019) or by using stochastic distributions for modelling the

uncertainty (Nielsen et al., 2021). Due to the high computational effort, such approaches are less suitable to be used within an765

optimization loop. The probabilistic approach for fatigue life prediction is strongly connected with the choice of inputs for the

models. One also needs to distinguish between conditions which can be influenced by control setpoints of the controller, and
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conditions that cannot be influenced (e.g., idling), but which nevertheless contribute to the overall damage process. Therefore,

it is also possible to reduce uncertainties with further details in the models. To determine the overall risk, it is required to assess

the uncertainties of the partial models and the forecasts.770

In our current implementation of the proposed method, a very basic approach for the economical part, i.e., computing the

asset value, is implemented. Regulatory and legal framework conditions are excluded from the model, as they can change over

time and are strongly dependent on the specific location. Also, our focus is on showing the technical feasibility. Covering

all regulatory aspects and expected, planned or coming legislation is a highly specialized but separate task. Nevertheless, the

current approach can be supplemented with further inputs to reduce the uncertainties. Also, other value metrics like the cost of775

valued energy (COVE) could be integrated (Loth et al., 2022). A highly significant influence is the price of electricity, which

is not constant over the entire lifetime.

To sum up, the amount of detail in the mathematical optimization process has to be a deliberate decision. This decision also

depends on other parameters like the available computational power and the optimization method. With the current subdivision

into two parts, the technical, deterministic optimization in step 3, and the subsequent selection based on additional (economic)780

factors in step 4, the mathematical optimization problem can be solved with low computational effort and the deterministic

solutions are well understandable and interpretable. Nevertheless, several drawbacks to our approach remain.

5.3 Limitations and potential improvements of the optimization method VIOLA

Without any limitations on computational power and time, the robust optimization approach which directly maximizes the asset

value as an objective containing further inputs like reliability models, component replacement costs, forecasts of the market,785

etc. including their probabilistic uncertainty would be ideal. To approach such an ideal solution within given boundaries, several

smaller steps can be made.

The deterministic optimization method is currently limited to a single turbine. The influence of the turbine controller on the

wake and thus on surrounding turbines is neglected. To extend our approach to an entire wind farm two possible solutions exist.

The first way is to optimize operation of all turbines once, but this could increase the size of the optimization problem beyond790

feasibility. The second solution could be to iteratively cycle through computing inflow conditions for an individual turbine

from a wind farm flow model, then optimizing operation for each turbine separately for their respective inflow conditions. We

expect such an approach to converge after few cycles, while keeping computational requirements at bay and scaling well. Both

solutions allow a combination with farm control solutions, such as wake steering.

Overall, any deterministic solution of a single turbine or an entire wind farm requires the specification of an individual795

target damage for each selected failure modes. Here, the specification of a desired target reliability level for the components

of each wind turbine could be covered by probabilistic reliability methods. Further research is required to assess how this

can be integrated with the current method. It also needs to be investigated how the computation of any value metric can be

integrated into the optimization approach, either directly within the mathematical optimization or for a subsequent selection of

Pareto-optimal operational strategies.800
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To cover the forecast of volatile market prices within the deterministic mathematical optimization, the annual frequency

distribution of input conditions can be extended with another dimension for price and thus a combined probability for wind

and price, similar to the approach in Loepelmann and Fischer (2022). In addition, an annual selection of the trade-off between

energy and damage could be integrated into the optimization. This way, it would be possible to allow for a higher damage

progression at the beginning to reduce the interest burden and to reduce the damage progression of the turbine later on.805

One aspect, which can not be covered by the current planning approach, is considering sequence effects, i.e., dependencies

of future damage progression on previous damage. With the use of frequency distributions for long-term effects, linearity of

damage progression is inherently assumed. To consider sequence effects, the current approach can at least be used as an initial

planning step, partially covering the linear part of a damage progression process.

5.4 Application of optimized strategies810

Regardless of the limitations, the results of the application example show how a condition-based long-term planning approach

can realize a targeted fatigue damage progression. It balances the trade-off between induced damage and energy production

under the given system boundaries and constraints of the application example optimally. It is possible to apply the method

to a real-world scenario when the system boundaries are well-defined and adapted to the specific use case. In a first step, the

provided planning strategy can be used in an open-loop scenario, where the turbine follows the planned setpoints. The open-815

loop approach can also be used, to extend the lifetime after the turbine has already been operating for a significant time span.

If the approach is applied during the design process, it could be used to save material through a less conservative design or

to optimize the power curve as part of the real-time controller. In a second step, the approach could be further developed into

reliability-adaptive control, where measurements of turbine operation are fed back into continuous re-planning, thus forming a

closed-loop controller as presented on the right-hand side of Fig. 1.820

6 Conclusion and Outlook

We presented a novel method for an optimal planning for the operation of wind energy systems over their entire lifetime.

This comprises a four-step process, of which the key is to formulate a mathematical optimization problem which optimally

distributes the available damage budget of a given failure mode over the total turbine lifetime. Within the introduction, the

objectives for this work were derived from the context of reliability(-adaptive) control. A planning, which pursues long-term825

objectives of operation, was identified as an important input. Our process is focused on the planning of the fatigue damage

progression of different wind turbine failure modes. As a basis, the theoretical background for the deterministic computation of

fatigue damage progression was introduced. The process is applied to an application example for demonstration, which serves

as a proof-of concept.

Each of the four steps is introduced providing some general background and subsequently applied to the demonstration830

example. Tho process starts by providing setpoints for the real-time controller of a wind turbine (step 1) and is continued by

their usage as an input for the creation of surrogate models for the induced damage (step 2). Those two steps were identified as
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required prerequisites for the new method VIOLA consisting of steps 3 and 4. In step 3, the mathematical nonlinear optimiza-

tion problem is built up and solved using the surrogates from step 2. Several Pareto-optimal operational strategies are found

as results. Finally, the results are selected based on an economic evaluation (step 4). The application example shows the high835

potential for an effective planning of damage progression in relation to energy production. By assessing several strategies based

on the economic value, the potential, and risk of such strategies become apparent at the same time. Many of the limitations,

assumptions and potential improvements were discussed in Sect. 5. The key is to use partial models within their assumptions

and limitations. They must be carefully examined and tested for each actual use case. Improvements, starting from the real-time

controller, over the damage calculation with surrogates up to long-term predictions, can be made in the respective domain.840

Within our future work, we want to focus on further development of the method VIOLA. Here, one can distinguish between

further improvement of the currently-used deterministic mathematical optimization and the use of probabilistic methods. For

the deterministic part, a first step would be an extension of the system boundaries for the operational planning of all turbines in

a wind farm at once. In addition, operational strategies need to be able to handle volatile market prices and further requirements

of future wind energy systems. This could be combined with control setpoints for uprating or power boost and for grid support.845

With all these aspects, we aim at integrating wind farm flow control considering electricity prices, as shown in Kölle et al.

(2022a), with our optimal planning of the damage progression to increase value of wind farms. Since the deterministic approach

for fatigue damage progression neglects the stochastic nature of system and component failures, probabilistic approaches to

define target reliability values for each wind turbine as a system can be employed. At first, probabilistic approaches can be

used for the selection of the best operational strategy by estimating the underlying uncertainty. Subsequently, it needs to be850

evaluated if and how the uncertainty assessment can be integrated into the optimization process, e.g., using robust optimization

methods. Stochastic methods can also be applied to integrate the uncertainties of the future market.

To apply the strategy during operation, coupling the planning stage with the operational stage is required. As a first step,

open-loop control can be implemented. To do so, the properties of a specific wind turbine or wind farm need to be identified

and coupled with the planning approach. Regular readjustment of the planning, as also indicated in Fig. 1, would allow for855

a simplified semi-continuous adaption of the system based on current system performance. In such a scenario, it needs to be

examined how short-term deviations from the planning, e.g., by reacting on electricity prices or simply on grid requirements,

can be tolerated while at the same time following the provided planning sufficiently well. The best time and way to readjust the

planning also need to be investigated. Connecting the operational planning with additional inputs like maintenance planning

would bring further advantageous to the approach. Real closed-loop behavior, where the planning provides setpoints for a relia-860

bility controller, has an even higher overall potential but also brings further challenges which were discussed in the introduction

already (Sect. 1.1).

In the future, the coupled operation of wind turbines or wind farms with power-to-X systems will become highly relevant.

This increases the need for adaptive operation because the damage progression of connected systems also needs to be consid-

ered and the question when to operate each system on what level needs to be answered. Therefore, such a coupled operation865

leads to a further expansion of the system boundaries and brings more complexity on different levels. For hydrogen production,
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the damage progression in an electrolyzer needs to be integrated in order to assess their reliability. It is also necessary to include

prices for selling hydrogen, and thus to serve a second market.

Concluding, the presented work provides an applicable and adaptable method for the long-term planning of wind turbine

operation. More research is needed to reduce uncertainty and consider multiple components and failure modes in the planning.870

Additionally, the integration with reliability-adaptive control offers further advancements to discover the full benefits for a

more sustainable wind farm operation.
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List of symbols

fm Failure mode

ūref reference operational strategy

τref reference lifetime

ūopt optimized operational strategy

ū arbitrary operational strategy

τ life free modified lifetime

∆τ time increment for long-term planning, e.g. 1 year

Y number of time increments

cext extension factor

cextfm (ū) extension factor for failure mode fm depending on operational strategy

τ life
fm (ū) chosen operation period for failure mode fm depending on operational strategy

∆t time increment for the definition of input condition, e.g. 1 hour

x ∈X external input conditions valid for a time of ∆t

x̄= {xj}B
x

j=1 set of input conditions with Bx bins

Bx number of bins for all input conditions

xj input conditions for bin j

w =Dim(X) number of independent wind conditions

Bx(w)

Number of bins defined for condition x(i)

u(x) ∈ U setpoints for real-time controller depending on x

ū= {u(xj)}B
x

j=1 definition for operational strategy as set of setpoints depending on x̄

p∆τ (x) relative frequency distribution of input conditions

hτ (x) absolute frequency distribution of input conditions for a time period τ

href reference absolute frequency distribution which is applied for planning of a site

Dfm(τref ; ū,hτ ) function for damage for a failure mode with variable τ

depending on the operating strategy and the frequency distribution as parameters

∆Dfm(ū,h∆τ ) annual or mean damage for strategy ū (time period ∆τ )

dfm(x,u) damage increment for failure mode fm (time increment ∆t)

P (x,u) energy increment under the input conditions (time increment ∆t)

E(τ ; ū,hτ ) function for energy production with variable τ

depending on the operating strategy and the frequency distribution as parameters

∆E(ū,h∆τ ) annual or mean energy for strategy ū (time period ∆τ )

ni Number of load cycles

Ni Maximum bearable number of load cycles
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Dult ultimate design load

m Wöhler coefficient

Lij Oscillation amplitude of a load cycle

Neq Number of equivalent load cycles

DELst(x,u) short term damage equivalent load

DEL(τ, ū) lifetime damage equivalent load

DELref reference damage equivalent load

z = (x,u(x)) input to surrogate model as combination of external conditions and control setpoints

ẑ = (x̂, û(x)) input sampling for the creation of surrogate models

fDEL(z) surrogate function for DEL of failure mode fm

fP (z) surrogate function for power production

Dtarget
fm target fatigue budget for failure mode fm

NPV (Y ) Net Present Value depending on year Y

CelPrice constant electricity price

COPEX constant annual costs for operation and maintenance

cWACC constant interest rate defined as weighted average costs of capital (WACC)

vamb ambient wind speed

v local wind speed

TI local turbulence intensity

θamb ambient wind direction

s turbine index in a wind farm

S number of turbines in a wind farm

fwake
s (v,θ) wake calculation function for a turbine s

Bv number of bins for local wind speed

BTI number of bins for local turbulence intensity

M generator torque

k generator torque coefficient

Mr rated generator torque

ωr rated generator speed

δP percentage power factor

β pitch angle

λ tip speed ratio

Pr rated power

δω percentage generator speed factor
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