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Abstract. The use of digital twins in offshore wind farms presents a major opportunity to advance autonomous operations and

optimize productivity. By creating virtual replicas of physical assets and systems, digital twins allow for real-time monitoring,

predictive maintenance, and efficient decision-making. In the context of Industry 4.0, wind turbines are required not only to

be remotely monitored and controlled through real-time data during operation, but also to manage the whole life cycle within

the entire value chain. To accomplish this, the implementation of digital twin frameworks in accordance with Industry 4.05

standards is crucial. Motivated by the advanced technologies related to industrial digital twins in the context of Industry 4.0

implemented in the manufacturing sector, this paper presents findings from a study investigating the potential for transferring

knowledge of industrial digital twins to offshore wind farm context. To gain a deeper understanding of the digital twin concept

in the context of offshore wind applications, we conducted extensive literature studies. Specifically, we examined frameworks

used in both the manufacturing industry and offshore wind industry. Our goal is to identify commonalities and differences10

between these frameworks, and to determine how they could be adapted to the unique requirements of the offshore wind sector.

The Asset Administration Shell (AAS), which is a key concept of the Reference Architecture Model for Industry 4.0 (RAMI

4.0), provides a standardized and modular approach to representing and managing assets in industrial systems. By adopting

AAS, offshore wind farms could improve the scalability, adaptability, and interoperability of their digital twin systems, and

also enable more efficient and effective operation and maintenance of the turbines. Based on our findings, we concluded that15

implementing the AAS could be a promising option for enhancing the functionality of digital twins in offshore wind farms,

and for achieving interoperability in line with the standards of Industry 4.0.

1 Introduction

In Industry 4.0, any industry must be able to manage the entire life cycle of a product from the beginning to the end. This

includes planning the initial needs of users and using their feedback to improve future designs. Digital twin technology is20

recognized as being able to realize this demand in the Industry 4.0 era (Salimbeni et al., 2022). For the offshore wind industry,

this technology allows us to monitor and control the turbines from a distance using real-time data. By analyzing the data, we

can estimate power output, predict potential failures, optimize inspection schedules, and improve future products. Digital twin

technology can have a significant impact on the wind farm industry, as it may improve productivity, sustainability, safety, and

reduce operation and maintenance costs (Stump, 2020). This technology can also provide opportunities for the development25
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of autonomous operations (Chen et al., 2021). In recent years, there has been an increasing interest in using digital twin

technology in offshore wind farms (Ebrahimi, 2019; Zhao et al., 2021; Fahim et al., 2022). Digital twin frameworks facilitate the

communication between physical assets and digital assets. The frameworks are critical in ensuring interoperability between the

various companies involved in the development and operation of offshore wind farms. Companies involved in the construction,

operation, and maintenance of offshore wind farms have different ’languages’ or methods of storing and processing their30

data. Consequently, it is time-consuming for a company to share their data with another company, which negatively impacts

productivity. In Industry 4.0, there is a growing demand for companies to communicate in a standardized ’language’ and

integrate automatically without human intervention. Thus, a standardized framework for digital twins is needed to facilitate

interoperability and ensure that computer systems can exchange data across sectors. Interoperability has proven to be highly

beneficial in increasing productivity and effectiveness in the manufacturing industry, particularly in relation to crucial functions35

such as condition monitoring, predictive maintenance, and product life cycle management. These same functions are essential

also to the offshore wind industry. The lack of interoperability in the digital twin frameworks for offshore wind farms is

a significant barrier that needs to be addressed. By transferring knowledge about interoperability from the manufacturing

industry to offshore wind farms, interoperable digital twins can be used to optimize the performance of offshore wind turbines.

The main contribution of our study is to explore the potential for transferring knowledge of interoperable digital twins from40

the manufacturing industry to offshore wind farms, which will be addressed by focusing on these three objectives:

1. to define the concept of digital twins in offshore wind farms

2. to investigate the solution framework used for interoperable digital twins in the context of Industry 4.0

3. to conceptually apply the solution framework for offshore wind farms in the case study

The remainder of this paper is organized as follows. In section 2, we clarify the research methodology and the next chapters45

present the results of our study. In section 3, we present our findings in defining the digital twin concept in offshore wind farms

to address the first objective. In section 4, we analyze digital twin frameworks in offshore wind farms and the manufacturing

industry to address the second objective. We also discuss the potential for overcoming challenges in offshore wind farms that

had been solved in the manufacturing sector by using the solution framework. In section 5, we outline the implementation of

a digital twin in offshore wind farms as described in a study by Haghshenas et al. (2023) and how this solution framework50

could be conceptually applied in the case study as our third objective. Finally, the conclusion and an outlook for future work

are described in Section 6.

2 Methodology

To achieve our objectives and thus increase our understanding of digital twins in offshore wind applications, we proposed

an adopted research design based on a qualitative approach inspired by Verdouw et al. (2021). As displayed in Figure 1, the55

research was conducted in three phases: (1) literature review of the digital twin concept, marked in red, (2) literature review of

digital twin frameworks, marked in blue, and (3) a case study, marked in purple.
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Figure 1. A research approach for investigating interoperable digital twins in offshore wind farms

We investigated the digital twin definition in offshore wind farms by conducting a narrative literature review based on a

book chapter in Demiris et al. (2019). This phase aims for increasing understanding of the digital twin concept from several

perspectives for offshore wind applications. The red circles in Figure 1 describe the selected topic covered in this phase.60

Digital twins, wind, and concept represent articles that discuss the concept of digital twins in offshore wind applications.

First, we gathered articles mentioning digital twin or digital twins and wind in their titles. The existence of ¨wind¨ can be

interpreted as wind turbine, wind energy, or wind power. The articles reviewed in this phase are limited to articles that define

the concept of digital twins in their application on offshore wind farms. Only articles in English that are included among

accessible articles from the primary study have been reviewed for the purpose of this paper. We categorized the selected65

articles based on the purpose of using digital twins in offshore wind farms, namely modelling, estimation/prediction, control,

monitoring, and predictive maintenance. Through this review, we not only gained a deeper understanding of the concept of

digital twins but also identified the potential benefits that can be derived from utilizing digital twin technology in the context

of advanced wind farm systems.

Since we also explore the digital twin frameworks, the next step was to look into the introduced framework in selected70

articles from phase (1), marked with the blue circle and blue arrow on the left side of Figure 1. We investigated the frame-

work introduced in offshore wind farms, including how the framework was implemented, the specific purpose of the particular

framework, and the benefits of the introduced framework. Based on this analysis, we discovered that interoperability is missing

in the framework for offshore wind farms. Hence, we investigated a framework that has been built upon the Industry 4.0 stan-
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dardization from other industries that covers the lack. The blue marks on the right side in Figure 1 belong to the second phase.75

We began with Industry 4.0 standardization and selected the manufacturing industry as a benchmark. This is because intellec-

tual and advanced technologies such as digital twins have been maturely implemented in this sector. The articles reviewed in

this phase are limited to the implementation of the solution framework, not including the development of the framework. We

present the implementation of the solution framework on several applications, namely production line, lifetime management,

maintenance, monitoring and autonomous system. This review was conducted to provide an overview of how the solution80

framework can be advantageously developed in the manufacturing industry. Moreover, we discuss the potential of overcoming

challenges in offshore wind farms that had been solved in the manufacturing sector by using the solution framework. To con-

nect this phase with phase (1), we built a parallel of challenges addressed in wind farm studies with similar problems addressed

in manufacturing applications.

Next, we investigated an existing case study conducted by one of the co-authors in Haghshenas et al. (2023). The case85

study implements predictive digital twins in offshore wind farms and is adopted to demonstrate a high potential for the solution

framework being applied in offshore wind farms. Purple marks in Figure 1, including the purple arrow, belong to the case study.

The comprehensive investigation focuses on three components: (i) the visualization in the form of 3D, 2D, and augmented

reality (AR), which integrates the actual weather data, (ii) the simulation of data processing, and (iii) the communication

protocol for connecting data from multiple sources. The purple arrow in Figure 1 denotes that the solution framework set out90

in phase (2) was conceptually implemented into the case study. We also explored a tool called AASX Package Explorer to

analyze how the tool handles interoperability.

3 The Digital Twin Concept in Offshore Wind Farms

Digital twins have been implemented in diverse sectors, such as manufacturing, health, meteorology, education, cities, trans-

portation and energy (Rasheed et al., 2020). At its core, the digital twin is a virtual representation of a physical asset which can95

exchange information with others and reflects real-time data of the physical asset (Branlard et al., 2020a). Recently, researchers

have categorized digital twins based on their specific applications. For example, Valk et al. (2020) conducted a structured liter-

ature review in order to develop a taxonomy of digital twins in general. Sjarov et al. (2020) systematically reviewed the digital

twin concept in the industry, while Cooper et al. (2022) presented the maturity level of digital twins pertaining to its application

and benefit. Moreover, Verdouw et al. (2021) explored digital twins in smart farming describing the digital twin definition from100

two perspectives: the Internet of Things and the product life cycle.

This section provides a detailed overview of the digital twin concept in offshore wind applications based on their purposes:

modelling, estimation, control, monitoring, and prediction, as shown in Table 1. In the early stages, digital twins are primarily

used for modelling and estimation purposes, while in later stages, digital twins are utilized for controlling, monitoring, and

predicting. Note that the implementation of digital twins in offshore wind farms is not limited to turbines but also encompasses105

other components such as pitch angle control, mooring system, gearbox, bearing, support structure, and drivetrain. Furthermore,

the definition of digital twins used in offshore wind farms differs based on the specific application and components being
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considered. The aim of this section is to gain a deeper understanding of the digital twin concept in the context of offshore wind

applications.

From a modelling perspective, LeBlanc and Ferreira (2020) presented a digital twin model of an H Vertical Axial Wind110

Turbine (H-VAWT) towards the experimental characterization. By applying the polymax curve filter in Siemens Test.lab soft-

ware, they captured complex loading phenomena during the test process to update the finite element model. Here, the digital

twin is clarified as a digital replica of a physical device to predict turbine response for dynamic pitching. For turbine blade

design, Chetan et al. (2021) developed a multi-fidelity digital twin structural model of the turbine blade for system control and

stable rotor operation using the OpenFAST framework. The digital twin method comprised observing the rotor from the design115

stage to the manufacturing, testing, and operation stages. Sahoo et al. (2017 vol.2) reported a structural analysis of shear webs

with a circular hole on a turbine blade using a finite element model in order to reduce material testing. Here, the digital twin

is interpreted as a numerical model which is able to simulate a physical behaviour under a certain environmental condition

without experimental cost. Tygesen et al. (2018) introduced the digital twin model for fatigue re-assessment on wind turbine

structures using Structure Integrity Manager (SIMA) software to analyze and detect the inconsistency between the model and120

the real measurement. The authors introduced five levels of digital twin development in offshore wind farms, namely screening

and diagnostics, finite element model updating, wave load calibration, quantification of uncertainties, and accumulated fatigue

monitoring. Here, the digital twin is a reflection of the current state of the structure that can be analyzed to predict the future

behavior of the structure.

From an estimation perspective, Branlard et al. (2020a) defined digital twin in offshore wind farms as a digital equivalent of125

the actual turbine combining measurements from the physical turbine and the numerical model to estimate the turbine status

and track the life cycle of the physical assets. Using the OpenFAST framework, Branlard et al. (2020b) estimated wind turbine

loads by applying the Kalman filtering technique with measurement signals of rotational speed, pitch angle, generator torque,

and tower-top acceleration. For wind speed prediction, Hu et al. (2020) applied digital twins to predicting time-series wind

speed based on ensemble empirical model decomposition (EEMD), long short-term memory (LSTM) neural network, and130

the Bayesian Optimization (BO) method. Based on digital twin technology, Li and Shen (2022) proposed a novel wind speed-

sensing methodology for wind turbines by applying a series of estimators, verifiers, setters, and selectors called DTSense. Here,

the digital twin is a digital replica that collects and stores operating data based on deep learning algorithms from physical assets

to illustrate how an Internet of things (IoT) works through its life cycle. Furthermore, Walker et al. (2021) developed a digital

twin of the mooring life tension using a state-of-the-art data-driven method to improve lifespan and safety. They designed the135

first digital twin to predict the behavior of the healthy system compared with the actual one, then subsequently constructed the

second digital twin to forecast the future axial tension of the mooring line using existing data for safety purposes. Referenced

by Oneto et al. (2018), here the digital twin is defined as a specific type of model able precisely to copy a physical system and

learn the historical behavior to forecast the future behavior of the system. Moreover, Mehlan et al. (2022) employed bond graph

modelling techniques to create a digital twin of wind turbine gear stages, which was further utilized for the implementation of140

real-time virtual sensing. The goal of this approach was to estimate the remaining useful life (RUL) of the gear and bearing

components through the application of fatigue damage models. Sivalingam et al. (2018) developed a methodology for RUL
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Table 1. Classification of digital twins based on their purposes

Main purpose Applications Sources

Modelling H vertical axial wind turbine LeBlanc and Ferreira (2020)

Turbine blade Chetan et al. (2021)

Sahoo et al. (2017 vol.2)

Fatigue re-assessment on structure Tygesen et al. (2018)

Estimation Wind turbine loads Branlard et al. (2020a)

Wind speed Hu et al. (2020)

Li and Shen (2022)

Mooring life tension Walker et al. (2021)

Remaining useful time of gearbox Mehlan et al. (2022)

Moghadam et al. (2021)

Remaining useful time of power converter Sivalingam et al. (2018)

Control Pitch angle Parvaresh et al. (2020)

Zeitouni et al. (2020)

Monitoring Gearbox Xiangjun et al. (2020)

Wadhwani et al. (2022)

Uncertainties of structural dynamics Augustyn et al. (2021)

Ebrahimi (2019)

Turbine substructure Grosse (2019)

Mooring system Trueba et al. (2021)

Wind turbines (farm) Pargmann et al. (2018)

Fahim et al. (2022)

Prediction Wind turbine Li et al. (2021)

Iosifidis et al. (2021)

Support structure Wang et al. (2021)

Momber et al. (2022)

Electrical components Oñederra et al. (2019)

Gearbox Zhao et al. (2021)
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prediction for prognostic and diagnostic health of a power converter Insulated-Gate Bipolar Transistor (IGBT) on offshore

wind turbines based on digital twin technology. Here, the digital twin is a virtual representation of a physical asset storing

real-time simulation data in the framework to predict the RUL as a means of optimization and improved decision-making.145

From a control perspective, Parvaresh et al. (2020) applied a digital twin for the increase of pitch angle control in a variable

speed wind turbine operating at wind speeds above the rated level. The authors achieved this by introducing a novel deep-

learning backstepping controller method in both software-in-loop (SIL) and hardware-in-loop (HIL) environments. In the

other report, Zeitouni et al. (2020) improved a novel adaptive controller for the pitch angle control of a wind turbine plant by

augmenting the active disturbance rejection controller (ADRC) to evaluate the wind speed error and the difference between150

HIL and SIL results. Here, the digital twin in wind turbine systems consists of virtual assets as well as physical assets and

connection data that tie, reflect, and control each other.

From a monitoring perspective, Xiangjun et al. (2020) focused on anomaly detection of wind turbine gearboxes by merging

the benefits of model simulation technology and data-driven methods to improve the operational reliability and minimize the

operation and maintenance (O&M) costs. Wadhwani et al. (2022) discussed the concept of a digital twin framework for fore-155

casting the failure of turbine gearboxes with updated real-time Supervisory Control and Data Acquisition (SCADA) data. Here,

the digital twin is defined as a virtual space of a physical world that is built digitally utilizing real-time data to monitor the

physical assets and simulate the behavior of a wind farm in real-world entities. Augustyn et al. (2021) harnessed digital twins

to monitor and update the uncertainties related to the load-modeling parameters and structural dynamics in fatigue damage

accumulation using Bayesian pre-posterior theory. In discussing the challenges of developing a digital twin model, Ebrahimi160

(2019) strongly suggested applying uncertainty and intelligent algorithm tools to modify the digital twin platform in order to be

closer to the real one and make it feasible. Grosse (2019) reported the development and benefits of the digital twin concept from

Building Information Modelling (BIM) for monitoring and inspection techniques in wind turbine substructures. Here, the dig-

ital twin is defined as an essential step in accurately and precisely assessing the structural integrity of pre-existing structures to

support decision-making and optimal designs. Trueba et al. (2021) introduced an R&D project called MooringSense, a concept165

for floating offshore wind mooring system integrity management based on control, monitoring, and digital twin technologies

to reduce expenses, optimize O&M, and increase energy production. Pargmann et al. (2018) applied digital twins to integrate

not only technical information, such as the data streams from different sensor types but also business information to monitor

and analyze a complete wind farm based on Cloud-technologies. Fahim et al. (2022) proposed a machine learning-based digital

twin model using a 5G Next Generation Radio Access Network to monitor wind turbines, estimate the generated power, and170

create a wind turbine model in terms of wind speed. Here, the digital twin is a user-friendly model that provides all updated

and integrated information based on a cohesive and sound big data processing approach to allow the user a real-time view and

to implement risk-based integrity management plans.

From a prediction perspective, Li et al. (2021) reported research on digital twins and collaborative cloud and edge computing

applied in operation and maintenance of wind turbines for fault prediction and diagnosis. Using real-world, 1-sec wind speed175

data, Iosifidis et al. (2021) explored the effect of wind turbulence as well as wind speed on semiconductor devices of direct-drive

wind turbines resulting in fatigue. Wang et al. (2021) focused on investigating the support structure of offshore wind turbines
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to prevent unexpected damage and reduce maintenance costs by analyzing fault diagnosis, condition-based maintenance, and

RUL prediction. Here, the digital twin is defined as a promising tool for understanding the undergoing mechanisms of structures

for the purpose of fault prediction and establishing a diagnosis model to schedule the maintenance plan and support decision-180

making methods. Furthermore, Momber et al. (2022) applied the digital twin concept for the prescriptive maintenance planning

and control monitoring of surface protection systems on wind turbine towers. Nuñez-Montoya et al. (2022) developed a wind

turbine digital twin model for failure prognosis by comparing actual data from SCADA and simulated data from software

combined with artificial intelligence algorithms in the digital twin creation. Oñederra et al. (2019) discussed a medium voltage

(MV) cable model of different electrical components, such as power converter, generator and transformer, on wind farms in185

order to imitate the real asset in terms of preventive maintenance. Here, the digital twin is the use of abundant data on the

behaviour or physical asset to integrate them in a multi-disciplinary simulation within a digital environment which allows for

predicting its performance. The gearbox is one of the crucial and risky tools that require special treatment to prevent fatigue and

damage as it plays a significant role in connecting turbines and generators for producing power. Zhao et al. (2021) introduced

a CapsNet-based deep learning scheme for a data-driven fault diagnosis method for digital twins of a wind turbine gearbox,190

including single fault and coupling fault. Moghadam et al. (2021) proposed a multi-degree of freedom torsional model of

a drivetrain system in the prediction of gearbox RUL using a 5 MW reference drivetrain. Here, the digital twin is a highly

accurate but computationally fast model of the system, which is able to update itself by the online measurement and predict its

future behavior.

In addition to those perspectives, presented in Table 1, there is advanced research by Chen et al. (2021) discussing a human-195

cyber-physical system toward wind turbine operation and maintenance in the context of achieving Industry 5.0 technology

standards. Highly effective training of AI through machine learning is required for Industry 4.0 digital twin technology. Here,

human intelligence (HI) was developed, where a high-level decision made through a human-machine interface breaks the

autonomy. This idea could be a promising tool for the improvement of an advanced wind farm, but only if there is a reliable

framework that can connect all assets and industries related to wind farms called interoperability. Thus, the digital twin is not200

only utilized for modeling, control monitoring, and/or predictive maintenance, but also as a management tool for the life cycle

management of wind farms itself (Salimbeni et al., 2022).

3.1 Comparison of digital twin frameworks in wind power and manufacturing industries

In order to leverage digital twins, it is essential to establish a framework that facilitates data storage and communication between

digital and physical assets. By analyzing recorded operational data, it is possible to anticipate the future behavior of physical205

assets, while historical data can be used to predict potential device failures. The data stored in the framework can serve as a

foundation for developing newer and more sophisticated devices. This section explores various frameworks for implementing

digital twins, including those employed in offshore wind farms and in the manufacturing industry. It also examines the potential

for deploying these frameworks in offshore wind farms and highlights similarities and differences between them, as well as

how they can be tailored to meet the distinctive requirements of the offshore wind sector.210
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3.2 Digital twin frameworks in offshore wind farms

Branlard et al. (2020b) utilized OpenFAST linearizations to build a linear-space model, including additional degrees of freedom

(DOF) and considerations of the offshore environment for the purpose of real-time load and fatigue estimation on wind turbines.

OpenFAST is a framework, an open-source wind turbine simulation tool, a multi-physics and multi-fidelity tool, that couples

dynamic response (fluid, control and electrical system, and structural dynamics) of wind turbines. Chetan et al. (2021) also215

utilized the OpenFAST framework to be able to capture the dynamics of the as-build design on the turbine blade due to various

root bending moment experienced during simulation. The significant benefit of OpenFAST is that it can automatically linearize

a vast suite of status, inputs and outputs. Branlard et al. (2020b) performed the linearized output equations for acceleration and

loads of the structure from inputs of mean wind speed, tower-top load, generator torque, and pitch. In order to estimate tower

loads on wind turbines by integrating a mechanical model and available measurements, they used OpenFAST on simulations220

with and without noise for considering measurement uncertainties. Another benefit of OpenFAST is that it can be stated with

only a few DOF (from 2 to 30 DOF) whereas traditional FEM requires a thousand DOF, in which Branlard et al. (2020a)

compared 2 DOF and 16 DOF on a wind turbine.

Parvaresh et al. (2020) presented a digital twin framework that combines hardware-in-loop (HIL) and software-in-loop (SIL)

techniques for pitch angle control of variable speed wind turbines. HIL involves testing software systems on cloud-based test225

benches that receive inputs from physical assets, while SIL is a cost-effective method of testing code in a simulation envi-

ronment. The authors proposed the use of a deep deterministic policy gradient (DDPG) based nonlinear integral backstepping

(NIB) method supported by model-free control (MFC) to minimize the difference between the SIL and HIL environments.

When SIL is an entirely virtual format, HIL involves data from sensors as if seeing real driving circumstances. The purpose of

using SIL and HIL in their work is to perform the abilities of controllers in real-time applications and to specify the system and230

simulation of a closed loop in software. Further advanced work, Zeitouni et al. (2020) augmented the active disturbance rejec-

tion controller (ADRC) to compensate for high aerodynamic variations, mechanical stresses on the drivetrain, and unknown

uncertainties.

Pargmann et al. (2018), Li et al. (2021), and Fahim et al. (2022) utilized cloud computing technologies as a digital twin

framework for offshore wind farms. Pargmann et al. (2018) gathered all data from several sensors in Raspberry Pi and SCADA235

to the cloud IoT interface of SAP Cloud Platforms (SCP). The authors also built a SAP Enterprise Central Component (ECC)

named ZEIT cloud to store external information (weather forecasts, exchange rates, flight of birds, etc.) and other data (busi-

ness intelligence, customer relationship management, supply chain management, enterprise resource planning) related to the

offshore wind farm industry. They argued that the edge-cloud collaboration approach could integrate technical and business

data within a single digital twin by using augmented reality (AR) to visualize wind farm data.240

Li et al. (2021) presented a framework for real-time monitoring of O&M in offshore wind farms, consisting of three layers:

data source, edge computing node, and public or private cloud computing. The benefit of edge-cloud collaboration for O&M

is that it enabled continuous adjustment of simulation results, as the model is based on the zero component feature of the

equipment. Moreover, Fahim et al. (2022) proposed a 5G-Next Generation-Radio Access Network (5G-NG-RAN) assisted
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cloud-based digital twin framework of Microsoft Azure for investigating wind farms. The study concluded that the use of the245

cloud framework enabled effective monitoring through the provision of data from supervisory control and data acquisition

units in each turbine of a wind farm.

Tygesen et al. (2018) utilized a state-of-the-art software called SIMA (Structural Integrity MAnager) as a digital twin frame-

work to create the true digital twins in general for the structural monitoring systems. SIMA is able to update digital twins

according to the structural behaviour with the Bayesian-based Finite Element model and to perform the wave load calibration.250

Using SIMA, they update the mass and stiffness parameters of digital twins in order to minimize the discrepancy between

the predicted and measured parameters. The advantage of SIMA is that it enables coupling digital twins directly with the real

measurements, analyzing and detecting inconsistencies between the digital and real measurements.

Trueba et al. (2021) proposed the MooringSense concept for implementing more efficient integrity management strategies for

offshore wind mooring systems. The MooringSense in digital twins consists of a high-fidelity fully coupled model divided into255

two aspects: predicted loads (virtual loads prediction, synthetic rope properties update, and floater motion prediction) and O&M

data (remaining useful data, local damage calculation in chains, and mooring analysis) for decision making. MooringSense

presented the updated condition information of the mooring systems and an approach for reducing uncertainties, performed

under both static and dynamic offshore wind farm conditions. In addition to serving as a mooring system digital twin, the

advantage of the MooringSense concept is the development of a smart motion sensor, a structural health monitoring (SHM)260

system, and control strategies on the wind turbine and farm levels.

Walker et al. (2021) applied (state-of-the-art) data-driven models (DDMs) as a digital twin framework to identify long-term

drifts in the mechanical response of mooring lines for offshore wind turbines. The DDM technique utilizes the injection of

configurator model components into the model dynamically, based on data received from external systems such as catalog

systems. DDMs were used to improve computationally aware real-time monitoring systems for mooring lines by analyzing265

existing data of input-output behaviours to predict future axial tension of mooring lines. With DDMs, the framework has the

potential to identify two approaches, the traditional machine learning method and the deep learning method, in order to predict

the expected behavior of the healthy system, to be compared with the factual one. The benefit of DDMs is increased efficiency

as they reduce cost and time to market by eliminating manual construction of model components, instead dynamically updating

the model with changes in the catalog system.270

All existing frameworks summarized in Table 2 focus only on the data connectivity between digital assets and physical assets,

enabling the digital model to present the physical asset in terms of real-time data. With regard to realizing digital twins in the

Industry 4.0 era, not only connectivity is required, but also the ability to exchange information among the companies, known

as interoperability. In the offshore wind farm industry, there are several companies involved in the process of construction,

operation and maintenance, such as manufacturers, suppliers, and customers. Even within one company, it is challenging to275

harmonize, understand, and use these pieces of data together. Besides, different companies use different applications and a

different ¨language¨ for the same asset aspects. The increased complexity of exchanging data across companies and supply

chains requires interoperable digital twins following Industry 4.0 standardization. Interoperable digital twins not only simplify

the process of exchanging data across sectors but also increase the transparency, adaptability, and flexibility of data. Data
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Table 2. Summary of digital frameworks implemented in offshore wind farms

Frameworks Purposes Sources

OpenFAST Estimation Branlard et al. (2020a)

Branlard et al. (2020b)

Modelling Chetan et al. (2021)

HIL and SIL Control Parvaresh et al. (2020)

Zeitouni et al. (2020)

Cloud computing technology Monitoring Pargmann et al. (2018)

Fahim et al. (2022)

Prediction Li et al. (2021)

Structural Integrity MAnager (SIMA) Modelling Tygesen et al. (2018)

MooringSense Monitoring Trueba et al. (2021)

Data-driven model Estimation Walker et al. (2021)

interoperability can be achieved through interoperable digital twin frameworks. The interoperable digital twin is not a new280

idea in the manufacturing industry: the implementation of interoperable digital twins has been maturely implemented through

a standardized framework. In the following subsection, we describe the solution framework that is required in offshore wind

farms in order to achieve interoperable digital twins facilitating engineers in decision-making.

3.3 Digital twin framework in the manufacturing industry

In order to realize interoperability in digital twins, a standard is required, enabling similar information to be applied in more285

than one sector. Standardization and interoperability strategies are key to success in implementing digital twins in the Industry

4.0 era. Asset Administration Shell (AAS) is a framework that has been promoted as the implementation of digital twins

for the standardized Industry 4.0 to facilitate interoperability within one organization and across enterprise boundaries by

allowing uniform access to the information and behavior of an asset (Geschäftsstelle, 2018). Essentially, AAS is a machine-

readable, technology or device-agnostic description of a component that provides access to all of its properties and functions.290

AAS consists of several submodels pertaining to its structure, which describe the asset’s functionalities and information, such

as parameters, properties, status, characteristics, and commercial and technical functionalities (Sakurada et al., 2021). AAS

defines a meta-information model for Industry 4.0 known as the Reference Architectural Model for Industry 4.0 (RAMI 4.0),
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Figure 2. Asset administration shell types (Geschäftsstelle, 2018)

built upon properties standardized in accordance with IEC 61360 (Redeker et al., 2020). This subsection investigates how AAS

has been widely applied in the manufacturing industry.295

AAS has three types based on the pattern of interaction, namely passive, reactive, and proactive, as seen in Figure 2. In the

passive type, AAS operates as a static file or file package, with asset data being stored in a uniform data format. The reactive

type indicates a scenario where AAS can exchange information with other AASs or software applications through Application

Programming Interface (API). In the proactive type, AASs can autonomously associate with each other via a standardized

interface with a common syntax and semantics foundation, thereby facilitating peer-to-peer interaction among AASs (Ye et al.,300

2021). In the manufacturing industry, the interoperability of AAS is used for several purposes, such as production line design,

life cycle management, condition monitoring, predictive maintenance, value chain, and autonomy.

From a modeling perspective, Lu et al. (2021) presented a general platform based on AAS. They focused on the commu-

nication layer by using Open Platform Communication United Architecture (OPC UA) and on the information layer by using

Automation Markup Language (AutomationML) in RAMI 4.0 for modeling AAS. The general AAS platform consists of three305

layers for a production line design. The first one is the asset layer, in this case two different industrial robots with their con-

troller and a digit control machine tool. The second one is the AAS layer containing a single AAS of all assets. The third one

is the application layer consisting of the AAS modeling mode and the application scenario mode, which is to develop device

AAS, verify specific scenarios, and order robots to work with Computerized Numerical Control (CNC). The AAS platform

has platform control and platform communication between AAS and device, also across AASs, by applying OPC UA clients310

and OPC UA servers which are connected in platform control. Furthermore, Ye and Hong (2018) also built an architecture for

the integration of manufacturing processes using OPC UA and AutomationML. They refined RAMI 4.0 into four-layer archi-
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tecture. The first one is the enterprise layer, which is a combination of business and function layers of the RAMI 4.0 model.

The second one is the information layer for data management pertaining to operation and maintenance, system configuration,

and connectivity with other devices, to optimize decision-making. The third one is the communication layer, for establishing315

information exchange paths between user applications and field devices. The fourth one is the field layer which consists of

the physical asset, e.g., sensors, controllers (PLC), actuators (robots), etc. The authors applied this architecture to a use case

involving two conveyor belts for process hauling and two robot arms for the pick-and-place They successfully integrated robot

and conveyor engineering data using AutomationML and addressing the integration of Wi-Fi and Ethernet Powerlink protocols

using OPC UA. Moreover, Lüder et al. (2020) leveraged AAS’s role as the system integrator of engineering data logistics on320

advanced production systems. They presented a method for the implementation of AAS in the context of Industry 4.0, utilizing

it in an ultrasonic measurement cell and its components within a steel mill as a case study. The method employed Automa-

tionML to centralize the engineering data storage and to exchange data throughout the chain for the production process. The

method realized a more efficient system for identifying, representing, and integrating engineering data. The authors concluded

that AAS, due to its standardization, represents a simple yet effective technology for integrating production system engineering325

tools in an engineering network. Panda et al. (2018) presented OPC UA to host the AAS and provide a semantic dataspace

for each asset in integrating plug-and-produce components. OPC UA was utilized to integrate all the OPC functionality into

one extensible framework, to clarify the communication mechanism through a publisher-subscriber model or a client-server, to

connect the information in several ways by expanding supplementary vendor-specific information to the OPC UA base model,

and to allow assets to be found across the production system. They concluded that the use of UPC UA in the communication330

protocol of AAS allowed easy integration of plug-and-produce components into the network without any network-specific

preconfiguration. Birtel et al. (2020) developed a method for transforming passively communicating product memory into an

active digital object memory model (ADOMe) utilizing AAS as the semantic interface for interoperability. They carried out a

use case where the product can be remotely discharged within the manufacturing process due to a defective product. OPC UA

was used in AAS to enable devices with OPC UA communication capability to access AAS information across the hierarchy.335

The authors discovered that the integration of ADOMe using AAS enables products to communicate with each other individ-

ually and remotely, thus improving the overall functionality and efficiency of the manufacturing process. Motsch et al. (2021)

implemented the use of AAS in the context of the electrical energy consumption interface in modular skill-based production

systems. They applied the reactive type of AAS with a passive API as a software adapter, whereby a specific AAS metamodel-

compliment structure was able to represent a given component-specific interface. Information related to energy measurement340

from a Cyber-Physical Production Module (CPPM), smart sensors, and an Infrastructure Node (ISN) was transmitted directly

to the AAS energy submodels. To facilitate this, the authors employed OPC UA for communication between CPPMs, ISNs, and

AAS, resulting in the aggregation of OPC UA-Servers. They also presented the proactive type of AAS for the communication

system between CPPM and ISN to provide information on energy consumption for skill execution decisions or energy-related

condition monitoring and dynamic interaction with other components.345

From a product life cycle management (PLM) perspective, Marcon et al. (2019) applied AAS to present case studies focusing

on interconnecting sensors installed in the SmartJacket, pertaining to how Digital Factory (DF) components can operate and
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communicate with each other within the entire value chain. They analyzed the AAS model formation from the perspective

of identification, configuration, communication, condition monitoring and safety. The authors proposed the integration of

AAS into a central component, specifically a smart wireless sensor, in the context of implementing a SmartJacket system. By350

integrating AAS directly into the data concentrator, the authors argue that it is more effective for the SmartJacket system to

communicate with the main control component and for the AAS to be physically included within the system. This approach

improves the functionality and efficiency of the SmartJacket system by allowing for seamless communication and integration

of AAS into the system. Besides PLM, modern product development also performs application life cycle management (ALM)

to address the software life cycle. Deuter and Imort (2020) utilized the AAS implementation to establish a new strategy named355

Plm4AAS in order to integrate PLM/ALM datasets in a single product model using Open Services for Lifecycle Cooperation

(OSLC). The authors presented a method for the semi-automatic generation of PLM-related data within the framework of AAS.

The proposed approach allows for the configuration of basic needs for PLM integration in AAS, thus enabling the definition

of relationships between all data while importing it into the AAS data model. To evaluate the proposed method, Deuter and

Imort (2021) conducted a case study at the SmartFactoryOWL, where they produced a sample product (SmartLight). The360

results of the study demonstrated the effectiveness of the proposed approach in generating PLM-related AAS data in an order-

controlled production process. Göllner et al. (2021) applied AAS for the generation of dynamic simulation models in order

to aggregate all information, including the structural data about a machine for maintaining the product across its life cycle.

The proposed concept was to be able to generate the dynamic simulation model automatically built upon the standardized and

interoperable digital twins, whereby all necessary data is mapped into the AAS structure. They established the simulation model365

description (SMD), where all data extracted from the AAS meta-model in the digital twin gateway was gathered to generate

the simulation model for a particular simulation tool. They declared that the proposed concept entailed particular benefits for

individual machine solutions with similar components, which is able to reduce the time consumption pertaining to manual

efforts. Rauh et al. (2022) implemented AAS as an artificial intelligence (AI) asset management solution pertaining to AI life

cycle management in the manufacturing industry. They argued that the AAS Standard facilitates and allows for streamlining370

time-consuming integration efforts in the plug-and-produce process. The concept of AAS allows the direct integration of all

types of assets within a single information model. It is able to scale heterogeneous infrastructure while confirming reusability

and reproducibility in terms of life cycle management. They declared that the AI model supported by the AAS standard

offered a high degree of automation and interoperability pertaining to digital twin technology without requesting new system

boundaries through communication language and the standardized API.375

From a maintenance perspective, Cavalieri and Salafia (2020b) proposed an approach using the AAS concept to realize

interoperability between different manufacturers and devices and to apply generic functionalities for a predictive maintenance

solution pertaining to a smart factory. The approach relies on the AAS model and logical block (LB) concept which is an ele-

ment modular categorizing the functionality related to the maintenance aspect, namely data manipulation or data acquisition.

AAS presents the information in a uniform and semantically annotated manner, resulting in generic LB functionalities being380

applied by an asset using any suitable solution exposed by a standardized API. They concluded that the LB and AAS applied

in the predictive maintenance model were able to define the maintenance actions to improve the flexibility level of produc-
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tion. Lang et al. (2019) utilized AAS to support humans during the maintenance process. The AAS submodel consists of the

procedure-based maintenance approach providing the user with a standardized description of necessary equipment, tools, pro-

cedures, safety concerns, etc, for maintenance. They applied OPC UA as the communication protocol in AAS due to its vendor385

independency and its service-oriented architecture, for the industrial towel folding machine in SmartFactoryOWL as the use

case. The AAS submodel performed by updating AAS status, inputting maintenance data log, and by supplying feedback to

improve the life cycle process. Tantik and Anderl (2017) proposed an approach combining AAS and the World Wide Web

Consortium (W3C) specification to achieve a uniform structure for industrial CPS. The required functionality consists of five

main segments, namely for representation, communication to internal assets, communication to external CPS, security, and a390

section for capability improvement, in which AAS provides an independent segment for data management. The use of AAS

is highly suitable for standardization without interrupting the entity functionality. The proposed approach is implemented to

store all information pertaining to the production process for the product life cycle, to customize the data model flexibly, and

to access the required information automatically. As the use case for remote maintenance, the authors applied the approach to

the robot arm.395

From a monitoring perspective, Casado and Eichelberger (2021) merged the standardized AAS with existing components –

a vendor-neutral monitoring frontend (micrometer) and IIoT protocols such as message queuing telemetry transport (MQTT)

– on a runtime monitoring approach for devices and services in Industry 4.0 installations. Micrometer was utilized to provide

runtime measures in a uniform fashion, MQTT was used for soft real-time streaming, while the monitoring results were shown

in terms of AAS structures so that stakeholders were able to access the desired and monitored information through polling. The400

approach facilitated access to the monitored properties for individual services and devices, also as a fundamental for efficient

aggregation of all installation elements. Pethig et al. (2017) applied AAS as an information model on the PLC of a work cell for

condition monitoring of a servo motor in order to enhance the efficiency and flexibility of adaptable cyber-physical production

systems (CPPS). The AAS is used to simplify the integration of the work cell into services and to automatically choose the right

signals and configure parameters, i.e., thresholds, in this case the maximum torque, thus shortening the time consumption. An405

OPC UA Client was utilized for the communication protocol in AAS to connect the AAS on the PLC. The authors concluded

that the implemented AASs were able to monitor the condition of the servo motor and detect the exceeded thresholds. Rehman

et al. (2022) implemented AAS in controlling the functionality of an intelligent testing process in the production system for

small to medium enterprises (SMEs) which depend significantly on testing processes for their low volume but highly bespoke

products. The implementation of the AAS involved observing the behavior change on the asset, thus directly controlling the410

behaviour of a production process. The server shell of the AAS consisted of all information about the related expressions,

settings, parameters, and configurations of the physical assets to request the necessary API for executing the skills. The authors

concluded that the presented implementation of AAS type 2 enabled a decrease in the required time for setting up a new testing

process and for controlling the testing operation.

From an autonomy perspective, Herzog et al. (2020) proposed architecture of an autonomous adapting machine (ADAM)415

using AAS, particularly for the use case, a metal sheet cutting system, in order to minimize the effort pertaining to planning,

implementation, communication, and recommissioning. AAS is utilized to manage the variability and interoperability among
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the machines and components, thus performing the changing requirements automatically. Ding et al. (2021) demonstrated a

technology architecture based on a blockchain using the AAS model for digital management, production plan and process,

controlling the manufacturing task, and trusted autonomous execution. They established an AAS blockchain sub-model to420

facilitate communication with the system for the purpose of completing distributed authentication in real operation pertaining

to the establishment, operation and maintenance of a workshop. Seif et al. (2019) implemented AAS as a means of creating a

connector between the physical world and the IIoT world in mini-factories. The AAS approach aimed to provide a comprehen-

sive representation of the asset, including the technical functionality and the relationship with other assets. The methodology

was demonstrated through a case study conducted at the Model Factory @ARTC (Advanced Remanufacturing and Technology425

Centre) in Singapore, where a gearbox factory consisting of three distinct processes (fabrication, warehousing, and assembly)

was selected as the testbed. The study employed an IoT platform with RESTful API connectivity, enabling automatic storage

and communication protocol, to connect the physical assets to the digital assets represented by the AAS. As a result, the factory

manager was allowed to identify available information for specific assets and the frequency of data updates. The authors argued

that the methodology is highly suitable for the manufacturing industry towards Industry 4.0. Stock et al. (2021) applied AAS430

in 5G architecture-enabled cyber-physical production systems (CPPSs) to represent virtualization technology. The AAS was

utilized as a unifying component to confirm a consistent information model in the CPPS for interoperability among the inte-

grated components, which was initially carried out in different ICT and operation technology (OT) fields. Walter et al. (2022)

presented an architecture applying AAS based on RAMI 4.0 for the integration of cable-driven parallel robots (CDPRs) in a

system of industrial cyber-physical systems (ICPS). The purpose of using AAS is to provide the information associated with435

CDPRs on the communication and information layer of RAMI 4.0 using OPC UA in order to realize semantic interoperability.

The deployment and advancement of new technology in Industry 4.0 add high complexity. It not only relates to how the data

is adequately structured and represented, but also to the communication methodology for exchanging the information in order

to integrate the data from multiple vendor-based systems (di Orio et al., 2019). This subsection has explored the advantages of

applying AAS from existing studies from several perspectives, as seen in Table 3. Most of them address the simplicity of AAS440

pertaining to communication, integration, connectivity, interoperability, and autonomy. These apply to life cycle management,

production line, condition monitoring, predictive maintenance, and autonomous execution in manufacturing plants. Existing

studies have proven that AAS decidedly works in terms of standardization and interoperability between automated industrial

systems and CPSs according to Industry 4.0 (Iñigo et al., 2020). The fruitfulness of AAS in the manufacturing industry can

significantly impact other industries, particularly the offshore wind industry. In the following subsection, we investigate the445

greater potential of using interoperable AASs in offshore wind farms in the future.

3.4 The interoperable digital twin framework for the offshore wind industry

The wind energy industry, including both onshore and offshore wind farms, has yet to incorporate digital twins based on AAS.

However, with the transfer of knowledge regarding AAS implementation from the manufacturing industry, there is significant

potential for the development of interoperable AAS in offshore wind farms. In this subsection, we discuss the possibility of450

addressing the challenges faced in offshore wind farms (as described in section 3 and subsection 4.1) that had been achieved in
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Table 3. Summary of the AAS implementation

Main perspective Sources Focus on

Modelling Lu et al. (2021) Communication layer and information layer

Ye and Hong (2018) Enterprise layer, communication layer, and information layer

Lüder et al. (2020) Centralizing the data storage and exchanging data along the chain

Panda et al. (2018) Integration of plug-and-produce components

Birtel et al. (2020) The integration of ADOMe to discharge a defective product remotely

Motsch et al. (2021) Communication system

Management Marcon et al. (2019) Interconnection of SmartJacket sensors

Deuter and Imort (2020, 2021) PLM/ALM integration

Göllner et al. (2021) Automatically generate the dynamic simulation models

Rauh et al. (2022) AI life cycle management

Maintenance Cavalieri and Salafia (2020b) Interoperability between different devices in smart factory

Lang et al. (2019) The connectivity among maintenance and other life cycle processes

Tantik and Anderl (2017) An integrated data model

Monitoring Casado and Eichelberger (2021) The integration patterns

Pethig et al. (2017) The automatic configuration for the integration of CPPS

Rehman et al. (2022) Integrating intelligence into testing processes

Autonomy Herzog et al. (2020) Interoperability among machines for changes automatically

Ding et al. (2021) The transparency of integrated data

Seif et al. (2019) Automated design and configuration of sensory systems

Stock et al. (2021) Interoperability among the integrated components

Walter et al. (2022) Integrate a new class of CDPRs in a ICPS system

the manufacturing sector by using AAS, as outlined in subsection 4.2. The goal of this discussion is to explore the feasibility

of applying AAS in offshore wind farms to improve efficiency and productivity. By leveraging the existing solutions from

the manufacturing sector, we can potentially mitigate the challenges in offshore wind farms, such as high maintenance costs,

limited accessibility, and safety concerns.455
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For example, Li et al. (2021) presented a digital twin of wind turbines by combining cloud and edge computing technology

for fault prediction in general. Nuñez-Montoya et al. (2022) established a digital twin by comparing actual data from SCADA

and simulated data from software to be analyzed. In this case, AAS provides the automatically updated storage and the com-

munication protocol connecting the real asset to the digital asset, something which has been investigated by Seif et al. (2019) in

mini-factories. Moreover, for fatigue diagnosis in a specific component, i.e. the support structure or tower (Wang et al., 2021;460

Momber et al., 2022), the gearbox (Zhao et al., 2021; Moghadam et al., 2021), and the semiconductor (Iosifidis et al., 2021),

AAS is able to represent a given component-specific interface as shown in the specific electrical energy consumption interface

in modular skill-based production systems as shown by Motsch et al. (2021). Predicting the failure on the device before it

occurs significantly impacts the turbine lifetime and prevents the consequent downtimes. Any maintenance activities affect the

generated power of wind turbines significantly, which in turn directly impacts revenue. Especially for offshore wind farms,465

corrective maintenance requires specific resources, such as vessels with a gangway, crane, and helideck, which are not always

available, generating costs. Predictive maintenance is beneficial in providing an opportunity reducing wind farm maintenance

costs, unexpected shutdowns, and consequent downtimes. Predictive maintenance can be carried out with the recorded database

and real-time simulation stored in the AAS of digital twins of offshore wind farms.

Parvaresh et al. (2020) established a digital twin of offshore wind turbines for the pitch angle controller pertaining to a470

variable wind speed. Meanwhile, Birtel et al. (2020) implemented AAS in a use case where the product can be remotely

discharged within the manufacturing process due to a defective product. Here, AAS is used to access and communicate all

components remotely and individually, so that a component can order a command from other components in terms of the

controller. For condition monitoring of offshore wind farms, the AAS can be used as an information model for interoperability

among the integrated components as presented by Pethig et al. (2017) in a servo motor and by Stock et al. (2021) in 5G475

architecture-enabled CPPS, to increase the efficiency and flexibility.

Pargmann et al. (2018) explored digital twins to integrate not only the technical information but also the business informa-

tion. Ye and Hong (2018) successfully achieved this aim by implementing AAS, referred to as RAMI 4.0, for manufacturing

processes. In the enterprise layer, business data is included. The information layer consists of technical data, i.e. operation and

maintenance. In the communication layer, focus is on the integration among these layers. This proves that the implementation480

of AAS has the potential to realize the integration between technical and business information.

The historical data from sensors stored in AAS significantly contribute to predicting the wind speed (Hu et al., 2020; Li and

Shen, 2022) and the future axial tension of mooring lines (Walker et al., 2021), and also to estimating the remaining useful life

(RUL) of offshore wind farms (Mehlan et al., 2022). Branlard et al. (2020b, a) presented digital twins of offshore wind farms in

order to track the life cycle of the physical assets. Göllner et al. (2021) generated the dynamic simulation model automatically485

based on the standardized and interoperable information model where all necessary data is mapped into the AAS structure. The

role of AASs in life cycle management (Marcon et al., 2019; Deuter and Imort, 2020; Rauh et al., 2022) facilitates estimating

the turbine states and tracking the life cycle of the physical objects. Moreover, by gaining a better understanding of the life

cycle of offshore wind farms, we can analyze the shortcomings of existing turbine models, both physical and digital assets, for
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further improvement. The simplicity of interoperable AASs enables all stakeholders to observe and analyze the condition of490

the devices for improved decision-making, hence leading to increased productivity and effectiveness.

4 Digital Twins in the Context of Industry 4.0 for Offshore Wind Farms

This section provides findings from a comprehensive investigation of a previous case study conducted by one of the authors in

Haghshenas et al. (2023). The case study is based on the Hywind Tampen floating wind farm project, developed by Equinor,

which aimed to implement a digital twin in offshore wind farms. The Hywind Tampen consists of eleven floating wind turbines,495

generating 94.6 megawatts of power, that was designed to meet one-third of the yearly energy demand of five oil platforms in

the Norwegian North Sea. The project demonstrated a positive impact in terms of reducing the yearly emissions of 200,000

tons of CO2 and 1,000 tons of NOx from gas turbine usage.

The previous case study established the significant potential relating to implementing a digital twin in offshore wind farms to

predict bearing failures and thus enhance decision-making pertaining to maintenance. The study also successfully demonstrated500

the visualization of the Hywind Tampen in various formats, including a 2D GUI (Graphical User Interface) cloud, 3D, and

augmented reality. In the current study, we visualize the actual weather data (such as wind speed and direction) from the

Norwegian North Sea where the Hywind Tampen is located. We also specifically analyze the simulation of the data processing

and the communication protocol of how data from several sources was transmitted and integrated. Finally, we present an

overview of how an AAS-based digital twin could be conceptually applied in the case study.505

4.1 Data source

The creation of a digital twin integrates the data from a variety of sources, comprising various data types, in order to generate

a virtual model capable of replicating the behavior of real-world physical assets. Once a digital twin has been established, it

can be utilized to generate simulations and to forecast and assess the performance of the corresponding physical entity. Data

sources that can be utilized in the construction of a digital twin may include visual data, measurement data, historical data, and510

etc. In this case study, these data sources are classified into four categories: static data, simulated data, live data, and historical

data (Haghshenas et al., 2023).

4.2 Visualization

The visualization of the case study was achieved through various means, namely 3D visualization, a 2G GUI cloud, and

augmented reality (AR). The 3D visualization is applied in unity 3D, an open-source platform that enables users to easily add515

assets from an inventory to a scene and to customize scenarios by adjusting internal and external factors. The visualization

consists of wind turbines and oil rigs as the representation of the Hywind Tampen scenario, as seen in Figure 3.

The system interface provides two modes for users: operator and editor mode. Both modes allow modification of the wind

farm inventory and wind condition settings, but the editor mode provides greater control over system parameters and config-

urations, accessible to users with higher hierarchical levels. Users in editor mode can adjust individual turbine settings, such520
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Figure 3. 3D visualization of the Hywind Tampen floating wind farm

as blade length, turbine efficiency, and various types of losses. For both modes, users can view the power and RPM outputs of

a specific turbine on gauges and line charts. The option to map the output power of each turbine is available by selecting the

"map output power" feature. Additionally, users can check the "map bearing temperature" feature to view the current, maxi-

mum, and minimum temperature range of each turbine’s bearing. This feature can be useful for prediction purposes, though it

is not discussed in detail in this study.525

The power generated by a wind turbine can be calculated using the equation:

P =
1
2
ρAV 3Cpµ (1)

where P is the output power, ρ is the air density, A is the swept turbine area, V is the wind speed, Cp is the coefficient power

or turbine efficiency, and µ represents various losses, including mechanical and electrical losses. This equation is used to

measure the power output of a wind turbine. The visualization tool is designed to enable adjustments to not only wind speed530

and direction but also blade length, turbine efficiency, and losses, which impact the calculated power output.

The data sources utilized by the system are modifiable within four categories. The first category, named ¨Unity Data¨ as the

static data, encompasses user-defined parameters established within Unity3D by the user and editor to outline specific scenarios

and desired outcomes. Both operator and editor modes are employed in this category, where users define their scenarios by

adding turbines or oil rigs and setting wind speed or direction. The second category, called ¨FMU data¨ as the simulated535

data, incorporates complex simulated models imported from Matlab Simulink via the FMI plugin (as detailed in ¨Simulation¨

section) for the purpose of performing advanced experiments within Unity3D. In the existing case study, the wind speed

was set to fluctuate between 12 to 14 m/s to demonstrate the variation in the output power. Meanwhile, the present study
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Figure 4. 2D visualization through a cloud-based GUI platform utilizing Node-RED (Haghshenas et al., 2023)

visualizes actual weather data from the Tampen area of the Norwegian North Sea, between the Snorre and Gullfaks oil fields.

Consequently, the displayed power output in the adapted case study reflects the actual generated power. The third, named540

"OPCUA Data," consists of the real-time sensor data being transferred from physical to digital assets through OPC UA (as

detailed in the "Communication Protocol" section). This allows for real-time data to be analyzed in "what-if" simulations for

decision-making support. In the event that the results from these ¨what-if¨ scenarios are unfavorable, digital twins can send

commands to the physical assets. This mode aims to implement digital twins by providing two-way communication between

physical and digital assets. The last category, referred to as the ¨Actual Data¨, encompasses historical data obtained from an545

actual wind farm to examine the semi-realistic scenarios.

The 2D visualization is implemented through a cloud-based GUI platform utilizing Node-RED (as detailed in "Communi-

cation Protocol" section) in order to display the live data simultaneously with 3D and AR visualizations. The 2D dashboard

aims to facilitate accessibility to the visualization by other users across various computers and mobile devices, especially when

changes are needed to be made to physical and digital assets. As depicted in Figure 4, the 2D dashboard comprises gauges,550

charts, indicators, and input fields.

The previous case study presented the utilization of augmented reality technology through the implementation of the PTC

Vuforia plugin within Unity3D in order to improve user interaction and capabilities. By leveraging IoT technologies, users

are able to access digital assets through their smartphones without the need for advanced hardware. The augmented reality

platform not only provides a visual display but also enables users to set wind farm conditions as well as in the 3D platform.555

The augmented reality platform operates in conjunction with both the 3D and 2D visualization platforms. Figure 5 provides a

representation of augmented reality.
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Figure 5. Augmented reality visualization for the Hywind Tampen wind farm (below: the zoomed-in view)

4.3 Simulation

The simulation section serves as an intermediary between the data sources and the visualization section. It is responsible for

converting raw data into internal variables that can be associated with any scene object, and for managing the data service and560

data bank. In Unity3D, simulation functions process and calculate all data received from various sources using customized

parameters to generate the desired output and visualize it in the scene. These functions are based on wind energy physics and

dynamic system equations, and can be modified by the user to perform what-if scenarios. The parameters specified by the user

and the data received from the data sources are integrated into Unity3D functions to generate output values such as power, rotor

speed, yaw angle, and blade length, representing the condition of the wind farm based on the designed experiment or real-time565

data from the physical asset. Before simulating the complex dynamic behavior of the entire wind farm system, it is necessary to

simulate each component using different software at the same time, a process called co-simulation (CS). The leading standard

for exchanging dynamic simulation models of each simulated data is the Functional Mock-Up Interface (FMI), whose model

file is the Functional Mock-up Unit (FMU). In this case study, we created the original model in Matlab, which supports the FMI

standard applying FMU version 2.0 CS. This version includes a solver and supports the directional derivatives and a clarified570

specification (Blochwitz et al., 2012). The case study uses Unity3D to simulate static data by calculating and returning output
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based on user-defined data. The simulated data is imported and processed from Matlab and Simulink in the FMU file format

through the FMI plugin. Live data from physical assets can be accessed by using the OPC UA protocol and Node-RED (see the

Communication Protocol section) to send real-time sensor data to Unity3D for processing and calculation. In order to create

a realistic scenario of the wind farm, the historical data from CSV files are imported to Unity3D and used in the simulation575

functions to generate output measurements, including the artificial representation of bearing temperature and vibration for each

wind turbine which can be set to change at user-defined intervals. Upon initiating Unity3D, the system begins to extract bearing

temperature and vibration data from the CSV files and applies it to each turbine.

4.4 Communication protocol

This study uses a framework that combines OPC UA and Node-RED to connect different parts of a system. The OPC UA is580

leveraged as the primary means of facilitating horizontal and vertical communications between subsystems in the field layer and

upper-layer entities, utilizing authenticated communication to establish a connection between servers and clients. The OPC UA

servers are created using the UaExpert application, with clients able to connect to the available servers from various devices.

Node-RED is an open-source Application Programming Interface (API) platform developed by IBM’s Emerging Technology

Services team, and provides a wide range of online services for connecting physical and digital assets. All the sensor data are585

collected and connected to the Arduino board, which is connected to a PC via serial ports in order to transmit the measured

data to the system. The collected real-time data is then transferred to Unity3D via the OPC UA protocol utilizing Node-RED.

Within Node-RED, a serial port block is augmented to receive the collected data from the Arduino board and transmit it to the

OPC UA client block, which is connected to the primary OPC UA server. This data can be disseminated and utilized by other

OPC UA clients. Two clients are employed to facilitate data transfer among the available platforms. The first client, developed590

in C# within Unity3D, is utilized for communication with the 3D visualization and Augmented Reality platforms. The second

client, created in Node-RED, is utilized to receive sensor data and facilitate communication with the 2D GUI dashboard. This

way, the sensor data can be easily accessed through cloud platforms and WiFi devices.

4.5 Interoperable digital twin solutions for wind farm applications

The current case study holds a significant opportunity for the implementation of an interoperable digital twin using OPC UA.595

The literature review in subsection 4.2 highlights OPC UA as the recommended tool in the communication layer of RAMI4.0.

The digital twin framework in the manufacturing industry leverages the interoperability of OPC UA to facilitate data exchange

and provide information from diverse domains of interest. Cavalieri et al. (2019) conducted research on an OPC UA-based

Asset Administration Shell by mapping the AAS metamodel into the OPC UA information model. The authors created Object-

Types (such as AASType, AASReferenceType, SubmodelType, AssetType, and DataSpecificationType), DataTypes (such as600

Identifier, KeyType, and KeyElements), and ReferenceTypes (such as HasSemantic, HasConceptDescription, and IsDerived-

From) in OPC UA to correspond with the asset, AAS Reference, AAS Identifier, AAS type and instance, AAS derivedFrom,

AAS Submodel, AAS SubmodelElement, and AssetAdministrationShell in the AAS metamodel.
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The OPC UA Information Model standardizes the manner in which servers communicate information to clients through the

utilization of OPC UA Nodes organized within the OPC UA AddressSpace (Lee et al., 2017; Foundation, 2017) where the605

values from sensors are read and updated (Pribiš et al., 2021). Each OPC UA Node is classified into several NodeClasses, such

as Variable NodeClass and Object NodeClass. The Variable NodeClass is employed in modelling data and represents values

from various sensors or from one sensor on several properties (such as temperature sensor from gearbox, generator, hub, etc) in

offshore wind turbines. To distinguish between different sources of data, OPC UA employs two main VariableTypes, namely

the DataVariableType and PropertyType. The Variable NodeClass includes an attribute named Value for storing data and an610

attribute named DataType for specifying the content of the attribute Value. The Object NodeClass acts as a container for other

OPC UA Objects and Variables. In cases where the Object Node does not possess an attribute capable of storing a data value

(e.g., the temperature value of a sensor), an OPC UA DataVariable Node is employed to represent data associated with that

Object. These features of OPC UA effectively specify and map abundant data from various sources in accordance with AAS

types and instances. Since offshore wind farms have sensor data from various sources in relation to the variability of data615

type, variables, values, and properties, the OPC UA Variable and Object NodeClass function potentially addresses the mapping

needs of offshore wind farms.

Cavalieri and Salafia (2020a) also presented a case study on AAS modeling a motor controller. The mapping applied in

their case study was founded on the proof of concept known as the AAS Information Model, which is available free of charge

on Salafia (2020). The authors concluded that their approach offers the advantage of automatically integrating data without620

human intervention. Pribiš et al. (2021) proposed an AAS design methodology that implements an OPC UA Server at the em-

bedded device to facilitate direct data exchange between sensors and actuators, reducing integration efforts and computational

requirements.

In order to support our analysis of implementing AAS for offshore wind farms, we briefly explored the AASX Package

Explorer. Using a simple example, we generated three assets (sensor, blade, and generator) for a wind farm, marked with625

a yellow circle in Figure 6. Each asset is assigned an AAS that represents different turbines, marked with a green circle. We

designed submodels for the AAS named SensorTurbine1 to represent sensor variables such as temperature, RPM, eddy current,

displacement, and accelerometer, marked with a red circle. To account for temperature sensors placed in various locations, we

created SubmodelElements (properties) in the bearing gearbox, generator, and turbine shaft, as well as for other sensors based

on the requirements. At the property level, data is categorized into three types: (i) constant, a property with a value that does630

not change over time, such as a coded value, (ii) parameter, a property that is set once and typically does not change over time,

such as a configuration parameter, and (iii) variable, a property that is calculated during runtime. Consequently, the sensor data

is classified as a variable.

In Figure 7 as marked with a purple circle, we developed submodels for the AAS named BladeTurbine1, based on the

type of data, such as design data and material. Design data are comprised of several properties including NACA type, blade635

length and width, angle of attack, and others. Material submodel represents information on blade material. For the AAS named

GeneratorTurbine1 as marked with a black circle, we created submodels to encompass all the data we could acquire from

the generator manufacturer, such as the nameplate, technical data consisting of product classification and technical properties,
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Figure 6. A simple example of AASX Package Explorer for a wind farm

documentation, electric and fluid plan such as bill of material, contact information for service, and identification including the

supplier information. All these properties were classified as constant. In order to simplify and standardize information, AASX640

Package Explorer provides a plug-in general form for several submodels, such as document, nameplate, identification, image

map, and technical data.
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Figure 7. Submodels of blade and generator

In order to facilitate a deeper understanding of submodels, ConceptDescriptions are created for SubmodelElements. The

semantic ID of the SubmodelElement is automatically linked to the ID of the corresponding ConceptDescription. The use

of a semantic ID for SubmodelElements is mandatory for an automatic system to identify and understand the meaning of the645
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SubmodelElements, such as units or logical datatypes. The semantic ID can refer to a ConceptDescription within the AAS envi-

ronment or an external repository such as IEC CDD, eClass, or a company/consortia repository. If multiple SubmodelElements

share similar information, they will have a similar ConceptDescription ID attached. If Submodels and SubmodelElements were

created by a company or stored in an external repository, they can be imported from dictionaries, tables, JSON, CSV files, or

URLs. Several interoperability options are available to support AAS, such as importing AutomationML into AASX, importing650

AAS from i4aas-nodeset, importing OPC UA nodeset.xml as submodel, and reading OPC values into submodel.

Moreover, there are events between the AASX Package Explorer and the AASXServer where the time series data are being

collected and simulated. It could be the simulated JSON data, OPC UA, or OPC UA together with the AASXServer. Whenever

plenty of samples are collected, new collections will be created. Through this server, data from OPC UA is connected to the

package explorer by copying the REST IP of the server into the AASX Package Explorer. There is also a feature in the package655

explorer to order ¨stay connected¨, thus in package explorer we receive live data from the server. These AAS features support

interoperable digital twins for offshore wind farms.

5 Conclusion & Future Work

Being part of a broader study aiming for the improvement of digital twins in offshore wind farms, this paper set out to provide

insights into and map the potential related to transferring the knowledge of interoperable digital twins from the manufacturing660

industry. Using a qualitative approach, we established a research design consisting of three phases, where each phase provided

findings that led us to the next phase. Firstly, we conducted a comprehensive literature review of the digital twin concept and

frameworks in the context of offshore wind applications. We discovered that the frameworks applied in offshore wind farms

were insufficient in achieving interoperability in accordance with Industry 4.0 standards. Meanwhile, in the manufacturing

industry, Asset Administration Shell (ASS) has been promoted as a promising framework for implementing digital twins in665

the standardized Industry 4.0 to perform interoperability. Secondly, we investigated the AAS implementation in the manufac-

turing industry from various perspectives: modelling a production line, life cycle management, maintenance, monitoring, and

autonomy. We found that the literature highlights OPC UA as the recommended tool in the communication layer of RAMI 4.0.

Next, we evaluated a case study from our previous work in Haghshenas et al. (2023) that applied digital twins for offshore wind

application based on OPC UA. Inspired by the work of Cavalieri et al. (2019); Cavalieri and Salafia (2020a), we presented the670

conceptual application of an OPC UA-based AAS as an interoperable digital twin solution within the case study. Furthermore,

we briefly investigated the AASX Package Explorer as the tool for implementing AAS. We argued that all available menus in

AASX Package Explorer contribute to the use of AAS as an Industry 4.0 standard for achieving interoperability. Through our

simple example of wind farm application, AAS represents an optimal means of facilitating asset management that encompasses

data specification and classification. In conclusion, implementing AAS should be a possible development to further improve675

digital twins in offshore wind farms, thereby achieving interoperability in accordance with Industry 4.0 standards.

Since this paper only presents interoperable digital twins in offshore wind farms conceptually, as a continuation of the cur-

rent study, we will in practice develop the AAS implementation built upon RAMI 4.0. We will use AASX Package Explorer
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and OPC UA in the communication protocol. This future work will encompass all layers, including business, functional, infor-

mation, communication, integration, and assets, and will incorporate AAS types and instances for life cycle and value stream,680

across hierarchy levels from product to the connected world, in alignment with Platform Industrie 4.0. The aim is to realize

an interoperable digital twin that seamlessly connects all assets and integrates all stakeholders without human intervention,

resulting in improved decision-making and enhanced productivity.
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