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Abstract. Maximising the power production of large wind farms is key to the transition towards net zero.
The overarching goal of this paper is to propose a computational method to maximise the power production of
wind farms with two practical design strategies. First, we propose a gradient-free method to optimise the wind
farm power production with high-fidelity surrogate models based on large-eddy simulations and a Bayesian
framework. Second, we apply the proposed method to maximise wind farm power production by both micro-
siting (layout optimisation) and wake steering (yaw angle optimisation). Third, we compare the optimisation
results with the optimisation achieved with low-fidelity wake models. Finally, we propose a simple multi-fidelity
strategy by combining the inexpensive wake models with the high-fidelity framework. The proposed gradient-
free method can effectively maximise wind farm power production. Performance improvements relative to wake-
model optimisation strategies can be attained, particularly in scenarios of increased flow complexity, such as
in the wake steering problem, in which some of the assumptions in the simplified flow models become less
accurate. The optimisation with high-fidelity methods takes into account nonlinear and unsteady fluid mechanical
phenomena, which are leveraged by the proposed framework to increase the farm output. This paper opens up
opportunities for wind farm optimisation with high-fidelity methods and without adjoint solvers.

1 Introduction

The transition towards a net-zero world is intertwined with
a continually growing demand for renewable energy sources.
Wind power has emerged as the leading contributor to renew-
able electricity in numerous countries (Our World in Data,5

2022). Governments worldwide have recognised the signif-
icance of this resource and have committed to substantial
capacity expansions as part of their energy strategies. As
wind energy takes on an increasingly central role as an en-
ergy source, it is critical for it to mature in terms of effi-10

ciency and resilience. This entails addressing a number of
challenges, which range from turbine aerodynamics, their in-
teraction with the atmosphere, and plant-level control (Veers
et al., 2019, 2022).

One key issue is that wind farms that consist of many tur-15

bine rows are typically less efficient than less deep wind
farms (i.e., downstream rows produce less power than up-

stream ones) (Barthelmie et al., 2009). This degradation in
efficiency is primarily attributed to wake losses, which arise
when a significant portion of the turbines operate within the 20

wake fields generated by neighbouring turbines within the
same farm. A wind turbine operating within a wake field is a
negative operability issue for two reasons. First, the reduction
of its power output due to the decelerated incoming wind,
and, second, the increase of fatigue loading due to higher 25

levels of turbulence.
The long-established strategy for mitigating wake losses is

to optimally position the wind turbines across the available
land. This approach is most commonly referred to as lay-
out optimisation or micro-siting. Building upon the work by 30

Mosetti et al. (1994), numerous studies have been published
in the literature on maximising the production (or minimising
the cost of energy production) of a wind farm by optimising
turbine placement (see, for instance, Grady et al. (2005); Ku-
siak and Song (2010); Chowdhury et al. (2012); Stanley and 35
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Ning (2019), and the review articles by Herbert-Acero et al.
(2014) and Shakoor et al. (2016)).

More recently, an approach called wake steering was pro-
posed as an alternative strategy to mitigate wake losses. In
wake steering, upstream turbines are yawed to deflect their5

wakes away from downstream turbines. Although this results
in a reduction in power production from the upstream tur-
bines, the downstream turbines generate more power, leading
to an overall increase in the farm’s power output. Demon-
strations of performance gains in a number of computational10

(Fleming et al., 2015; Gebraad et al., 2016), experimental
(Adaramola and Krogstad, 2011; Campagnolo et al., 2016;
Bastankhah and Porté-Agel, 2019) and field (Fleming et al.,
2017; Howland et al., 2019; Fleming et al., 2019; Simley
et al., 2021) studies have prompted the consideration of im-15

plementing wake steering in commercial wind plants (see,
for instance, a press release by WindESCo (2023)). Never-
theless, further research is required in order to reduce the
uncertainties regarding its potential benefits (Kheirabadi and
Nagamune, 2019).20

In the vast majority of relevant studies published in the
literature, the optimisation of the farm layout or the tur-
bine yaw angles is carried out with low-fidelity flow solvers,
commonly known as wake models, as cost function evalua-
tors. Wake models are tools that estimate the velocity deficit25

downstream of a wind turbine and, by means of superposi-
tion, the overall flow in a wind farm (see, for example, Jensen
(1983); Frandsen et al. (2006); Bastankhah and Porté-Agel
(2014); Bempedelis and Steiros (2022), and the review arti-
cle by Porté-Agel et al. (2020)). Wake models are built on30

simplified assumptions for the turbulent wake of a porous
disk and do not account for various phenomena such as un-
steadiness, non-linear interactions, or blockage, among oth-
ers. As a consequence, optimisation based on wake models
misses opportunities to improve farm performance by ma-35

nipulating and potentially exploiting these unaccounted phe-
nomena. Furthermore, wake models can produce predictions
which are non-smooth or discontinuous as functions of the
design variables (e.g., turbine coordinates or yaw angles).
This renders their use within gradient-based optimisation al-40

gorithms challenging (Gori et al., 2023). Nevertheless, wake
models are almost invariably used in optimisation studies
due to their low computational cost, and the expertise gained
from decades of development and application (Asmuth et al.,
2023).45

On the other hand, higher fidelity flow models have been
employed in a limited number of layout optimisation stud-
ies (King et al., 2017; Antonini et al., 2018; Allen et al.,
2020; Antonini et al., 2020). In these works, wind farm lay-
outs were optimised with an adjoint gradient-based approach50

and steady-state Reynolds-averaged Navier-Stokes (RANS)
simulations. The use of steady RANS enables the consider-
ation of a number of the aforementioned phenomena, such
as blockage or pressure effects. However, the unsteady wake
dynamics and the atmosphere-to-wake interactions, which55

play a critical role in large wind farm flows, cannot be ap-
propriately accounted for. While higher-fidelity flow mod-
els, such as large-eddy simulations (LES), aptly take these
phenomena into account, the computation of the gradient of
a long-term1 time average of a chaotic turbulent flow is ill 60

posed (Wang, 2013; Blonigan and Wang, 2018; Huhn and
Magri, 2022), which is a limit for adjoint methods. Despite
these challenges, large-eddy simulations and adjoint meth-
ods have been combined in the context of wind farm con-
trol (Goit and Meyers, 2015; Munters and Meyers, 2018), 65

showcasing the potential of dynamic control strategies. Al-
ternatively, LES have been utilised in hybrid or multi-fidelity
approaches (Bokharaie et al., 2016; Kirby et al., 2023). For
instance, in Bokharaie et al. (2016), LES was employed to
calibrate the parameters of wake models, which, in turn, were 70

used to find optimal wind farm layouts.
In this work, we propose a data-driven framework for op-

timising the output of a wind farm based on a gradient-free
Bayesian approach and high-fidelity large-eddy simulations
of the wind farm flow. The structure of the paper is as fol- 75

lows. The proposed optimisation strategy is outlined in Sect.
2. Section 3 discusses its application to a sixteen-turbine lay-
out optimisation problem. In Sect. 4, the framework is ap-
plied to a ten-turbine yaw angle optimisation (wake steering)
problem. Finally, conclusions end the paper in Sect. 5. 80

2 Methodology

The methodology is presented in two parts. First, we intro-
duce the optimisation framework in Sect. 2.1. Second, in
Sect. 2.2, we describe the flow solver employed to predict
the wind farm flow and power output. 85

2.1 Bayesian optimisation

Bayesian optimisation (BO) is a gradient-free global optimi-
sation strategy, which is particularly attractive for optimising
complex functions (as in large codes for which the adjoint al-
gorithm is cumbersome). Its effectiveness has been demon- 90

strated in various fluid mechanical applications (e.g., Mah-
foze et al. (2019); Huhn and Magri (2022); O’Connor et al.
(2023)). It seeks for the extrema of the objective function by
constructing a probabilistic surrogate model of it, typically a
Gaussian process (GP), and by exploring the parameter space 95

with an acquisition function (AF).
A Gaussian Process (GP) model is a non-parametric

probabilistic model that is defined by a prior mean func-
tion, µ0(x), x ∈ Rd, which is usually assumed zero, and
a covariance function (also known as the kernel), k ∈ 100

R(x,x′). Given a set D of m observations Y ∈ Rm×1 =
f(X) = [y1, . . . ,ym]

⊺ at the input locations X ∈ Rm×d =
[x1, . . . ,xm]

⊺, as training data, and assuming a zero prior
mean, we can compute the posterior mean, µ∗ ∈ Rn×1, and

1By “long-term" we mean after many Lyapunov times.
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variance, σ2
∗ ∈ Rn×1, for a set of n test points X∗ ∈ Rn×d

as

µ∗ =KT
∗
(
K +σ2I

)−1
Y (1)

σ2
∗ = diag

(
K∗∗ −KT

∗
(
K +σ2I

)−1
K∗

)
(2)

where K ∈ Rm×m = k (X,X), K∗ ∈ Rm×n = k (X,X∗),5

K∗∗ ∈ Rn×n = k (X∗,X∗), and σ2 ∈ R is the observa-
tional noise. These expressions provide an estimate of the
underlying objective function and the corresponding uncer-
tainty for every point in the parameter space. Training a GP
model involves determining the values of the kernel hyper-10

parameters that maximise the marginal likelihood. For a
more detailed discussion on GPs, the reader is referred to
Rasmussen and Williams (2006).

The acquisition function AF(x), which is built on the sur-
rogate model whose first two statistical moments are given15

by equations (1)-(2), determines the next point(s) to be eval-
uated, by taking into account both the mean and uncertainty
for any point x of the parameter space, and providing the
probability, or amount, by which x can improve the cur-
rent optimum. Exploration, which directs the search towards20

unexplored areas of the parameter space, and exploitation,
which focuses the search in the vicinity of known promis-
ing solutions, are balanced based on the trade-off between
uncertainty reduction and potential improvement. In brief,
Bayesian optimisation is described in Algorithm 1.25

Algorithm 1 Bayesian Optimisation

1: Acquire a set of initial objective function observations D
2: Initialise the variables holding the best solution, xopt and yopt

3: for i= 1 to stopping criterion do
4: // Update the surrogate model using the available data
5: Train the GP model given D
6: // Find the next point to evaluate using the AF
7: xnext← argmaxAF(x)
8: // Evaluate the objective function at xnext

9: ynext← f(xnext)
10: // Update the dataset with the new evaluation
11: Append xnext and ynext to D
12: // Update the best solution found so far
13: if ynext > yopt then
14: xopt← xnext

15: yopt← ynext

16: end if
17: end for
18: return xopt, yopt

In the current work, Bayesian optimisation is implemented
with the GPyOpt library (The GPyOpt authors, 2016). As
discussed in more detail in Sect. 3.2, we consider GP priors
characterised by the Rational Quadratic kernel (Rasmussen
and Williams, 2006). We further assume that our LES ob-30

servations are high-fidelity, and, as such, noise-free (i.e.,
σ2 is negligible). To select the next observation point(s),

we use the Lower Confidence Bound acquisition function,
AF(x) = µ∗(x)−λσ∗(x), which allows for straightforward
control of the exploration-to-exploitation ratio through the 35

tunable parameter λ, which weighs the mean/exploitation
µ∗ and uncertainty/exploration σ∗ terms of the GP model,
with larger values of λ favouring exploration. Other AFs
(e.g., Probability of Improvement, Expected Improvement)
or combination of them may be used (e.g., Huhn and Magri 40

(2022)). The kernel hyper-parameter and AF optimisations
are carried out with the L-BFGS algorithm (Liu and Nocedal,
1989). Finally, we compute design points to be explored in
batches (batch BO), following the local penalisation method
proposed in González et al. (2016). This allows us to effi- 45

ciently utilise our high-performance computing resources by
running several LES at the same time.

2.2 Large-eddy simulations

To predict the wind farm flow and power output, we employ
the wind farm simulator Winc3d (Deskos et al., 2020) of 50

the open-source2 finite-difference framework Xcompact3d
(Bartholomew et al., 2020). Xcompact3d solves the in-
compressible filtered Navier-Stokes equations on Cartesian
meshes using sixth-order compact schemes and a third-
order Adams-Bashforth method for time integration (Laizet 55

and Lamballais, 2009). Efficient scaling up to hundreds of
thousands of CPU cores is made possible by utilising the
2Decomp & FFT library for parallelisation (Laizet and Li,
2011). Winc3d has been validated against experimental and
field data in several wind turbine and wind farm flow prob- 60

lems (Deskos et al., 2019, 2020; Bempedelis and Steiros,
2022; Steiros et al., 2022; Jané-Ippel et al., 2023).

In this work, the Smagorinsky sub-filter scale model
(Smagorinsky, 1963) is used to account for the effects of
the unresolved fluid motions. The wind turbines are mod- 65

elled with the non-rotational actuator disk method, which is
described in more detail, together with validation studies in
Bempedelis et al. (2023) and Jané-Ippel et al. (2024) (the
reader is also referred to Calaf et al. (2010), Speakman et al.
(2021) and Heck et al. (2023), who implement a similar ap- 70

proach). In brief, in the actuator disk method, the power of a
turbine is computed as P = Tud, where T is the calculated
thrust and ud is the temporally-filtered disk-averaged veloc-
ity normal to the disk plane. The thrust depends on the local
(or “modified") thrust coefficient C ′

T and the disk velocity 75

ud, and is computed as T = 1
2ρAC ′

Tu
2
d, where ρ is the den-

sity and A is the rotor area. This implementation provides
predictions of power degradation as a function of rotor mis-
alignment (i.e., for yawed or tilted turbines) similar to Speak-
man et al. (2021) and Heck et al. (2023). The optimisation 80

framework proposed in Sect. 2.1 is nevertheless compatible
with any other turbine model, such as the actuator disk with
rotation or the actuator line models, which are expected to

2https://github.com/xcompact3d

https://github.com/xcompact3d
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yield improved turbine wake and power predictions (Lin and
Porté-Agel, 2019).

In order to realistically simulate the interaction of the wind
farm with the turbulent atmospheric flow, we perform precur-
sor simulations of pressure gradient driven fully-developed5

neutral atmospheric boundary layers. A free slip condition
is applied at the top boundary, and a no-slip condition with
a wall model is used at the ground. The precursor atmo-
spheric flow simulations are run until statistical convergence
is reached, after which we begin storing two-dimensional10

planes of the flow field, normal to the streamwise direction,
at every timestep. These planes are subsequently used as in-
flow conditions in the wind farm simulations.

3 Layout optimisation (micro-siting)

In layout optimisation, the objective is to maximise the power15

production of a wind farm with N wind turbines by ad-
justing their position c= [x,y]

T , with x= (x1, . . . ,xN ) and
y = (y1, . . . ,yN ), within a given space X . The space X
corresponds to the available land where the wind turbines
may be installed. The farm power production is typically a20

weighted sum of all the different wind states K (wind direc-
tion, speed, turbulence) which the farm experiences over a
period of time. The turbines are aligned with the mean in-
flow wind direction in all cases considered in this section (no
controllers are used)3. The optimisation problem is therefore25

expressed as

arg max
c

K∑
k=1

ak

N∑
n=1

Pn,k(c) (3a)

s.t. c ∈X, (3b)
||ci − cj ||>D, for i, j = 1, . . . ,N and i ̸= j

(3c)

where Pn,k is the power output of the n-th turbine given wind30

state k, and ak is the weight (i.e. probability) of each wind
state, as dictated by the local meteorological data. Equa-
tion (3b) constrains the turbines within the available land.
To avoid turbine overlapping, a second constraint is added to
ensure that the centres of the turbines are spaced at least one35

turbine diameter D apart (Eq. (3c)).
In a preliminary proof-of-concept study (Bempedelis and

Magri, 2023), an early version of the proposed framework
was applied to a simple layout optimisation problem (five
wind turbines in a 6D× 6D square, operating under a single40

wind state). It was shown that the method is capable of find-
ing optimal designs in a few iterations whilst leveraging flow
phenomena that are unaccounted for in low-fidelity solvers
(e.g., local speed-ups) to deliver increased wind farm perfor-
mance.45

3In reality, accurate and robust estimation of the wind direction
poses a significant challenge (Annoni et al., 2019).

However, modern wind farms are composed of several
more turbines. The layout optimisation problem therefore
becomes high-dimensional, with the design space being
2N -dimensional. Bayesian optimisation in low dimensions
is well established, but its application to high-dimensional 50

problems poses a significant challenge due to the increase in
complexity in both GP regression and the search for the next
designs (AF optimisation) (Binois and Wycoff, 2022).

Here, we propose a way to reduce the dimensionality of
the layout optimisation problem. It is based on the assump- 55

tion that, in most cases, the turbines in a wind farm are iden-
tical. In that case, the cost function is invariant under per-
mutations of the turbine labelling, and there are N ! different
combinations of the design variables that produce the same
output. Such behaviour is a clear barrier to efficient optimi- 60

sation. To remedy this, we could augment the training dataset
with all N ! permutations of the evaluated designs. However,
this quickly gives rise to high complexity, as the compu-
tational cost for GP regression scales with O(m3), where
m is the number of points in the training dataset. Alterna- 65

tively, without loss of generality, we propose working on a
reduced design space by enforcing a set of N − 1 additional
constraints (Eq. (4d)). The constraints enforce a particular
ordering of the turbines, in one direction only, thereby con-
straining the design variables to that particular subspace of 70

the full parameter space. The subspace size is smaller by a
factor 1/N ! relative to the original one, indicating the equiv-
alence of the two approaches. (A third way, not explored in
this work, is to encode the turbine ordering invariance prop-
erty of the objective function in the kernel; see Duvenaud 75

(2014) for additional details). The layout optimisation prob-
lem is thus reformulated as

arg max
c

K∑
k=1

ak

N∑
n=1

Pn,k(c) (4a)

s.t. c ∈X, (4b)
||ci − cj ||>D, for i, j = 1, . . . ,N and i ̸= j,

(4c)
80

xi ≥ xi−1, for i= 2, . . . ,N (4d)

3.1 Layout optimisation: Problem set-up

We consider a wind farm of N = 16 turbines, each with
D = 100 m rotor diameter and h= 100 m hub height. The
wind turbines operate with a constant local thrust coefficient 85

C ′
T = 4/3. The land where the turbine towers can be placed

is a square of size 18D×18D (for this set-up, the blades can
extend outside of the available area). We consider an evenly-
weighted six-directional wind rose. This is a set-up close
to those examined in King et al. (2017) and Antonini et al. 90

(2018). The atmospheric boundary layer is characterised by
friction velocity u∗ = 0.442 ms−1, height δ = 501 m and
roughness length z0 = 0.05 m, which correspond to condi-
tions in the North Sea (Wu and Porté-Agel, 2015). The ve-
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Figure 1. Mean streamwise velocity (left) and turbulence intensity
(right) of the simulated atmospheric boundary layer.

locity at the hub height of the turbines is Uh = 8.3 ms−1,
and the turbulence intensity at the same level is TIh = 7.4%
(see Fig. 1 for the simulated atmospheric wind profiles).

The wind farm is embedded in a computational domain of
size 4008× 3340× 501 m, which is discretised with a uni-5

form mesh with ∆x=∆y =∆z = 10.4375 m (correspond-
ing to ≈ 10 points across the turbine rotor). As shown in
Bempedelis et al. (2023), this resolution is sufficient to pre-
dict the power production of a large wind farm. This was
also confirmed for the considered set-up (result not shown10

for brevity). The flow field planes stored from the precur-
sor simulation (see Sect. 2.2) are used at the inlet, a convec-
tive condition is used at the outlet, and the conditions at the
remaining boundaries are similar to the description in Sect.
2.2. The timestep is chosen such that the maximum Courant15

(CFL) number remains below 0.2. Data are averaged over
a 2.5-hour period of farm operation, following the time re-
quired for the flow to develop.

Figure 2 shows the contours of the instantaneous and mean
streamwise flow at the turbine hub level for a randomly sam-20

pled farm layout under westerly wind, together with details
on the described set-up (wind rose and available land). It also
reveals the highly complex nature of wind farm flows, with
turbine wakes interacting with one another and with the at-
mospheric turbulence.25

3.2 Layout optimisation: Results

The optimisation starts by evaluating the farm power out-
put of a large set of layouts sampled from a Latin hyper-
cube, along with two user-designed layouts. These are a uni-
form 4× 4 layout with 6D spacing between the turbines and30

a layout where the turbines are equidistantly distributed on
the land border only. The optimisation then progresses itera-
tively, as described in Sect. 2, and terminates after 700 itera-

Figure 2. (Top) Instantaneous and (bottom) mean streamwise ve-
locity at the turbine hub height for a randomly sampled layout, with
the wind blowing from the west. The full six-directional wind rose
is shown at the top right. The borders of the available land are indi-
cated with dashed black lines. The wind turbines are denoted with
grey solid lines.

tions (for a total of 4200 wind farm LES). This was decided
in consideration of the available computational resources (a 35

comment on the cost of the simulations can be found in Ap-
pendix A) and the optimisation’s progression. The optimisa-
tion history is shown in Fig. 3. To facilitate comparison, we
introduce the metric η, defined as the ratio between the over-
all farm power output and a reference ideal output based on 40
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the output of a single wind turbine

η =

∑K
k=1 ak

∑N
n=1Pn,k

N ×Psingle
(5)

with Psingle being computed in a separate LES, where a single
turbine was placed at the center of the available land. Basi-
cally, η is a normalised form of the objective function defined5

in Eq. (4a), based on the production of N similar stand-alone
turbines. It may therefore be interpreted as a farm efficiency
coefficient primarily describing wake losses.

100 200 300 400 500 600 700
Iteration no.

65

70

75

80

85

90

95

100

η
[%

]

Figure 3. Efficiency of designs evaluated during the layout opti-
misation process. The dashed line shows the evolution of the best-
performing design.

At the end of the optimisation, the best-performing design
has η = 95.3% efficiency, with the corresponding mean flow10

fields shown in Fig. 4 for every wind direction. We observe
limited turbine-wake interference, especially in the diagonal
wind directions, which is associated with increased power
production by the wind farm in those directions. For refer-
ence, the 4× 4 aligned layout and the layout shown in Fig. 215

have efficiencies η = 88.5% and η = 80.4%, respectively.
In parallel with the training of the surrogate model, we

can also learn what constitutes good modelling practices. By
means of validation on subsequent test points, we observe
that the rational quadratic (RQ) kernel outperforms both the20

widely used Matérn and the squared exponential (RBF) ker-
nels. Figure 5 shows the predictions of the regressed GPs
(with a training dataset of 600 points) for the 40 points tested
next. The test points include designs suggested with dif-
ferent levels of balance between exploration and exploita-25

tion (by tuning the λ parameter in the AF, see Sect. 2.1).
All kernels perform adequately in regions near points in the
training dataset. However, the RQ kernel is shown to ex-
trapolate more accurately. Similar conclusions hold for both
anisotropic (ARD) kernels (in which each design variable is30

associated with its own lengthscale) and isotropic kernels. In

Figure 4. Mean flow fields for the best-performing design pro-
posed by the large-eddy simulation Bayesian optimisation frame-
work (LES-BO). The flow fields show the same layout exposed to
different wind directions. In all cases, the wind is shown as blowing
from left to right, with the wind farms rotated to match the wind
direction shown on the inset wind roses. The reference non-rotated
layout is that of the westerly wind case (top left).

Bempedelis and Magri (2023), it was shown that it is possi-
ble to find optimal designs with isotropic kernels. Here, we
find that anisotropic kernels show slightly improved accu-
racy. However, this comes at the price of larger computa- 35

tional cost and complexity. In particular, care needs to be
taken when using anisotropic kernels in high-dimensional
problems, to ensure that sufficient data are available in the
training set to achieve robustness in the GP hyper-parameter
optimisation. 40

In order to assess the quality of the best-performing de-
sign obtained with the proposed framework (hereafter re-
ferred to as LES-BO), we perform a series of optimisations
with the FLOw Redirection and Induction in Steady State
(FLORIS) software (NREL, 2023). FLORIS is an open- 45

source wind farm simulator that incorporates several widely
used wake models. In this study, the Gauss-Curl Hybrid
model (King et al., 2021) is employed for predicting the wind
farm flow and power output, while the optimisation algo-
rithm used is the FLORIS-default gradient-based Sequential 50

Least SQuares Programming (SLSQP) method (Kraft, 1988).
For more details on the FLORIS simulations, please see Ap-
pendix B. In consideration of the multi-modal nature of the
layout optimisation problem, and to enable a more compre-
hensive comparison with the LES-BO method, we perform 55

100 independent FLORIS layout optimisations, initialised
with 99 random layouts and a uniform 4× 4 layout with 6D
spacing between the turbines.

The efficiencies of the 100 optimal designs outputted by
FLORIS are then evaluated using Winc3d (the designs sug- 60

gested by the low-fidelity model and evaluated with LES will
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Figure 5. GP regression with different covariance functions on a standardised training dataset of 600 points. f is the standardised overall
farm power output, f = (PF −mean(PF ))/σ(PF ), with PF denoting the farm output. Predictions of the regressed models for the 40
points computed next in the optimisation chain. The GP mean predictions are denoted with blue markers. The shaded areas represent 95%
confidence intervals. Black markers denote the LES predictions. (Top row): Isotropic kernels. (Bottom row): Anisotropic kernels.

be referred to as LF/LES). The LF/LES results, ordered from
best to worst, are presented in Fig. 6, together with the pre-
dictions of FLORIS and the best-performing design obtained
with LES-BO.

1 20 40 60 80 100
Design no.
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100

η
[%

]

LES-BO

LF/LES

FLORIS

Figure 6. Efficiency of optimal designs outputted by FLORIS,
evaluated with both FLORIS and LES (LF/LES). The dashed line
shows the optimal design suggested by the LES-BO framework.

Figure 6 allows us to draw a number of conclusions. First,5

the proposed LES-BO framework is capable of finding a de-
sign that produces more power than ≈ 70% of the optimal de-
signs suggested by FLORIS (as evaluated with LES). Taking

into account the relatively small amount of iterations to find
this design, the option of using more advanced BO strategies 10

(e.g., Eriksson et al. (2019)), and the fact that our focus is on
feasibility rather than performance, we conclude that opti-
mising wind farms using a high-fidelity surrogate modelling
approach is achievable.

However, several layouts suggested by the wake model- 15

based optimisation outperform those suggested by LES-BO.
This finding supports the practice of using wake models
to design wind farms in the wind energy industry, as they
demonstrate excellent performance at only a fraction of the
cost (see also Thomas et al. (2019)). 20

Nevertheless, the efficiency predictions of FLORIS are
lower compared to those of LES. As shown in Fig. 6, the
trends of both predictions are similar, but the offset between
the two is not constant, with LES predicting a wider range of
efficiencies. Also, it may be observed that there is no one- 25

to-one correspondence between the predictions of the two
flow models. These differences are attributed to the flow phe-
nomena that are unaccounted for in FLORIS. To identify
these, Fig. 7 shows the efficiency of individual turbines of the
FLORIS-suggested best design, evaluated by both FLORIS 30

and LES, for a single wind direction (270◦) and the full wind
rose. In the case of the westerly wind, we observe that the
increase in power production comes from downstream tur-
bines. According to LES, the first turbines are producing
slightly less power, indicating the negative impact of global 35

(farm-level) blockage that is not taken into account in the
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wake models. However, the production of downstream tur-
bines is increased, to levels above those of an isolated tur-
bine, due to local flow speed-ups. Here, an additional simu-
lation with three times larger spanwise extent was performed
to evaluate the effects of domain blockage. These were con-5

firmed to be present but relatively small, with ≈ 0.43% dif-
ference in maximum streamwise velocity at hub height and
≈ 1.36% difference in farm power production. Similar bene-
fits owing to local blockage were also reported in King et al.
(2017) and Antonini et al. (2018). Nevertheless, it is impor-10

tant to highlight that blockage effects are particularly sensi-
tive to the atmospheric conditions besides the extent of the
computational domain (Bleeg and Montavon, 2022). In the
case of the full wind rose, all turbines operate at an efficiency
above 90%, with some turbines exceeding, on average, the15

production of an isolated turbine. Overall, the individual tur-
bine efficiency predictions of the two flow models for the full
wind rose (aggregate power) are qualitatively similar, with
varying levels of differences.

Figure 7 also shows the mean streamwise flow fields pre-20

dicted by FLORIS and LES for the westerly wind case. To-
gether with Fig. 8, which shows the LES predictions for the
in-plane velocity angle and the turbulence intensity, we ob-
serve several phenomena, in addition to the local speed-ups,
which are taken into account only in LES (see also figures25

2 and 4). These include cross-stream flow, wake deflections
and curvature (e.g., at the sides of the farm), pressure gradi-
ents, and wake merging (e.g., turbines 11 and 16). Another
difference between the predictions of the two flow models is
in the near wake of the turbines. Wake models assume that30

self-similarity is established immediately downstream of a
turbine, which is known to be inaccurate (see e.g., Steiros
et al. (2024)). Although this may not be a significant concern
in the relatively sparse arrangement considered in this work,
it is expected to play a more significant role in farms with35

higher turbine density. Finally, Fig. 9 shows a smoke-type vi-
sualisation of the turbine wakes for the FLORIS-suggested
best farm layout. To achieve this, a passive scalar is emitted
from the turbine rotors and is transported by the flow. This
enables us to observe the meandering of the wakes, and pos-40

sibly some indications of weakly—owing to the stabilisation
effects of base bleed (Steiros et al., 2020, 2021)—coupled
dynamics (e.g., turbines 12,13 and 14) (Peschard and Le Gal,
1996).

3.3 Combining wake models with LES: A multi-fidelity45

approach

Section 3.2 demonstrated the feasibility of optimising the
layout of wind farms with the proposed LES-BO framework,
along with the role of the mechanisms that are neglected by
low-fidelity flow solvers. However, for the number of optimi-50

sation iterations performed, LES-BO was outperformed by
the multi-start gradient-based optimisation with low-fidelity
models.

In order to show the benefits of adopting the LES-BO ap-
proach, we propose a simple multi-fidelity strategy. We train 55

a surrogate model with a dataset composed of only the first
300 samples from our original investigation (see Fig. 3) and
the 100 designs suggested by the low-order model (see Fig.
6). Following initial training, the optimisation proceeds as
discussed in Sect. 2, and similar to Sect. 3.2. However, our 60

surrogate is now informed with well-performing designs ob-
tained from the low-fidelity optimisation. We refer to this
strategy as the extrema-informed LES-BO framework (EI-
LES-BO).

Within just thirty iterations, EI-LES-BO manages to im- 65

prove upon the FLORIS-suggested best design by δη =
0.32%. This is achieved by leveraging the flow phenomena
that are unaccounted for in FLORIS. Figure 10 shows the
efficiency of the two designs for each direction in the wind
rose. EI-LES-BO delivers increased performance for most 70

wind directions.

4 Wake steering (yaw angle optimisation)

In wake steering, the objective is to maximise the power out-
put of a wind farm by adjusting the angle γ at which tur-
bines face the wind (a yaw angle γ = 0◦ corresponds to the 75

turbines being aligned with the mean wind direction). The
position and properties of the wind turbines are considered
known. As a result, optimisation can be carried out indepen-
dently for each wind state. The (static) yaw angle optimisa-
tion problem for a single wind state can then be expressed as 80

arg max
γ

N∑
n=1

Pn(γ) (6a)

s.t. γ ∈ Γ (6b)

where γ = (γ1, . . . ,γN ) denotes the turbine yaw angles and
Γ is the range of admissible misalignment angles. 85

4.1 Wake steering optimisation: Problem set-up

The problem we consider draws on the Horns Rev I wind
farm, which is located in the North Sea, and consists of
eighty turbines with diameter D = 80 m and hub height
h= 70 m, arranged in an 8× 10 grid with 7D spacing be- 90

tween the turbines (Barthelmie et al., 2009). Data for the
atmospheric boundary layer are taken from Wu and Porté-
Agel (2015), with u∗ = 0.442 ms−1, height δ = 500 m and
roughness length z0 = 0.05 m (similar to the conditions con-
sidered in Sect. 3). Under these conditions, the velocity and 95

turbulence intensity at hub height are Uh = 7.9 ms−1 and
TIh = 8.0%, respectively.

We assume that the turbines operate with a constant lo-
cal thrust coefficient, C ′

T = 4/3, and may yaw up to ±30◦

(Γ ∈ [−30,30]). We consider a single wind direction (270◦), 100

which is among the most prevalent ones, and the wind
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Figure 7. FLORIS-suggested best design. (Left): Individual turbine efficiencies predicted by FLORIS and LES. (Middle) Mean streamwise
flow for westerly wind, LES. (Right) Mean streamwise flow for westerly wind, FLORIS.

Figure 8. FLORIS-suggested best design. LES predictions for
(top) angle of horizontal plane velocity vector, (bottom) turbulence
intensity.

Figure 9. Wake visualisation in the FLORIS-suggested best design
case by means of transport of a passive scalar shed from the turbine
rotors.

is aligned with the wind farm rows. This case is selected
because wake steering optimisation studies based on low-
fidelity models have yielded wildly varying optimum yaw
settings, which range from zero to the maximum admissible
yaw angle (see e.g., Zong and Porté-Agel (2021); Gori et al. 5

(2023)). For the purposes of the present optimisation study,
we simulate only one row of the wind farm and use periodic
conditions on the lateral boundaries. This follows a num-
ber of studies that have reported row independence for the
considered problem (Zong and Porté-Agel, 2021; Gori et al., 10

2023). For instance, Zong and Porté-Agel (2021) reported an
estimated asymptotic wake deflection of 0.8D under a yaw
condition of γ = 30◦, effectively demonstrating that row-to-
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Figure 10. Efficiency of best-performing LF/LES and EI-LES-BO
layouts for each direction in the wind rose.

row interactions have negligible influence on wake steering
effectiveness for the investigated turbine spacings.

The domain of size 6144×560×1024 m is discretised with
a uniform mesh with ∆x=∆y =∆z = 8 m (corresponding
to 10 points across the turbine rotor, a resolution equivalent5

to the one used in Sect. 3). Data are gathered over a 3-hour
period of farm operation, following the time required for the
flow to develop. Figure 11 shows contours of the instanta-
neous and mean streamwise flow at the turbine hub level, for
the case of non-yawed conditions, (γ = 0◦).10

4.2 Wake steering optimisation: Results

The initial training dataset comprises fifty designs. These in-
clude yaw angle combinations sampled with the Latin Hyper-
cube method, the non-yawed condition shown in Fig. 11, and
a design in which the yaw angles decrease linearly, from the15

maximum admissible yaw angle for the most upstream tur-
bine to zero yaw angle for the most downstream one (Zong
and Porté-Agel, 2021). Significant improvements in power
output are observed within just ten iterations of the LES-BO
optimisation. To facilitate comparison between all consid-20

ered conditions, we define the metric η as the ratio of im-
provement over the non-yawed case, namely when γ = 0◦

η =

∑N
n=1Pn(γ)∑N

n=1Pn(γ = 0◦)
(7)

The above metric is a measure of power output improvements25

when adopting wake steering. Similar to Sect. 3, the best
performing LES-BO design is compared with the FLORIS-
suggested optimal design (Fig. 12). In particular, Fig. 12
shows the optimal yaw angles suggested by each frame-
work, along with the corresponding LES predictions for in-30

dividual turbine efficiency. The latter is defined as ηind,i =
Pi(γ)/Pi(γ = 0◦).

Qualitatively, both frameworks suggest a decreasing trend
in yaw angles as we move downstream in the farm, simi-
lar to results reported in Bastankhah and Porté-Agel (2019). 35

However, differences in magnitude can be observed, with
the LES-BO framework favouring larger yaw angles in the
upstream turbines. This results in reduced power output for
the first four turbines. For downstream turbines, both frame-
works suggest yaw angles of similar magnitudes. However, 40

because they are less affected by the wakes of upstream tur-
bines, downstream turbines in the LES-BO design produce
more power.

As actuator disk theory tends to overestimate the power
output of wind turbines at large yaw angles (Lin and Porté- 45

Agel, 2019), both frameworks are prone to over-promoting
wake steering. Nevertheless, the operational details of the
turbines are identical in both flow models (LES-ADM and
FLORIS). This suggests that the preference for larger yaw
angles in the LES is likely related to the flow mechanisms 50

(e.g., row interactions) that are unaccounted in FLORIS. We
note that the yaw angles of the first four turbines in the LES-
BO design are at the arbitrarily selected yaw limits defined
in the problem set-up (see Sect. 4.1). This means that there
is potential for further improvements should these limits be 55

extended or removed. In practice however, for large yaw off-
sets, it is important to also consider the effects of yawing the
turbine on the loads it experiences (Damiani et al., 2018; En-
nis et al., 2018).

Figure 13 shows the mean streamwise velocity field for the 60

two cases (LES-BO best and LF/LES). Overall, the LES-BO
framework is able to find a design that is 4% more efficient
compared to the design suggested by FLORIS, with efficien-
cies η = 1.28 and η = 1.24, respectively. 0.7% out of the 4%
increase in efficiency is provided by leveraging the effects 65

of confinement (blockage). This is measured by testing the
designs in LES with five times the spanwise extent of the do-
main, effectively simulating them as individual rows of tur-
bines. The difference in efficiency between the designs in the
unconfined case reduced to 3.3%. Besides affecting the flow 70

both locally and globally (see discussion in Sect. 3.2), con-
finement also affects wake recovery through increased levels
of shear.

5 Conclusions

This work introduces an optimisation framework aimed at 75

enhancing the efficiency of power production in wind farms.
The proposed method follows a Bayesian approach and
utilises surrogate models based on high-fidelity large-eddy
simulations of wind farm flows. As part of an extensive com-
putational campaign involving around 5000 large-eddy simu- 80

lations, the framework was effectively used to mitigate losses
caused by wake effects through two distinct strategies: layout
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Figure 11. (Top) Instantaneous and (bottom) mean streamwise velocity at the turbine hub height for non-yawed conditions.
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Figure 12. Optimal yaw angles suggested by LES-BO (solid
line) and FLORIS (dashed line). Individual turbine efficiencies are
shown as bars with solid fill (LES-BO) and bars with hatched pat-
tern (LF/LES).

optimisation (also known as micro-siting), and wake steer-
ing through yaw angle optimisation. The achieved optimi-
sation outcomes were also compared with results obtained
from low-fidelity wake model-based optimisation. Finally, a
simple strategy was proposed to combine both large-edddy5

simulations and wake models in a multi-fidelity approach.
In the layout optimisation problem, the best layouts found

had ≈ 10% increased efficiency compared with the efficiency
of a standard aligned layout. The performance of wake mod-

Figure 13. Mean streamwise flow at the turbine hub height. (Top)
LES-BO, (bottom) LF/LES.

els was also found to be remarkable. This is particularly im- 10

portant given the excessive computational requirements of
LES-based layout optimisation. In the case of wake steer-
ing, the framework relying on high-fidelity simulations out-
performed the wake model-based optimisation by a consid-
erable margin (4% increased efficiency, reaching an overall 15

28% increase compared with the non-yawed conditions). The
increased complexity of the flow in this scenario rendered
the utilisation of high-fidelity flow models advantageous. In
future work, this framework will be extended to other flow
cases of increased complexity, such as wind farms on com- 20

plex terrain or under stratified conditions.
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Appendix A: Computational cost

Simulations were performed using 128 or 256 CPU cores on
ARCHER2 (https://www.archer2.ac.uk/) and CSD3 (https:
//www.csd3.cam.ac.uk/). The cost of each simulation ranged
from ≈ 300 to ≈ 900 CPUh, mostly depending on the type5

and amount of outputted data. These included instantaneous
and time-averaged fields, and time-resolved probe and tur-
bine data.

Appendix B: Low-order modelling and optimisation

Low-order farm modelling is conducted using version 3.4 of10

FLORIS (NREL, 2023), an open-source wind farm simula-
tor developed by the National Renewable Energy Labora-
tory (NREL). The framework incorporates several widely-
used steady-state analytical wake models to predict the wind
farm flow and power output. In this study, we employ the15

Gauss-Curl Hybrid wake model (King et al., 2021), with the
deflection model of Bastankhah and Porté-Agel (2016), and
the sum of squares freestream superposition (SOSFS) model
of Katic et al. (1987). For all models, we use the FLORIS
default parameters. The atmospheric conditions specified in20

sections 3.1 and 4.1 are matched by specifying a wind profile
with a power law relationship (with a best fitting exponent
0.133) and turbulence intensity at the hub height as computed
in the LES.

In terms of optimisation, the algorithm of choice is the25

FLORIS-default gradient-based Sequential Least SQuares
Programming (SLSQP) method (Kraft, 1988). In the farm
layout optimisation, 100 different optimisations are indepen-
dently conducted, each starting from different initial condi-
tions. The SLSQP parameters ftol = 10−9 and eps= 0.0130

are set following FLORIS recommendations (NREL, 2023).
In the wake steering optimisation problem, the optimal yaw
angles obtained in Gori et al. (2023) are set as initial con-
ditions to avoid initialisation sensitivity issues. Furthermore,
the SLSQP parameters ftol = 10−12 and eps= 0.05 are de-35

fined as suggested in Gori et al. (2023) for wake steering ap-
plication on the Horns Rev wind farm.

Data availability. The data that support this study are available
upon reasonable request.
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