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Abstract. In contrast to the multitude of models in the literature for the calculation of rolling contact fatigue in rotating bear-

ings, literature on oscillating bearings is sparse. This work summarizes the available literature on rolling contact fatigue in

oscillating bearings. Publications which present various theoretical models are summarized and discussed. A number of errors

and misunderstandings are highlighted, information gaps are filled, and common threads between publications are established.

Recommendations are given for using the various models for any oscillating bearing in any industrial application. The appli-5

cability of these approaches to pitch and yaw bearings of wind turbines is discussed in detail.

1 Introduction

While most bearings in industrial applications rotate, there are some notable ones which are required to oscillate. These include

bearings in helicopter rotor blade hinges (Tawresey and Shugarts, W. W., Jr., 1964; Rumbarger and Jones, 1968), cardan

joints (Breslau and Schlecht, 2020), offshore cranes (Wöll et al., 2018), and blade and yaw bearings in wind turbines, shown10

in Fig. 1. Blade bearings turn (“pitch”) the blade around its longitudinal axis to change the blade’s angle of attack. Their

movements in modern wind turbines mostly consist of small (typically1 φ < 10◦, often as small as φ < 1◦, cf. Stammler et al.

(2020)) oscillations with the occasional 90◦ movement to bring the turbine to a halt. Similarly, yaw bearings rotate the turbine

to face into the wind. Their movements are typically fewer and, depending on the site and the yaw system design, longer (< 10◦

during power production but potentially more while idling)while they .
::::
Yaw

::::::::::
movements do not tend to become as low (φ < 1◦)15

as pitch angles (Wenske, 2022) .

Rolling contact fatigue is a possible failure mechanism of bearings. It is caused by the fact that, even under a constant

external load, movement of the bearing (rotation or oscillation) causes movement of the rolling bodies (balls or rollers) relative

to the bearing rings. If the rolling bodies transmit load to the raceway, their movement leads to stress cycles, because every

location of the raceway changes from a loaded state while it is in contact with a rolling body to an unloaded one while it is20

not (cf. Fig. 6, left hand side, for a typical case in a rotating bearing). The resulting stress amplitudes can, over time, cause

fatigue damage on the raceways, or, less frequently, the rolling bodies. The driving stress for rolling contact fatigue is typically

considered to be shear stress. Fatigue can be initiated from shear stress below the surface of the raceway (subsurface fatigue)

1See Fig. 3 for amplitude definition.

1



and from shear stress at its surface (surface fatigue) (Lundberg and Palmgren, 1947; Ioannides et al., 1999; Harris and Kotzalas,

2007; Zaretsky, 2013).25

Rolling bearings under oscillatory movements are commonly associated with wear damage to the raceways and rolling bod-

ies (Grebe, 2017; Stammler, 2020; Behnke and Schleich, 2022; FVA, 2022b; de La Presilla et al., 2023). Small oscillation

amplitudes are generally seen to be a risk factor for wear, particularly in grease lubricated bearings (Behnke and Schleich,

2022; Stammler, 2020; Grebe, 2017; FVA, 2022b). However, wear can also be prevented by a number of measures (Schwack,

2020; Wandel et al., 2022) and it is definitely possible for rolling contact fatigue to occur without wear2 even for oscillating30

amplitudes as low as θ = 1◦ (φ= 2◦). Rolling contact fatigue, on the other hand, is always a possible failure mechanism even

in a properly designed bearing (Sadeghi et al., 2009), except for very low loads (Ioannides et al., 1999), at which there is

dispute about its occurrence (Zaretsky, 2010). In many cases, such as large oscillation amplitudes, or the use of oil lubrica-

tion, wear is unlikely to occur and thus, rolling contact fatigue becomes a more important focus. Moreover, depending on its

severity, wear in itself doesn’t necessarily cause a complete failure of the bearing but it can also accelerate rolling contact fa-35

tigue FVA (2022a, b)
:::::::::::::
(FVA, 2022a, b). Engineers should therefore consider both wear and rolling contact fatigue as a possible

failure mechanism
::::::
possible

::::::
failure

:::::::::::
mechanisms. This paper reviews calculation approaches to determining the rolling contact

fatigue life of oscillating bearings. There are a number of approaches for rolling contact fatigue life calculation in the litera-

ture, see Sadeghi et al. (2009) and Tallian (1992) for an overview, but they are mostly intended for rotating applications. While

any of these could in principle be changed to be used in oscillating applications, this paper collates all approaches that have40

explicitly been developed for oscillating bearings in general, or that are concerned with specific bearings which oscillate, such

as pitch bearings.

As part of the introduction, phenomena which are present in oscillating bearings but not in rotating ones are discussed in

Sec. 1.1. An overview of calculation approaches is given in Section 2. It includes three different commonly used ISO-based

factors (Harris, Rumbarger, and Houpert), all of which have been designed for oscillations with a constant amplitude, and45

a number of other approaches described in the literature. Section 3 gives an overview of experimental results and Section 4

then discusses when to apply these methods, with an example explaining their applicability to pitch and yaw bearings, which

oscillate with a varying amplitude.

1.1 Operational conditions of oscillating bearings

Most operating conditions of oscillating bearings are similar to those of rotating bearings, and much has been written about50

these conditions. Similarities include the load distribution among the rolling elements, which tends to spread as a function

of the radial and axial load (Harris and Kotzalas, 2007) and the bending moment, if present. Individual rolling elements

experience point or line contacts, originally described by Hertz for balls (Hertz, 1882) and later described by other methods

for rollers (Reusner, 1977; de Mul et al., 1986), resulting in contact pressures on inner and outer ring that tend to be different.

The raceways experience cyclic loading, which can cause rolling contact fatigue, often assumed to be caused by shear stress55

in particular (Lundberg and Palmgren, 1947; Harris and Kotzalas, 2007). There
:
In
:::::
both

::::::::
oscillating

::::
and

::::::
rotating

::::::::
bearings,

:::::
there

2Discussed in Sec. 3 of this review. The references for which this statement applies use oil lubrication.
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Figure 1. Wind turbine pitch bearing (green, also called blade bearing) and yaw bearing (blue). ©Fraunhofer IWES/Jens Meier

can be grease and oil lubrication present (Hamrock et al., 2004), raceway surface quality and lubrication contamination affects

the bearing (Ioannides et al., 1999), and so on.

Since this review focuses on oscillating bearings, some differences between rotating and oscillating bearings are, however,

worth pointing out. One main difference is simply the travel that a bearing performs when it oscillates as compared to when it60

rotates: For an oscillation as depicted in Fig. 3, an oscillation arc A is covered. This is typically smaller than the 360◦ covered

during a rotation. Therefore the life of an oscillating bearing, if measured in oscillations, tends to be bigger than that that of an

otherwise identical bearing that rotates, measured in revolutions.

One commonly discussed difference is the fact that, for small oscillation angles, only
:
a
:
part of the raceway may be loaded

:
is
::::
ever

::::::
loaded

:::::
while

:::
the

:::::::::
remaining

::::
part

::
is

::::::
always

::::::::
unloaded. For the bearings depicted in Fig. 4, the bearing on the left side65

only sees cyclic loading on selected locations of its ring, whereas the bearing on the right side sees loading all over its ring,

which is distributed unevenly. In Fig. 2, the blue oscillation pattern (“stochastic”) causes the entire ring to experience an uneven

number of load cycles, depicted in the right of the Figure. The red pattern on the other hand leads only leads to stress cycles

in selected locations, exactly like the left part of Fig. 4. All of the aforementioned cases are fundamentally different from a

rotating bearing, in which for both inner and outer ring, every location of a ring experiences the same amount of stress cycles70

if the bearing is rotated for long enough.

Although the stress cycles are evenly distributed on each ring of a rotating bearing, the load is not. It is typically assumed to

be constant with respect to one ring, the so-called stationary ring, while the other one rotates relative to it. If the load distribution

is uneven, such as the load distribution shown in the top of Fig. 5, this causes the stationary ring to always experience its highest

load in the same location. The rotating ring, on the other hand, will have all of its circumferential locations see stress cycles as75

shown in the bottom of Fig. 5, with only a time shift between the loading of each circumferential location of that rotating ring.
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For an oscillating bearing, the stationary ring is loaded similarly (identical, if one ignores the fact that there is a discrete amount

of rolling elements), but the rotating ring is loaded differently over time: All of its circumferential positions can experience a

very different stress cycle history as shown in Fig. 5 for a small and large oscillation amplitude θ.

From a viewpoint of rolling contact fatigue, it is also noteworthy that the stress cycles experienced by the raceway are not80

identical in an oscillating and a rotating bearing. For a rotating bearing, the left of Fig. 6 shows the typical type of shear stress

loading history as assumed in the literature (Lundberg and Palmgren, 1947; Harris and Kotzalas, 2007). The center figure

shows that at reversal points of the oscillation, the amplitude of the shear stress can be lower than in a rotating bearing (blue

case), and thereafter, the sign of the shear stress cycle flips (red case). For small oscillations, the right part of Fig. 6 shows that

the oscillation amplitude of a rotating bearing may even never be reached.85

Aside from these effects that concern the stress cycle history and its distribution over the circumferential locations of inner

and outer ring, lubrication is well known to behave differently in an oscillating bearing as compared to a rotating one, causing

a time- and movement-dependent film thickness (Venner and Hagmeijer, 2008). As discussed above, this can cause wear if
:::
the

:::::::
lubricant

::::
film

::::::::
thickness

::
is bad enough, but even if no wear occurs, different lubricant film thickness than in a rotating bearing

may be present.90

2 Existing calculation approaches

There are a number of publications on the issue of rolling contact fatigue in oscillating bearings. Most of them are based on

ISO (ISO, d, c, a, b) or closely related to the model used for ISO. These publications are summarized in Sec. 2.1. Several

approaches that have little relation to ISO and its foundations have also been proposed, and are discussed in Sec. 2.2. Some of

the ISO-related methods are intended for constant oscillation amplitudes as depicted red in Fig. 2, where an oscillation with a95

constant amplitude about a position of 0◦ is shown3, while some other ISO-related methods and all non-ISO related methods

are intended for arbitrary movement as depicted blue in Fig. 2.

2.1 ISO-related approaches

Fundamentally, rolling contact fatigue in oscillating applications is caused by a rolling element repeatedly rolling over locations

on a raceway, as is the case in rotating applications. For this reason, many researchers have sought to adapt the well-known100

ISO approach for rolling contact fatigue calculation to oscillating applications. All of these approaches are hence characterized

by the fact that they are based on Lundberg and Palmgren (1947), who proposed that

ln
1

S
∝ τ c0N

e

zh0
V, (1)

3Rolling contact fatigue is driven by relative movement of one of the rings to the other, which means that the mean position of the oscillations in Fig. 2

only moves the position where load cycles occur on the raceway but has no effect on the life of the bearing. The critical difference between the blue and red

lines is their relative movement, not their absolute position.
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Figure 2. Load cycles resulting from oscillation and stochastic movement in a bearing with Z = 15 rolling elements.

where S is the survival probability, τ0 is the maximum orthogonal shear stress and z0 its depth under the raceway surface at

which τ0 occurs, N is the number of load cycles (rollovers), and V is the loaded volume (Lundberg and Palmgren, 1947, 1952;105

Harris and Kotzalas, 2007; Zaretsky, 2013).

Lundberg and Palmgren used Eq. 1 to derive their well-known life equation L10,rev = (C/P )p, with dynamic load rating C

and dynamic equivalent load P , which remains the basis for ISO 281 (ISO, d) and ISO/TS 16281 (ISO, c) as well as countless

other publications. They assumed the bearings to be rotating. L10,rev then gives the number of millions of revolutions at which

10% of bearings are expected to suffer the first visible raceway damage4, also called “basic rating life”. In principle, their110

derivation can be adapted for use in oscillating movement as well. This section discusses publications which either apply or

derive such adaptations of the original Lundberg-Palmgren approach, or approaches very similar to it but also based on Eq. 1.

Most of these approaches derive corrective factors aosc that are intended to be applied to a life measured in revolutions and

convert it into a life measured in oscillations, i.e.,

L10,osc = aoscL10,rev, (2)115

where L10,osc is the life measured in oscillations and L10,rev is the life in revolutions. This equation applies to all so-called

“oscillation factors” in this paper. For small oscillation amplitudes, aosc typically becomes very large, with aosc commonly

(but not always) being in the range of 1...1000. All factors a in this paper are instances of aosc as shown in Eq. 2.

There are two common definitions of an oscillation “amplitude”; this paper mainly uses θ as defined in Fig. 3. Some equations

are also given in terms of the double amplitude φ if there are differences to the equation in terms of θ.120

4Or rolling element damage as per ISO 281(ISO, d); strictly speaking this is not included in the derivation by Lundberg and Palmgren (1947) but ISO

included it in the definition of life, presumably because it rarely occurs anyway.

5



2.1.1 Harris: Traveled distance

The Harris factor5 is given in various editions of Rolling Bearing Analysis by Harris (Harris, 2001; Harris and Kotzalas, 2007).

It considers the effect whereby an oscillating bearing will, depending on the oscillation amplitude, experience a different

number of stress cycles on the rings than a rotating bearing. The factor can be interpreted as a conversion of traveled distance

into an equivalent number of rotations. For the angle definition in Fig. 3, the total traveled arcA during one oscillation amounts125

to A= 4θ (= 2φ). The Harris factor is then simply

aHarris =
360◦

A
=

90◦

θ

(
=

180◦

φ

)
. (3)

Thus, taking an exemplary bearing that oscillates with an amplitude of θ = 10◦ and that, if it were rotating, would have a life

of L10,rev = 1 million revolutions, and applying Eq. 2 and Eq. 3 gives a life of L10,osc =
90◦

10◦L10,rev = 9million oscillations

according to the Harris factor. This is because it will execute an arc of A= 40◦ per oscillation, which is considered as 1/9th130

of a rotation by the Harris factor.

Several references (e.g., IEC (2019)) recommend the use of a so-called load revolution distribution (LRD) or load duration

distribution (LDD) for rotating bearings. LRDs sum the number of revolutions at a given load. It is possible to use this ap-

proach for oscillating bearings, too, if oscillations are summed and equated to one revolution for every 360◦ of movement.

Doing so is in principle identical to using the Harris factor, if the Harris factor is used to sum up movement independently at135

each of the same load cases. For a constant rotational speed, LDDs are identical to LRDs; for varying speeds they are merely

an approximation.

The Harris factor can be seen as a simplification that neglects various effects which may occur in oscillating bearings as

opposed to rolling ones. In particular, it does not take account of the fact that the load distribution on the moving ring over time140

is different in an oscillating bearing, a fact originally taken into account by Houpert (1999), nor that only part of the raceway

may be loaded6, originally described by Rumbarger and Jones (1968). A combination and correction of some of the errors

in the two aforementioned approaches has been proposed by Breslau and Schlecht (2020) as well as by Houpert and Menck

(2021). These approaches are discussed in the following sections.

2.1.2 Rumbarger: Partially loaded volume145

The Rumbarger effect7 was originally introduced by Rumbarger and Jones (1968) as early as 1968. This original publication,

which has been described as “complex and impracticable” (Breslau and Schlecht, 2020), was then simplified in Rumbarger
5This approach has also been referred to as “Harris 1” in some publications (Schwack et al., 2016; Schmelter, 2011; FVA, 2021; Wöll et al., 2018) to

distinguish it from the Rumbarger effect (cf. Sec. 2.1.2), which they falsely attribute to Harris, thus denoting it ÔÇ£Harris 2ÔÇØ.
6More generally: that there may be a difference in the number of stress cycles for different circumferential locations of the rings, as shown in Fig 2, right.

However, Rumbarger only considered differences caused by the fact that some parts of the raceway are unloaded in his publications.
7This approach has also been referred to as “Harris 2” in some publications (Schwack et al., 2016; Schmelter, 2011; FVA, 2021; Wöll et al., 2018) due

to Harris’s authorship of the NREL DG03 (Harris et al., 2009). Since the earliest publications of this approach in the literature are by Rumbarger, and since

Rumbarger was a co-author of NREL DG03, he is credited with the idea here.
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Figure 3. One oscillation covering arc A= 4θ (= 2φ) with oscillation amplitude θ (and double amplitude φ) as defined in this paper.

(2003) and NREL DG03 (Harris et al., 2009), but without a derivation of the simplified approach8. Each of these publications

introduces an adjusted load rating9 Cosc for oscillating bearings, and using this in Losc = (Cosc/P )
p gives the life in oscilla-

tions. It is possible to introduce an oscillation factor10 aosc that produces identical results to the adjusted load rating Cosc, cf.150

App. A or Wöll et al. (2018). In Appendix A of this paper, the authors include a derivation of the simplified approach and in

Appendix B a discussion of inaccuracies and assumptions contained therein.

Aside from the effects also considered by Harris, the Rumbarger effect is based on the assumption that for small oscillation

amplitudes, only a part of the raceway may ever be loaded. The loaded volume V of Eq. 1 and its load cycles N are then

adjusted accordingly, depending on the given oscillation amplitude11. Rumbarger does so by defining the angle θcrit (φcrit) as155

θcrit =
360◦

Z (1± γ)
,

(
φcrit =

720◦

Z (1± γ)
,

)
(4)

where the minus (−) sign refers to the outer raceway and the plus (+) one
:::
sign

:
to the inner raceway, and γ is a common

auxiliary factor used in rolling bearing calculations related to the geometry of the bearing12. θcrit is the oscillation amplitude

required to move a rolling element from its initial location on a raceway to that of the next rolling element. Figure 4 shows

stressed volumes above and below the critical angle on an inner raceway. The Rumbarger factor as recommended by the authors160

8Breslau and Schlecht (2020) give a more appropriate treatment of this effect by introducing the factor aosc,2 with their Eq. 19, which does not contain the

simplifications taken by Rumbarger in his simplified approach. This equation was rearranged (without simplifications, but to obtain a less cluttered equation)

by Houpert and Menck (2021) into a corrective factor called fθ_crit_i,o in their Eq. 45, here used for the recommended approach. Although Rumbarger uses

an adjusted load rating while the other authors use corrective factors, all of these approaches attempt to consider the same effect. The differences arise only

because of simplifications in Rumbarger’s derivation, cf. Appendices A and B.
9Called Cosc in Rumbarger and Jones (1968), Cao and Cro for axial and radial bearings in Rumbarger (2003), and Ca,osc in Harris et al. (2009).

10Called aprt in App. A and aoscnHa2 in Wöll et al. (2018).
11The Harris factor, cf. Eq. 3, does not consider that only part of the raceway is loaded for small oscillation angles. Since it merely adjusts the standard

(rotation-based) calculation approach by the effect of the difference in traveled distance, it implicitly assumes the same loaded volume as in a rotating bearing.
12It is defined as γ = D cosα

dm
, where D refers to the rolling body (ball or roller) diameter; dm gives the so-called pitch diameter, i.e., the mean of the inner

and outer raceway diameters; and α is the contact angle, where α= 0◦ is a purely radial bearing and α= 90◦ is a purely axial one.
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of this paper is given by13 (see Tab. A1 for e)

aRumbarger =





(
θ

θcrit

)1−1/e

· aHarris for θ < θcrit,

aHarris for θ ≥ θcrit.
(5)

For θ < θcrit, only part of the raceway volume is loaded during operation. For this case, Rumbarger (2003) and Harris et al.

(2009) give a load rating that is derived in Appendix A. This derivation makes some simplifications, and Appendix B shows the

errors that occur when using Rumbarger’s derivation. If applied correctly, the factor (or load rating) should shorten the life of a165

bearing as compared to Harris14, though the simplified factor (or load rating) sometimes increases the life for no other reason

than the simplifications made in its derivation. The form of Eq. 5 is thus based on Appendix A without any simplifications.

Note that, since θcrit differs between the inner and outer races, so does aRumbarger. Amplitude θcrit of the outer raceway may

be used if a more conservative estimate for the entire bearing is desired15.

For values of θ ≥ θcrit, the simplified approach published in Rumbarger (2003) and Harris et al. (2009) is identical to using170

the Harris factor. This, too, is merely an approximation: Strictly speaking, the life of an unevenly stressed volume (as illustrated

in Fig. 4, right hand side) is not the same as that of an evenly stressed volume which occurs in a rotating bearing16 (identical to

an oscillating bearing with θ = θcrit) if the total movement of both bearings is the same. Appendix C proposes an extension of

the Rumbarger factor for such situations, but also concludes that the difference in the factor as compared to aHarris is almost

negligible in most cases. The factor chosen for Eq. 5 thus follows the above-mentioned publications.175

The Rumbarger effect does not consider the effects of an uneven load zone on the moving ring, which are covered by

Houpert. Moreover, it assumes that no slippage of the rolling element set occurs, which would move load cycles to occur on

different positions of the ring circumference. For a properly installed bearing, Rumbarger and Jones (1968) demonstrated that

this assumption can hold true.

2.1.3 Houpert: Load zone effects on the moving ring180

The Houpert effect was originally covered by Houpert (1999), with a small error in its derivation. This was corrected by Breslau

and Schlecht (2020) as well as Houpert and Menck (2021)17. Aside from the effects also considered by Harris, the Houpert

13Eq. 5 is identical in terms of φ.
14In contrast to the Harris effect, with the Rumbarger effect two competing effects ultimately cause a reduction in life. The loaded volume is lower, which

increases life; but the load cycles on that small volume which is loaded are higher, thereby decreasing life. The second effect is stronger and reduces the overall

life of the bearing, cf. Eq. A3.
15Since the traveled distance of a rolling element contact in the rolling direction x is identical on the inner and outer raceways, but the outer raceway’s

circumference is longer than the inner raceway’s circumference for contact angles α ̸= 90◦, the Rumbarger effect is relatively more detrimental to the outer

race: It creates a larger deviation from the loaded volume of a rotating bearing than on the inner ring.
16This follows from Eq. 1, where the volume V has exponent 1 and the stress cycles N have exponent e ̸= 1.
17The two approaches are not completely identical but very similar: Breslau and Schlecht (2020) employ a thorough calculation of the effect only for

oscillation amplitudes θ > θcrit, cf. Section 2.1.2. For a circumferentially loaded ring with oscillating motion, they thus introduce the load integrals called

Jθa,ψ and Jθa in their Eqs. 32 and 33. Houpert and Menck (2021) derive an equivalent load calledQeq(ψ) in their Eq. 35. This term differs from that derived

by Breslau and Schlecht (2020) because they (Breslau and Schlecht) use a calculation approach resembling that of Lundberg and Palmgren (1947) and ISO

(d), whereas Houpert and Menck (2021) use an approach close to that used by Dominik (1984). The approach used by Dominik is very similar to that of

8



2θ 2θ

θ<θcrit θ>θcrit

Figure 4. Rumbarger effect: stressed volume on the inner ring as a function of inner ring angle θ relative to θcrit = θcrit,i, for θ < θcrit and

θ > θcrit. Yellow volume is stressed twice per oscillation cycle (cf. Fig. 3), red volume is stressed four times per oscillation cycle. Black

volume is never stressed. Only stress cycles for the inner ring are shown.

effect considers that the stress cycle history of the moving ring will be different for an oscillating bearing than for a rotating

one. This is illustrated in Fig. 5 for an exemplary element on the moving ring.

In the standard life calculation as pioneered by Lundberg and Palmgren (1947) or used in ISO 281 (ISO, d), the load zone185

is assumed to be constant relative to one ring (called the stationary ring, typically the outer ring). From the viewpoint of

Houpert’s considerations, movement of the other ring (rotating or oscillating, typically the inner ring) then does not change

the load distribution of the stationary ring’s raceway. This ring is loaded identically for rotating or oscillating operation. Thus,

aHarris gives the correct life of the stationary ring according to Houpert’s derivation.

For the moving ring, however, the Houpert effect predicts a different value to aHarris. Since Harris merely adjusts the standard190

(rotation-based) calculation approach by the effect of the difference in traveled distance, he implicitly assumes that the effect of

the load zone is the same as that in a rotating bearing18. Thus, aHarris implicitly assumes an element as depicted in blue in Fig. 5

moves through the entire load zone once for each 360◦ of movement19. However, in reality this only applies for oscillations

where θ = i · 180◦ (φ= i · 360◦), i= 1,2,3..., because for these values of θ each element will move around the entire raceway

2 ·θ = i ·360 times per oscillation (φ= i ·360 times per oscillation). For very small oscillations θ→ 0◦ ( φ→ 0◦) on the other195

hand, the elements increasingly converge toward the stress cycle history seen in a stationary ring20, see Fig. 5. The Houpert

Lundberg and Palmgren, but uses different sets of equations. These two approaches ultimately give almost identical results if similar empirical exponents (cf.

Table A1) are used, but details differ, hence the derivation by Houpert and Menck (2021) includes a term called H that cancels out whereas that by Breslau

and Schlecht (2020) does not.
18As does Rumbarger, who uses the same equivalent load for an oscillating ring as for a rotating one in Rumbarger and Jones (1968), and also in Rumbarger

(2003), cf. App. A.
19360◦ of movement consisting, for example, of 9 oscillations with θ = 10◦.
20In Houpert’s model the stress cycle history of an oscillating ring converges, for small oscillations, against that of a stationary ring in both a rotating and

oscillating bearing. These two cases (a stationary ring in a rotating and oscillating bearing) can be considered identical here because Houpert’s effect alone,

unlike Rumbarger’s, does not consider that there are a discrete number of rolling elements in the bearing for the circumferential distribution of load cycles.

Rather, he assumes all circumferential locations to experience the same number of stress cycles (with differences in load cycle magnitude only), as is common

in a rotating bearing, and integrates over a continuous load distribution around the circumference. This is standard practice for the life calculation of typical

rotating bearings and as such also employed in ISO 281.
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factor is generally at or in between the following extreme cases

aHoupert =





aHarris for θ = i · 180with i= 1,2,3, . . .

or: purely axial load (ε→∞)

aHarris in a bearing with both rings for θ→ 0.

stationary relative to load21

(6)

In between these extreme cases, detailed calculations have to be performed, curve fits of which can be found in Houpert and200

Menck (2021). They depend on a value ε, a measure of the load zone size22. If applied correctly, the Houpert factor will either

be identical to aHarris in the above given cases or shorten the life of the bearing in all other cases23. The Houpert effect is most

noticeable for narrow load zones (small ε) and small oscillation angles θ. Houpert and Menck (2021) find deviations which

differ by up to 22% from those given by the Harris factor for very narrow load zones and small oscillation amplitudes using

ISO exponents (cf. Table A1) and larger deviations of up to 52% using exponents given by Dominik (1984). This is due to205

Dominik using a higher Weibull slope of e= 1.5. Houpert and Menck (2021) give curve fits to calculate the Houpert factor24

for ball and roller bearings. If ISO/TS 16281 (ISO, c) is used for the life calculation, the extreme case of small theta (θ→ 0)

can be taken into account by assuming both rings are stationary relative to the load and using aHarris.

Strictly speaking, the Houpert effect is not independent of the Rumbarger effect, but for its derivations in Breslau and

Schlecht (2020) and Houpert and Menck (2021) it is assumed to be.210

2.1.4 Other ISO-related approaches and further literature

The above three factors have been covered in a number of publications25, and Breslau and Schlecht (2020) as well as Houpert

and Menck (2021) present the most up-to-date models which include them. Besides the above given publications, there are a

number of additional approaches and applications of the above methods. Since all of the above cases are intended for constant

21Both rings being stationary relative to load slightly reduces the life as compared to standard calculations (in which one ring is assumed to be rotating)

because it increases the equivalent load of the ring which would otherwise be assumed to rotate. It does not affect the factor aHarris.
22Common formulae for ε in the literature tend to be based on small bearings where the rings can be assumed to be stiff. For bearings with large deflection

of the rings, based on e.g., FE simulations, different formulae for ε must be used to approximate it, see Houpert and Menck (2021). For multi-row bearings,

each row’s ε must be determined independently. Either the life of each row is then calculated independently and combined into a total bearing life, or the

lowest ε value is taken as a conservative measure.
23It shortens the life in all other cases because, from a viewpoint of rolling contact fatigue, the even distribution of loads over time that is present on a rotating

ring is the best case scenario for damage accumulation of a ring. Any oscillation that deviates from this loading causes increasingly more concentrated damage

accumulation on selected locations of the ring. Concentrated loading (as present, for instance, on the stationary ring in a typical bearing in most industrial

applications) causes a higher equivalent load, and thus a lower life, if all else is equal, than the loading of a ring that rotates relative to the load (Lundberg and

Palmgren, 1947; ISO, c). Note that the Houpert effect is, however, expressed through a factor here, rather than by changing the equivalent load.
24The reference calls the Houpert factor aosc_..., and includes in it a corrective factor for the Rumbarger effect, denoted fθ_crit. If only the Houpert factor

is desired, fθ_crit = 1 can be used for the equations in the reference.
25A comprehensive list including all publications with relation to the factors, to the best knowledge of the authors, includes: The factors are derived in

Rumbarger and Jones (1968); Houpert (1999); Rumbarger (2003); Harris et al. (2009); Breslau and Schlecht (2020); Houpert and Menck (2021), and they are

used or discussed in some form in Schmelter (2011); Schwack et al. (2016); Münzing (2017); Wöll et al. (2018); FVA (2021); Menck (2023); Hwang (2023).
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Figure 5. Houpert effect: load history of an exemplary element as a function of movement relative to load zone. Small θ are similar to no

movement, large θ are similar to rotation.

oscillation amplitudes, some alternative approaches have been developed which are also intended to be usable for stochastic215

movement, which leads to different load cycles26 on the bearing rings as depicted in Fig. 2, blue.

Menck (2023) generalized the Lundberg-Palmgren method to a discrete model (“The Finite Segment Method”) that can be

applied to arbitrary movement. The model applies Eq. 1 to segments of a bearing. The movement of the balls relative to the

inner and outer rings for each discrete simulation point are analyzed for potential stress cycles on the respective rings. For each

stress cycle N , the variables τ0, z0, and V in Eq. 1 are then directly evaluated and the corresponding damage according to220

26The term “load cycles” is used here synonymously with “rollovers”. Load cycles in Fig. 2 were determined by using the inner ring angle θi as depicted on

the left-hand side of Fig. 2 (outer ring assumed stationary) to calculate the movement of the cage θc = 0.5 · θi · (1− γ). This was then used to obtain relative

cage movement on the inner ring θrel,i = θi − θc. A change in θrel,i is then considered a load cycle on the respective position where it occurred.
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the Palmgren-Miner hypothesis is calculated. The individual survival probabilities of all segments can then be combined into

raceway lives, which can be combined into a total bearing life. The model thus encompasses previous use cases and includes

the Rumbarger and Houpert effect, but can also be used for arbitrary movement and load histories. Menck (2023) shows the

model to produce effectively identical results to ISO 281 for simple use cases which are defined by assumptions identical to

those of Lundberg and Palmgren (1947), and reproduces results of oscillating bearings from Houpert and Menck (2021), but225

also applies the model to a rotor blade bearing of a wind turbine.

Hai et al. (2012) propose a generalization of ISO 281 specifically for slewing bearings. They divide the bearing into several

segments in a similar way to Menck (2023), but unlike Menck’s, their segment width depends directly on the oscillation am-

plitude. They also make a number of simplifications not made by ISO 281 or Menck27. Their model can be used for individual

operating conditions with either rotation or a constant oscillation amplitude; however, several conditions with different ampli-230

tudes may also be combined using equivalent loads and equivalent oscillation amplitudes for the segments. They compare their

results to an exemplary calculation of NREL DG03 and conclude that their somewhat similar results validate the method. The

simplifications make it impossible to establish whether their method is actually more accurate than simply using the oscillation

factors given above.

Schwack et al. (2016) do not present a new model but compare factors from Harris, Houpert, and Rumbarger. They also235

include an approach denoted “ISO”, which is identical to that of Harris. Having published in 2016, the authors also use

the erroneous model of Houpert (1999) that was later corrected (cf. Sec. 2.1.3). Moreover, their application of the Houpert

factor is not recommended for double-row bearings with large structural deformation28. Their evaluation of the Rumbarger

factor29 results in a longer life than using the Harris factor30. As explained in Sec. 2.1.2, this increase only occurs because

of simplifications in the derivations performed by Rumbarger but for no physical reason, since the effects considered should240

shorten the life, not prolong it. The relatively large deviations from aHarris shown in Schwack et al. (2016) are therefore both

due to inaccuracies in the factors that were used.

Wöll et al. (2018) present a “numerical approach” to calculate the life of a bearing subjected to arbitrary time series. Their

model evaluates the life of the whole31 bearing at every discrete time step of the simulation and then calculates the inferred

damage according to Palmgren-Miner for every time step, based on the movement that occurred. The model is shown to be245

27Because their approach is intended for slewing bearings, they assume the contact ellipse dimensions a and b as well as z0 to be identical on the inner and

outer rings; they approximate z0 ≈ 0.5b and τ0 ≈ 0.25Pmax, which is only completely correct for roller bearings but not ball bearings; they assume the cage

moves at half the speed of the rotating ring, which is only true if a purely axial contact of α= 90◦ is present; and they assume the critical angle to be identical

for the inner and outer rings, using θcrit = 360◦/Z for both rings.
28The publication in question uses a single ε value for a large four-point slewing bearing that is based on deformations in Finite Element (FE) simulations.

The purpose of ε in Houpert’s approach lies in its ability to describe the load zone of a race. Thus, each inner-outer raceway pair should get an ε value

for a proper calculation, as each of them may have a different load zone. Moreover, determining ε based on deformations that occur in FE simulations can

be misleading for large slewing bearings, since they tend to have a lot of structural deformation, but common equations given for ε are mostly based on

assumptions of rigid races. Various suggestions for the derivation of ε, including ones for large slewing bearings, can be found in (Houpert and Menck, 2021).
29Called “Harris 2” in the reference.
30Called “Harris 1” in the reference.
31The fact that Wöll et al. use the whole bearing life is the critical difference to Menck’s Finite Segment Method, cf. Menck (2023), Sec. 2.2.
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identical to a bin count using the Harris factor, cf. Sec. 2.1.1, for simple sinusoidal movements32. For a stochastic time series,

their numerical approach produces a shorter life than either Harris’s33, Rumbarger’s34, or Houpert’s approaches applied to a

bin count. Because Wöll et al. (2018) published in 2018, they still use the erroneous Houpert factor from 1999 rather than more

recent results, cf. Sec. 2.1.3, hence they obtain a longer life with the Houpert factor even though there is no physical reason for

such an increase. Furthermore, they compare a bin count using the approaches of Harris, Rumbarger, and Houpert and obtain250

results that are higher than those of the numerical approach with all three bin count approaches including Harris, and conclude

that using these bin counts “overestimates the lifetime for non-sinusoidal loads and speeds”. It is not possible to assess the

accuracy of this statement because their model is based on the life of the whole bearing and thus also includes simplifications

as pointed out by Sec. 2.2 of Menck (2023). They also produce a simple method to calculate an equivalent load for oscillating

loads but it fails to take local effects into account as accurately as Menck (2023).255

2.1.5 Further effects during oscillation

Further effects occur during oscillation which are not considered by any of the above approaches.

When a rolling element passes completely over a position on the raceway, the orthogonal shear stress below the surface

changes from maximum (+τ0) to minimum (−τ0) (Lundberg and Palmgren, 1947; Harris and Kotzalas, 2007). This is the

typical stress cycle assumed in all ISO-based approaches mentioned here; it is depicted in Fig. 6 on the left. This stress260

cycle history behaves different in oscillating bearings: For raceway positions close to the reversal points of the oscillation,

the direction of the load cycles changes; this phenomenon is depicted in Fig. 6 (oscillation, red case). The shear stress of the

volume close to the reversal points does not fully span from +τ0 to −τ0 but is stopped prematurely; this too is depicted in Fig. 6

(oscillation, blue case). Similarly, for oscillations with small amplitudes, the stress range does not extend to the maximum and

minimum of a passing contact in rotation, see Fig. 6 (small oscillation). None of these effects is considered in the ISO-based265

approaches (all approaches covered in Sec. 2.1) named herein.

Lubricant film quality is well known to have a significant impact on rolling contact fatigue life (Ioannides et al., 1999; Harris

and Kotzalas, 2007). The thickness of the lubricant film is affected by oscillation, and may even become so poor that wear

rather than fatigue becomes the dominant damage mechanism. Numerous studies investigate wear phenomena in oscillating

bearings; for a review, see de La Presilla et al. (2023). As far as the authors are aware, there are no simple models to estimate270

the thickness of the lubrication film as a function of the oscillation and thus determine its potential effects on rolling contact

fatigue. Most bearings are grease-lubricated (Lugt, 2009), including most pitch and yaw bearings (Becker, 2011; Wenske,

2022). Grease consists of, among other things, thickener and base oil (Lugt, 2009). Film thickness estimation would likely

become even more challenging with grease lubrication due to the effect of the thickener. Therefore, the effect of lubrication is

32Even though they only show equivalence for sinusoidal movements, one can conclude that their numerical approach is equivalent to usage of the Harris

factor for any type of movement if one evaluates the life and the corresponding movement of the bearing as shown in Sec. 2.1.6 with each time step used as a

bin, and uses only the Harris factor.
33Called “Harris 1” in the reference.
34Called “Harris 2” in the reference.
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Figure 6. Left: load cycle as assumed by all ISO-based approaches; other examples: further types of load cycles not considered in ISO.

mostly ignored in all models for rolling contact fatigue calculation in oscillating bearings of which the authors are aware. This275

statement also applies for the non-ISO based approaches discussed in Sec. 2.2.

2.1.6 Binning for oscillating bearings

Life calculations often need to be performed for operating conditions that vary over time. As argued in Sec. 2 of Menck (2023),

the most accurate way to calculate the rolling contact fatigue life of a bearing under varying operating conditions according to

the assumptions in Eq. 1 made by ISO-related approaches is to use the Finite Segment Method according to Menck (2023).280

This is because the Finite Segment Method considers local load changes rather than summing global, location-independent

bearing damage over time. For most users, it will however be simpler to remain closer to existing approaches that are based

on C and P and do not require a more detailed calculation approach with local damage calculation. Doing so for oscillating

bearings necessitates the use of bins representing similar operating conditions in combination with oscillation factors (Harris,

Houpert, or Rumbarger). This is the most commonly recommended approach, a version of which is also found e.g., in the285

NREL DG03 (Harris et al., 2009). Using bins is merely an approximation when compared to a proper application of Eq. 1

(cf. Menck (2023)). It is an approximation since the aforementioned factors have all been developed for constant oscillation

amplitudes around the same mean position and they all assume there is a constant load acting on the bearing as it moves, along

with a number of other assumptions made by Lundberg and Palmgren (1947), resulting in the life of a whole bearing, a process

in which local information is lost.290

To apply oscillation factors, movement such as depicted in the stochastical case of Fig. 2 must be translated into bins of

oscillations. Typically, variable load is taken into account in fatigue calculations by using rainflow counting (ASTM, 2017) for

classical fatigue of structural components. Rainflow counting is also used for the bearing movement (as opposed to the load)

for the life calculation of pitch bearings in NREL DG0335, Menck et al. (2020), and Keller and Guo (2022).36 Performing a

rainflow count will provide the bins required for further calculations.295

35Misspelled as “rainbow cycle” in the reference.
36For damage mechanisms like wear, where the order of movement is important, Stammler et al. (2018) recommend range-pair counting. In fatigue calcu-

lations, rainflow counting is more useful because it can fully represent the effect of a large movement (or load cycle) that is interrupted by many small ones.

However, this effect is only noticeable in rolling contact fatigue calculations if the Houpert effect is considered. Otherwise a range-pair count will produce a
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The load acting on the bearing is irregular and must be simplified into a single equivalent load Pm for each bin of the cycle

count. Ideally, to this end, the equivalent load Pi per time step i is determined and the equivalent load over the bin Pm is

determined from all time steps i= 1...n in the bin as per

Pm =

(
N1P

p
1 +N2P

p
2 + . . .+NnP

p
n

N1 +N2 + . . .+Nn

)1/p

. (7)

The value Ni = ni ·∆ti here represents the distance covered in the condition i (measured in degrees or revolutions), and can300

be calculated from the speed ni and the time ti in that condition37. The exponent p is given in Table A1. The approach in Eq. 7

is not specific to oscillation and can similarly be found in various bearing manufacturer catalogs and basic machine element

text books (Roloff et al., 1987; Decker, 1995; Haberhauer and Bodenstein, 2001; Liebherr-Components AG, 2017; Schaeffler

Technologies AG & Co. KG, 2019).

If it is not possible to determine Pi for each time step, potentially due to the calculation being too costly, it is possible to305

apply Eq. 7 to the force and moment components making up
::::::::::
contributing

::
to

:
P (including radial forceFr, axial forceFa, and

bending momentM ) and to then determine Pm = f(Fr,m,Fa,m,Mm) :
)
:::
and

::::
then

:::::::::
determine

:::
Pm:

from a suitable function38 f()

based on their valuesFr,m,Fa,m,Mm for each bin (calculated as per Eq. 7, but using Fr, Fa, M instead of P ). .
:

Using the Pm-values of each bin, it is now possible to calculate the life of each bin Lrev = (C/Pm)
p. The life in oscillations

Losc according to Eq. 2, using the appropriate factor as determined on the basis of Sec. 4, can be determined too.310

All of the bins b= 1...B obtained are then typically combined into one final life using the Palmgren-Miner hypothesis (cf.

also Zaretsky (1997); Kenworthy et al. (2023)) according to

L =
1

ϕ1

L1
+ ϕ2

L2
+ . . .+ ϕB

LB

, (8)

where L1, . . . ,LB denote the life in bin b. This may be either the life in oscillations, revolutions, or time. Typically, the life

would be in oscillations if oscillation factors have been used but it may be converted to time or revolutions. L denotes the total,315

combined life of all operating conditions. The variable ϕ gives the proportion of oscillations, revolutions, or time performed in

that bin. It is calculated according to

ϕb =
sb

s1 + s2 + . . .+ sB
(9)

where variables s1,s2, . . . ,sb, . . . ,sB are the oscillations, time, or revolutions that occurred while in that bin, but must have the

same unit as the lives in Eq.8. It follows that ϕ1 +ϕ2 + . . .+ϕB = 1.320

It is worth noting that binning is solely used to reduce the number of data points from real-life data or a simulation. Using

modern computers, if there is no hardware-specific necessity to reduce the number of data points, it is possible to use each

very similar result to a rainflow count. This is because oscillation cycles of the moving ring in rolling contact fatigue are different from a load cycle: The load

cycles are caused by the rolling elements rolling over the raceway and are thus very local phenomena that are seldom interrupted.
37Strictly speaking, this equation only applies for a constant load direction, but it can be used as an approximation with some variations in the load direction,

too, as proposed here. The same applies for Eq. 8. This increases the uncertainty surrounding the calculation result somewhat, which is explored in Sec. 4.4.
38Functions f() for bearings with only radial and axial load components can be found in ISO 281 (ISO, d). Examples of a function f() for pitch bearings

can be found in (Harris et al., 2009; Menck et al., 2020), where the latter publication is to be preferred.
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single step taken from e.g., an aeroelastic wind turbine simulation or some other data set and treat it as a separate bin to which

Eq. 8 is directly applied, rather than processing the steps into a reduced number of bins. From the perspective of a proper

application of the Palmgren-Miner rule to a whole bearing, usage of each single step is the most accurate approach. It is thus325

both easier and less error-prone, as well as more accurate than binning beforehand. In order to account for oscillation effects, it

would then be required to consider the larger oscillation cycle (amplitude) that a specific step is part of and adjust its life based

on that, where the step will typically make up a fraction of the complete oscillation.

2.2 Non-ISO related approaches

A number of alternative approaches have been developed in recent years, particularly with a focus on blade bearings. Many of330

these approaches rely on S-N curves that can be determined without testing a complete bearing.

Lopez et al. (2019) propose a model for a blade bearing that uses the movement of the bearing as a basis and computes

the multiaxial stress-state at the subsurface of the raceway. Loads are obtained from FE simulations using blade root loads

from multibody simulations. They apply various multiaxial fatigue criteria and compare the results. They find that IPC control

strategies significantly increase the damage inflicted on a bearing compared to CPC due to the increased movement. The lives335

calculated with the different fatigue criteria are also sometimes very different from each other.

Leupold et al. (2021) segment a bearing and use a reduced Finite Element model in a multibody simulation to determine

the stress on each segment. Using bearing movement from time series they obtain the number and magnitude of stress cycles

for each segment. Individual loads are combined using the Palmgren-Miner hypothesis. Unlike almost all literature on rolling

contact fatigue, their model is based on Hertzian normal contact pressure rather than subsurface shear stress. However, they340

note that “fatigue criteria such as Fatemi–Socie (Fatemi and Socie, 1989) or Dang Van (Dang Van et al., 1989) could also be

applied” in subsequent work. They obtain empirical values of the cycles to failure used for the Palmgren-Miner hypothesis

from a test of a full-sized blade bearing39 and an assumed slope of the S-N curve from the literature. Further, they note that “a

large number of tests are necessary for reliable results”, but that “currently, not enough tests have been carried out to determine

a reliable service life” with their model.345

Hwang and Poll (2022) propose an approach that is then further detailed in Hwang (2023). The approach is based on one

circumferential position of the inner bearing ring denoted “small stressed volume” (SSV). The stress-load-history of different

layers below the race at the SSV is analyzed in detail based on the behavior of the inner ring and the load distribution of

the bearing. Residual stresses are optionally included in the calculation. For all load cycles that occur, the Palmgren-Miner

hypothesis is applied to layers at the SSV. The layer with the lowest survival probability is used to calculate the life of the350

bearing. To consider the effect of loaded volume, Hwang proposes a simplified method to estimate the loaded volume in the

specimens on which his S-N curves are based, and the loaded volume in the bearing, and to correct the bearing life based on

this estimation. The model is applied to rotating and oscillating bearings under constant operating conditions. Hwang (2023)

further outlines a proposed application of his model to rotor blade bearings that is not carried out in detail.

39Presumably a bearing of the same type as used for the calculation, though this is not specified in the reference.
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Escalero et al. (2023) propose a method for the probabilistic prediction of rolling contact fatigue in multiple-row ball bearings355

subject to arbitrary load and movement histories. They use a three-dimensionally discretized model of the raceway in which

each finite element’s individual stress cycle history over time is analyzed using a rainflow count. They use orthogonal shear

stress as the governing parameter but note other criteria may be included in the future. The failure probability of the individual

elements is determined based on S-N curves obtained from rotating bending specimens and by applying scale factors because

of size differences between the specimen and the elements, and because of the conversion from normal to shear stress. All360

individual element failure probabilities are combined using the Weibull weakest link principle (Weibull, 1939). The authors

demonstrate their method for a reference case in which a blade bearing was tested (cf. Sec. 3).

3 Experimental validation

Despite the large number of theoretical models discussed above, there are only a few published experimental results of fatigue

tests on oscillating bearings.365

Tawresey and Shugarts, W. W., Jr. (1964) tested approximately 750 oil-lubricated bearings under oscillating conditions

closely duplicating those encountered in helicopter rotor blade hinges but failed to produce a logical explanation of their

results (Rumbarger and Jones, 1968). Rumbarger and Jones (1968) therefore reanalyzed 388 of these bearings comprising 13

test series of identically sized, caged needle-roller bearings and derived a life calculation approach based on the Lundberg-

Palmgren theory, cf. Sec. 2.1.2. They conclude that “the theory of Lundberg and Palmgren is [...] favorably compared with the370

life tests” and derive an experimental load ratingC that is shown to be within the bounds defined by the relevant standards at the

time (then ASA and AFBMA, today ANSI and ABMA) when adjusted for oscillating motion according to Sec. 2.1.2. Further,

they specifically conclude that “the life varied inversely to the fourth power of the radial load”, thus giving p= 4, which is

identical to the load-life exponent of Lundberg and Palmgren (1952) for the case of pure line contact, cf. also Table A1. For the

13 test series, they derive Weibull slopes ranging from e= 1.13 to 3.55, with a mean value of e= 2.04. This is higher than the375

value of Lundberg and Palmgren (1952) and ISO 281 ISO (d), cf. Table A1, but they also note that “the wide variation in the

values of the Weibull slope are well known”, since different bearing tests routinely produce different Weibull slopes, including

even the test data of Lundberg and Palmgren (1952) on which the values of ISO are based; and that the higher Weibull slope

may be a product of using more modern steels than those used by Lundberg and Palmgren (1952). Despite the tests going as low

as an amplitude of θ = 1◦ (φ= 2◦), none of the bearings show evidence of wear40, but the failed bearings presented “varying380

degrees of flaking breakout or spalling which is characteristic of failure in rolling-contact bearings subjected to rotation”.

Halmos et al. (FVA, 2021) use oil-lubricated cylindrical roller bearings for fatigue tests. They obtain rolling contact fatigue

for oscillation amplitudes41 as low as θ = 1◦ (φ= 2◦). The final number of fatigue results is too low to compare them against

theoretical calculations, but they conclude that “at least for selected amplitudes, the existing calculation approaches [referring

to ISO-based approaches] deliver conservative results compared to the experimentally determined lives”.385

40A common value to compare wear tests on different bearings is the x/2b ratio (Schwack, 2020). Low values of x/2b are often used to indicate wear

potential (de La Presilla et al., 2023). Using the data given in the reference, the authors determined this test to correspond to x/2b≈ 5.
41The given amplitude equals x/2b= 1.
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Münzing (2017) tests seven ball screws with θ = θcrit. The lubricant is an aviation grease type Aeroshell 33 MS. The

test duration is equivalent to the L10 of the ball screws, which Muenzing determines based on the simplified version of the

Rumbarger factor found in NREL DG03 (Harris et al., 2009), cf. Sec. 2.1.2, which he modifies42 to be equal to 1 for θ ≥ 90◦

(φ≥ 180◦). Five out of seven show initial damage on the raceways. As the standard DIN 631 for ball screws defines a minimum

size for surface damage to be considered as fatigue damage and this size is not reached, they are assessed as having passed390

according to the standard.

Escalero et al. (2023) propose an approach discussed in Sec. 2.2. They compare their results to the test of a single blade

bearing under axial load but obtain no correlation. The failure onset in the bearing could not be established exactly as failure

already had progressed significantly once it was opened.

Hwang (2023) applies his model to rotating cylindrical roller bearings and angular contact ball bearings as well as four-point395

bearings. He compares his results to tests of 200 radial cylindrical roller bearings (NU 1006, 55 mm outer diameter) and several

double-row four-point bearings of 2.4 m diameter. The model deviates from his experimental results by a factor of about 2 to

10, giving a lower estimate than observed in the tests.

4 Use of the approaches

This section contains recommendations for when to use which
:::::::
selection

::
of

::
a

:::::
rolling

:::::::
contact

::::::
fatigue

:::
life

:::::::::
calculation

:
approach.400

Section 4.1 contains a number of general recommendations, Sec. 4.2 and 4.3 discuss some simple illustrative examples, and

Sec. 4.4 and 4.5 detail possible uses for a pitch and yaw bearing in a wind turbine.

4.1 Recommendations for use

A flowchart of when to use which method
::::::
rolling

::::::
contact

::::::
fatigue

:::
life

::::::::::
calculation

::::::::
approach, based on the underlying modeled

physical principles, is given in Fig. 7. Theoretically, the conditions in the flowchart must hold all the time. Practically, it405

will be sufficient if they hold most of the time. Dashed arrows represent mathematical approximations, which are considered

less accurate than exact calculations. For the ISO-related approaches, recommendations are given according to the underlying

physical phenomena considered in the derivations as described in this paper. The recommendations herein may therefore

deviate from those given by the respective authors. For the non-ISO related approaches, recommendations generally follow the

respective authors since they rely on less widely acknowledged approaches and may therefore be subject to the more individual410

interpretation of the respective authors. Further comparisons between the approaches are given in Tab. 2.

42The application of the Rumbarger factor in the reference takes place by changing the equivalent load P as done in other references (cf. Sec. 2.1.2) but

his application, including his changes, are equivalent to those described here. The modification to aRumbarger = 1 for large amplitudes is presumably the

result of a misunderstanding: Münzing claims the NREL DG03 to state that for oscillation amplitudes of θ > 90◦ (φ > 180◦), the influence of the oscillatory

movement can be neglected and the life of a continually rotating bearing can be used for an oscillating one. This is not stated in NREL DG03 though, rather, it

implies that the life of a rotating bearing and that of an oscillating one are identical in the case of θ = 90◦ (φ= 180◦) only, but not for amplitudes exceeding

this value (cf. Harris et al. (2009): “The total stressed volume and number of stress repetitions per cycle are identical to a bearing in continuous rotation when

[φ] = 180◦”).
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Generally, the start of the flowchart is given by the “Start” box. If bins are used (cf. Sec. 2.1.6), the "Start bins" box can be

used for an approximation. In this case, the condition θ ≥ θcrit applies if all circumferential positions of the ring experience

some stress cycles over all bins43.

For general users seeking to apply a life calculation, ISO related approaches are preferred to non-ISO related ones due to415

their simplicity and the fact that there is much more empirical basis underlying them. In case of an invariant load direction and

oscillation amplitude θ, various methods are shown in the figure. Among the ISO related ones, that by Menck can be considered

to be most accurate, however, it is also complicated to apply. A less accurate (i.e., an approximated) but simpler method will

be most useful for most readers. Among the approximated ISO related methods for an invariant load direction and θ, “Bins

with Palmgren-Miner” is the recommended approach due to its wide use in many areas. Among the non-ISO related methods,420

Table 2 gives an overview of advantages and disadvantages of each method. Since only users with very specific aims will refer

to these methods, it is up to readers to take their own decision as to which of these methods, if any, to use.

None of the ISO-related approaches predicts huge deviations from aHarris for regular operating conditions. For a rough

estimate, if the desired life is well below that calculated with the Harris approach, it is very likely to pass with the other ISO-

related approaches, too. For a more precise calculation, narrow load zones or small oscillation angles below θcrit will produce425

the largest deviations from the Harris factor.

For the Rumbarger effect, based on Sec. 2.1.2 and App. A, the flowchart recommends combining this effect with the Houpert

effect for non purely-axial loads (i.e., radial and moment loads). This deviates from Rumbarger and Jones (1968), where the

Rumbarger effect is used without consideration of the Houpert effect for radial bearings, and Harris et al. (2009), where the

Rumbarger effect is used without consideration of the Houpert effect for moment loads, but this recommendation is based on430

the fact that particularly for these cases which represent relatively small load zones ε, the Houpert effect is to be taken into

account44.

The flowchart considers the “numerical approach” of Wöll et al. (2018) as well as Hai et al. (2012) to be approximations.

Although Wöll et al. use the approach for a series of stochastic movements and load directions, they also note “the numerical

approach lacks the capability of taking sophisticated distinctions into account, as [Rumbarger]45 does with the critical angle435

distinction and Houpert does with comparing the oscillation amplitude to the load zone size”. The reason their method cannot

consider these local effects is due to the global application of the Palmgren-Miner hypothesis, see Menck et al. (2022), Sec. 2.2.

Menck’s Finite Segment Method can be seen as a more accurate (but more difficult to implement) version of Wöll’s numerical

approach that considers local effects also seen with Houpert and Rumbarger. Wöll’s numerical approach is also effectively

43Since the use of bins represents an approximation, there is no more precise wording than “some stress cycles” for this issue. See e.g. Fig. 2, blue, for

an example for which θ ≥ θcrit even though individual oscillation amplitudes may be below θcrit. Note that the position of the rolling elements w.r.t. the

rings is required for this assessment, not the position of the inner ring, θi. The position of the rolling elements w.r.t. a stationary outer ring is given by

θc = 0.5 · θi · (1− γ); the position of the rolling elements w.r.t. a moving inner ring is then given by θi − θc.
44This may seemingly contradict the conclusions in Sec. 3, which state that Rumbarger and Jones (1968) already find their results to be consistent with

standards despite not considering the Houpert effect. For a radial load giving ε= 0.5 and small oscillation amplitudes, Houpert and Menck (2021) predict a

life reduction of about 10% which would still put Rumbarger and Jones’ results within the range of the standards at the time. This statement therefore does

not contradict Rumbarger and Jones’ conclusions.
45Called “Harris 2” in the reference.
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Figure 7. Flowchart to find the simplest applicable life calculation approach for a given oscillating bearing.

identical to a bin count, listed below it in the flowchart. Hai et al. (2012) is listed as an approximation due to the reasons set440

out in Sec. 2.1.

As noted in App. C, the Rumbarger effect actually applies even for oscillation amplitudes θ > θcrit, but since its effect is so

small at these amplitudes the effect at larger amplitudes is not considered in Fig. 7.

Some approaches are derived in different sources. The authors recommend using the following sources: The Harris factor is

given in Sec. 2.1.1. The Houpert factor is best considered according to the model of Breslau and Schlecht (2020) or Houpert445

and Menck (2021). The latter reference includes curve fits for ease of use. Older references may be erroneous. The Rumbarger

effect is best calculated according to Eq. 5 or Breslau and Schlecht (2020) or Houpert and Menck (2021), cf. also Sec. 2.1.2.

Older references may be oversimplified. A combination of the Houpert factor and the Rumbarger factor is best performed

according to Breslau and Schlecht (2020) and Houpert and Menck (2021). All other approaches in the flowchart are best

performed according to the publications of their respective authors.450
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Table 1. Comparison of different life calculation approaches

Approach Based on bearing
tests or small spec-
imen S-N curves

Considers par-
tial load cycles
(cf. Fig. 6)

Considers
volume
effect

Considers
whole race
volume

Stress criterion Experimental vali-
dation

ISO-based bearing no yes yes τ0 ok but incomplete
Leupold et
al.

bearing yes unclear yes normal stress
P , pot. more

not available

Lopez et al. S-N yes unclear yes various not available
iKonPro S-N yes yes yes τ0, pot. more limited data
Hwang S-N no partially no (only SSV) various some deviations

4.2 Application to a cardan joint bearing

An exemplary cardan joint connects two shafts whose axes are inclined to each other. The shafts rotate, causing the cardan

joint bearing to oscillate with a constant oscillation amplitude of θ = 5◦. The exemplary bearing is a radial bearing with contact

angle α= 0◦. It contains Z = 15 balls with a diameter of D = 10mm, and has a pitch diameter of dm = 60mm. The critical

amplitude according to Eq. 4 is then θcrit,o = 28.8◦ and θcrit,i = 20.6◦ for the outer and inner raceways, respectively. The load455

zone is made up of a purely radial load that is constant with respect to the outer ring. Half the circumference is loaded, giving

ε= 0.5, and inner and outer ring osculation are identical.

In the context of Fig. 7, both the load direction and θ are thus time invariant. There is no purely axial load, and θ ≥ θcrit does

not apply. A combination of the Houpert and Rumbarger factors can thus be used by multiplying them as shown in Houpert and

Menck (2021), using the Rumbarger factor for the outer race to be conservative. Alternatively, the approach given by Breslau460

and Schlecht (2020), who discussed cardan joint bearings in their paper in more detail, may be used. Furthermore, the other

approaches in the top right of Fig. 7 may also be used since they apply to general time-series based data and thus also apply to

simpler data.

The Harris factor for this bearing is aHarris = 18 according to Eq. 3. The Rumbarger factor according to Eq. 5 is aRumbarger =

15.1 if the outer ring is assumed to be conservative; it would be 15.6 for the inner ring. A combination of the Rumbarger and465

Houpert effect is calculated according to Houpert and Menck (2021) being46 aosc = 14.2. This final value is recommended

here because it accounts for both relevant effects that occur in the bearing described above. It is smaller than the Harris factor

alone, and also smaller than the Rumbarger factor alone, since the effects of both Rumbarger and Harris decrease life.

4.3 Application to a crane slewing bearing

An exemplary crane slewing bearing is located at the bottom of a crane which is exclusively used to perform oscillation470

amplitudes of θ = 90◦ to unload a ship. It is an axial bearing with α= 90◦. The critical amplitude according to Eq. 4 is

46The Houpert factor was calculated using Eqs. 45, 46, 48 and 49 of Houpert and Menck (2021) using the bearing data stated in the above text. Variables

fθ_crit_i and fθ_crit_o in the aforementioned equations account for the Rumbarger effect.
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θcrit = 8◦ for both inner and outer rings. The load is mostly an axial load with only a slight tilting moment component.

According to Fig. 7, the load direction is then invariant, and so is the oscillation amplitude θ. The load is (approximately)

purely axial, and θ > θcrit. Therefore, the Harris factor applies for this bearing. For the amplitude of θ = 90◦, aHarris = 1.

The Rumbarger factor according to Eq. 5 would be equal to aHarris due to θ > θcrit. The Houpert factor according to Eq. 6 is475

approximately aHoupert ≈ aHarris due to the mostly axial load giving a large ε≫ 1. This is why it is valid to simply use aHarris

for the given case.

If θ were time invariant, it would also be possible to use the Harris factor and combine different bins using the generalized

mean in Eq. 7. Again, more complicated approaches in the top right of the flowchart would also apply.

4.4 Application to rotor blade bearings480

A number of publications include rolling contact fatigue calculations for rotor blade bearings, some ISO-related47, see Harris

et al. (2009); Schwack et al. (2016); Menck et al. (2020); Keller and Guo (2022); Menck (2023); Rezaei et al. (2023), and

some not, see Lopez et al. (2019); Leupold et al. (2021); Escalero et al. (2023); Hwang (2023). The non-ISO based methods

are, as stated in Sec. 4, best applied according to the respective publications given above, though many of these publications

are relatively short and likely not sufficient for an end user to actually copy their technique and apply to an actual bearing.485

Moreover, according to Sec. 3, the experimental validation for these models is still lacking. Therefore this section will focus

on ISO-based approaches, which remain the most common life calculation methods for rolling contact fatigue.

Rotor blade bearings typically experience pitch amplitudes as in the stochastic case depicted in Fig. 2: Their oscillation

amplitude is irregular, as are the loads acting on the blade in five degrees of freedom. Moreover, the load direction changes

due to the Mx component of the bending moment caused by gravitational loads, though for bigger resulting moments, My is490

driving the direction of the resulting moment
:::::
blade

::::::
weight

:::::::
bending

:::::::
moment

::
as

:::
the

:::::
blade

::::::
rotates

::::
and

:::
the

:::::
blade

:::::::::::
aerodynamic

::::::
bending

::::::::
moment

:::
that

::::::
varies

::::
with

:::
the

::::::
turbine

:::::::::
operating

:::::::::
conditions (Menck et al., 2020). Therefore, according to Fig. 7, the

Finite Segment Method (Menck, 2023) would be the most appropriate ISO-based method for an engineer to use. However,

some simplified approaches exist, too. These include the methods by Wöll et al. (2018) and Hai et al. (2012), and the approach

most often chosen by users, a bin count. Using a bin count is likely the most user-friendly and well-known of the approaches.495

Section 2.1.6 details how to do a bin count and therefore represents the first step required for calculating the life of a pitch

bearing, and this step is described in detail below.

At this point we assume bins to be present, where ideally no binning is performed but each time step of the simulation is

used as an individual bin (cf. Sec. 2.1.6). Prior to the application of Eq. 8, the lives Lb of each bin must be calculated using

an approach which takes the oscillation into consideration. To this end it is useful to refer to Fig. 7. Although both the load500

direction and pitch angle θ are time invariant, they have to be considered to be approximately constant in order to use oscillation

factors, hence the start at “Start bins”. The loads are not purely axial, but the oscillation of the bearing - over the entire operating

47Among the ISO-related publications it is worth noting that NREL DG03 (Harris et al., 2009) is the most common guideline for blade bearing life

calculation, and Schwack et al. (2016); Menck et al. (2020); Keller and Guo (2022); Rezaei et al. (2023) are all, at least in part, based on it; only Menck (2023)

is not. The publications have not been included in Sec. 2.1 if they merely apply the DG03 but present no new methods or findings relevant to this review.
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time of the turbine - is large enough to have rolling elements cover the entirety of the raceway at one point or another48,49.

That is to say there is no area that is never stressed, giving θ > θcrit. The Houpert factor is therefore a useful factor to employ,

whereas the Rumbarger factor is not, since each segment of the raceway will see rolling elements pass by fairly regularly.50505

Using ISO/TS 16281, there are two different equivalent loads: Qei for the inner ring and Qee for the outer ring. For each

of these rings, users must decide whether the ring is rotating or stationary relative to the load. Since rotor blade bearings

mostly perform small oscillations below approximately 20◦ of amplitude, an alternative to using the Houpert factor is to use

the equivalent load of a stationary ring for both rings in combination with the Harris factor (cf. Sec. 2.1.3). This is equivalent

to the “worst case” scenario of the Houpert factor and is almost identical to it at small oscillation amplitudes.510

Figure 8 shows different approaches to calculate the life of a rotor blade bearing using data from aeroelastic simulations.

Table 2 summarizes the approaches. The five approaches are ordered with increasing accuracy to the right of the figure, where

“increasing accuracy” means that the Palmgren-Miner hypothesis is applied as accurately as possible. All of them are closely

related to ISO and therefore to Eq. 1. The first three approaches (name containing “bins”) all pre-process the time series data

into bins based on the bearing movement and load data acting in a given time step. The fourth approach (“stepwise”) uses each515

individual time step of the simulation as a separate bin. The fifth method (“Finite Segment Method”) does not use binning

but directly calculates damage based on the number of rollovers occurring in segments of the ring. This is the most accurate

method and can be used as a reference for the others. Results for the first four methods have been obtained using ISO/TS 16281

for the equivalent load. All results are displayed using the Harris factor, if applicable (that is, if bins were used in some form),

assuming one ring to be rotating in ISO/TS 16281; and using a more accurate method for oscillation, which means that both520

rings have been calculated as stationary according to ISO/TS 16281 in combination with the Harris factor. The Finite Segment

Method automatically includes effects of oscillation and cannot be used with the Harris factor.

The first three approaches shown in Fig. 8 involve pre-processing into bins. It can be seen that some of their results deviate

more, some deviate less from the Finite Segment Method. These results are heavily dependent on details of the pre-processing

used for the data and the results shown here are not representative for other potential types of pre-processing. The fact that the525

“coarse bins”-simulation using an oscillation correction is so close to the Finite Segment Method is thus likely accidental and

not because this particular approach is particularly representative of a more correct method.

Comparing the life L10,stepwise of the stepwise calculation where one ring is assumed to be stationary and one is assumed to

be rotating (“Harris factor/LRD”) to the results L10,FSM :::::::
L10,FSM of the more accurate Finite Segment Method, one can see

48Individual pitch cycles may cover only a small portion of the raceway, but this only causes deviations as large as those given by the Rumbarger factor

if this behavior continues for the bulk duration of operation along the same mean position with the same amplitude, which is not the case in a typical pitch

bearing.
49The entirety of the raceway is covered by rolling elements if for the largest amplitude θmax done by the bearing, θmax ≥ θcrit is true. Since all pitch

bearings perform 90◦ movements (Burton et al., 2011) (corresponding to θ = 45◦), this is achieved in virtually all pitch bearings: Due to the rolling element

diameter being small compared to the pitch diameter (Wenske, 2022), pitch bearings commonly have close to Z = 100 and more rolling elements and small

values of γ. This means that for a four-point bearing as used in Menck et al. (2020), θcrit,i = 2.48◦ and θcrit,o = 2.42◦, values which are easily exceeded

by a pitch controller even without taking the 90◦ movement into account (Bossanyi et al., 2013; Bartschat et al., 2023).
50Note that this recommendation is in contrast to the current version of NREL DG03, which uses the Rumbarger effect only (by modifying the load rating -

equivalent to using a factor as discussed in Sec. 2.1.2).
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Table 2. Different approaches to calculate the life of a rotor blade bearing

Denomination Details

coarse bins 1 080 bins with the upper load level per bin used

for P

fine bins 151 200 bins with the upper load level per bin used

for P (Implementation of Menck et al. (2020))

fine bins, Pm Identical to “fine bins” but using generalized mean

loads Pm of each bin according to Eq. 7

stepwise Creates one individual bin per simulation time

step

Finite Seg-

ment Method

Sums damage from individual rollovers on indi-

vidual locations of the rings (Implementation of

Menck (2023))

that530

L10,FSM = 0.86 ·L10,stepwise. (10)

This is roughly in line with using the Houpert factor or assuming both rings to be stationary, which gives a result which is

only slightly higher (cf. Fig. 8, stepwise, Oscillation correction). The result of the Finite Segment Method is slightly lower

because it first sums local damage over the entire span of the simulation before determining the global bearing life. Therefore,

load concentrations on individual segments and bearing rings are considered more accurately than with the other methods51.535

For calculations performed with ISO-related approaches using binning of data in some form, where one ring is assumed to

be stationary and one is assumed to be rotating52 it is therefore reasonable to expect a life which is 10 to 15% longer than

that obtained with more advanced methods. Further deviations that are caused by binning of the data and other forms of

pre-processing are impossible to predict and therefore a stepwise calculation is preferable.

51The result of the Finite Segment Method may thus also by influenced slightly by the Rumbarger effect, i.e., an uneven distribution of rollovers along

the circumference, although the effect is much less than would be predicted by the Rumbarger factor if applied directly to the individual pitch cycles. It also

captures potential load concentrations on individual raceways because the life of the raceways is determined from their individual segments, therefore including

a load history for the raceways too, whereas with the other methods the raceway life is included in a bearing life which is then used for the Palmgren-Miner

hypothesis, leading to a loss of information.
52This is the standard assumption in virtually all typical rolling contact fatigue life calculations including ISO 281 (Lundberg and Palmgren, 1947; Harris

and Kotzalas, 2007; ISO, a).
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Figure 8. Comparison of the different approaches in Tab. 2 with Harris factor and additional effects for oscillation considered.

4.5 Application to yaw bearings540

For yaw bearings, the oscillation behavior is highly site dependent. Any wind direction history can be calculated using the

Finite Segment Method or the other approaches highlighted with thick borders in Fig. 7. For the design of a wind turbine,

yawing movements are seldom simulated, apart from a few design load cases (Wenske, 2022). Rather, constant offsets from

an optimal yawing position are simulated and assumed to be present for a certain amount of operating time. Yaw movement is

then assumed to be distributed among these simulated cases. Since detailed time series will typically not be available, binning545

will often be necessary in order to calculate the life, though detailed time series would be preferable, if available.

Though the behavior is highly dependent on both the site of the turbine as well as the design of the yaw system, some general

statements can be made. Firstly, even at sites with only one main wind direction, it is likely that this wind direction will vary

by a few degrees. Secondly, the yaw misalignment that triggers a yaw movement is dependent on the yaw system design. Yaw

misalignments of 3◦ to 8◦ are common, realistic values (Wenske, 2022). Finally, the design of large scale yaw bearings, like550

that of pitch bearings, usually includes a large number of rolling elements in excess of 50 or even 100 and more per row53,

giving small critical angles θcrit. It is thus unlikely that any yaw bearing will be operated in a manner whereby during the entire

operating history of the bearing, the loads are truly concentrated only on parts of the raceway, since that would require yaw

movements to be consistently smaller than θcrit despite fluctuations in the wind direction and possible slippage of the rolling

element set. The Rumbarger effect is thus unlikely to be relevant for yaw bearings in the field.555

Regarding the Houpert effect, the wind direction is important. Unlike for typical bearings, the rotating (oscillating) ring

is the one that will always be loaded in one primary position since it is consistently moved toward the wind. The stationary

ring, on the other hand, can experience very concentrated loads in one position (in the case of a site with only one main wind

direction) or it can even experience loads spread evenly over its circumference (on sites with no clear main wind direction,

where the wind can come from any direction). In the first case (one main wind direction only), similar to pitch bearings,560

53See footnote 49.
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both rings experience a high concentration of loads in one spot. It is thus recommended that the Houpert effect is considered,

ideally by using the equivalent load for a stationary ring, for the calculation of both Qei and Qee if ISO/TS 16281 is used.

Otherwise, the Houpert effect can be taken into account by using the publications mentioned in Sec. 4.1. Assuming one main

wind direction is the more conservative assumption and should be the approach to choose in case of doubt. Since yaw bearings,

like pitch bearings, are strongly affected by a tilting moment, each of their raceways is commonly loaded around half of its565

circumference (Chen and Wen, 2012; Schwack et al., 2016; Menck et al., 2020; Graßmann et al., 2023), corresponding to a

load zone parameter (cf. Sec. 2.1.3) of ε= 0.4...0.6. With this value of ε, a life which is around 10% shorter than that obtained

with the Harris factor is to be expected for small oscillation amplitudes (Houpert and Menck, 2021). If the main wind direction

is truly evenly spread over all compass directions, it is permissible to use the equivalent load of a ring that rotates relative to

the load for the outer ring, approximately equivalent to simply using the Harris factor for the entire bearing54.570

5 Current challenges and critical future work

While there are a number of different approaches for the calculation of rolling contact fatigue in oscillating bearings, the

validation of these models is lacking to a large extent. Among the ISO related approaches, some experimental results suggest

that the predictions may be accurate, as discussed in this paper. One can also argue that the ISO related approaches, being

based on the widely accepted standard ISO 281, are partially validated by the rotating bearings which were used to validate the575

standard in itself.

For regular operating conditions, the ISO related approaches do not differ by a huge margin. Validation of one approach

therefore also increases the likelihood that another of the ISO related ones is accurate. Potential attempts to validate these

bearings can focus on the different phenomena that are covered by the Houpert and the Rumbarger effect to validate them

independently of each other, but as they are based on the same foundation, these validations (if successful) will have a positive580

effect on each other, too.

A number of publications have shown deviations of rotating bearing lives from the ISO standard (Harris and Kotzalas, 2007;

Londhe et al., 2015). A validation of the ISO related models in this paper should therefore take into account that they are

relative values. Any bearings used for oscillating tests should ideally also be used for rotating tests in otherwise identical or

similar conditions, to ensure that potential deviations from the results shown in this review are not simply due to the bearings585

themselves lasting longer than suggested by the standard, but actually due to the relative factors given here being inaccurate.

54In this example, the behavior of a typical bearing is flipped on its head. Typical bearings in most industrial applications experience concentrated loading

on the stationary ring, since it is stationary with respect to the load. The rotating ring, on the other hand, sees loads all over its circumference (cf. Fig. 5,

“rotation”: All elements on a rotating ring are loaded like the example one, only with a time shift.). In a yaw bearing in which the wind comes evenly from all

directions eventually during the turbine lifespan (for example, 25% of operational time coming from north, 25% from south, 25% from south and 25% from

west), the outer ring is loaded in all positions at some point and thus experiences similar damage accumulation over its circumference as a rotating ring in

a typical bearing. This is a very theoretical example to illustrate potential influences of the Houpert effect, in most cases, it will be easier to simply assume

concentrated loading as discussed above, which is the more conservative case.
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All of the models - ISO related and non-ISO related alike - completely neglect the influence of lubrication. This is probably

the grossest simplification and the biggest uncertainty underlying all models discussed in this review. Lubrication is a com-

plicated topic that is often simplified. Even for regular bearings, over 90% of bearings are grease-lubricated (Lugt, 2009) but

for the life calculation the grease behavior is mostly approximated using base oil properties even though grease is well known590

to behave differently (Lugt, 2012). For oscillating applications, due to the movement-dependent lubrication film (Venner and

Hagmeijer, 2008), this issue becomes much more complex than for rotating bearings, hence why all models in this review

simply neglect the topic completely.

While this review, and many publications before it (Harris et al., 2009; Schwack et al., 2016; Menck, 2023) applied ISO

related methods to large slewing bearings, there have been publications suggesting (without evidence) that the ISO standard595

does not apply for pitch and yaw bearings bearings (Potočnik et al., 2010; Lopez et al., 2019). Whether or not this is the case is

another topic worth researching. The non-ISO related methods in this review present an alternative approach at life calculation

for people who distrust the ISO standard, but the evidence proving their aptitude is, to date, lacking to a much greater extent

that that of the ISO related models. While it is possible that large oscillating slewing bearings behave differently than suggested

in this review, it is also an option to introduce corrective factors or change load rating and equivalent load in order to perform600

a standard calculation for large oscillating slewing bearings nonetheless.

6 Conclusions

This work has given an overview of the literature on rolling contact fatigue calculation for oscillating bearings. Many ap-

proaches are based on ISO, tend to be user friendly, and are often applied in the literature. Most of these approaches have been

proposed and used in the literature without an explanation as to when they apply. The aim of this paper was to explain when605

which approach can be applied. It is worth noting that many older publications, particularly for the Rumbarger effect and the

Houpert effect, include errors or simplifications and hence more recent publications, including this one, are to be preferred as

a source. When applied correctly according to more recent literature and for standard operating cases, the deviations between

Harris, Rumbarger, and Houpert as well as other ISO-based approaches are typically not huge. This also applies to the oper-

ating conditions of pitch and yaw bearings. The large deviations obtained with alternative approaches to the Harris factor that610

are seen in some publications are often due to errors or simplifications. All ISO-based approaches shorten the calculated life

compared to the Harris factor (or are identical to it) if applied correctly. This is because all ISO-based approaches that deviate

from Harris do so because they either incorporate the Houpert or Rumbarger effect, or both, and both of these effects cause

either the same life or a reduction in life compared to the Harris factor if applied correctly. Currently published ISO-based cal-

culation approaches that increase life compared to the Harris factor are erroneous, potentially due to being overly simplified.615

Some phenomena described in this paper that have not yet been analyzed in the literature could slightly increase lives even for

ISO-based methods.
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Aside from these commonly used factors, a number of alternative approaches have been discussed. These include some

ISO-related ones and some approaches that deviate significantly from ISO. Many of these alternative approaches, including

ISO-related and non-ISO-related ones, have been designed particularly for rotor blade bearings.620

The experimental validation of all models in the literature is relatively poor. Some experimental results from the ISO-based

approaches compared well with the calculated life, suggesting that that the predictions of ISO-based methods may be relatively

close to the actual life, while validations of the alternative approaches are mostly lacking.

This work may help engineers identify which approach to use for the rolling contact fatigue life calculation for a given

oscillating bearing. It has been written with a particular focus on wind turbine slewing bearings, but may also be used as a625

reference for any other oscillating bearings in other industrial sectors.

Data availability. Aeroelastic load time series and FE-simulated bearing loads for the rotor blade bearing calculations in this paper can be

found under https://doi.org/10.24406/fordatis/113 (Popko, 2019) and https://doi.org/10.24406/fordatis/109 (Schleich and Menck, 2020). All

other data is included in this paper.

Appendix A: Derivation of the Rumbarger factor630

Lundberg and Palmgren (1947) state, using Eq. 1 and knowing that N = uL,

ln
1

S
∝ τ c0 (uL)

e

zh0
V, (A1)

where τ0 is the maximum shear stress and z0 its depth under the raceway, V is the loaded volume, and u gives the stress cycles

per million oscillations or revolutions L. For a constant survival probability S, it follows that

L∝
(
zh0
τ c0V

)1/e

u−1. (A2)635

Comparing two identical bearings under identical τ0 and z0, one oscillating and one rotating, for θ < θcrit, where Vosc/Vrot = θ/θcrit

we obtain

aprt =
Losc

Lrot
=
urot
uosc

(
θ

θcrit

)−1/e

. (A3)

This is equivalent to Eq. 18 given by Breslau and Schlecht (2020). In their Eq. 19, using θcrit from Eq. 4, they then go on to

derive55640

aprt i,o =
Z (1± γ)

4

[
θZ (1± γ)

360◦

]−1/e

(A4)

with the minus (−) sign referring to the outer and the plus (+) sign to the inner raceway. Using aHarris from Eq. 3, this can be

rewritten as done by Houpert and Menck (2021)

aprt i,o =

(
θ

θcrit i,o

)1−1/e

aHarris. (A5)

55Equations here are adjusted to use degrees rather than radians as done in the reference.
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Table A1. Exponents c,e,h,p according to ISO

c e h p

Point contact 31/3 10/9 7/3 3

(ball bearings)

Line contact 31/3 9/8 7/3 4 or5610/3

(roller bearings)

Both Rumbarger and the NREL DG03 (co-authored by Rumbarger) use a different amplitude definition than in this paper,645

defined by φ= 2θ. Equation A4 then becomes

aprt i,o =
Z (1± γ)

4

[
φZ (1± γ)

720◦

]−1/e

(A6)

= (1± γ)
1−1/e

4−1+1/e

︸ ︷︷ ︸
fRum

Z1−1/e
[ φ

180◦

]−1/e

. (A7)

The factor fRum is introduced here to include the terms (1± γ) and 4−1+1/e, both of which Rumbarger assumes to be approx-

imately 1. Thus, Rumbarger obtains fRum ≈ 1. In order to keep track of the error introduced by this assumption, fRum will be650

retained in the following equations.

Rumbarger does not adjust life by using a factor, but by changing the load rating. A factor can be converted to an equivalent

load rating using

L10,prt = aprt

(
C

P

)p
=

(
a
1/p
prtC

P

)p
=

(
CRum

P

)p
(A8)

with Eq. A7 used for the adjusted Rumbarger load rating655

CRum = a
1/p
prtC =

(
fRumZ

1−1/e
[ φ

180◦

]−1/e
)1/p

C. (A9)

Equation A9 is identical to the load ratings given in (Rumbarger, 2003) and (Harris et al., 2009) when assuming fRum = 1 and

using the parameters given in Table A1.

The error can simply be corrected by using either Eq. A9 or Eq. A7 separately for each raceway (cf. Breslau and Schlecht

(2020)) and without assuming fRum = 1.660

56Exponent p= 4 follows from the given c, e, and h, and is consequently used by Rumbarger (2003) as well as Breslau and Schlecht (2020) in their

derivations. Nonetheless, ISO 281 uses p= 10/3 in calculating L=
(
C
P

)p
. This is explained in (Lundberg and Palmgren, 1952) and (ISO, a), which argue

for the choice of p= 10/3 because in some load cases, line contact within roller bearings may turn into point contact. Thus: p= 4 for detailed calculations

of rolling contact fatigue where line contact is sure to take place; and p= 10/3 for calculations by general users applying (C/P )p.
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Appendix B: Error of the Rumbarger factor for θ < θcrit

By assuming (1± γ)≈ 1, Rumbarger effectively neglects the difference between inner and outer races and obtains an equation

which can be used for the entire bearing. The assumption 4−1+1/e ≈ 1, on the other hand, is an unnecessary simplification that

leads to errors, as will be seen in the following.

B1 Error on one raceway665

The error of Rumbarger’s assumptions for one single raceway can be easily calculated by comparing the life L10,prt from

Eq. A8 that, correctly, assumes fRum ̸= 1 to that which approximates fRum = 1 as done by Rumbarger.

L10,prt(fRum = 1)

L10,prt(fRum ̸= 1)
=

1

fRum
(B1)

Values of 1/fRum for point and line contact as well as different values of γ are depicted in Fig. B1. One can see that CRum

consistently overestimates the actual life, up to 23% for γ = 0.35 on a roller bearing’s outer ring. The error is dominated670

by Rumbarger’s neglect of the factor 4−1+1/e, which is 0.87 for point contact and 0.86 for line contact. Simply assuming

γ = 0 thus causes an error of roughly 15% to 17%. Further differences are caused by neglecting (1± γ)
1−1/e, which appears

reasonable for very large bearings (γ→ 0) but less so for smaller ones (γ≫ 0).

Figure B1. L10,prt(fRum=1)

L10,prt(fRum ̸=1)
for inner and outer ring with point and line contact.

B2 Error for the entire bearing

For the entire bearing, the matter is more complex. Adjusted lives Lprt i = aprt iLi of the inner ring and Lprt o = aprt oLo of675

the outer one can be combined via

Lprt =
(
L−e
prt i +L−e

prt o

)−1/e

. (B2)
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For an axial bearing with γ = 0 giving aprt i = aprt o and Li = Lo this can be simplified into

Lprt = 2−1/eaprt iLi. (B3)

The relative difference between assuming fRum = 1 and fRum ̸= 1 is then again given by Lprt(fRum = 1)/Lprt(fRum ̸= 1) =680

1/fRum, thus giving the same deviations as Fig. B1 for γ = 0. If γ ̸= 0, the errors will deviate depending on the specific bearing

design.

Appendix C: Extension of the Rumbarger effect for unevenly loaded volume with θ > θcrit

For the operational scenario shown in Fig. 4 on the right hand side, the volume may be separated into volumes ψ1 and ψ2 each

experiencing one or two stress cycles per half oscillation, with ψ1+ψ2 = 360◦/Z. The corresponding oscillation amplitudes are685

given by θψ1 + θψ2 = θcrit, where θψ2 = θ−θcrit. Equation A4 may then be used separately for each of the individual volumes

to obtain Lψ1 = aprt,ψ1L and the overlapping volume ψ2 experiencing twice as many cycles, giving Lψ2 =
1
2aprt,ψ2L. These

can be combined via

Lψ1+ψ2 =
(
L−e
ψ1

+L−e
ψ2

)−1/e

(C1)

=

(
a−eprt,ψ1

+

(
1

2
aprt,ψ2

)−e)−1/e

︸ ︷︷ ︸
aprt,ψ1+ψ2

L. (C2)690

This allows for the analysis of the Rumbarger effect for oscillations θ > θcrit with overlapping volumes. Fig. C1 shows an

exemplary calculation of aprt,ψ1+ψ2 for a 7220 type bearing normalized to the Harris factor. The result of aprt,ψ1+ψ2 can be

seen to be almost identical to aHarris.

Figure C1. aprt,α+β/aHarris for the inner ring of a 7220 type bearing for θ > θcrit.
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This document contains replies to all reviewers in blue. Original review comments are black. 

  



Edward Hart 

I am very grateful that the authors took the time to address all of my comments thoroughly. I believe 

the paper is now ready for publication. 

Thank you for your comment. We are glad to be in agreement. 

 

 

  



Jonathan Keller 

In this paper, the authors summarize the literature pertaining to rolling contact fatigue life 

calculations for oscillating bearings – including many clarifications and filling of gaps. This reviewer’s 

experience is that the variety of these methods is quite confusing, so having a succinct review of 

them – especially with a few examples is helpful. The revised paper includes many changes – large 

and small – that improve the paper’s clarity and presentation quality. Having said that, I still 

recommend further polishing or clarifications as described below. 

 

Line 14: I believe it would be clearer to say “…and, depending on the site and the yaw system design, 

larger (< 10° during power production but potentially more while idling) (Wenske, 2022).” I do not 

believe the phrase at the end beginning with “while they” is needed – unless the point is to 

specifically state that they are very rarely ever small. If so, it could remain, but I would recommend 

making it a separate sentence. 

The point of the phrase starting with “while they” was indeed to point out that they are rarely ever 

very small (this might have implications on wear or fatigue mechanisms noted in the paper). Moved 

into a separate sentence. 

Line 35: I believe the reference to FVA should be within parenthesis “…fatigue (FVA 2022 a,b).” 

Added parenthesis. 

Line 36: Minor grammar change recommended “…both wear and rolling contact fatigue as possible 

failure mechanisms.” 

Changed as suggested. 

Line 55: The sentence “There can be grease and oil lubrication present (Hamrock et al., 2004), 

raceway surface quality and lubrication contamination affects the bearing (Ioannides et al., 1999), 

and so on” is a bit garbled and still needs some polishing. I’m not sure I understand it to be honest. 

The sentence is part of a paragraph that points out commonalities between oscillating and rotating 

bearings, the intention of this sentence is simply to state that both kinds can be oil- or grease-

lubricated and that raceway surface quality and lubrication contamination effects affect both 

bearings in a similar manner. 

Changed to: 

In both oscillating and rotating bearings, there can be grease and oil lubrication present (Hamrock et 

al., 2004), raceway surface quality and lubrication contamination affects the bearing (Ioannides et al., 

1999), and so on. 

Line 62: I was a bit confused by the wording here. I believe a clearer way to state this is “…only a part 

of the raceway is ever loaded while the remaining part is always unloaded.” This at least is the 

concept that I see illustrated in Figure 2 (right). 

Changed as suggested. 

Line 68: I don’t believe the phrase “…if the bearing is rotated for long enough” is needed. That is, 

even for a single revolution (at a constant load) every location on the rotating ring experiences the 

same number of stress cycles, right? I also believe this sentence is really referring only to the rotating 

ring, instead of “both inner and outer ring”. I may just be plain confused here. 



Due to the discrete number of rolling elements in a bearing, for one rotation, not all locations see the 

same number of stress cycles  - Imagine a pure axial bearing (contact angle 90 deg) where the balls 

move at half the speed of the rotating ring. Rotating the bearing by 360 deg will cause ball movement 

of 180 deg. If the bearing had, for example, three balls (a didactic example), it is possible to draw on a 

sheet of paper the ball movements on each ball and one can see that some locations see one load 

cycle and others two. 

Furthermore, the sentence applies to both inner and outer ring because balls are rolling relative to 

inner and outer ring. The number of load cycles can be different between inner and outer ring, but it 

is identical within all locations of one ring (if one considers load cycles at 0 load as load cycles, too, 

which is common practice), if the bearing has been turned for long enough. 

So the sentence is, in our opinion, correct as written and should remain that way. 

Line 85: I’m not sure I understand the sentence “As discussed above, this can cause wear if bad 

enough, but even if no wear occurs, different lubricant film thickness than in a rotating bearing may 

be present.” Specifically, what “this” and “if bad enough” means. I think it means “if the lubricant film 

thickness is insufficient for hydrodynamic lubrication”. 

Changed to “As discussed above, this can cause wear if the lubricant film thickness is bad enough,”. 

We are skeptical about adding the reference to hydrodynamic lubrication because grease lubricated 

oscillating bearings likely never develop proper hydrodynamic lubrication yet they do not necessarily 

experience wear. The lubricant film thickness at which the lubricant film is bad enough for wear to 

occur is not perfectly clear. 

Line 158: I think it’d be clearer to say “…sign refers to the outer raceway and the plus (+) sign…” 

Changed as suggested. 

Line 302: The forces Fa and Fr and moment M are not defined in the paper. In this context, I think the 

sentence is easily revised without them to “…it is possible to apply Eq. 7 to the force and moment 

components contributing to P (including applied radial force, axial force, and bending moment) and 

then determine Pm from a suitable function38 based on their values.” I believe this still retains the 

meaning of the original and is simpler. And/or the sentence could be retained and these forces and 

moments added to Figure 1 and/or Figure 5. 

Changed as suggested. 

Line 396 and 400: Since “which approach” is a bit vague at this point in the paper, I recommend a 

minor grammar change to “…recommendations for selection of a rolling contact fatigue life 

calculation approach.” 

Changed as suggested. 

Line 486: Similar to Line 302, the moment components Mx and My are not defined anywhere. I 

believe the sentence can be rewritten to “...load direction changes due to the blade weight bending 

moment as the blade rotates and the blade aerodynamic bending moment that varies with the 

turbine operating conditions (Menck et al. 2020).” I believe this still retains the meaning of the 

original and is simpler. And/or the sentence could be retained and these forces and moments added 

to Figure 1 and/or Figure 5. 

Changed as suggested. 

Line 524: The “FSM” in the variable name shouldn’t be italicized. 



Corrected. 

 

Thank you for your comments and corrections. 

 

  



Yi Guo 

The authors have addressed my comments in a satisfactory manner. But there are substantial changes 

(mainly editorial) that might requires some editorial help from either the journal or author 

themselves. Experimental validation is still missing and I hope to see that in future publications. 

Thank you for your comment. We believe editorial changes will be performed in the process of 

creating the final paper. 


