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Abstract. Accurate estimate of the wind speed profile is crucial for a range of activities such as wind energy and aviation. The

power law and the logarithmic-based profiles have been widely used as universal formulas to extrapolate the wind speed profile.

However, these traditional methods have limitations in capturing the complexity of the wind flow, mainly over complex terrain.

In recent years, the machine learning techniques have emerged as a promising tool for estimating the wind speed profiles. In this

study, we used the Long Short-Term Memory (LSTM) Recurrent Neural Network and observational lidar datasets from three5

different sites over complex terrain to estimate the wind profile until 230 m. Our results showed that the LSTM outperformed

the Power Law as the distance from the surface increased. The coefficient of determination (R2) was greater than 90% until

100 m when the input dataset included only variables of 40 m height. However, the performance of the model improved when

the 60 m wind speed was added to the input dataset. Furthermore, we found that the LSTM model trained on one site with 40

and 60 m observational data and applied to others sites also outperformed the Power Law. Our results show that the machine10

learning techniques, particularly LSTM, is a promising tool for accurately estimating the wind speed profiles over complex

terrain, even for short observational campaigns.

1 Introduction

Machine learning techniques is increasingly being adopted as a powerful tool in environmental sciences. We see many exam-

ples of this method applied for different purposes to forecast meteorological variables and their derivative products. Musyimi15

et al. (2022) estimated the evapotranspiration for western Kenya with a Gradient Boosting Machine Model and remote sensing

data. Using a semi-supervised learning, Jiang et al. (2022) forecasted the particulate matter (PM2.5) concentration and its trend

over the heavy industrial zone of Shenyang (China). Furthermore, the authors also found out the most influential features for

the PM2.5 concentration for short (1 hour) and long (6 and 24 hours) predictions. Focusing in improving the computational

costs, Mustakim et al. (2022) applied the Neighborhood Component Analysis (NCA) to select the more relevant variables to20

their models. They concluded that a universal predictor with a uniform structure can be built at every monitoring station in

Malaysia without having to perform a preliminary analysis to obtain the relevant input parameters for the air pollutant index

prediction. Jesemann et al. (2022) emphasized the importance of adding time variables as input data in order to enable a recog-

nition of temporal patterns, in their case, the NO2 concentration in Hamburg (Germany).
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The use of the machine learning techniques is not restricted to the local or regional scales. Liu et al. (2022), for example, pro-25

posed a multi-level circulation pattern classification to identify large-scale weather or climate disaster events. The forecasting

and monitoring disasters were also the subject of Soria-Ruiz et al. (2022). They got high performance by applying machine

learning algorithms to remote sensing datasets to detect the recurrent floods over Gulf of Mexico coastline and the central and

southeastern part of Mexico. Among the methods evaluated, Song and Wang (2020) concluded that the neural networks are

superior to produce monthly wildfire predictions one year in advance, providing thus, a valuable information for long-range30

fire planning and management. Adding the Principal Component Analysis (PCA), Zhang et al. (2022) improved the accuracy

for the visibility prediction at Sichuan (China). Among the six machine learning algorithms evaluated, they found out that

the neural network performed best. Cheng and Tsai (2022) proposed a hybrid methodology based on variable selection and

autoregressive distributed lag to forecast the pollutant concentrations, which improved the results when compared to the full

and without lag dataset. The Support Vector Regression (SVR), that is a supervised algorithm, performed better than the other35

four algorithms tested. Those are only few examples of innovative works adopting the machine learning techniques in the

environmental sciences.

Forecasting the wind speed through machine learning has also been the target of the researchers, mainly due of the wind energy

market, since the short-term wind speed forecast is essential to enhance the production efficiency of the wind power farms. Due

the random feature of the wind speed, advanced strategies have been proposed. Wang et al. (2021) showed that their multi-layer40

cooperative combined forecasting system, which is based on a novel adaptive weighting scheme, overcame the limitations of

the current single and combined forecasting methods and provided a more accurate and stable forecast. In their review paper,

Bali et al. (2019) analyzed some works produced during this century and concluded that the techniques for the wind speed

forecast have limitations, as low efficiency and high computational cost. They suggested that to overcome some problems, the

use of the Long-Short Term Memory (LSTM) can improve the wind speed prediction for the power generation. Tukur et al.45

(2022) analyzed works produced between 2010 and 2020 and concluded that ensemble and hybrid methods are reaching high

accuracy, because they present more abilities to model complex functions than the linear models. They agreed with Bali et al.

(2019) that the LSTM looks promising in forecasting the wind speed and still recommend that the adaptiveness of the hybrid

models needs to be further researched. Dalton and Bekker (2022) showed the improvement when considering other meteoro-

logical variables into the modeling. Their results pointed to the vertical wind and divergence as important predictors to the wind50

speed. In this way, He et al. (2022) included the 2 m temperature and surface pressure to train their dual-attention mechanism

multi-channel convolutional LSTM model with the ERA5 dataset to forecast the 10 m wind speed. Zhou et al. (2023) also used

the ERA5 dataset to investigate the grid-to-site conversion models, considering the altitude, the land use and the seasonality

effects. The deep learning models outperformed the linear interpolation and the regression models to estimate the 10 m wind

speed. The aforementioned works briefly exemplify that efforts have been applied to the wind speed forecast theme, however,55

the methods to estimate its vertical profile are still limited.

According to Pintor et al. (2022), extrapolating the wind speed to higher heights is still a challenge and from the two most

widely used methods (the power law and the logarithmic-based profile) they found out that the first one is more accurate for

a wide variety of landscapes. Only recently, machine learning techniques have been used to forecast the wind speed profile.
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Türkan et al. (2016) evaluated seven different machine learning methods to estimate the 30 m wind speed at Kutahya (Turkey)60

and concluded that the SVR produced the most realistic results than the other six. Al-Shaikhi et al. (2022) proposed the Par-

ticle Swarm Optimization (PSO) with the LSTM method and compared their results with others optimization algorithms for

an experiment carried out at Dhahran (Saudi Arabia). Their model needs at least four different levels of observational data

as input. Following the same tendency, Nuha et al. (2022) proposed the Regularized Extreme Learning Machine (RELM) to

extrapolate the wind speed to higher heights. With the same dataset of Dhahran, Mohandes and Rehman (2018) used the Re-65

stricted Boltzmann Machine (RBM) method and at least observations of four heights as input. They showed that their method

improved the wind speed forecast. Bodini and Optis (2020a) and Bodini and Optis (2020b) demonstrated the superiority of

the machine learning techniques over the power and logarithmic laws through the “round-robin” validation and highlighted the

improvement of including observational data that capture the diurnal variability of the atmospheric boundary layer. They in-

cluded the Obukhov length, Turbulence Kinetic Energy and time of the day, all of them measured at 4 m. Vassallo et al. (2020)70

also improved their results including meteorological variables to the input dataset of their Artificial Neural Networks (ANN)

model, but they warn that excess information can confuse the model and inputting data should be cautiously analyzed. They

emphasized the importance of normalizing the input data. Bodini and Optis (2020a) and Bodini and Optis (2020b) conducted

their experiments over almost plain terrains (Great Plains – US) and stressed the need of performing the same kind of analysis

to more complex terrains. To the best of our knowledge, the most of the studies on vertical wind speed extrapolation were75

conducted for plain terrains, except for Vassallo et al. (2020) that analyzed different surfaces.

2 Data and methods

2.1 The LSTM Recurrent Neural Network

The Recurrent Neural Networks (RNNs) are neural networks that take the output of one time step as input in the subsequent

time step and then build a memory of time series events. The RNNs are specifically designed to work, learn and predict80

sequential data (Medsker and Jain, 1999). The Long Short-Term Memory (LSTM) is a type of RNN that is considered a state-

of-art tool for processing sequential and temporal data nowadays. The main advantage of the LSTM over the others RNNs is

that the presence of internal memory allows maintaining long-term dependencies, avoiding the vanishing or exploding gradient

problems (Smagulova and James, 2019). This was done by introducing a forget gate into the standard recurrent sigma cell of

the RNNs. The forget gate can decide what information will be discarded (Yu et al., 2019) and makes the LSTM system a85

robust model that compensates for the imperfections in the input data (Sherstinsky, 2020). The LSTM cells are mathematically

expressed by:
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ft = σ(Wfhht−1 + Wfxxt + bf ) (1)

it = σ(Wihht−1 + Wixxt + bi) (2)

c̃t = tanh(Wc̃hht−1 + Wc̃xxt + bc̃) (3)90

ct = ft.ct−1 + it.c̃t (4)

ot = σ(Wohht−1 + Woxxt + bo) (5)

ht = σt tanh(ct) (6)

where xt and ht are the inputs and the recurrent information at time t; ct is the cell state of the LSTM; ft, it and ot are the95

forget, input and output gates; Wf , Wi, Wc̃ and Wo are the weights; b is the bias, the operator ‘.’ is the pointwise multiplication

of two vectors.

We run the LSTM using the Keras library (version 2.9) from Python (version 3.8.16) through Colab (the Google Research’s

platform). The missing data were interpolated using the interpolate Pandas function and then data were normalized through the

StandardScaler function from the Sklearn library (Pedregosa et al., 2011). We identified the optimal hyperparameters by using100

the Kerastuner (O’Malley et al., 2019) with the Hyperband algorithm. Table A1 exhibits the tuned hyperparameters for each

experiment. We maintained the default configuration of Keras for the others LSTM arguments (Keras, 2023).

2.2 Doppler lidar

We employed the Windcube v2 Doppler lidar, from Leosphere, during the field campaigns at three different sites. For the

Windcube v2 technical specifications, see Beu and Landulfo (2022). The information of the field campaigns are listed in Table105

1. The lidar was set up for 12 levels, as follows: 40, 60, 80, 100, 120, 140, 160, 180, 200, 230, 260 and 290 m and to retrieve

Table 1. Information of the field campaigns

SITE ALTITUDE(m) COORDINATES OBSERVATIONAL PERIOD

1 721 -23.6;-46.7 18/Sept/2015 to 10/Mar/2016

11/Oct/2016 to 31/Dec/2-16

2 4 -23.9;-46.7 11/Mar/2016 to 25/Aug/2016

3 590 -23.4;-47.6 26/Jul/2017 to 06/Aug/2018

information each 10 minutes. The Windcube v2 system automatically discards data that the Carrier-to-Noise (CNR) ratio is

under -23 dB and we removed data that presented availability less than 80% over 10 minutes.

We considered the observed data at 40 m to estimate the wind speed at higher levels (from 60 until 230 m). Beyond the 10 min
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mean wind speed (v40), we also considered the wind direction (dir40), the hour, and the standard deviation of the horizontal110

(σu + σv) e vertical (σw) wind speed to forecast the wind speed at higher heights. With the wind speed standard deviation, we

estimated the Turbulence Kinetic Energy (TKE), which is the sum of the wind speed variances (Stull, 1988) and is expressed

by:

TKE =
1
2
(σ2

u + σ2
v + σ2

w) (7)

115

As already found out, including cyclical variables improves the wind speed forecast (Bodini and Optis, 2020a, b; Baquero

et al., 2022). The diurnal cycle is a strong feature of the sites under research and we will discuss this further. Since surface ob-

servations are not available, the 40 m TKE could indirectly transmit information related to temperature and stability, improving

the modelling with respect to diurnal variability. This step is referred to Experiment 1.

After, we also added the 60 m wind speed as input to forecast the levels above and it is referred to Experiment 2. Following120

the advice of Bodini and Optis (2020a) and Bodini and Optis (2020b), we conducted two more experiments (Experiment 3

and Experiment 4) which consisted in applying a trained model to the other two sites.

2.3 The Power Law

According to Pintor et al. (2022), the Power Law (PL) is the simplest and generally the most effective way to extrapolate the

wind speed. The PL is given by:125

V = Vr(
z

zr
)α (8)

where, V and Vr are the wind speed at height z and at reference height zr, respectively. α is the wind shear coefficient. They

remind that: α < 0.1, corresponds to unstable conditions; 0.1 < α < 0.2 is typical of neutral profile and α > 0.2 describe a stable

atmosphere.130

2.4 Evaluation

For evaluating the model performances, we chose the metrics that have typically been used in similar works.

· Coefficient of determination (R2): The R2 tells us how much the model differs from the original data and it is related

to the correlation coefficient.

R2 = 1− ΣN
i=1(yi− ŷi)2

ΣN
i=1(yi− y)2

(9)135

· Mean Squared Error (MSE):

MSE =
1
N

ΣN
i=1(yi− ŷi)2 (10)
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· Mean Absolute Error (MAE):

MAE =
1
N

ΣN
i=1|yi− ŷi| (11)

· Mean Absolute Percentage Error (MAPE):140

MAPE =
100%

N
ΣN

i=1

yi− ŷi

max(ϵ, |yi|)
(12)

where yi, y and ŷi are: the actual value, the mean of the observed data and the predicted value. N is the total number of data

points and ϵ is an arbitrarily small but strictly positive number to avoid undefined results when yi is zero. Zhou et al. (2022)

and Baquero et al. (2022) provide detailed explanations for those metrics.

2.5 Observational campaigns145

The observational campaigns occurred along three years (Table 1) on the southeastern portion of Brazil (Fig. 1). The three

sites are identified by the red pins and the numbers over the map. As we see, all of them are relatively close to the coastline.

Despite the proximity among each other (see the description of Fig. 1), the surfaces are completely different, starting by the

altitude (Table 1). Beyond the altitude, we also should consider the different surface roughness among the sites. The Site 1 is

inside a Metropolitan Region (São Paulo city) which is characterized by a chaotic constructive pattern that mixes high buildings150

common to a big city and simple residences. This pattern results from the strong social difference of a densely populated city

that grew disorderly.

The Site 2 is a coastal municipality called Cubatão and is characterized by the large number of industries, due to the Santos

Harbor, which is the biggest harbor complex in Latin America. Beyond the industrial zone, Cubatão is surrounded by natural

parks of the Atlantic Rain Forest (Morellato and Haddad, 2000), residential areas and a high mountain chain (called Serra155

do Mar) on its north boundary. At this point, Serra do Mar rises up abruptly more than 700 m over a horizontal distance of

5 km and looks like a big wall. Vieira and Gramani (2015) provide a technical description of the Cubatão and Serra do Mar

features. Cubatão suffered in the past with serious consequences related to the health and environmental degradation due the

pollution. The effects on health attracted attention by the middle of the 1970 decade due the high rates of deaths and congenital

anomalies and were, by that time, largely published by the regional media. By that time, Cubatão received the title of “the most160

polluted city in the world” (Hogan, 1994). Besides the effects on health, the pollution also caused extreme negative impacts

to the environment. The deforested areas became vulnerable to severe landslides, exposing to the risk the communities living

in the foothills and hill slopes. The compilation done by Cabral et al. (2022) reveals that Cubatão had the highest number of

debris-flows in Brazil during the last 100 years (nine events), causing 11 fatalities (deaths and missing people) and over US$ 73

million in economic losses. Those negative pollution consequences demanded actions to mitigate the impacts (Lemos, 1998).165

Since then, many researches have been conducted there.

The Site 3 (Iperó municipality) is more than 130 km away from the coast, as indicated by Fig. 1. It is inside a predominantly

rural area and about 10 km away from the urban zone of the Sorocaba municipality. Another important characteristic of this Site
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is the Araçoiaba Hill, at its southeast boundary, that rises up more than 300 m, reaching more than 900 m above the sea level.

The Araçoiaba Hill is inside a Federal Conservation Unit called Ipanema National Forest. Gasparoto et al. (2014) summarized170

some characteristics of the Ipanema National Forest.

3 Results

The surface strongly affects the atmospheric circulation within the Planetary Boundary Layer (PBL). Thus, we plotted the

wind rose for the first observational level (40 m) as an attempt to identify similarities/differences among the three sites. The

circulation patterns are similar between Sites 1 and 3 (Fig. 2 and Fig. 4). Both of them present a diurnal cycle of winds turning175

360o. The sea breeze (southeast wind) is one of the main reasons for this pattern at Site 1 (Ribeiro et al., 2018). According

to Ribeiro et al. (2018), there are two main conditions that inhibit the sea breeze reaching the São Paulo Metropolitan Region

7

Figure 1. Sites of the observational campaigns. The distance (yellow line) is 47 km between Sites 1 and 2; 131 km between Sites 2 and 3;

90 km between Sites 1 and 3. Distance estimated by the © Google Earth tool.
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Figure 2. Observed wind at 40 m - Site 1 (normalized wind rose). The wind speed is indicated by legend (m s−1)

(SPMR): the prefrontal circulation and the cloudiness. The cloudiness decreases the thermal contrast between the sea and the

land and the prefrontal circulation is opposed to the sea breeze. Thus, excluding those two conditions, the sea breeze advances

over the SPMR often along the year and justifies the wind rose pattern (Fig. 2). Even at 40 m above the surface, the winds are180

weak and rarely reach 8 m/s. However, the Low-Level Jet (LLJ) is a typical feature of the SPMR (Sánchez et al., 2022).

At Site 2 (Fig. 3), it is also possible to identify a diurnal cycle, although, for this observational period, north and northeast

winds were disproportionately more frequent than the other directions. Klockow and Targa (1998) illustrated a conceptual

model (their Figure 2) and explained in a simplified way the local atmospheric circulation, where the sea and the land breezes

play an important role. Compared to the Site 1, the wind speed is weaker. Vieira-Filho et al. (2015) also observed a similar185

pattern of Fig. 3 (rotating 360o along the day) for the surface winds and emphasized the influences of the orography and the

ocean on the local circulation. They detected around 20% of calms (wind speed < 1 m/s), occurring preferably at nighttime and
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Figure 3. Observed wind at 40 m - Site 2 (normalized wind rose). The wind speed is indicated by legend (m s−1)

mean wind speed around 2.4 m/s.

The diurnal cycle at Site 3 (Fig. 4) is mainly related to the mountain-valley circulation since the valley (Tietê river valley)

becomes deeper to northwest. Thus, the local circulation generally turns 360o along the day. The circulation is also influenced190

by the frontal passages and the postfrontal condition generates stronger south and southeast winds than the prefrontal that

generates weaker north and northwest winds. The LLJs are a recurrent feature observed at this Site (de Oliveira et al., 1995)

and can form very near the surface (Beu and Landulfo, 2022). Winds are slightly stronger than the other two sites, but rarely

reach 10 m/s (Fig. 4).

We carried out more than 60 experiments, testing different machine learning algorithms, size and type of inputs and tuning195

the models, until to reach the results that will be presented in this section. Although we will not show the results of those

algorithms, it is worth mentioning that they were tested and discarded each time a better result was reached. We started our

9
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Figure 4. Observed wind at 40 m - Site 3 (normalized wind rose). The wind speed is indicated by legend (m s−1)

tests by the commonly used algorithms to forecast the wind speed, like: Random Forest Trees (Bodini and Optis, 2020a, b;

Türkan et al., 2016), SVR (Türkan et al., 2016) and its two different implementations: nuSVR and LinearSVR (Pedregosa

et al., 2011); the Multi-layer Perceptron (Türkan et al., 2016); and decomposition methods (Wang et al., 2021; Liu et al., 2022).200

Results also improved when 10 min mean data were used as input instead of 30 min mean or 1 hour mean. From this point, we

refer to results with the LSTM RNN (Bali et al., 2019; Al-Shaikhi et al., 2022).

3.1 Experiment 1

We start to train our model with the Site 3 dataset, as machine learning generally requires large datasets, firstly providing only

the wind speed at 40 m to forecast the wind speed at the higher heights. The entire dataset contains more than 50 thousand data205

for each variable. Thus, using the entire dataset for training and testing the model takes a while. Surprisingly, we found that the
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model only improves until a limited dataset size and was unnecessary to take the entire dataset. At each step, we evaluated the

improvement through the metrics (Eq. 9 to 12).

For the Site 3, we found that the ideal dataset size was 8 thousand points, taking 90% for the training. Considering that our

temporal series is composed of 10-min mean, this corresponds roughly to a two months of observational data. This means210

that a short observational campaign can produce reliable results. We followed testing the inclusion of other variables, as: wind

direction, hour and TKE (Eq. 7), because those data give information about the diurnal cycle and improved the model. The

tables 2, 3 and 4 present the results reached by the LSTM model and the Power Law (PL), according to Eq. 8 and α = 0.25, as

we found that this value provides the best correlation for our datasets. See Table A1 for the dataset sizes and hyperparameters.

As we see, for the three sites, the R2 is similar for estimates with the PL and the LSTM at the first level (60 m) however, as215

the distance from the surface increases, the LSTM estimates outperform the PL. This happens because the PL has a universal

nature and cannot simulate features as the LLJ (Bodini and Optis, 2020a).

Table 2. Site 1 - Assessment of the wind speed estimated by the PL and the LSTM model (Experiment 1) until 230 m

Height (m) Observed mean wind speed (m s−1) Model R2 MSE (m s−1) MAE (m s−1) MAPE (%)

60 3.61 PL 0.98 0.06 0.20 6.47

LSTM 0.98 0.05 0.17 6.63

80 3.85 PL 0.94 0.18 0.33 10.74

LSTM 0.95 0.13 0.28 10.20

100 4.01 PL 0.90 0.30 0.43 13.06

LSTM 0.93 0.21 0.35 11.43

120 4.17 PL 0.86 0.45 0.53 15.06

LSTM 0.91 0.31 0.43 13.15

140 4.29 PL 0.82 0.62 0.62 17.08

LSTM 0.88 0.41 0.50 14.64

160 4.41 PL 0.76 0.82 0.72 19.32

LSTM 0.84 0.53 0.57 16.23

180 4.52 PL 0.69 1.07 0.82 21.71

LSTM 0.81 0.66 0.63 18.17

200 4.64 PL 0.60 1.39 0.93 24.31

LSTM 0.76 0.83 0.70 19.80

230 4.75 PL 0.48 1.86 1.08 28.19

LSTM 0.70 1.05 0.78 22.96
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Table 3. Site 2 - Assessment of the wind speed estimated by the PL and the LSTM model (Experiment 1) until 230 m

Height (m) Observed mean wind speed (m s−1) Model R2 MSE (m s−1) MAE (m s−1) MAPE (%)

60 2.30 PL 0.96 0.09 0.21 12.8

LSTM 0.97 0.08 0.20 12.6

80 2.50 PL 0.89 0.36 0.41 22.6

LSTM 0.93 0.22 0.35 20.7

100 2.69 PL 0.81 0.88 0.60 30.3

LSTM 0.91 0.43 0.46 26.1

120 2.91 PL 0.72 1.83 0.81 36.7

LSTM 0.88 0.77 0.59 28.5

140 3.15 PL 0.65 3.08 1.01 41.7

LSTM 0.89 0.97 0.66 29.4

160 3.35 PL 0.61 4.23 1.17 46.2

LSTM 0.88 1.27 0.74 31.7

180 3.52 PL 0.58 5.11 1.31 49.8

LSTM 0.89 1.39 0.79 33.8

200 3.70 PL 0.53 6.61 1.47 52.6

LSTM 0.86 2.02 0.88 36.4

230 3.86 PL 0.50 7.79 1.61 55.3

LSTM 0.80 3.04 1.05 38.1

For the Site 1, we reached the best result with a temporal series with 10 thousand points. This is approximately a 70 days

observational campaign. When only 40 m variables are used as predictors, we obtain R2 > 90% until 120 m. Observe that the220

PL performance decreases faster at Site 3 than at Site 1 (see Fig. 5 and Fig. 7). The MSE, MAE and MAPE also confirm the

superiority of the LSTM model over the PL. We see from Fig. 5, 6 and 7 that the PL works better close to the surface. At 60

m, the PL performance compares to the LSTM (Fig. 8), but at 230 m, we see stronger winds underestimated by the PL (the red

circle on Fig. 9).

The Site 2, which has weaker winds (see Table 3, column 2), presents better performance for the LSTM forecast from 140225

m upwards than the other two sites. As shown by Fig. 6, R2 remains almost constant above 140 m, while for the PL, the R2

decreases faster than the Site 1 curve. The PL underestimates winds stronger than 8 m/s as illustrated by the scatter plot (Fig.

10) and are associated with abrupt changes as indicated by the temporal series (Fig. 11). The causes of that strengthening of

the wind profile are unknown and remain as suggestion for a future investigation. The LSTM also underestimates the stronger
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Table 4. Site 3 - Assessment of the wind speed estimated by the PL and the LSTM model (Experiment 1) until 230 m

Height (m) Observed mean wind speed (m s−1) Model R2 MSE (m s−1) MAE (m s−1) MAPE (%)

60 4.59 PL 0.96 0.22 0.36 10.0

LSTM 0.98 0.09 0.22 7.1

80 5.03 PL 0.89 0.64 0.62 14.9

LSTM 0.96 0.21 0.34 10.0

100 5.37 PL 0.83 1.10 0.83 18.1

LSTM 0.95 0.34 0.44 11.8

120 5.68 PL 0.77 1.64 1.01 20.8

LSTM 0.92 0.60 0.58 13.6

140 5.93 PL 0.71 2.21 1.16 22.8

LSTM 0.89 0.81 0.67 14.5

160 6.16 PL 0.62 2.94 1.33 25.1

LSTM 0.86 1.11 0.78 15.4

180 6.36 PL 0.54 3.67 1.48 27.0

LSTM 0.83 1.39 0.90 17.5

200 6.52 PL 0.47 4.33 1.61 28.7

LSTM 0.80 1.66 0.97 18.5

230 6.75 PL 0.37 5.35 1.79 30.9

LSTM 0.78 1.83 1.04 19.3

winds (mainly the winds that exceed 12 m/s), as we see from the scatter plot, but it captures the pattern better than the PL (Fig.230

11).

The metrics show a similar behavior between Site 1 and Site 3. Despite the complex topography, perhaps the better performance

of the LSTM model for the Site 2 for the levels above 140 m is related to the absence of the LLJ. To the best of our knowledge,

LLJs so close to the surface have not been reported there yet; on the contrary, they are a common feature of the Sites 1 and 3

(Sánchez et al., 2022; de Oliveira et al., 1995; Beu and Landulfo, 2022).235

3.2 Experiment 2

Some studies already showed that adding input variables from different heights below the extrapolation height improves the

machine learning performances (Vassallo et al., 2020; Mohandes and Rehman, 2018). Thus, we added the 60 m wind speed

observations to the input dataset of the experiment 1 to estimate the above heights. Adding the 60 m wind speed observations
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Figure 5. LSTM and Power Law R2 estimates: Site 1. Exp.1 and exp.2 stand for experiment 1 and experiment 2, respectively

to the input dataset improved the results, as we see in Fig. 5, 6 and 7 (green line). For the Site 1 we see an increasing along the240

entire R2 curve, reaching 99% at 80 m, while the MAE decreased by 50%. At 200 m, the R2 increased by 6% and the MAE

reduced more than 8%. The improvement was more pronounced at the lower heights for the Site 2 (compare the blue and green

lines in Fig. 6). The R2 increased to 98% against the 93% from Experiment 1 at 80 m and the MAPE was reduced by 70%, but

for the higher levels, the improvement gradually decreases, as we see from Fig. 6.

For the Site 3, the Experiment 2 also outperformed the Experiment 1 and the improvement is constant with the height, just245
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Figure 6. LSTM and Power Law R2 estimates: Site 2. Exp.1 and exp.2 stand for experiment 1 and experiment 2, respectively

slightly better at 80 m as we see from the greater distance between the green and blue lines (Fig. 7). The R2 increased 2.5% at

80 m and only 1.5% at 200 m.

3.3 Experiment 3

Bodini and Optis (2020b) advised about the importance of applying the machine learning models to different sites of that where

they were trained. Following their advice, we applied each trained model to the other two sites (Fig. 12 - Fig. 14).250

For the Site 1 (Fig. 12) we see that the Site 3 model (blue line) performed better than the Site 2 model (green line), but its
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Figure 7. LSTM and Power Law R2 estimates: Site 3. Exp.1 and exp.2 stand for experiment 1 and experiment 2, respectively

performance was worse than the original model (S1, that was trained and validated at the Site 1). It is also clear from this figure

that the performance quickly decreases with the height. The behavior is the same for the Site 3 (Fig. 14), where the model

trained for the Site 2 presented the worst result. The tests of the models trained at Site 1 and Site 3 for the Site 2 presented poor

performance as indicated by the fast R2 reduction with the height (Fig. 13).255

Figures 15 - 17 show the correlation between observed and forecasted wind speed for 80 m, 100 and 140 m for the forecast of

the Site 1 with the model trained at Site 3.
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Figure 8. LSTM and PL forecasts (Site 3) for 60 m – results from Experiment 1

3.4 Experiment 4

For this step, we took the best result from the previous experiment (Experiment 3) and added the 60 m wind speed to the input

dataset. That means, for the Site 1 case, took the model trained at Site 3.260

The forecast for the Site 1 highly improves when the 60 m wind speed is included on the input dataset for training the model

at Site 3, as we see in Fig. 18 and outperforms the PL forecast. The R2 increased by 7% if compared with the LSTM forecast

with only the 40 m observations (Experiment 3) for the 80 m height. The R2 reached 90.6% and 84.9% at 120 and 140 m,

respectively. This result is almost as good as Experiment 1. Figures 21 - 23 illustrate the improvement (compared to Fig. 15 -

17) when the 60 m wind speed observation was added to the training phase.265

We also observe a strong improvement for the Site 3 (Fig. 20) compared to the PL estimate. At 80 m, the R2 increased by 9%
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Figure 9. LSTM and PL forecasts (Site 3) for 230 m – results from Experiment 1

compared to the PL estimate, while at 140 m, we observed an increase of 16%.

For the Site 2 we used the model trained at Site 1, since that one performed best, as indicated by Fig. 13. In this case, we see

improvement until 120 m (Fig. 19), but it was lesser than the other two cases. It is obvious that adding more observational

levels to the input dataset would improve the results, however, it is not clear if this method should be applied if the surfaces are270

too different as the Site 2 in relation to Site 1 and Site 3. We recommend more tests for the complex terrain scenarios.
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Figure 10. Site 2: 160 m wind speed forecast (Experiment 1)
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Figure 11. Site 2: 160 m wind speed temporal series (Experiment 1)
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Figure 12. Comparison between the Experiment 1 and Experiment 3, where S1 is the result of the Experiment 1; S1(S2) is the forecast for

the Site 1 ran with the model of the Site 2; and S1(S3) is the forecast for the Site 1 ran with the model of the Site 3

Figure 13. Comparison between the Experiment 1 and Experiment 3, where S2 is the result of the Experiment 1; S2(S1) is the forecast for

the Site 2 ran with the model of the Site 1; and S2(S3) is the forecast for the Site 2 ran with the model of the Site 3
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Figure 14. Comparison between the Experiment 1 and Experiment 3, where S3 is the result of the Experiment 1; S3(S1) is the forecast for

the Site 3 ran with the model of the Site 1; and S3(S2) is the forecast for the Site 3 ran with the model of the Site 1

Figure 15. Correlation between forecasted and observed data for the Site 1 with the model trained at Site 3. Height: 80 m

22

https://doi.org/10.5194/wes-2023-104
Preprint. Discussion started: 9 October 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 16. Correlation between forecasted and observed data for the Site 1 with the model trained at Site 3. Height: 100 m

Figure 17. Correlation between forecasted and observed data for the Site 1 with the model trained at Site 3. Height: 140 m
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Figure 18. Site 1: Comparison for the PL, Experiment 3 and Experiment 4 estimates

Figure 19. Site 2: Comparison for the PL, Experiment 3 and Experiment 4 estimates
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Figure 20. Site 3: Comparison for the PL, Experiment 3 and Experiment 4 estimates

Figure 21. As Fig. 15, except the 60 m wind speed was added to the input dataset
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Figure 22. As Fig. 16, except the 60 m wind speed was added to the input dataset

Figure 23. As Fig. 17, except the 60 m wind speed was added to the input dataset
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4 Conclusions

Nowadays, the machine learning techniques produce successfully results to forecast environmental processes. However, fore-

casting the wind speed is still a challenge due its randomly nature and researchers are dedicating considerable time and efforts

to reach confident results. Comparative studies showed the superiority of the LSTM to forecast the wind speed against other275

machine learning techniques. Adding more meteorological variables has also improved the results. Ensemble and hybrid meth-

ods are strategies that also contribute to the model performances.

Only recently, the machine learning techniques have been applied to extrapolate the wind speed to higher heights. The models

generally require large datasets with some observational heights. After testing some commonly used algorithms for the wind

speed forecast (Random Forest Trees, Support Vector Regression and Multi-layer Perceptron), we found out the LSTM out-280

performed all of them. The LSTM outperformed even the decomposition methods.

We also evaluated different dataset sizes and found out that the model didn´t improve even if the dataset size increases beyond

that presented in Table A1; however, the model is sensitive to the training data percentage. In this study, taking 90% of the

dataset for training produced the best result. The tests also showed best results for 10-min mean as input data than for 30-min

or 1-hour mean.285

Including the 40 m wind direction, TKE and the hour to the input dataset improved the model, which outperformed the Power

Law as the distance from the surface increases. Adding the 60 m wind speed observations to the dataset improved the results,

as expected from results of previous studies. However, the improvement was better to the Sites 1 and 2 than for the Site 3. The

causes should be investigated in a future work.

Even over complex terrain and with a relatively short dataset (an observational campaign shorter than 3 months), the LSTM290

outperformed the Power Law. The Power Law cannot reproduce features like the LLJs that are often observed, at least over the

Sites 1 and 3. The Site 2 is strongly influenced by the sea and land breezes and the LSTM model captured the abrupt changes

of the wind profile better than the Power Law.

Considering that the energy transition is a need and the wind potential is still unknown, it is motivating found out that a short

observational campaign produces such good results, despite of the high cost of the Doppler lidar. This can awake the stake-295

holders to acquire Doppler lidars and to develop cooperative studies or consortiums as strategy to leverage the wind potential

evaluation, since the Doppler lidars are mobile systems and easily operated.

As future work, we expect to test the LSTM recurrent neural network, but providing 1 min or 5 min means observational data

as input instead of 10 min mean. This will require a new observational campaign. We would also like to evaluate if providing

more observational data as surface pressure and surface temperature would improve the results.300

Code and data availability. Algorithms and data are available under request. Please, contact cassia.beu@gmail.com
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Appendix A

Table A1. Dataset size and hyperparameters

Experiment 1 Experiment 2

site data points Training data (%) units epochs batch size units epochs batch size

1 10000 90 30 30 2 30 30 2

2 12000 90 20 20 2 15 30 2

3 8000 90 50 150 2 20 70 2
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