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Abstract. Leading edge erosion (LEE) can significantly impact the aerodynamic performance of wind turbines and thereby

the overall efficiency of a wind farm. Typically, erosion is modeled for individual turbines where aerodynamic effects are

only impacting the energy production through degraded power curves. For wind farms, the aerodynamic deficiency has the

potential to also alter the wake dynamics, which will affect the overall energy production. The objective of this study is to

demonstrate this combined effect by coupling LEE damage prediction and aerodynamic loss modeling with steady-state wind5

farm flow modeling. The modeling workflow is used to simulate the effect of LEE on the Horns Rev I wind farm. Based on a

10-year simulation, the aerodynamic effect of LEE was found to be insignificant for the first few years of operation, but rapidly

increases and reaches a maximum AEP
::::::
annual

::::::
energy

:::::::::
production

:::::
(AEP)

:
loss of 2.9 % in the last year for a single turbine. When

including the impact of LEE to the wakes behind eroded turbines, the AEP loss is seen to reduce to 2.7 % at the wind farm

level. ,
::::
i.e.,

::::::::::::
corresponding

::
to

::
an

:::::::::::::
overestimation

::
of

:::
the

::::
AEP

::::
loss

::
of

:::
up

::
to

:
7
:::
%

::::
when

:::::
only

:::::::::
considering

::
a
:::::
single

:::::
wind

:::::::
turbine.

::
In10

:::::::
addition,

::
it

:::
was

:::::::::::
demonstrated

::::
that

:::
the

::::::::
modeling

:::::::::
framework

:::
can

:::
be

::::
used

::
to

::::::::
prioritize

:::::::
turbines

::
for

:::
an

::::::
optimal

::::::::
repairing

:::::::
strategy.

:

1 Introduction

Erosion is often observed on wind turbine blades where the material of the leading edge has gradually been worn away over

time. LEE may be caused by impacts of airborne particles such as rain droplets, sand, and hail, or by other factors such as

UV radiation, strain from blade bending, or rapid temperature changes (Keegan et al., 2013). The impact of these factors on15

erosion varies from one location to another, but the most common damaging force is heavy rain occurring simultaneously with

high wind speeds. In Denmark and the UK, rain-induced LEE is a critical problem for many offshore wind farm operators,

where in some instances blades have been repaired or changed after only a few years of operation (offshoreWIND, 2018).

Compared with onshore turbines, offshore wind turbines operate more frequently at maximum tip speed due to higher average

wind speeds. Further, offshore wind turbines are not affected by noise regulations that limit the maximum tip speed, allowing20

them to operate at greater tip speed (Herring et al., 2019), which benefits power production.

LEE has significantly impacted the wind energy industry in terms of repair costs. The erosion damages often require special

kinds of repair solutions, such as the installation of protective shields or tapes, filling and injection coating, and resin injection

for small surface cracks (Mishnaevsky, 2019). The cost of surface erosion repairs can vary depending on the extent of the
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damage, the location, and the size of the turbine. In a recent study, it was demonstrated that surface erosion is the largest25

contributor to unplanned repair costs (Mishnaevsky Jr. and Thomsen, 2020).

Damage prediction models, also referred to as lifetime prediction models, are used to estimate the damage state of the

leading edge based on weather inputs such as wind speed and rain. They can be particularly useful for adequate planning and

scheduling of maintenance actions. These models often rely on known or assumed materialistic fatigue strength properties

obtained from rain erosion tests (RET) which are useful for predicting the erosion incubation period. Several studies have30

proposed damage models for predicting site-specific erosion damages (Visbech et al., 2023; Verma et al., 2021; Prieto and

Karlsson, 2021; Castorrini et al., 2021). However, the focus of these studies has solely been on structural defects.

Another important, but less documented cost related to LEE is the loss of aerodynamic efficiency. LEE on wind turbine

blades roughens the surface, thereby causing aerodynamic performance deterioration. Airfoils used in shaping wind turbine

blades are carefully designed to satisfy specific design requirements related to aerodynamic performance, geometric and struc-35

tural reliability, etc. (Bak, 2022b). Even small perturbations to the surface geometry can significantly impact the desired airfoil

properties. The two main aerodynamic properties of an airfoil are its lift and drag coefficient. These normalized quantities

describe the airfoil’s ability to generate lift and drag and vary with angle-of-attack and Reynolds number. The lift-to-drag ratio

is typically used as a proxy for aerodynamic efficiency, as it indicates how much undesired drag is required to generate a cer-

tain desired amount of lift. When an airfoil is exposed to LEE, the flow characteristics around it change. Several studies have40

investigated the effects based on high-fidelity methods such as computational fluid dynamics (CFD) (Li et al., 2010; Castorrini

et al., 2020; Wang et al., 2022; Meyer Forsting et al., 2022a), wind tunnel experiments (Bak et al., 2000; Kruse et al., 2021), or

a combination of both (Maniaci et al., 2016; Kruse et al., 2018; Meyer Forsting et al., 2022b, 2023). Generally, LEE was found

to cause a sharp and pronounced increase in drag. Additionally, a reduction in the pressure differential (between the pressure

and suction side) leads to a reduction in lift.45

2D airfoil properties can be used together with blade element momentum (BEM) theory to couple classical momentum

theory with the local forces acting on the blade sections (Glauert, 1935; Hansen, 2015). This allows for estimating the full rotor

aerodynamics and thus blade forces, which, at the rotor level, are summarized by the power and thrust coefficients. Several

studies have adopted this approach to quantify the effect of LEE on power production and AEP (Cappugi et al., 2021; Maniaci

et al., 2020; Bech et al., 2018; Bak, 2022a) by replacing the baseline 2D airfoil performance with the one incorporating LEE.50

Still, it is not fully recognized by wind farm operators, that LEE affects energy production notably since it is extremely difficult

to validate from operational wind turbine data. This is due to the stochastic nature of the turbulent wind and the large year-

to-year variability in the wind resources (Lee et al., 2020). However, a recent study by Panthi and Iungo (2023) investigated

operational data from 53 GE 1.5 MW turbines from the Cedar Creek wind farm (US-CO), with the objective of quantifying

AEP losses from LEE. Losses in the range of 3-8 % were observed from supervisory control and data acquisition (SCADA)55

data with the largest loss contributions coming from the low-wind speed operational regime.

As mentioned above, the main focus of former studies has been on the direct effect of LEE on energy production. A general

reduction in aerodynamic efficiency will decrease a turbine’s ability to convert kinetic energy into torque, but thus will also

leave more energy for downstream rotors, as its wake deficit is diminished. For that reason, LEE effectively works as uninten-
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Figure 1. Overview of the modeling workflow.

tional axial induction control, which is a well-known wake mitigation strategy. This added effect is only relevant in wind farms60

where wake effects play an important role, and could explain why it is commonly overlooked.

Power and thrust coefficients are typically used in wind farm simulation tools such as PyWake (Pedersen et al., 2023)

or FLORIS (NREL, 2021), and allow estimating wind farm energy production. These wind farm simulation tools rely on

engineering wake models (Bastankhah and Porté-Agel, 2014; Jensen, 1983; Frandsen et al., 2006; Ott et al., 2011; Larsen

et al., 2007) for estimating steady wind farm flow fields, which offer a balanced trade-off between prediction accuracy and65

computational costs.

In the present paper, we test the hypothesis that LEE directly affects wind farm energy production through degraded power

and thrust curves, hence including its effect on wake losses. This is accomplished by modeling the temporospatial progression

of erosion independently for each turbine within a wind farm and evaluating its effect on key aerodynamic properties influenc-

ing the power and thrust coefficients. This is achieved by coupling a damage prediction model with a fast aerodynamic LEE70

loss prediction tool and a steady wind farm flow model. We use this modeling framework to demonstrate how LEE-induced

power losses differ between an individual turbine and an entire wind farm through a case study. Finally, we use the probabilistic

capabilities of the damage prediction model to propose a prioritized repair strategy based on Monte Carlo simulations.

The paper is structured as follows: Section 2 describes the overall modeling framework including a thorough description of

the modules used for modeling wind farm aerodynamics under the influence of LEE. In section 4 and 5, the results obtained75

throughout the study are presented and discussed, respectively. Finally, the main conclusions are summarized in section 6.
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2 Methodology

2.1 Modeling overview

The current section describes the methodology used for modeling the combined aerodynamic effects of LEE in wind farms.

The overall workflow of the modeling framework is visualized in Figure 1. The framework revolves around a central wind farm80

simulation tool that runs with an engineering wake model and is coupled to a LEE module. The LEE module consists of two

sub-modules; firstly, a damage prediction model is used to provide probabilistic damage estimates based on the site-specific

time series of weather inputs and turbine operational data. The damage estimate is then passed on to an aerodynamic predictor

which determines the blade-sectional aerodynamic losses. These sectional losses are combined to provide the final output in

the form of eroded power and thrust curves. These properties are finally fed back to the central wind farm model and used in85

the computation of the wake deficits to update the wind farm flow field and turbine power production. The wind farm can be

simulated over a time series of wind speed, wind direction, and rain, to simulate the gradual development of erosion on each

individual turbine in a wind farm. The damage state can be updated at each time step, or updated after a block of time steps to

speed up the simulation time. It should also be mentioned, that since the modeling framework is modularized, it is very flexible

and not limited to the setup used within this paper. The individual models can easily be substituted with other models, provided90

they take the same inputs/outputs.

2.2 Damage prediction model

The damage prediction model used in this study was originally proposed by Visbech et al. (2023) and the following description

will only cover the model in relation to the scope of the present study. For detailed information, the authors refer to the original

paper.95

The model is based on an ensemble of 816 small feed-forward neural networks. The networks were trained with mesoscale

weather data and blade inspections from seven wind farms located on- and offshore in Northern Europe. The mesoscale weather

data were provided as hourly time series of wind and precipitation and the blade inspections were obtained from a combination

of manual, ground- and drone-based images. The purpose of the damage prediction model is to provide estimates of the

erosion damage along the blade, based on time series of turbine-local wind speed and rain. Together with turbine-specific100

operational characteristics, these are used to calculate rain impingement following industry recommendations (DNV, 2020),

which is the main predictor variable used by the model. The output from the damage prediction model is an encoded damage

value ranging between 0 and 1. The encoded damage from the model is directly related to a specific defect type and severity.

The categorization is based on the structural integrity of the blades and therefore represents the urgency for repair actions.

Also, the encoding scheme allows for continuous and realistic damage progression, similar to that observed from actual blade105

inspections. Though unique to the blade inspections used for training the damage prediction model, the categorization scheme

is similar to others proposed in literature (e.g., Sareen et al., 2014; Gaudern, 2014).

Figure 2 demonstrates the output of the damage prediction model, based on a 10-years time series of wind speed and rain

used as input. The solid line represents the average encoded damage of a wind turbine. Since the model consists of an ensemble

4



Figure 2. Example of the output from the damage prediction model based on 10 years of weather data as input. The graphs show the

progression of the encoded damage level from a time series of half-hourly wind speed and rain data. The solid line represents the ensemble

mean
::::::
median and the shaded area indicates the 95 % ensemble

:::::::
confidence

::::::
interval

:
(CI

:
).

of several hundred neural networks, it allows for making probabilistic damage estimates by incorporating uncertainty observed110

from the blade inspections used during training. This is also visualized in Figure 2 by the 95% ensemble confidence interval

(CI) predicted by the damage model. Here, we observe the heteroscedastic uncertainty captured by the model, which can be

used to introduce realistic damage variability, similar to that observed in the field.

2.3 Aerodynamic loss categories

While the damage prediction model provides estimates of the structural erosion damage, it does not consider the associated115

aerodynamic losses. Doing this requires information on the sectional degradation of the lift-to-drag ratio and maximum lift

coefficient due to damages along each blade. It is common to categorize blade inspection data into severity classes by judging

the risk of damage progression and potential repair costs, as done for the data underlying the damage prediction model.

Yet, severe structural damages, e.g., deep isolated cracks, do not lead to severe aerodynamic losses, whereas structurally

insignificant findings, like top coat erosion, do. Therefore an aerodynamic categorization of leading damages needs to be120

performed independently from the structural assessment.

A standardized aerodynamic loss categorization scheme is yet to be established, as there is insufficient knowledge about the

detailed geometric realization of the damages encountered in the field and their corresponding frequency of appearance. For

aerodynamic loss assessment, the exact 3D damage topology
::::::::::
topography needs to be known, as even features down to 50 µm

can be aerodynamically active. However, with the more frequent appearance of severe damages, a growing number of wind125

tunnel and numerical investigations have been performed to quantify their aerodynamic impact (Sareen et al., 2014; Gaud-

ern, 2014; Ehrmann et al., 2017; Veraart, 2017; Meyer Forsting et al., 2022a, b, 2023). Applying similar damage topologies

::::::::::
topographies

:
resulted in comparable relative changes in the lift-to-drag ratio, despite the use of different airfoils. It is likely that

this is also related to having investigated similar Reynolds numbers (≤ 6 million) and thin airfoils (≤ 21 %) that are usually
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used in the outer blade region. Aerodynamically, this is rooted in the impact of surface perturbations, also those caused by LEE,130

being related to the ratio of surface feature height to boundary layer thickness. In turn, this is a function of the Reynolds number,

whilst the airfoil thickness is a proxy for the surface pressure gradient, which again influences the boundary layer. Generally,

the biggest drop in performance arises from roughness inducing premature boundary layer transition right at the leading edge,

with the aforementioned studies reporting losses between 35−50 % with respect to the clean, free-transition baseline. Indeed,

the maximum loss registered for
::::
With erosion-type damages never exceeded 64%and once roughness caused the transition to135

occur at the leading edge, the additional loss from more severe erosion was between
:::::
losses

:::::::
increase

::
by

:::::::
another

:
10− 15

:::
%,

:::
thus

::::::::
reaching

:::::::::
maximally

:::
65 %. As all available loss data was compiled for Reynolds numbers below 6 million, it is difficult

to extrapolate
::::::
transfer these loss factors directly to modern wind turbines. Some blade regions could be operating ,

::
as

:::::
their

:::::
blades

:::
can

::::::
easily

::::::
operate at 15 millionand as the relative losses are diminishing .

:::
As

::::::::
boundary

::::
layer

::::::::
transition

::::::
moves

::::::::
naturally

::::::
towards

:::
the

:::::::
leading

::::
edge with increasing Reynolds number, the transition location moves gradually towards the leading edge.140

::::::::
roughness

:::::::
induced

::::::::
transition

::::
has

::::
less

::
of

:::
an

::::::
impact

::
at

:::::::
elevated

:::::::::
Reynolds

::::::::
numbers.

::
In

::::
fact

:::::::
avoiding

:::::::::
premature

:::::::::
transition

::
at

::
15

:::::::
million,

:::::::
requires

::
a

:::::
blade

::::::
surface

:::::
finish

::::
that

::
is

::::
hard

::
to

:::::::
achieve

::
in

::
a

:::::::::::
cost-effective

:::::::
manner

::::
even

::
in

::
a
::::::
factory.

:
To assess the

aerodynamic losses at higher Reynolds numbers 2D CFD computations were performed
:::
with

::::::::::
EllipSys2D

::::::::::::::
Sørensen (1995) for

four airfoils with relative thickness below 21 % (NACA63-418, FFA-W3-211, DU96-W-180, Risø-B1-18, Risø-C2-18) for a

Reynolds number range from 5− 15
:
at
::::::::
Reynolds

::::::::
numbers

::
of

::
5,

:::
10,

:::
and

::
15 million and different levels of erosion. The latter was145

generated using the spectral approach
:::
with

:::
five

::::::
levels

::
of

::::::
leading

::::
edge

::::::::
damage:

::::
clean

::::
with

::::
free

:::::::::
transition;

::::
clean

:::::
fully

::::::::
turbulent;

:::::::
moderate

::::::::::::
grid-resolved

:::::::
erosion;

:::::
severe

::::::::::::
grid-resolved

:::::::
erosion;

:::::
severe

::::::::::::
grid-resolved

::::::
erosion

::::
with

::
a
:::::::
forward

:::::
facing

::::
step

:::
on

:::
the

::::::
suction

:::
side

::::::
(height

:::
of

::::::::::
1.5× 10−3c

::::::
located

::
at

::::::
0.024c

:::::::::
chordwise,

::::
with

:::::
chord

:::::
length

:::
c).

:::
The

:::::::::::
grid-resolved

::::::
erosion

::
is

::::::::
generated

:::
by

:::::::::::::
sumperimposing

::::::::::::::
multi-directional

::::::
waves

:::::::
sampled

::::
from

::
a
::::::::
spectrum

::
as detailed in (Meyer Forsting et al., 2022a)and combined

with a forward-facing step (height of 1.5× 10−3 in chord units) on the suction side to represent the worst erosion level.150

The surface perturbations were directly resolved in those simulations. The .
::::

The
:::::::::
numerical

:::::
setup

::
is

:::
also

::::::::
identical

::
to

:::
the

::::
one

::
in

:::::::::::::::::::::::::
(Meyer Forsting et al., 2022a)

::::
using

::
a

::::::::
structured

:::::::
O-mesh

:::::
with

:
a
::::::

radius
::
of

::::
45c,

::::
first

::::
cell

::::::
height

::
of

:::::::::
1× 10−7c

::::
and

:::
for

:::
the

::::
clean

:::::::
leading

::::
edge

:::::
cases

::::
512

::::
cells

::
in
:::

the
:::::::::

chordwise
::::

and
::::
256

::::
cells

::
in

:::
the

::::
wall

:::::::
normal

::::::::
direction,

:::::::::::
respectively.

::
To

::::::::::
adequately

::::::
resolve

:::
the

::::::
erosion

:::::::
another

:::
256

:::::::::
chordwise

::::
cells

:::
are

::::::
added.

:::
The

:::::
k−ω

::::
SST

:::::::::
turbulence

::::::
closure

:::
by

::::::
Menter

::
et

:::
al.

:::::::::::::
(Menter, 1993)

:
is
:::::

used
:::
and

:::::::
coupled

::
to
::::

the
:::
eN

:::::::
stability

:::::
model

:::::::::::::::::::::
(Drela and Giles, 1987)

::::::::::::
implementation

:::
by

::::::::::::::::::::::
(Michelsen, Jess A., 2002)

:::
for

:::
the155

::::
clean

::::::::::
transitional

::::
case.

::::
The

::::::::::
free-stream

::::::::
turbulence

::::::::
intensity

::
at

:::
the

:::::
airfoil

::
is

:::::
0.1%.

::::
The entire workflow from surface grid gen-

eration to post-processing was automatized within the Python tool PyE2Dpolar for which details are given in (Meyer Forsting

et al., 2022a, 2023).

The relative
::::::::::
aerodynamic

::::::::::
degradation

:::::
from

::::::
leading

::::
edge

:::::::
damage

::
is

::::
then

::::::::
computed

:::
for

::::
each

::
of

:::
the

:::
five

:::::::::
simulated

::::::
airfoils,

:::
by

::::::::::
determining

:::
the drop in lift-to-drag ratio diminishes by about 15 percentage points when going from 5 to 15 million in Reynolds160

number.
::::::
around

:::
the

::::::
design

:::::::::::::
angle-of-attack

:::::
(±2◦

::
to

:::::::
account

:::
for

:::::::
natural

::::::::
variation)

:::::
with

::::::
respect

::
to
::::

the
::::::
factory

:::::
clean

::::::
airfoil

:::::::::::
performance.

:::
The

:::::
latter

::
is

::::::::
assumed

::
to

::
be

::::::::::
represented

:::
by

:::::
40:60

:::::
blend

::
of

:::
the

:::::
fully

::::::::
turbulent

:::
and

::::
free

::::::::
transition

:::::::::::
performance1

::::::::::
(Bak, 2013),

::
as

::::::
blades

:::
are

::::::
usually

::::::::
designed

::::
with

::
a

::::::
certain

:::::
safety

:::::::
margin.

::::::
Similar

::
to

:::
the

::::::
studies

:::::::::
mentioned

::::::
above,

:::
the

:::::::
relative

1
:::::
blended

::::
polar

:::::::
coefficients

:::
are

:::
thus

::::
given

::
by

:::::::::::::::::::::::::::
Cblend(α) = 0.4Cturb.(α)+ 0.6Ctrans.(α)

6
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::::
drop

::
in

:::::::::
lift-to-drag

:::::
ratio,

::
as

::
it

::
is

::::::
defined

:::::
here,

::
is

:::::
nearly

::::::
airfoil

:::::::::::
independent. In line with structural damage categorization and

with the aim to create distinct aerodynamic loss categories, the losses were divided into 5
::
five

:
categories and labeled with letters165

to clearly distinguish them from structural classifications. The categories can be found in
:::
and

:::
the

::::::::
associated

:::::::::
percentage

::::::
losses

::
in

:::::::::
lift-to-drag

::::
ratio

:::
are

::::::::
presented

::
in

:
Figure 3.b . The first two categories

::
for

::::::::
Reynolds

::::::::
numbers

::
of

::
5

:::
and

::
15

::::::::::::::::
million—covering

::
the

:::::::::
operating

::::
range

:::
of

::::
most

:::::
wind

:::::::
turbines2

:::::
—and

::::::::::::
approximately

:::::::
capture

:::
the

:::::::
behavior

:::::
found

:::
for

:::
the

::::::::
different

::::::
airfoils

:::
that

:::::
were

::::::::
simulated

:::::
herein

::::
and

:::::
those

::::::::
presented

::
in
:::::::::

literature.
::::
This

::::::::
particular

::::::::::::
categorization

::
is
::::

thus
:::::

only
:
a
:::::
rough

:::::::
attempt

::
in
::::::::::

classifying

::::::
leading

::::
edge

::::::::
damages

:::::::::::::
aerodynamically

::::
and

:::::
might

::::::
require

:::::
future

::::::::
revisions.

::::
The

:::
first

::::::::
category

:
a
:
,
::::::::
represents

::
a

:::::
clean,

::::::::::
factory-new170

:::::
blade,

:::
i.e.,

:::::::
without

::::
any

:::::::::::
aerodynamic

::::
loss.

::::
The

::::
next

::::
two

::::::::
categories

::
(
:
b

:::
and

::
c
:
) capture the losses associated with the gradual

movement of the transition location towards the leading edge over the entire
::
an

:::::::::
increasing

::::::::::
proportion

::
of

::::
pits

:::
and

:::::::
gouges

:::::::
covering

:::
the

::::::
leading

:::::
edge

::
of

:::
the blade section in question. At level

:
,
::::
that

:::::
cause

::::
early

:::::::::
transition.

:::
The

::::::::
coverage

::
is

:::::
about

:
a
:::::
third

:
at
::

b
:::
and

:::
two

:::::
thirds

::
at
:

ctransition occurs at the leading edge. Here it is assumed that transition is caused by pits and gouges.

Additional losses are caused after causing early transitionfrom surface roughness and sharp steps, as those forming between175

eroded and non-eroded areas. As the clean performance obtained in wind tunnels or simulations is unlikely to be matched in

the field due to dust and other small-scale surface imperfections, the baseline airfoil performance to which the categories are

indexed is a 60:40 mix of transitional and fully turbulent performance (Bak, 2013). Losses are provided for both, 5 and 15

million in Reynolds number and are representative of the performance loss reported in previous studies and those conducted as

part of this paper.
::::
Full

:::::::
coverage

::::::
comes

::::
with

:::
full

:::::::
erosion

::
of

:::
the

:::
top

:::
coat

::::
and

::::::::::
corresponds

::
to

:::::::
category

::
d.

::::
The

::::
final

:::
two

:::::::::
categories180

:
(
:
e

:::
and

:
f
:
)
:::
are

:::::::::
associated

::::
with

::::::::::
progressive

::::::
growth

::
in

:::::::
damage

:::::
depth

:::::
from

:::
the

:::::
onset

::
to

::::::::
complete

::::::::
exposure

::
of

:::
the

::::::::
laminate.

::::
The

::::::::::
aerodynamic

::::::
losses

::
do

:::
not

:::::
grow

:::
any

::::::
further

:::
for

:::
the

:::::
types

::
of

:::::::
damages

::::::
usually

::::::::
observed

::
in

:::
the

::::
field.

2.4 Coupling aerodynamic and structural categories

The original modeling objective of the damage prediction model was to support site-specific repair and maintenance planning.

This was done through an encoded damage score representing the damage state of a wind farm in relation to the urgency for185

repair. As previously mentioned, the purpose of this study is to investigate the aerodynamic effect of LEE for wind farm flow

modeling, and for that reason, a relation between structural and aerodynamic defect categorization has to be established.

As mentioned in the previous section it is difficult to map aerodynamic to structural categories, however here this was

attempted by matching the observable damage features. Figure 3.a
::
(a) shows the categorization of structural defects (defect

type on vertical axis and defect severity on horizontal axis) used by the damage prediction model, and the corresponding190

encoded damage value
:::::::::::::::::
(Visbech et al., 2023). As mentioned, Figure 3.b

::
(b)

:
shows the categorization of the aerodynamic losses

(Reynold’s number on vertical axis and categories on horizontal axis), obtained from the CFD simulations and literature

review. Figure 3.cshows
::
(c)

::::::
shows

::::
how

:::
the

:::
two

:::::::::
individual

:::::::
schemes

:::
are

::::::::
combined

:::
to

:::::
relate the final relation between between

the encoded damage and the percentage lift-to-drag ratio.
::
As

::::::::::
mentioned,

:::
this

::::
was

::::
done

:::
by

::::::::
matching

:::
the

:::::::::
observable

::::::::
damages

::::::
features

::::
used

:::
for

:::
the

::::::::
individual

:::::::::::
categorizing.

:
It is assumed that aerodynamic losses will grow quickly with the onset of structural195

2
::::
losses

::
for

::::::::
intermediate

:::::::
Reynolds

::::::
numbers

::
can

::
be

::::::
linearly

::::::::
interpolated
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Scheme for encoded damage

used by damage prediction model

Scheme for lift-to-drag loss 

used by aerodynamic loss model

Severity

1 2 3 4

Voids 0.01 0.10 0.25 NA

Chipping 0.05 0.20 0.30 NA

Peeling 0.10 0.50 0.50 NA

Erosion 0.40 0.50 0.90 1.00

Aerodynamic categories

a b c d e f

R
e
y
n

o
ld

s
 

n
u

m
b

e
r 5e+6 0 % 10 % 23 % 35 % 43 % 50 %

15e+6 0 % 4 % 8 % 12 % 28 % 32 %

(a) (b)

(c) Combined scheme for mapping

encoded damage to lift-to-drag loss

Figure 3. Mapping between
:::
the

::::::
damage

::::::::
prediction

:::::
model

:::
and

:::
the

:
aerodynamic loss and encoded structural defects

:::::
model. (a) shows

::
(a)

:::::
Shows the structural categories and associated encoded damage level, (b)

::
(b) shows the aerodynamic categories and associated

::::::::
percentage

lift-to-drag loss
::::
losses and (c)

::
(c) shows final

:::::::
functional

:
coupling between the encoded damage level and aerodynamic loss.

:::::
Values

:::::::
between

::
the

:::
two

::::::::
Reynolds

::::::
numbers

:::
can

::
be

::::::::::
interpolated.

damage accumulation as it causes the transition point to rapidly move towards the leading edge. From then on the aerodynamic

losses rise more slowly to reach its maximum once the leading edge is fully eroded.

2.5 Aerodynamic loss model

The main purpose of the aerodynamic loss model is to obtain the loss in annual energy production of a turbine due to leading-

edge erosion and to obtain the power and thrust curves of turbines subjected to LEE that can be used by the wind farm200

simulation tool. In this paper, we use an adoption of the aerodynamic loss model introduced by Bak (2022a). The tool is

a simplified blade-element momentum (BEM) theory model where the blade is divided into annular elements and the local

losses are calculated at each annular element. The model is very light in its implementation as it is independent of the inflow

angle which significantly speeds up the computation. In addition, it includes a simplified tip correction model that only depends

on the tip speed ratio (TSR), the blade radius, and the number of blades. The aerodynamic loss model was validated by Bak205
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Figure 4. Blade
:::::::
Example

::
of

:
a
:::::
typical

:::::::::
distribution

::
of

::::::::::
aerodynamic

:::::
losses

::::
along

:::
the

::::
wind

::::::
turbine

:::::
blade.

:::
The

::::
blade

:
sections

::
are

::::::::::
non-linearly

::::::::
discretized and

:::
each

::::::
section

:
is
:::::::
assigned

::
an

:
erosion securities introduced to the sections

:::::
severity

:
in terms of lift-to-drag losses . (’f’ is the

most severe erosion and ’a’ is the clean case with no loss).

(2022a) in comparison to a classic BEM model, and it was found that the local power and thrust coefficients along the rotor

radius compare well.

The main input parameters to the aerodynamic loss model is the sectional loss in lift-to-drag ratio which is provided by the

damage prediction model using the structural-to-aerodynamic coupling previously described. Figure 4 illustrates an example

of the loss distribution along the blade where the highest lift-to-drag loss is reached towards the tip and the erosion severity210

decreases towards the root. For this representation of the erosion distribution on the blade, it is assumed that the predicted

damage occurs at the tip of the blade and that it decreases towards the root, following a cubic relationship. Due to the fact that

the most severe damage typically occurs towards the tip of the blade, and that the outer part of the blade plays a greater role in

aerodynamics, a logarithmic discretization was chosen to divide the blade into sections. Figure 4 provides a visualization of

this non-linear discretization.215

In addition to the loss in lift-to-drag, there are more inputs that are not always available for a given turbine such as the

design lift coefficient and sectional lift-to-drag coefficient ratios for the clean blade. For those parameters, default values that

are obtained from a test turbine are used.

An empirical relation for the thrust coefficient is used that depends on the tip speed ratio, and design lift coefficient. The tip

loss and lift coefficient ratio of an eroded and clean reference case is included to find the thrust coefficient for the eroded case.220

In the aerodynamic loss model, there are no specified control properties. It is assumed that the wind turbine is variable-speed

pitch regulated (VSPR) and operates at maximum power coefficient below rated wind speed. If subject to a constraint on tip

speed which is violated before rated wind speed, a sub-region might occur, where the tips speed ratio is kept suboptimal.

Similarly, it is assumed that the wind turbine is capable of adequately shifting the pitch and rotational speed to adjust for

the aerodynamic degradation of the lift and drag coefficients when exposed to erosion. LEE reduces the efficiency of the blade225

which effectively shifts the rated wind speed to a higher value. As mentioned, these control properties are not specifically

defined but are assumed inherent for the wind turbine operation.
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2.6 Wind farm flow modeling

In order to incorporate the long-term progression of LEE damage into wind farm response modeling, the steady-state behavior

of wake effects is of relevance to be included in the simulations. Steady-state engineering wake models offer a significant230

advantage by enabling the computationally low-cost prediction of wind farm flow fields including turbine wakes, to assess

power capture and ultimately AEP. Compared to more detailed, often dynamic high-fidelity numerical tools such as CFD with

much higher computational cost, the engineering wake models have been shown to provide comparable accuracy, requiring

much lower complexity in their inputs in terms of flow properties and turbine characteristics (e.g., blade geometry, detailed

representation of the controller, etc.) (Göcmen et al., 2016).235

Here in this study, the steady-state flow within the wind farm is represented using the open-source wind farm simulation tool

PyWake (version 2.5) (Pedersen et al., 2023). PyWake provides engineering models for estimating the wind farm flow fields,

including the Gaussian wake deficit formulation proposed by Bastankhah and Porté-Agel (2014) presented in equation 1 below.

It assumes that the wake spreads radially outwards, that the wake deficit follows a Gaussian shape and that the wake centerline

is aligned with the turbine rotor plane. It has shown very good agreement with field observations in several campaigns and240

wake model benchmarks (e.g. Doubrawa et al., 2020), especially in the far wake region and it is utilized in this analysis to

estimate the flow characteristics behind eroded turbine(s).

∆U

U∞
=

(
1−

√
1− CT

8(k∗x/D+ ϵ)2

)

×exp

(
− 1

2(k∗x/D+ ϵ)2

{(
z− zh
D

)2

+
( y

D

)2})
(1)

where ∆U
U∞

is the wake deficit normalized by the freestream velocity, x,y,z are the streamwise, spanwise and vertical spatial245

coordinates with zh as the hub height, D is the turbine diameter, CT is the thrust coefficient of the turbine, and k∗ is the wake

expansion parameter defined by the local turbulence intensity (streamwise) at hub height TIh as (Niayifar and Porté-Agel,

2015):

k∗ = 0.4TIh +0.004 for 0.065≤ TIh ≤ 0.15

k∗ = 0.03 for TIh < 0.065 or TIh > 0.15250

Additionally, ϵ is proposed as a function of CT (Bastankhah and Porté-Agel, 2014), described by ϵ= 0.2
√

1
2
1+

√
1−CT√

1−CT
.

Therefore, with the expected reduction in CT due to progression of LEE over time, the wake deficit described in equation 1 is

also anticipated to decrease.

The detailed specifications for the PyWake simulation setup can be found in Appendix A.
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Figure 5. Weather conditions at Horns Rev I given by (left)
::::
(left) a windrose with mean speed of 9.3 m/s and a mean wind direction of 252◦

and (right)
:::::
(right) the cumulative density function of rain with a mean annual rainfall of 1020

::::
1053 mm/yr. A lower bound threshold of 0.5

mm/hr is applied to rain data.

Figure 6. Layout and geographical location of Horns Rev I wind farm. The minimum spacing between turbines is 7 rotor diameters.

3 Case study: Horns Rev I255

The modeling framework described in the previous section will be demonstrated through a case study for the Horns Rev I

offshore wind farm, which is located in the North Sea along the west coast of Denmark. The wind farm was commissioned in

2009 and consists of 80 Vestas V80-2MW wind turbines, yielding an installed capacity of 160 MW. The layout and geograph-

ical location of Horns Rev I are shown in Figure 6, where the minimum spacing between the turbines is 7 rotor diameters (560

m).260

Weather data used in the study are obtained from the mesoscale weather research and forecast (WRF) model used in the New

European Wind Atlas (NEWA) (Witha et al., 2019). The data contain wind speed, wind direction, turbulent kinetic energy and

precipitation. The data are provided as time series with a 30-min time resolution and with a 3 km grid spacing. Precipitation
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data are provided at surface level whereas wind data are provided at 75 m height and extrapolated to hub height using the power

law with shear exponent α= 0.1.265

The wind climate at Horns Rev I is governed by westerlies coming from the sea, thereby providing a very good wind

resource. The mean wind speed at hub height (70 m) is 9.3 m/s and the mean wind direction is 252◦. The average turbulence

intensity (TI) is 6.7 %. Figure 5 illustrates the statistical weather conditions at the site shown by a wind rose on the left and the

exceedance probability of rain on the right. The annual rainfall was found to be 1053 mm/yr, with a large proportion falling in

the autumn. The rain exceedance probability also shows that rain occurs around 6 % of the time. A lower bound threshold of270

0.5 mm/hr is applied to the rain to account for the mesoscale model uncertainty, which is also observed from the sharp edge on

the graph at this value.

4 Results and analysis

4.1 Deterministic simulations

The first step in the analysis is to compare the effect of eroded blades when modeling a single turbine against a full wind farm.275

To do this, we are running two simulations; one using a single Vestas V80 turbine, and one using the full Horns Rev I wind

farm. For both simulations, 10 years of weather data and wind turbine specifications from Horns Rev I are used for simulating

the operation of the wind turbines and their gradual aerodynamic degradation caused by LEE.
::
A

:::::::
constant

::::::::
Reynolds

:::::::
number

::
of

:
5
::::::
million

::::
was

::::
used

:::
for

:::
the

:::::
entire

:::::
blade

:::::
which

::
is

:::::
based

::
on

:::
the

::::::
limited

::::::
airfoil

::::::::::
information

::
for

:::
the

::::::
Vestas

:::::::::
V80-2MW

:::::
wind

::::::
turbine

:::
and

:::
the

::::::
typical

:::::::::
distribution

::
of
::::::::
Reynolds

::::::::
numbers

:::
for

::::
wind

:::::::
turbines

::
of

::::::
similar

::::
size

:::::::::::::
(Ge et al., 2016)

:
. For these simulations, only280

the ensemble mean from the damage prediction model is used as an output for updating the damage state of all the turbines,

thereby providing a deterministic damage estimate only. In this case, the only damage variability comes from the local wind

speed observed by each turbine. To account for randomness in the weather data, the 10 year simulations are run for 10 random

seeds.

Figure 7 shows the estimated AEP loss of the eroded turbine and wind farm relative to its identical but non-eroded counter-285

part.
::::
This

:::::
allows

:::
for

:::::
fairly

:::::::::
comparing

:::
the

::::
AEP

::::
loss

::::
even

::::::
though

:::::
there

::
is

:
a
:::::::::
difference

::
in

:::::::
absolute

:::::::::
per-turbine

:::::
AEP

:::::::
between

:::
the

:::::
single

::::::
turbine

:::
and

:::
the

:::::
wind

::::
farm

:::
due

::
to
:::::
wake

::::::
losses. The blue bars indicate the relative AEP loss for the single turbine and the

red bars show the relative AEP loss for the full wind farm. For both cases, the mean AEP loss over the full simulation is listed

in the legend. Based on 10 years of operation, we observe a difference in AEP loss between simulating a single wind turbine

compared to an entire wind farm. Generally, the trends from the single turbine and the wind farm are very similar. The AEP290

loss is observed to be relatively small for the first 3-4 years but quickly increases after this point. We also observe that the first

5 years of operation account for less than 15 % of the total loss for both cases. As mentioned, the main difference between the

two cases is the magnitude of the power loss. For both cases, the highest AEP loss is observed to occur in the two last years

of the simulation with a maximum AEP loss of 2.9 % for the single turbine and 2.7 % for the wind farm. This corresponds

to a 7 % reduction from simulating the single wind turbines versus the full wind farm. Since the power loss is relative to its295

non-eroded counterpart, the wind farm case will naturally have a smaller loss because of the added wake losses, which reduce
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Figure 7. Comparison of relative AEP change for a single turbine vs. the full wind farm. In both cases, the AEP is calculated relative to the

non-eroded counterpart. The graphs shows the simulation over a period of 10 years using 10 seeds to compute mean and standard deviations.

the overall energy production. This can also be verified from the per-turbine AEP which was found to be 9.7 GWh for the

single wind turbine but only 8.9 GWh for the entire wind farm. The average AEP loss for the entire simulation period was 1.51

:::
1.5 % for the single turbine and 1.40

::
1.4

:
% for the wind farm, corresponding to an 7 % reduction.

Since the simulations is
:::
are run for a period of 10 years, it is possible to assess the aerodynamic condition of the blade300

at certain points throughout the simulation. Figure 8 shows snapshots of the wind farm-average lift-over-drag loss along the

normalized blade after year 1, 3, 5 and 10. In all cases, the maximum loss is assumed to occur at the tip of the blade from where

it decreases towards the root. It is also observed that the aerodynamic loss is only affecting a certain extent of the blade. We

observe that the distribution of aerodynamic loss is not changing linearly along the blade and also not changing linearly over

time.305

After year 1, the erosion damage is very small and barely causes any aerodynamic losses. After year 3, the maximum loss

at the tip is around 3 % and decreases smoothly inwards. This appearance would resemble a slightly roughened surface on

the outer 20 % of the blade, that cause insignificant AEP losses. After year 5, we observe a significant increase in maximum

aerodynamic loss. At the tip, the loss is on average around 15 % but decreases rapidly towards the root. This appearance

resembles the initiation of more severe erosion locally at the tip. The aerodynamic loss is here observed to decrease much310

faster when moving towards the root. After year 10, the maximum loss reaches around 45 %, which is close to the obtainable

maximum. We also observe that a larger extent of the outer blade is expected to experience significant aerodynamic loss. This

would resemble that the erosion at the tip is starting to stagnate in terms of aerodynamic loss. The aerodynamic loss will not

increase much anymore, but the damage progression will happen in the form of a much larger damage extent. We also observe

that a larger extent of the blade is affected by a roughened surface.315
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Figure 8. Snapshots of the wind farm-average lift-over-drag losses along the blade after 1, 3, 5 and 10 years of operation.

It should be mentioned, that the damage prediction model is limited by the range of the outputted encoded damage (ranges

between 0 and 1). This also limits the aerodynamic loss since the two models are directly coupled. In real-life conditions, it

is expected that damages beyond this range could occur if the blade is left fully untreated. However, it is also expected that

blades are typically inspected annually and repaired accordingly, i.e., before extreme damage occur. As mentioned, the damage

encoding scheme used by the damage prediction model, takes its basis in the range of allowable defects observed from real320

blade inspections.

As stated earlier, the aerodynamic properties governing the wind farm simulation are the power and thrust curves. The thrust

coefficient governs the wake behavior in the engineering wake model and the power curve directly affects the energy produc-

tion. Since we make an explicit distinction between these two properties, we are able to directly separate the contributions from

each of the two. This is done by running two parallel simulations where the power and thrust coefficient curves are degraded325

independently, i.e., the power curve is eroded and the thrust coefficient it assumed clean, and vice versa. This allows to exactly

quantify which contribution comes from each of the two properties.

Figure 9 visualizes the relative AEP loss from the isolated aerodynamic performance properties over the full simulation

period of 10 years. As expected, the isolated effect on the power curve is observed to cause a negative effect on the overall

AEP. It is also observed that the isolated contribution from the eroded power curve corresponds very closely to the relative AEP330

loss observed for the single-turbine case in Figure 7. This indicates that erosion-induced power curve degradation does not vary

significantly, and the main variation comes from the reduced local wind speed caused by wakes. Oppositely, the isolated effect

from the eroded thrust coefficient is observed to positively contribute towards AEP. At first, it might seem counter-intuitive that

erosion can actually contribute to a power gain. However, we are assuming that erosion reduces the aerodynamic efficiency,

which also reduces the thrust force which the rotor exerts on the wind, thereby diminishing the wake deficit and leaving more335

energy for downstream turbines. The contribution is solely relevant for wind farms where wake losses are present. Combining

the individual contributions from power and thrust coefficient, we end up with an overall loss, corresponding exactly to the

relative power change observed in Figure 7.
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Figure 9. Relative AEP changes from isolated aerodynamic rotor properties. The red bars indicate the isolated contribution coming from the

power coefficient and the blue bars indicate the isolated contribution coming from the thrust coefficient.

Figure 10. Correlation plot showing the relation between the power loss and free stream wind speed, wind direction, and reference wake

loss.

Until now, we have focused on AEP, which provide key information in a simple manner. Since the simulations are based on

half-hourly data we can also analyze the results directly at this temporal frequency. Figure 10 shows the pairwise relationships340

between half-hourly variables from the full wind farm simulation. The row of sub-figures shows the relative power loss plotted

against three other variables, namely the wind speed (left), wind direction (middle) and wake loss (right). The plots are based

on data only from the last year (year 10) where the effects from LEE are most apparent. Firstly, we identify that the majority

of the simulated hours result in power loss with losses up to 7 % and that these occur mostly in the operational region below

rated. For wind speeds below 10 m/s, the relative power loss is centered around -5 %, though with a lot of scatter. The loss345

diminishes for wind speeds above rated where the effect of LEE is also expected to be gone. Several observations have a

high erosion-induced power gain of up to 25 %. However, looking at the relation between relative power and wind speed, we

identify these instances only occur at low wind speeds (below 5 m/s), thereby having a limited impact on the overall power loss.

During these unique hours, the effect from reduced wake deficits overtake the effect from the degraded power curve, leading

to an overall power gain. Wake losses are heavily dependent on wind direction and it is expected that erosion-induced wake350

15



loss mitigation is also wind direction dependent. This is apparent when looking at the relation between power loss and wind

direction. Certain periodic wind directions cause a consistently smaller or higher relative power loss than others. These wind

directions correspond exactly with the physical alignment of the turbine rows, i.e., along the rows of the wind farm layout.

The relation between power loss and wake loss supports that the highest relative power loss occurs for highly wakes
:::::
waked

instances. Finally, it should be mentioned that we have only considered the relative power loss. It was found that 95 % of the355

absolute power loss occurred in wind speed region between 8-14 m/s.

4.2 Probabilistic simulations

Previous simulations have been performed using the ensemble mean as the sole deterministic output from the damage prediction

model. In this case, the only damage variation across the wind farm comes from the wake-induced changes in effective wind

speed observed by each wind turbine. This variation effectively changes the operational rotor speed of the individual turbines,360

but the maximum percentage difference for the aerodynamic losses across the wind farm was found to be less than 1 %.

The ensemble capabilities of the damage prediction model also allow for making probabilistic damage estimates, thereby

introducing the uncertainty captured by the damage model. Initially, we will use the ensemble inverse cumulative density

function (CDF) to provide a probabilistic damage output. Figure 11 shows the probabilistic simulation results for the full wind

farm using the same 10 years of weather data as inputs. The left figure shows the 95 % confidence interval of the relative AEP365

loss with the 50th percentile (median) indicated by the solid line. The right figure shows the CDF of the encoded damage at

years 1, 3, 5, and 10.

From the relative AEP loss, we observe the uncertainty being propagated from the damage prediction model. The model

uncertainty is very low for the first years but rapidly increases after year 2. At the 10th year, we expect the relative AEP loss to

range between 1.4-3.2 % based on the 95 % CI. We observe a slightly asymmetric model uncertainty with higher confidence370

weight towards the upper quantiles, indicated by the CI bands being slightly more narrow. It is especially visible for the last

couple of years . This is also observed from the cumulative density function which shows a slight asymmetry around the

median, that is becoming profound throughout the years. The output range of the damage prediction model is also
:::::
where

:::
the

::
the

::::::
upper

:::::::
quantiles

:::::
reach

:::
the

:::::
upper

:::::
limit

::
of

:::
the

:::::::
encoded

::::::::
damage,

:::
i.e.,

::
a

::::
value

:::
of

::
1.

::::
This

::
is

::::
also

::::
more

:
clearly visible from the

cumulative density function , with
:::::
which

:::::
shows

:
a large proportion of probability being constrained at year 10. Finally, we375

observe the feature of the incubation period which
:
is

:
also captured by the damage prediction model.

::::
This

::
is

:::::::
observed

:::
as

:::
the

::::
very

::::::
limited

::::::
erosion

::::::
impact

::::::
during

:::
the

:::
first

::::
few

::::
years

:::
of

::::::::
operation.

:

In addition to directly outputting a specific damage percentile for all wind turbines, the damage across the wind farm can

be randomly sampled using the inverse cumulative density function, i.e., using Monte Carlo (MC) sampling. This would better

represent the stochastic damage distribution observed from field inspections. Based on 250 random MC simulations, the AEP380

variability was found to increase over time, but the maximum percentage difference (between most/least productive) after

10 years was found to be less than 0.2 %. Of course, this should be seen in the light of the total energy production of the

entire wind farm and the corresponding revenue might end up being considerable. Since we are simulating the full wind farm

for each random instance, the aggregated energy production of the 80 wind turbines ensures convergence of the summary
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Figure 11. (left) Confidence intervals of the relative wind farm AEP loss with the median indicated by the black line and (right) the

cumulative density functions of the encoded damage after years 1, 3, 5, and 10.

statistics, which is why the variability is so low. If the same experiment was performed for individual wind turbines or a much385

smaller wind farm, the variability would be expected to be correspondingly larger.

Finally, the random sampling provides an indication of the modeling sensitivity which could potentially be used to better

prioritize repairs. For each MC simulation, we will assume that one turbine is fully repaired after year 9, i.e., its aerodynamic

properties are reset to a clean state. We iterate through every turbine in the wind farm and evaluate the relative impact on the

AEP for the remaining year, i.e. year 10. This procedure is performed for all MC simulations and allows for prioritizing the390

order in which each turbine should be repaired to gain the maximum energy production
:::::
obtain

:::
the

::::::
largest

::::
gain

::
in

::::
AEP. For each

MC simulation we get 80 samples, one for each wind turbine repair, which can be used to assess the effect from that individual

turbine. Due to computational costs, a simpler wake model was used where only the steady wake deficits are considered, i.e.,

no turbulence model is included. The results are analyzed quantitatively by ranking them according to their individual AEP

gain. The results are summarized in Figure 12 which shows, on the left-side, the direct relation between the AEP gain and395

the damage level of the repaired turbine. Each point represent a repaired turbine and the total number of points is therefore

NMC ·Nwts = 250 · 80 = 20,000. In addition to showing the relation between AEP gain and damage level, the points are also

colored according to their reference AEP contribution which is shown on the right-side plot
:::::::::
(normalized

::::::::
between

:
0
::::

and
::
1).

Here, we show the mean AEP contribution from each of the turbines in the wind farm based on the 250 MC simulations. Not

surprisingly, the inner turbines are expected to contribute less since they will more frequently be operating in the wake deficit400

of the outer turbines. The biggest contributor is the turbine located in the south-western corner, which is contributing almost

9% more than the smallest contributor.

It is seen that a very strong correlation is found between the encoded erosion damage and the added energy production.

This verifies that, generally, the overall biggest gain in energy production is obtained by repairing the most damaged turbine.

This also corresponds with the previous findings, showing that the largest contribution to the power loss comes from the eroded405

power curve. Secondly, we also observe a correlation between the reference AEP contribution and the added energy production.

This indicates that in a case with two equally damaged wind turbines, the turbine providing the highest contribution relative to

the overall energy production should be prioritized over smaller contributors. This favors the turbines positioned in the outer
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Figure 12. AEP gain plotted against the damage level of the repaired turbine. The colors indicate the reference AEP contribution which is

also shown on the right-side figure. Both the AEP gain and reference AEP has been linearly normalized.

rows of the wind farm, and especially on the side of the prevailing wind direction. We even observe several instances, where

it is more favorable to repair less damaged turbines, since their relative AEP contribution is larger. Potentially, a third priority410

would be repairing the turbines that causes the biggest reduction in wake loss. As previously shown, LEE reduces the wake

deficits which in turn contributes positively to the overall energy production. A very weak correlation was found
:
to

:
be between

wake reduction and added energy production. This indicates that an energy production gain can be achieved by prioritizing

turbines that contribute least to wake reduction. It is difficult to conclude if the correlation implies a causal relationship, and

the prioritization would only be relevant in extremely rare instances.415

5 Discussion

The simulation of LEE is challenging considering its multidisciplinary nature, which involves several fields of science and

engineering, such as aerodynamics, materials science, mechanical engineering, meteorology, etc. In the present study, we have

coupled a damage prediction model with an aerodynamic loss model, to simulate the progression and aerodynamic effect of

LEE in wind farms. Many underlying assumptions affect the results of the present study, and we will try to justify, evaluate420

and discuss these in the following section.

Wind farm flow modeling on its own is a very complex discipline. We typically distinguish between steady-state and dy-

namic modeling, and in the present study, we have employed a steady-state Gaussian wake deficit model for estimating wake

losses across the wind farm. The main assumption is the constant wind flow across the wind farm where the steady flow is425

assumed to be valid for the entire time bin. Since it assumes a constant wind flow, steady-state flow modeling cannot cap-

ture the effects of turbulence and other dynamic flow phenomena that occur in the atmosphere. E.g. it cannot account for any

transient effects such as sudden changes in wind speed or direction, change in atmospheric stability, and other meteorological

phenomena.

On the other hand, dynamic wind farm flow modeling is a more advanced technique that takes into account the dynamic na-430

ture of the wind flow. It considers changes in wind speed, wind direction, and turbulence at a much higher temporal resolution.
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The simulation includes detailed information about wind turbine interactions and the surrounding atmosphere. Dynamic mod-

eling is more complex and computationally expensive compared to steady-state modeling, but it does provide more accurate

and detailed information about wind farm performance. In addition, dynamic wind farm flow modeling requires a much more

detailed and accurate representation of wind turbines and the surrounding environment, which can be challenging to obtain.435

The scope of the present study was to demonstrate the aerodynamic effects of LEE in wind farms through a combination

of erosion, aerodynamic, and wake modeling. Since the requirements for dynamically modeling all of these properties over

long time periods were unfeasible, the simulations were performed using steady-state wind farm flow modeling. This type of

modeling fidelity is commonly used for long term simulation of wind farms where the low-order statistical moments are of

interest. However, a future study investigating high-fidelity flow modeling of eroded wind turbines is required to accurately440

assess the dynamics as well. Such an analysis could be carried out for specific atmospheric and meteorological conditions as

well predefined erosion levels, to limit the computational requirements. It could similarly be used with higher fidelity wind

turbine

One of the main uncertainties related to erosion modeling is the assumed relationship between the output of the damage445

prediction model which is used as input for the aerodynamic loss model. As previously described, it is very difficult converting

between structural and aerodynamic defects as they are not weighted equally. Current repair recommendations are primarily

based on structural integrity but there might be a potential financial benefit from also considering the aerodynamic impact.

The conversion table from Figure 3 provides the relationship used for the study and is based on results from a collection of

literature and CFD simulations. However, it could be of interest to propose an additional uncertainty parameter to this, cur-450

rently, deterministic relationship. This would allow for mimicking the uncertainty related defect categorization from blade

inspections.

In the present study, the output from the damage prediction model was always taken to be located at the tip and decreasing

with a cubic relation towards the root. It was shown by Visbech et al. (2023), that the average distribution of defects from more

than 550 blade inspections were following a similar profile. For that reason, we argue that the statistical distribution is more455

realistically represented by a continuous function rather than a step function as usually suggested in the literature (Gaudern,

2014; Sareen et al., 2014; Maniaci et al., 2020). However, blade inspections and laboratory testing of newer coating materials

show that erosion defects tend to be more randomly distributed along the blade and do not always initiate at the tip. For that

reason, it could be of interest to implement a stochastic defect distribution which would better resemble this behavior.

One of the key challenges related to modeling aerodynamic loss from LEE is validating the results. Several assumptions460

were made for the aerodynamic loss model used in the present study, in order to make the modeling process more tractable.

These assumptions can introduce uncertainties, particularly if the assumptions are not well-validated or do not accurately re-

flect real-world conditions. Validating the aerodynamic degradation of power curves is incredibly difficult using operational

data such as that obtained from the SCADA system. For that reason, the main type of validation will still have to come from

high-fidelity aeroelastic simulation tools. Only recently was the aerodynamic effect of LEE quantified using operational field465

data (Panthi and Iungo, 2023).
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LEE has been expected to have an even larger impact on wind turbines in the future (Pryor et al., 2021; Shields et al., 2021).

Generally, we observe new turbines to have longer blades, operating at higher tip speeds, which effectively increases the rate

at which erosion initiates and develops. At the same time, new leading edge protection (LEP) systems are being developed to470

better withstand the more severe operational conditions. These effects contravene and complicate the generalizability of LEE

modeling in the future.

We also expect wind farms to become larger in size, which would change the wind farm flow field. In the present study,

the effect on the power curve would not be expected to change considerably since the damage prediction model is not very

sensitive to changes in tip speed (why we also see very little inter-turbine damage variability for the wind farm). However,475

the effects from eroded thrust coefficient would scale non-linearly with wake loss. Therefore, the potential wake reduction is

dependent on the layout.

Site-specific weather conditions might also influence the results presented in this study. Less windy sites would result in

a longer incubation periods but since LEE only affects the aerodynamic properties below rated, it would lead to a relatively

larger power loss. Other sites might have a strong correlation between rain and wind direction (e.g., close to a mountain ridge),480

which would lead to more damage variation across the wind farm. Adding uncertainty properties to the weather inputs (wind

speed, wind direction and rain), could allow for better addressing the sensitivity to these parameters.

LEE has started to be considered as a potential operation and maintenance improvement in wind farm control (Meyers et al.,

2022), e.g., through erosion-safe operation as demonstrated by Bech et al. (2018). With this mitigating strategy, the rain im-485

pinging the blade is reduced through rotor speed reductions during episodes of heavy rain. The damage is thereby reduced at the

cost of energy production. Erosion-safe operation has however not been demonstrated in real life, nor has it been implemented

within wind farm flow control. Implementing erosion-safe operation in farm control strategies would require the modeling of

wake impacts between the turbines and estimating the AEP loss due to eroded blades in the wind farm. To work towards a wind

farm flow control algorithm that includes erosion-safe operation, we first need a modeling framework that can predict damage490

progression and AEP loss within a wind farm.

Finally, it can be mentioned that the modeling framework presented in this paper could potentially be coupled with real blade

inspections following a Bayesian updating scheme approach (Asgarpour and Sørensen, 2018). The blade inspections would

provide true damage distributions for all blades, thereby diminishing the model uncertainty at the time of inspection. The dam-495

age prediction model could be calibrated to match the observed damage distribution, and the associated past AEP loss would

then be obtained through propagating back in time. Having calibrated the damage prediction model, it could be used to estimate

expected AEP loss for a given period assuming no repair, which would allow for much more informed decision-making.
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6 Conclusions

LEE affects the aerodynamic properties of a wind turbine and thereby reduces rotor performance. This directly decreases the500

energy production but it potentially also reduces the overall wake losses, which is not considered when modeling LEE on

individual turbines.

In this study, we have used a modeling framework that combines damage prediction and aerodynamic loss modeling with

steady-state wind farm flow modeling. The framework can be used to efficiently simulate the long-term aerodynamic effects

of LEE using site-specific mesoscale weather data and basic wind farm specifications.505

The modeling framework was used to simulate the development of LEE on an offshore wind farm over a simulation period of

10 years. Comparing the wind farm simulation to that of a single wind turbine, it was found that AEP loss were overestimated

with up to 7 % when neglecting the effect on wake reduction. The average AEP loss for the wind farm was found to
::
be 1.4 %

with a maximum AEP loss of 2.7 % occurring at the last year.

A Monte-Carlo-based sensitivity analysis was carried out to establish a probabilistic priority list of turbines which should be510

repaired first to maximize energy production. It was found that the level of erosion damage was generally the governing factor,

but specific turbines which contribute relatively more to the overall energy production, should be prioritized in certain cases to

maximize energy production.

The main limitations of the study are related to the coupling between structural and aerodynamic damages and verification

of the aerodynamic losses through simulations of higher fidelity. Future work should emphasize on uncertainty quantification515

through probabilistic modeling which could be coupled to real inspection¨data through a Bayesian updating scheme.

Code and data availability. Software code developed and used for this study will be made publicly available. Parts of the data can also be

made available upon request from the corresponding author (Jens Visbech).

Appendix A: PyWake setup specifications

Table A1. List of the engineering models used in the PyWake simulation setup.

Models Name Superposition

Wake deficit model NiayifarGaussianDeficit linear sum

Turbulence model CrespoHernandez max. sum

Blockage model None -

Rotor average model RotorCenter -

Ground model None -

Deflection model None -
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