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Abstract. Maximising the power production of large wind farms is key to the transition towards net zero. The overarching goal

of this paper is to propose a computational method to maximise the power production of wind farms with two practical design

strategies. First, we propose a gradient-free method to optimise the wind farm power production with high-fidelity surrogate

models based on large-eddy simulations and a Bayesian framework. Second, we apply the proposed method to maximise

wind farm power production by both micro-siting (layout optimisation) and wake steering (yaw angle optimisation). Third, we5

compare the optimisation results with the optimisation achieved with low-fidelity wake models. Finally, we propose a simple

multi-fidelity strategy by combining the inexpensive wake models with the high-fidelity framework. The proposed gradient-free

method can effectively maximise wind farm power production. Performance improvements relative to wake-model optimisation

strategies can be attained, particularly in scenarios of increased flow complexity, such as in the wake steering problem, in which

some of the assumptions in the simplified flow models become less accurate. The optimisation with high-fidelity methods takes10

into account nonlinear and unsteady fluid mechanical phenomena, which are leveraged by the proposed framework to increase

the farm output. This paper opens up opportunities for wind farm optimisation with high-fidelity methods and without adjoint

solvers.

1 Introduction

The transition towards a net-zero world is intertwined with a continually growing demand for renewable energy sources. Wind15

power has emerged as the leading contributor to renewable electricity in numerous countries (Our World in Data, 2022). Gov-

ernments worldwide have recognised the significance of this resource and have committed to substantial capacity expansions

as part of their energy strategies. As wind energy takes on an increasingly central role as an energy source, it is critical for

it to mature in terms of efficiency and resilience. This entails addressing a number of challenges, which range from turbine

aerodynamics, their interaction with the atmosphere, and plant-level control (Veers et al., 2019, 2022).20

One key issue is that as wind farms grow in size, they become increasingly less efficient. This degradation in efficiency is

primarily attributed to wake losses (Barthelmie et al., 2009), which arise when a significant portion of the turbines operate

within the wake fields generated by neighbouring turbines within the same farm. A wind turbine operating within a wake field
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is a negative operability issue for two reasons. First, the reduction of its power output due to the decelerated incoming wind,

and, second, the increase of fatigue loading due to higher levels of turbulence.25

The long-established strategy for mitigating wake losses is to optimally position the wind turbines across the available land.

This approach is most commonly referred to as layout optimisation or micro-siting. Building upon the work by Mosetti et al.

(1994), numerous studies have been published in the literature on maximising the production (or minimising the cost of energy

production) of a wind farm by optimising turbine placement (see, for instance, Grady et al. (2005); Kusiak and Song (2010);

Chowdhury et al. (2012); Stanley and Ning (2019), and the review articles by Herbert-Acero et al. (2014) and Shakoor et al.30

(2016)).

More recently, an approach called wake steering was proposed as an alternative strategy to mitigate wake losses. In wake

steering, upstream turbines are yawed to deflect their wakes away from downstream turbines. Although this results in a re-

duction in power production from the upstream turbines, the downstream turbines generate more power, leading to an overall

increase in the farm’s power output. Demonstrations of performance gains in a number of computational (Fleming et al., 2015;35

Gebraad et al., 2016), experimental (Adaramola and Krogstad, 2011; Campagnolo et al., 2016; Bastankhah and Porté-Agel,

2019) and field (Fleming et al., 2017; Howland et al., 2019; Fleming et al., 2019; Simley et al., 2021) studies led to the recent

implementation of wake steering in commercial wind plants (see, for instance, a press release by WindESCo (2023)).

In the vast majority of relevant studies published in the literature, the optimisation of the farm layout or the turbine yaw angles

is carried out with low-fidelity flow solvers, commonly known as wake models, as cost function evaluators. Wake models are40

tools that estimate the velocity deficit downstream of a wind turbine and, by means of superposition, the overall flow in a wind

farm (see, for example, Jensen (1983); Frandsen et al. (2006); Bastankhah and Porté-Agel (2014); Bempedelis and Steiros

(2022), and the review article by Porté-Agel et al. (2020)). Wake models are built on simplified assumptions for the turbulent

wake of a porous disk and do not account for various phenomena such as unsteadiness, non-linear interactions, or blockage,

among others. As a consequence, optimisation based on wake models misses opportunities to improve farm performance by45

manipulating and potentially exploiting these unaccounted phenomena. Furthermore, wake models can produce predictions

which are non-smooth or discontinuous as functions of the design variables (e.g., turbine coordinates or yaw angles). This

renders their use within gradient-based optimisation algorithms challenging (Gori et al., 2023). Nevertheless, wake models are

almost invariably used in optimisation studies due to their low computational cost, and the expertise gained from decades of

development and application (Asmuth et al., 2023).50

On the other hand, higher fidelity flow models have been employed in a limited number of layout optimisation studies

(King et al., 2017; Antonini et al., 2018; Allen et al., 2020; Antonini et al., 2020). In these works, wind farm layouts were

optimised with an adjoint gradient-based approach and steady-state Reynolds-averaged Navier-Stokes (RANS) simulations.

The use of steady RANS enables the consideration of a number of the aforementioned phenomena, such as blockage or

pressure effects. However, the unsteady wake dynamics and the wake-to-wake and atmosphere-to-wake interactions, which55

play a critical role in large wind farm flows, cannot be appropriately accounted for. While higher-fidelity flow models, such

as large-eddy simulations (LES), aptly take these phenomena into account, the computation of the gradient of a long-term1

1By “long-term" we mean after many Lyapunov times.
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time average of a chaotic turbulent flow is ill posed (Wang, 2013; Blonigan and Wang, 2018; Huhn and Magri, 2022), which

is a limit for adjoint methods. Despite these challenges, large-eddy simulations and adjoint methods have been combined in

the context of wind farm control (Goit and Meyers, 2015; Munters and Meyers, 2018), showcasing the potential of dynamic60

control strategies. Alternatively, LES have been utilised in hybrid or multi-fidelity approaches (Bokharaie et al., 2016; Kirby

et al.). For instance, in Bokharaie et al. (2016), LES was employed to calibrate the parameters of wake models, which, in turn,

were used to find optimal wind farm layouts.

In this work, we propose a data-driven framework for optimising the output of a wind farm based on a gradient-free Bayesian

approach and high-fidelity large-eddy simulations of the wind farm flow. The structure of the paper is as follows. The proposed65

optimisation strategy is outlined in Sect. 2. Section 3 discusses its application to a sixteen-turbine layout optimisation problem.

In Sect. 4, the framework is applied to a ten-turbine yaw angle optimisation (wake steering) problem. Finally, conclusions end

the paper in Sect. 5.

2 Methodology

The methodology is presented in two parts. First, we introduce the optimisation framework in Sect. 2.1. Second, in Sect. 2.2,70

we describe the flow solver employed to predict the wind farm flow and power output.

2.1 Bayesian optimisation

Bayesian optimisation (BO) is a gradient-free global optimisation strategy, which is particularly attractive for optimising com-

plex functions (as in large codes for which the adjoint algorithm is cumbersome). Its effectiveness has been demonstrated in

various fluid mechanical applications (e.g., Mahfoze et al. (2019); Huhn and Magri (2022); O’Connor et al. (2023)). It seeks75

for the extrema of the objective function by constructing a probabilistic surrogate model of it, typically a Gaussian process

(GP), and by exploring the parameter space with an acquisition function (AF).

A Gaussian Process (GP) model is a non-parametric probabilistic model that is defined by a prior mean function, µ0(x),

x ∈ Rd, which is usually assumed zero, and a covariance function (also known as the kernel), k ∈ R(x,x′). Given a set D of

m observations Y ∈ Rm×1 = f(X) = [y1, . . . ,ym]⊺ at the input locations X ∈ Rm×d = [x1, . . . ,xm]⊺, as training data, and80

assuming a zero prior mean, we can compute the posterior mean, µ∗ ∈ Rn×1, and variance, σ2
∗ ∈ Rn×1, for a set of n test

points X∗ ∈ Rn×d as

µ∗ = KT
∗

(
K + σ2I

)−1
Y (1)

σ2
∗ = diag

(
K∗∗−KT

∗
(
K + σ2I

)−1
K∗

)
(2)

where K ∈ Rm×m = k (X,X), K∗ ∈ Rm×n = k (X,X∗), K∗∗ ∈ Rn×n = k (X∗,X∗), and σ2 ∈ R is the observational85

noise. These expressions provide an estimate of the underlying objective function and the corresponding uncertainty for ev-

ery point in the parameter space. Training a GP model involves determining the values of the kernel hyper-parameters that
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maximise the marginal likelihood. For a more detailed discussion on GPs, the reader is referred to Rasmussen and Williams

(2006).

The acquisition function AF(x), which is built on the surrogate model whose first two statistical moments are given by90

equations (1)-(2), determines the next point(s) to be evaluated, by taking into account both the mean and uncertainty for any

point x of the parameter space, and providing the probability, or amount, by which x can improve the current optimum.

Exploration, which directs the search towards unexplored areas of the parameter space, and exploitation, which focuses the

search in the vicinity of known promising solutions, are balanced based on the trade-off between uncertainty reduction and

potential improvement. In brief, Bayesian optimisation is described in Algorithm 1.95

Algorithm 1 Bayesian Optimisation

1: Acquire a set of initial objective function observations D
2: Initialise the variables holding the best solution, xopt and yopt

3: for i = 1 to stopping criterion do

4: // Update the surrogate model using the available data

5: Train the GP model given D
6: // Find the next point to evaluate using the AF

7: xnext← argmaxAF(x)

8: // Evaluate the objective function at xnext

9: ynext← f(xnext)

10: // Update the dataset with the new evaluation

11: Append xnext and ynext to D
12: // Update the best solution found so far

13: if ynext > yopt then

14: xopt← xnext

15: yopt← ynext

16: end if

17: end for

18: return xopt, yopt

In the current work, Bayesian optimisation is implemented with the GPyOpt library (The GPyOpt authors, 2016). As

discussed in more detail in Sect. 3.2, we consider GP priors characterised by the Rational Quadratic kernel (Rasmussen and

Williams, 2006). We further assume that our LES observations are high-fidelity, and, as such, noise-free (i.e., σ2 is negligible).

To select the next observation point(s), we use the Lower Confidence Bound acquisition function, AF(x) = µ∗(x)−λσ∗(x),

which allows for straightforward control of the exploration-to-exploitation ratio through the tunable parameter λ, which weighs100

the mean/exploitation µ∗ and uncertainty/exploration σ∗ terms of the GP model, with larger values of λ favouring exploration.

Other AFs (e.g., Probability of Improvement, Expected Improvement) or combination of them may be used (e.g., Huhn and

Magri (2022)). The kernel hyper-parameter and AF optimisations are carried out with the L-BFGS algorithm (Liu and Nocedal,
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1989). Finally, we compute design points to be explored in batches (batch BO), following the local penalisation method

proposed in González et al. (2016). This allows us to efficiently utilise our high-performance computing resources by running105

several LES at the same time.

2.2 Large-eddy simulations

To predict the wind farm flow and power output, we employ the wind farm simulator Winc3d (Deskos et al., 2020) of the

open-source finite-difference framework Xcompact3d (Bartholomew et al., 2020). Xcompact3d solves the incompressible

filtered Navier-Stokes equations on Cartesian meshes using sixth-order compact schemes and a third-order Adams-Bashforth110

method for time integration (Laizet and Lamballais, 2009). Efficient scaling up to hundreds of thousands of CPU cores is made

possible by utilising the 2Decomp & FFT library for parallelisation (Laizet and Li, 2011). In this work, the Smagorinsky sub-

filter scale model (Smagorinsky, 1963) is used to account for the effects of the unresolved fluid motions. The wind turbines

are modelled with the actuator disk method, which is described in more detail, together with a related validation study, in

Bempedelis et al. (2023). Winc3d has been validated against experimental and field data in several wind turbine and wind115

farm flow problems (Deskos et al., 2019, 2020; Bempedelis and Steiros, 2022; Steiros et al., 2022; Jané-Ippel et al., 2023).

In order to realistically simulate the interaction of the wind farm with the turbulent atmospheric flow, we perform precur-

sor simulations of fully-developed neutral atmospheric boundary layers. The precursor atmospheric flow simulations are run

until statistical convergence is reached, after which we begin storing two-dimensional planes of the flow field, normal to the

streamwise direction, at every timestep. These planes are subsequently used as inflow conditions in the wind farm simulations.120

3 Layout optimisation (micro-siting)

In layout optimisation, the objective is to maximise the power production of a wind farm with N wind turbines by adjusting

their position c = [x,y]T , with x = (x1, . . . ,xN ) and y = (y1, . . . ,yN ), within a given space X . The space X corresponds to

the available land where the wind turbines may be installed. The farm power production is typically a weighted sum of all the

different wind states K (wind direction, speed, turbulence) which the farm experiences over a period of time. The turbines can125

align themselves with the mean direction of incoming wind. The optimisation problem is therefore expressed as

arg max
c

K∑

k=1

ak

N∑

n=1

Pn,k(c) (3a)

s.t. c ∈X, (3b)

||ci− cj ||> D, for i, j = 1, . . . ,N and i ̸= j (3c)

where Pn,k is the power output of the n-th turbine given wind state k, and ak is the weight (i.e. probability) of each wind state,130

as dictated by the local meteorological data. Equation (3b) constrains the turbines within the available land. To avoid turbine

overlapping, a second constraint is added to ensure that the centres of the turbines are spaced at least one turbine diameter D

apart (Eq. (3c)).
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In a preliminary proof-of-concept study (Bempedelis and Magri, 2023), an early version of the proposed framework was

applied to a simple layout optimisation problem (five wind turbines in a 6D×6D square, operating under a single wind state).135

It was shown that the method is capable of finding optimal designs in a few iterations whilst leveraging flow phenomena that

are unaccounted for in low-fidelity solvers (e.g., local speed-ups) to deliver increased wind farm performance.

However, modern wind farms are composed of several more turbines. The layout optimisation problem therefore becomes

high-dimensional, with the design space being 2N -dimensional. Bayesian optimisation in low dimensions is well established,

but its application to high-dimensional problems poses a significant challenge due to the increase in complexity in both GP140

regression and the search for the next designs (AF optimisation) (Binois and Wycoff, 2022).

Here, we propose a way to reduce the dimensionality of the layout optimisation problem. It is based on the assumption that,

in most cases, the turbines in a wind farm are identical. In that case, the cost function is invariant under permutations of the

turbine labelling, and there are N ! different combinations of the design variables that produce the same output. Such behaviour

is a clear barrier to efficient optimisation. To remedy this, we could augment the training dataset with all N ! permutations of the145

evaluated designs. However, this quickly gives rise to high complexity, as the computational cost for GP regression scales with

O(m3), where m is the number of points in the training dataset. Alternatively, without loss of generality, we propose working

on a reduced design space by enforcing a set of N − 1 additional constraints (Eq. (4d)). The constraints enforce a particular

ordering of the turbines, in one direction only, thereby constraining the design variables to that particular subspace of the full

parameter space. The subspace size is smaller by a factor 1/N ! relative to the original one, indicating the equivalence of the150

two approaches. (A third way, not explored in this work, is to encode the turbine ordering invariance property of the objective

function in the kernel; see Duvenaud (2014) for additional details). The layout optimisation problem is thus reformulated as

arg max
c

K∑

k=1

ak

N∑

n=1

Pn,k(c) (4a)

s.t. c ∈X, (4b)

||ci− cj ||> D, for i, j = 1, . . . ,N and i ̸= j, (4c)155

xi ≥ xi−1, for i = 2, . . . ,N (4d)

3.1 Layout optimisation: Problem set-up

We consider a wind farm of N = 16 turbines, each with D = 100 m rotor diameter and h = 100 m hub height. The wind

turbines operate at a constant thrust coefficient, CT = 0.75. The available land is a square of size 18D× 18D. We consider

an evenly-weighted six-directional wind rose. This is a set-up close to those examined in King et al. (2017) and Antonini160

et al. (2018). The atmospheric boundary layer is characterised by friction velocity u∗ = 0.442 ms−1, height δ = 501 m and

roughness length z0 = 0.05 m, which correspond to conditions in the North Sea (Wu and Porté-Agel, 2015). The velocity at

the hub height of the turbines is Uh = 8.3 ms−1, and the turbulence intensity at the same level is TIh = 7.4% (see Fig. 1 for

the simulated atmospheric wind profiles).
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Figure 1. Mean streamwise velocity (left) and turbulence intensity (right) of the simulated atmospheric boundary layer.

The wind farm is embedded in a computational domain of size 4008× 3340× 501 m, which is discretised with a uniform165

mesh with ∆x = ∆y = ∆z = 10.4375 m (corresponding to ≈ 10 points across the turbine rotor). As shown in Bempedelis

et al. (2023), this resolution is sufficient to predict the power production of a large wind farm. This was also confirmed for

the considered set-up (result not shown for brevity). The timestep is chosen such that the maximum Courant (CFL) number

remains below 0.2. Data are averaged over a 2.5-hour period of farm operation, following the time required for the flow to

develop.170

Figure 2 shows the contours of the instantaneous and mean streamwise flow at the turbine hub level for a randomly sampled

farm layout under westerly wind, together with details on the described set-up (wind rose and available land). It also reveals

the highly complex nature of wind farm flows, with turbine wakes interacting with one another and with the atmospheric

turbulence.

3.2 Layout optimisation: Results175

The optimisation starts by evaluating the farm power output of a large set of layouts sampled from a Latin hypercube, along

with two user-designed layouts. These are a uniform 4×4 layout with 6D spacing between the turbines and a layout where the

turbines are equidistantly distributed on the land border only. The optimisation then progresses iteratively, as described in Sect.

2, and terminates after 700 iterations (for a total of 4200 wind farm LES). This was decided in consideration of the available

computational resources (a comment on the cost of the simulations can be found in Appendix A) and the optimisation’s180

progression. The optimisation history is shown in Fig. 3. To facilitate comparison, we introduce the metric η, defined as the

ratio between the overall farm power output and a reference ideal output based on the output of a single wind turbine

η =
∑K

k=1 ak

∑N
n=1 Pn,k

N ×Psingle
(5)
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Figure 2. (Top) Instantaneous and (bottom) mean streamwise velocity at the turbine hub height for a randomly sampled layout, with the

wind blowing from the west. The full six-directional wind rose is shown at the top right. The borders of the available land are indicated with

dashed black lines. The wind turbines are denoted with grey solid lines.

with Psingle being computed in a separate LES, where a single turbine was placed at the center of the available land. Basically,

η is a normalised form of the objective function defined in Eq. (4a), based on the production of N similar stand-alone turbines.185

It may therefore be interpreted as a farm efficiency coefficient primarily describing wake losses.
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Figure 3. Efficiency of designs evaluated during the layout optimisation process. The dashed line shows the evolution of the best-performing

design.

At the end of the optimisation, the best-performing design has η = 95.3% efficiency, with the corresponding mean flow

fields shown in Fig. 4 for every wind direction. We observe limited turbine-wake interference, especially in the diagonal wind

directions, which is associated with increased power production by the wind farm in those directions. For reference, the 4× 4

aligned layout and the layout shown in Fig. 2 have efficiencies η = 88.5% and η = 80.4%, respectively.190

Figure 4. Mean flow fields for the best-performing design proposed by the large-eddy simulation Bayesian optimisation framework (LES-

BO). In all cases, the wind blows from left to right, with the wind farms rotated to match the wind direction shown on the inset wind roses.

The reference non-rotated layout is that of the westerly wind case (top left).
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In parallel with the training of the surrogate model, we can also learn what constitutes good modelling practices. By means

of validation on subsequent test points, we observe that the rational quadratic (RQ) kernel outperforms both the widely used

Matérn and the squared exponential (RBF) kernels. Figure 5 shows the predictions of the regressed GPs (with a training dataset

of 600 points) for the 40 points tested next. The test points include designs suggested with different levels of balance between

exploration and exploitation (by tuning the λ parameter in the AF, see Sect. 2.1). All kernels perform adequately in regions195

near points in the training dataset. However, the RQ kernel is shown to extrapolate more accurately. Similar conclusions hold

for both anisotropic (ARD) kernels (in which each design variable is associated with its own lengthscale) and isotropic kernels.

In Bempedelis and Magri (2023), it was shown that it is possible to find optimal designs with isotropic kernels. Here, we find

that anisotropic kernels show slightly improved accuracy. However, this comes at the price of larger computational cost and

complexity. In particular, care needs to be taken when using anisotropic kernels in high-dimensional problems, to ensure that200

sufficient data are available in the training set to achieve robustness in the GP hyper-parameter optimisation.

−2

0

2

f

RBF Matérn 5/2 Matérn 3/2 RQ

1 20 40
−2

0

2

f

1 20 40 1 20 40 1 20 40

Figure 5. GP regression with different covariance functions on a standardised training dataset of 600 points. Predictions of the regressed

models for the 40 points computed next in the optimisation chain. The GP mean predictions are denoted with blue markers. The shaded areas

represent 95% confidence intervals. Black markers denote the LES predictions. (Top row): Isotropic kernels. (Bottom row): Anisotropic

kernels.

In order to assess the quality of the best-performing design obtained with the proposed framework (hereafter referred to as

LES-BO), we perform a series of optimisations with the FLOw Redirection and Induction in Steady State (FLORIS) software

(NREL, 2023). FLORIS is an open-source wind farm simulator that incorporates several widely used wake models. In this

study, the Gauss-Curl Hybrid model (King et al., 2021) is employed for predicting the wind farm flow and power output,205
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while the optimisation algorithm used is the gradient-based Sequential Least SQuares Programming (SLSQP) method (Kraft,

1988). For more details on the FLORIS simulations, please see Appendix B. In consideration of the multi-modal nature of

the layout optimisation problem, and to enable a more comprehensive comparison with the LES-BO method, we perform 100

independent FLORIS layout optimisations, initialised with 99 random layouts and a uniform 4× 4 layout with 6D spacing

between the turbines.210

The efficiencies of the 100 optimal designs outputted by FLORIS are then evaluated using Winc3d (the designs suggested

by the low-fidelity model and evaluated with LES will be referred to as LF/LES). The results, ordered from best to worst, are

presented in Fig. 6, together with the predictions of FLORIS and the best-performing design obtained with LES-BO.

1 20 40 60 80 100
Design no.

88

90

92

94

96

98

100

η
[%

]

LES-BO

LF/LES

FLORIS

Figure 6. Efficiency of optimal designs outputted by FLORIS, evaluated with both FLORIS and LES (LF/LES). The dashed line shows the

optimal design suggested by the LES-BO framework.

Figure 6 allows us to draw a number of conclusions. First, the proposed LES-BO framework is capable of finding a design

that produces more power than ≈ 70% of the optimal designs suggested by FLORIS. Taking into account the relatively small215

amount of iterations to find this design, the option of using more advanced BO strategies (e.g., Eriksson et al. (2019)), and

the fact that our focus is on feasibility rather than performance, we conclude that optimising wind farms using a high-fidelity

surrogate modelling approach is achievable.

However, several layouts suggested by the wake model-based optimisation outperform those suggested by LES-BO. This

finding supports the practice of using wake models to design wind farms in the wind energy industry, as they demonstrate220

excellent performance at only a fraction of the cost (see also Thomas et al. (2019)).

Nevertheless, the efficiency predictions of FLORIS are lower compared to those of LES. As shown in Fig. 6, the trends of

both predictions are similar, but the offset between the two is not constant, with LES predicting a wider range of efficiencies.

These differences are attributed to the flow phenomena that are unaccounted for in FLORIS. To identify these, Fig. 7 shows the

efficiency of individual turbines of the FLORIS-suggested best design, evaluated by both FLORIS and LES, for a single wind225
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direction (270◦) and the full wind rose. In the case of the westerly wind, we observe that the increase in power production comes

from downstream turbines. According to LES, the first turbines are producing slightly less power, indicating the negative impact

of global (farm-level) blockage that is not taken into account in the wake models. However, the production of downstream

turbines is increased, to levels above those of an isolated turbine, due to local flow speed-ups. (Here, additional simulations

with three times larger spanwise extent were performed to evaluate the impact of domain blockage. This was confirmed to be230

small, with differences in efficiency ≈ 1%). Similar benefits owing to local blockage were also reported in King et al. (2017)

and Antonini et al. (2018). In the case of the full wind rose, all turbines operate at an efficiency above 90%, with some turbines

exceeding, on average, the production of an isolated turbine. Overall, the individual turbine efficiency predictions of the two

flow models for the full wind rose (aggregate power) are qualitatively similar, with varying levels of differences.

Figure 7. FLORIS-suggested best design. (Left): Individual turbine efficiencies predicted by FLORIS and LES. (Middle) Mean streamwise

flow for westerly wind, LES. (Right) Mean streamwise flow for westerly wind, FLORIS.

Figure 7 also shows the mean streamwise flow fields predicted by FLORIS and LES for the westerly wind case. Together235

with Fig. 8, which shows the LES predictions for the in-plane velocity angle and the turbulence intensity, we observe several

phenomena, in addition to the local speed-ups, which are taken into account only in LES (see also figures 2 and 4). These

include cross-stream flow, wake deflections and curvature (e.g., at the sides of the farm), pressure gradients, and wake merging

(e.g., turbines 11 and 16). Another difference between the predictions of the two flow models is in the near wake of the turbines.

Wake models assume that self-similarity is established immediately downstream of a turbine, which is known to be inaccurate240

(see e.g., Steiros et al. (2023)). Although this may not be a significant concern in the relatively sparse arrangement considered

in this work, it is expected to play a more significant role in farms with higher turbine density. Finally, Fig. 9 shows a smoke-

type visualisation of the turbine wakes for the FLORIS-suggested best farm layout. To achieve this, a passive scalar is emitted

from the turbine rotors and is transported by the flow. This enables us to observe the meandering of the wakes, and possibly

some indications of weakly—owing to the stabilisation effects of base bleed (Steiros et al., 2020, 2021)—coupled dynamics245

(e.g., turbines 12,13 and 14) (Peschard and Le Gal, 1996).
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Figure 8. FLORIS-suggested best design. LES predictions for (top) angle of horizontal plane velocity vector, (bottom) turbulence intensity.

3.3 Combining wake models with LES: A multi-fidelity approach

Section 3.2 demonstrated the feasibility of optimising the layout of wind farms with the proposed LES-BO framework, along

with the role of the mechanisms that are neglected by low-fidelity flow solvers. However, for the number of optimisation

iterations performed, LES-BO was outperformed by the multi-start gradient-based optimisation with low-fidelity models.250

In order to show the benefits of adopting the LES-BO approach, we propose a simple multi-fidelity strategy. We train a

surrogate model with a dataset composed of only the first 300 samples from our original investigation (see Fig. 3) and the

100 designs suggested by the low-order model (see Fig. 6). Following initial training, the optimisation proceeds as discussed

in Sect. 2, and similar to Sect. 3.2. However, our surrogate is now informed with well-performing designs obtained from the

low-fidelity optimisation. We refer to this strategy as the extrema-informed LES-BO framework (EI-LES-BO).255
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Figure 9. Wake visualisation in the FLORIS-suggested best design case by means of transport of a passive scalar shed from the turbine

rotors.

Within just thirty iterations, EI-LES-BO manages to improve upon the FLORIS-suggested best design by δη = 0.32%. This

is achieved by leveraging the flow phenomena that are unaccounted for in FLORIS. Figure 10 shows the efficiency of the two

designs for each direction in the wind rose. EI-LES-BO delivers increased performance for most wind directions.

270◦ 210◦ 150◦ 90◦ 30◦ 330◦

Wind direction

96

97

98

99

100

101
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]
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Figure 10. Efficiency of best-performing LF/LES and EI-LES-BO layouts for each direction in the wind rose.
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4 Wake steering (yaw angle optimisation)

In wake steering, the objective is to maximise the power output of a wind farm by adjusting the angle γ at which turbines260

face the wind (a yaw angle γ = 0◦ corresponds to the turbines being aligned with the mean wind direction). The position and

properties of the wind turbines are considered known. As a result, optimisation can be carried out independently for each wind

state. The (static) yaw angle optimisation problem for a single wind state can then be expressed as

arg max
γ

N∑

n=1

Pn(γ) (6a)

s.t. γ ∈ Γ (6b)265

where γ = (γ1, . . . ,γN ) denotes the turbine yaw angles and Γ is the range of admissible misalignment angles.

4.1 Wake steering optimisation: Problem set-up

The problem we consider draws on the Horns Rev I wind farm, which is located in the North Sea, and consists of eighty

turbines with diameter D = 80 m and hub height h = 70 m, arranged in an 8× 10 grid with 7D spacing between the turbines

(Barthelmie et al., 2009). Data for the atmospheric boundary layer are taken from Wu and Porté-Agel (2015), with u∗ = 0.442270

ms−1, height δ = 500 m and roughness length z0 = 0.05 m (similar to the conditions considered in Sect. 3). Under these

conditions, the velocity and turbulence intensity at hub height are Uh = 7.9 ms−1 and TIh = 8.0%, respectively.

We assume that the turbines operate with a constant thrust coefficient, CT = 0.75, and may yaw up to±30◦ (Γ ∈ [−30,30]).

We consider a single wind direction (270◦), which is among the most prevalent ones, and the wind is aligned with the wind

farm rows. This case is selected because wake steering optimisation studies based on low-fidelity models have yielded wildly275

varying optimum yaw settings, which range from zero to the maximum admissible yaw angle (see e.g., Zong and Porté-Agel

(2021); Gori et al. (2023)). For the purposes of the present optimisation study, we simulate only one row of the wind farm and

use periodic conditions on the lateral boundaries. This follows a number of studies that have reported row independence for

the considered problem (Zong and Porté-Agel, 2021; Gori et al., 2023). For instance, Zong and Porté-Agel (2021) reported an

estimated asymptotic wake deflection of 0.8D under a yaw condition of γ = 30◦, effectively demonstrating that row-to-row280

interactions have negligible influence on wake steering effectiveness for the investigated turbine spacings.

The domain of size 6144× 560× 1024 km is discretised with a uniform mesh with ∆x = ∆y = ∆z = 8 m (corresponding

to 10 points across the turbine rotor, a resolution equivalent to the one used in Sect. 3). Data are gathered over a 3-hour period

of farm operation, following the time required for the flow to develop. Figure 11 shows contours of the instantaneous and mean

streamwise flow at the turbine hub level, for the case of non-yawed conditions, (γ = 0◦).285

4.2 Wake steering optimisation: Results

The initial training dataset comprises fifty designs. These include yaw angle combinations sampled with the Latin Hypercube

method, the non-yawed condition shown in Fig. 11, and a design in which the yaw angles decrease linearly, from the maximum
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Figure 11. (Top) Instantaneous and (bottom) mean streamwise velocity at the turbine hub height for non-yawed conditions.

admissible yaw angle for the most upstream turbine to zero yaw angle for the most downstream one (Zong and Porté-Agel,

2021). Significant improvements in power output are observed within just ten iterations of the LES-BO optimisation. To290

facilitate comparison between all considered conditions, we define the metric η as the ratio of improvement over the non-

yawed case, namely when γ = 0◦

η =
∑N

n=1 Pn(γ)
∑N

n=1 Pn(γ = 0◦)
(7)

The above metric is a measure of power output improvements when adopting wake steering. Similar to Sect. 3, the best

performing LES-BO design is compared with the FLORIS-suggested optimal design (Fig. 12). In particular, Fig. 12 shows295

the optimal yaw angles suggested by each framework, along with the corresponding LES predictions for individual turbine

efficiency. The latter is defined as ηind,i = Pi/Pi(γ = 0◦).

Qualitatively, both frameworks suggest a decreasing trend in yaw angles as we move downstream in the farm, similar to

results reported in Bastankhah and Porté-Agel (2019). However, differences in magnitude can be observed, with the LES-BO

framework favouring larger yaw angles in the upstream turbines. This results in reduced power output for the first four turbines.300

For downstream turbines, both frameworks suggest yaw angles of similar magnitudes. However, because they are less affected

by the wakes of upstream turbines, downstream turbines in the LES-BO design produce more power. Overall, the LES-BO

framework is able to find a design that is 4% more efficient compared to the design suggested by FLORIS, with efficiencies
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Figure 12. Optimal yaw angles suggested by LES-BO (solid line) and FLORIS (dashed line). Individual turbine efficiencies are shown as

bars with solid fill (LES-BO) and bars with hatched pattern (LF/LES).

η = 1.28 and η = 1.24, respectively. Figure 13 shows the mean streamwise velocity field for the two cases (LES-BO best and

LF/LES).305

0.7% out of the 4% increase in efficiency is provided by leveraging the effects of confinement (blockage). This is measured

by testing the designs in LES with five times the spanwise extent of the domain, effectively simulating them as individual rows

of turbines. The difference in efficiency between the designs in the unconfined case reduced to 3.3%. Besides affecting the

flow both locally and globally (see discussion in Sect. 3.2), confinement also affects wake recovery through increased levels of

shear.310

Figure 13. Mean streamwise flow at the turbine hub height. (Top) LES-BO, (bottom) LF/LES.
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5 Conclusions

This work introduces an optimisation framework aimed at enhancing the efficiency of power production in wind farms. The

proposed method follows a Bayesian approach and utilises surrogate models based on high-fidelity large-eddy simulations of

wind farm flows. As part of an extensive computational campaign involving around 5000 large-eddy simulations, the framework

was effectively used to mitigate losses caused by wake effects through two distinct strategies: layout optimisation (also known315

as micro-siting), and wake steering through yaw angle optimisation. The achieved optimisation outcomes were also compared

with results obtained from low-fidelity wake model-based optimisation. Finally, a simple strategy was proposed to combine

both large-edddy simulations and wake models in a multi-fidelity approach.

In the layout optimisation problem, the performance of wake models was notably confirmed to be highly effective, with the

best layouts found having ≈ 10% increased efficiency compared with the efficiency of a standard aligned layout. In the case320

of wake steering, the framework relying on high-fidelity simulations outperformed the wake model-based optimisation by a

considerable margin (4% increased efficiency, reaching an overall 28% increase compared with the non-yawed conditions).

The increased complexity of the flow in this scenario rendered the utilisation of high-fidelity flow models advantageous. In

future work, this framework will be extended to other flow cases of increased complexity, such as wind farms on complex

terrain or under stratified conditions.325

Appendix A: Computational cost

Simulations were performed using 128 or 256 CPU cores on ARCHER2 (https://www.archer2.ac.uk/) and CSD3 (https://www.

csd3.cam.ac.uk/). The cost of each simulation ranged from ≈ 300 to ≈ 900 CPUh, mostly depending on the type and amount

of outputted data. These included instantaneous and time-averaged fields, and time-resolved probe and turbine data.

Appendix B: Low-order modelling and optimisation330

Low-order farm modelling is conducted using version 3.4 of FLORIS (NREL, 2023), an open-source wind farm simulator

developed by the National Renewable Energy Laboratory (NREL). The framework incorporates several widely-used steady-

state analytical wake models to predict the wind farm flow and power output. In this study, we employ the Gauss-Curl Hybrid

wake model (King et al., 2021), with the deflection model of Bastankhah and Porté-Agel (2016), and the sum of squares

freestream superposition (SOSFS) model of Katic et al. (1987). For all models, we use the FLORIS default parameters. The335

atmospheric conditions specified in sections 3.1 and 4.1 are matched by specifying a wind profile with a power law relationship

(with a best fitting exponent 0.133) and turbulence intensity at the hub height as computed in the LES.

In terms of optimisation, the algorithm of choice is the gradient-based Sequential Least SQuares Programming (SLSQP)

method (Kraft, 1988). In the farm layout optimisation, 100 different optimisations are independently conducted, each starting

from different initial conditions. The SLSQP parameters ftol = 10−9 and eps = 0.01 are set following FLORIS recommen-340

dations (NREL, 2023). In the wake steering optimisation problem, the optimal yaw angles obtained in Gori et al. (2023) are set
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as initial conditions to avoid initialisation sensitivity issues. Furthermore, the SLSQP parameters ftol = 10−12 and eps = 0.05

are defined as suggested in Gori et al. (2023) for wake steering application on the Horns Rev wind farm.
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