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Abstract.

We present a new model to estimate the performance of a wind turbine operating in misaligned conditions. The model is

based on the classic momentum and lifting-line theories, considering a misaligned rotor as a lifting wing of finite span, and

accounts for the combined effects of both yaw and uptilt angles.

Improving on the classical empirical cosine law in widespread use, the new model reveals the dependency of power not only5

on the misalignment angle, but also on some rotor design parameters and – crucially – on the way a rotor is governed when it is

yawed out of the wind. We show how the model can be readily integrated with arbitrary control laws below, above and around

rated wind speed. Additionally, the model also shows that a sheared inflow is responsible for the observed lack of symmetry

for positive and negative misalignment angles. Notwithstanding its simplicity and insignificant computational cost, the new

proposed approach is in excellent agreement with large eddy simulations (LES) and wind tunnel experiments.10

Building on the new model, we derive the optimal control strategy for maximizing power on a misaligned rotor. Additionally,

we maximize the total power of a cluster of two turbines by wake steering, improving on the solution based on the cosine law.

1 Introduction

Wind farm control by wake steering consists of deflecting the wake away from downstream rotors to boost the total power of

a plant (Meyers et al., 2022). The effectiveness of this control strategy has been proven numerically (Jiménez et al., 2010),15

experimentally in the wind tunnel (Campagnolo et al., 2016), as well as in field tests (Fleming et al., 2019; Doekemeijer

et al., 2021). At the core of the power-boosting ability of wake steering is a trade-off: on the one hand, there is an enhanced

momentum of the inflow at a downstream turbine when a wake is shifted laterally away from it; on the other hand, some power

is lost at the upstream misaligned rotor, because it does not point into the wind anymore. In general the trade-off budget is

positive, in the sense that the power that is gained downstream is larger than the one lost upstream. The problem is however20

highly complex: downstream, power capture is determined by the interaction of the impinged rotor with the wake that, in turn,

is influenced by the ambient conditions and those of the wake-shedding turbine; upstream, power losses depend on the inflow

characteristics, but also on the rotor and on the way it is governed. Understanding and controlling this delicate balance between

upstream and downstream behavior is clearly of paramount importance for improving the power capture of wind farms by

wake steering. Great progress has been made in recent years to understand, model and control wakes (see for example the25
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review in Meyers et al. (2022)), i.e. on the “downstream” aspect of the problem. However, the “upstream” aspect remains much

less explored and understood. How much power does a yawed turbine really lose? And what inflow, rotor and rotor-control

parameters influence its behavior? It is a major ambition of this paper to try and answer these questions.

The aerodynamic power P of a wind turbine is customarily written as P = 1
2ρAu

3
∞CP , where ρ is the air density, A

the rotor swept area, u∞ the ambient free-stream wind speed, and CP the power coefficient. When a turbine is misaligned30

with respect to the wind vector by an angle γ, the rotor-orthogonal velocity component becomes u∞ cosγ. Accordingly, one

would expect the yaw-induced power loss to be ηP = P/P0 = cos3 γ, where P0 is the aerodynamic power produced for γ = 0.

Unfortunately, this is only a naive interpretation of the true behavior of a misaligned rotor, and its predictions are not confirmed

by experimental and numerical observations (Liew et al., 2020). To reflect this fact, a pragmatic solution has been adopted by

most of the literature, where power losses due to misalignment are assumed to obey the simple law ηP ≈ cospp γ, where pp is35

a tunable parameter.

Unsurprisingly, since such a model is not based on actual physics, a large spread of values for pp has been reported in

the literature. In wind tunnel experiments with scaled models, Campagnolo et al. (2020) measured pp = 2.1, Krogstad and

Adaramola (2012) and Bartl et al. (2018) reported pp ≈ 3, whereas Medici (2005) found a value pp = 2. Numerically, Fleming

et al. (2015) measured pp = 1.88 on the NREL 5 MW wind turbine (Jonkman et al., 2009), whereas Draper et al. (2018) ob-40

tained values between 1.3 and 2.5 for scaled wind turbine models operating in waked inflow conditions. The power production

in misaligned conditions has also been measured in multiple field tests. For example, Fleming et al. (2017) reported a value of

1.41 for an Envision 4 MW turbine; Dahlberg and Montgomerie (2005) published a range of values for pp between 1.9 and

5.1 at an offshore plant. More recently, Hulsman et al. (2022) observed 2< pp < 2.5 at an onshore wind farm in the north of

Germany.45

The large scatter characterizing the pp coefficients reported in the literature is a relevant source of uncertainty, creating a

significant hindrance to the development of wind farm control strategies, and suggesting that some relevant phenomena are not

captured by the cospp law. In hindsight, this is to be expected, because this simple model fails to explicitly represent how the

power coefficient CP changes when a turbine is misaligned, and somehow absorbs this effect into the tunable exponent. Some

indications that there is more to this problem than a simple power cosine law have already been reported by various authors.50

Based on experiments and numerical simulations, Campagnolo et al. (2023), Cossu (2021a, b) and Heck et al. (2023) suggested

that the power of a misaligned rotor strongly depends on its loading, in the form of the thrust coefficient CT ; clearly, in turn

this has a strong effect on the behavior of the wake (Cossu, 2021a, b). Other variables that have been shown to play a role on

power losses are related to the inflow. Recently, Draper et al. (2018) and Liew et al. (2020) have observed that power losses

in misaligned conditions differ depending on whether a rotor is waked or not. Howland et al. (2020) observed a significant55

influence of shear and veer, while Simley et al. (2021) measured a strong dependency on inflow speed. The behavior of power

losses has also been shown to depend on the direction of yaw misalignment, and not only on its magnitude as implied by

the power cosine law. This asymmetric behavior of yaw misalignment has been observed by Fleming et al. (2015); Schottler

et al. (2017); Fleming et al. (2018); Campagnolo et al. (2020), among others. However, an agreement on which misalignment

direction yields more or less power has not been reached yet.60
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In this paper, we present a new analytical model for misaligned wind turbine rotors. The proposed approach combines the

classic momentum and lifting-line theories, considering a misaligned rotor as a lifting wing of finite span, in close parallel to

the analysis conducted for helicopter rotors in forward flight (Johnson, 1995). While existing approaches do not explain the

lack of symmetry with respect to yaw direction, the present model includes the effects of wind shear, which is shown to be the

culprit for the observed break of symmetry with respect to the misalignment direction. For improved accuracy, the model also65

includes the effects of the uptilt angle, as it contributes to the overall misalignment of the rotor with respect to the wind vector.

Thanks to this feature, the proposed methodology is also readily applicable to vertical wake steering control, which could be

implemented with floating wind turbines (Nanos et al., 2022) or downwind teetering rotors. The resulting model equations are

integrated over the blade span and averaged over one rotor revolution, leading to a semi-analytical formulation of negligible

computational cost that can be readily coupled with engineering wake models such as FLORIS (NREL, 2023b) or PyWake70

(Pedersen et al., 2019). However, the model governing equations could also be integrated numerically and embedded into blade

element momentum (BEM) codes (Hansen, 2015), such as the AeroDyn package (NREL, 2023a) implemented in OpenFAST

(NREL, 2023c).

Very recently, Heck et al. (2023) published a misaligned rotor model based on similar arguments. However, their approach

does not include the effects of shear, and therefore fails to capture the asymmetric behavior of yaw direction. More importantly,75

their formulation uses a modified thrust coefficient C ′
T , which is assumed to remain constant between aligned and misaligned

conditions. This hypothesis is indeed verified when the turbine operates in the partial load region. Departing from this approach,

the method proposed here is based on a completely general dependency of the thrust coefficient on the misalignment angle,

and therefore can readily accommodate arbitrary regulation strategies in the partial, full and intermediate regulation regions

– including thrust clipping and derating (Campagnolo et al., 2023). Moreover, the model of Heck et al. (2023) cannot predict80

power losses higher than cos3 γ, which have however been reported in the literature. A detailed comparison of the new proposed

model and the one of Heck et al. (2023) is developed in the following pages.

The proposed semi-analytical model shows that the behavior of a misaligned rotor does not follow the cospp law, contra-

dicting this empirical formula in widespread use. Additionally, the new model clarifies the behavior of power capture with

respect to some rotor design parameters and – even more importantly – with respect to the way a rotor is governed when it is85

misaligned. This is an effect that has been neglected so far, but that – as already noted by Howland et al. (2020) – most prob-

ably explains the large scatter observed by various authors. Building on the unique ability of the proposed method to handle

arbitrary control policies, we derive the optimal strategy for maximizing power capture when pointing a rotor away from the

wind. Finally, we implement the semi-analytical model in FLORIS and we optimize the power of a cluster of two turbines. We

obtain setpoints that differ from those that can be computed with the empirical cospp law, and that lead to a slight improvement90

of the cluster power.

The new models exhibits an excellent match with high-fidelity LES simulations obtained with a TUM-modified version

of NREL’s large eddy simulator actuator line model (LES-ALM) SOWFA (Fleming et al., 2014; Wang et al., 2019, 2018).

Additionally, the model is further validated with wind tunnel data from experiments conducted with the TUM G1 scaled wind

turbines (Bottasso and Campagnolo, 2022; Campagnolo et al., 2020).95
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The paper is organized as follows: Sect. 2 presents the new formulation, and Sect. 3 explains its implementation in an

engineering wake model, including the integration with arbitrary control strategies. Next, Sect. 4 considers its validation with

respect to simulated and experimental data, while Sect. 5 analyzes the effects of the new model on wake steering. Finally,

Sect. 6 draws conclusions and offers an outlook towards future work.

2 Misalignment model100

2.1 Frames of reference

Three reference frames are necessary to completely characterize a misaligned rotor interacting with the wind, as shown in

Fig. 1: a ground-fixed reference frame and a nacelle-fixed reference frame, which together describe the relative orientation of

the rotor with respect to the ground, and a wake-deflection intrinsic frame, which describes the relative orientation of the rotor

with respect to the incoming wind vector.105

Figure 1. Reference frames used in the derivation of the model. Ground-fixed wind-aligned reference frame (in red, subscript g) (a); inter-

mediate frame, obtained by the tilt rotation δ about the horizontal axis yg (in orange, subscript t) (b); nacelle-fixed reference frame, obtained

from t by a yaw rotation γ about the vertical axis zg (in green, subscript n) (c); plane Π formed by the wind vector u∞ and the rotor axis

xn; the plane contains the xd and yd unit vectors of the wake-deflection intrinsic frame (in light blue, subscript d) (d); rotor plane Ψ, formed

by the yd and zd unit vectors, with rotor azimuthal angle ψ and radial position r/R (e). Rotations are positive according to the right hand

rule; notice that the value of the uptilt angle of the rotor in panel (b) is therefore negative.
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The ground-fixed wind-aligned frame of reference is indicated with a subscript g and is defined by the right-handed triad of

unit vectors Fg = {xg,yg,zg}. zg points vertically down towards the ground, xg is parallel to the terrain pointing downstream

and is contained in the plane formed by the wind vector u∞ and zg; finally, yg completes a right-handed triad. In the following,

for simplicity we consider the wind vector to be parallel to the terrain, i.e. u∞ ∥ xg , although this is not strictly necessary.

The nacelle-fixed frame of reference is indicated with a subscript n and is defined by the triad of unit vectors Fn =110

{xn,yn,zn}. Fn is obtained from Fg by two successive rotations: a first rotation by the tilt angle δ about the horizontal

axis yg , followed by a second rotation by the yaw angle γ about the vertical axis zg . Both rotations are positive about their

respective axes according to the right hand rule (notice that, according to this definition, the typical uptilt of an upwind turbine

results in a negative value for δ).

However, the interaction of the rotor with the flow depends only on their mutual orientation, and not on how they are oriented115

with respect to the ground, which is a fundamental principle of fluid mechanics known as Galilean relativity. Therefore, a third

frame is necessary, which is termed here wake-deflection intrinsic frame and is indicated with a subscript d. The frame is

formed by a right-handed triad of unit vectors Fd = {xd,yd,zd}. Vector xd is parallel to the rotor axis, i.e. xd = xn, while

vectors yd and zd are contained in the rotor disk plane Ψ. Together, the rotor axis xd and the wind velocity vector u∞ define

the Π plane. The angle in the Π plane between these two vectors is the true misalignment angle µ:120

cosµ=
u∞

u∞
·xn, (1)

where u∞ = |u∞| is the scalar ambient wind speed. The unit vector zd is orthogonal to the Π plane, i.e. zd = xd×u∞/(u∞ sinµ),

while unit vector yd is finally chosen to form a right-handed triad. Using the coordinate transformations in Appendix A, it can

be readily shown that cosµ= cosδ cosγ, i.e. the total misalignment is caused by both the tilt and yaw angles, the former

typically being neglected in most wake models. Notice that, given its definition, the misalignment angle µ is always positive,125

because zd flips from one side of the Π plane to the other, depending on the relative orientation of the wind velocity and rotor

axis vectors. When the wind comes from the right looking upstream in the Π plane, zd points downwards (see Fig. 1d), whereas

it points upwards when the wind comes from the left.

Figure 2 shows a visualization of the wakes developing behind a wind turbine rotor for two different pairs of tilt and yaw

values: δ = 0◦, γ =−30◦; and δ =−28.43◦, γ− 10◦. Both pairs correspond to a same true misalignment µ= 30◦. The figure130

confirms that the wake is invariant for an observer on the Fd frame. This is particularly evident in the images of the longitudinal

speed on the Π plane (marked with a black solid border), which are clearly identical in the two cases. Clearly, for large values

of tilt the interaction of the wake with the ground or with a sheared inflow would break the Π-frame invariance.

Because of what noted above, in the following the wake analysis is developed in the Π plane, instead of the horizontal

one as customarily done. Transformation matrices that map vector components from one frame to the other are reported in135

Appendix A.
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Figure 2. Visualization of the wakes developing behind a wind turbine operating in steady inflow conditions for different pairs of tilt and

yaw values, all corresponding to a same total (true) misalignment µ= 30◦. The deflection of the wake occurs in the Π plane, marked with

a black border. Top row (a): δ = 0◦, γ =−30◦; bottom row (b): δ =−28.43◦, γ =−10◦. Left column: iso surfaces of Q-criterion; right

column: image of the longitudinal flow speed u/u∞ on the Π plane. Distances are expressed in rotor diameters D. Interactive 3D versions

of the figures are available at the following links: https://tinyurl.com/btcl-fig-2-a (a); https://tinyurl.com/btcl-fig-2-b (b).

2.2 Sheared inflow

Considering a linear vertical shear of the inflow, the ambient wind speed writes

u∞(zg) = u∞,hub

(
1− k

zg
R

)
. (2)

Here u∞,hub is the ambient wind speed at hub height, k is the vertical linear shear coefficient, zg is the vertical coordinate in140

the ground frame of reference, centered at the hub, and R is the rotor radius. The choice of a linear shear distribution was made

just to simplify the derivations, and other choices are clearly possible, for example to model the more common power law or

the presence of low-level jets. Additionally, it would be interesting to include also the effects of a horizontal shear, to account

for waked conditions, and of veer. These further model improvements are however deferred to a continuation of this study.

By applying the coordinate transformation of Appendix A, the ambient wind speed of Eq. (2) can be written in terms of the145

radial r and azimuthal ψ coordinates on the rotor plane, yielding

u∞(r,ψ,δ,γ) = u∞,hub

(
1− k

r

R

cosδ

sinµ
(sinγ cosψ− cosγ sinδ sinψ)

)
. (3)
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Here ψ is positive about xd according to the right hand rule (i.e. clockwise looking downstream), and it is measured starting

from the zd unit vector (which flips from one side of the Π plane to other depending on whether the wind blows from the right

or left looking upstream, as explained in Sect. 2.1; see also Fig. 1).150

2.3 Force and velocity components at a blade section

Figure 3. Blade cross section, with triangle of velocities (in blue), lift and drag (in light blue), and resulting aerodynamic force components

(in red).

With reference to Fig. 3, the tangential Ft and normal Fn components of the aerodynamic force at a blade section are

Ft =
1

2
ρu2c (CL sinφ−CD cosφ) , (4a)

Fn =
1

2
ρu2c (CL cosφ+CD sinφ) , (4b)

where φ= tan−1un/ut is the inflow angle, u=
√
u2t +u2n is the total flow speed at the blade section, c is the sectional155

chord length, and finally CL and CD are the lift and drag coefficients, respectively. Using the coordinate transformations of

Appendix A, the tangential ut and normal un velocity components write

ut =Ωr+u∞ sinµcosψ, (5a)

un = u∞ cosµ(1− a), (5b)

where Ω is the angular speed of the rotor and a is the axial induction factor, which expresses how much the rotor-orthogonal160

component of the free-stream speed u∞ is slowed down at the rotor disk.

2.4 Induction model

It is well known that a non-uniform description of the induction is necessary in order to accurately capture the azimuthal

variation of loads on a rotor operating in non-axial conditions (Johnson, 1995). However, it appears that this is not necessary
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when computing integral rotor quantities such as power, torque and thrust, as in the present case. To show this, the induction is165

modeled here with an expansion limited to one-per-revolution (1P) harmonics, i.e.

a= a0

(
1+κ1s

r

R
sinψ+κ1c

r

R
cosψg

)
, (6)

where a0 is the constant-over-the-rotor (0P) induction, while a0κ1s and a0κ1c are the 1P sine and cosine harmonic amplitudes,

respectively.

Following the classical approach used for helicopter rotors in forward flight (Johnson, 1995), the sine term accounts for the170

tilting of the induction plane caused by the misalignment µ of the rotor with the incoming wind. As such, it is written in terms

of ψ, which is measured starting from the zd unit vector, and therefore it expresses a rotation of the induction plane about the

axis normal to the wake-deflection intrinsic frame Π. The coefficient κ1s can be modeled according to Coleman et al. (1945)

and Pitt and Peters (1981), resulting in the expression

κ1s =−15π

32
tan
(χ
2

)
, (7)175

where the initial wake skew angle is χ= µ+sinµCT /2 (Jiménez et al., 2010), and CT = 2T/(ρAu2∞,hub) is the thrust coef-

ficient. Notice that the definition of the skew angle differs from the one given by Eq. (20) of Jiménez et al. (2010), because of

the different definition of the thrust coefficient used in that publication.

The cosine term is introduced to account for the effects on the induction caused by vertical shear. As such, it is written as a

function of the azimuthal angle ψg , which is measured from the (vertical) zg unit vector, and therefore it expresses a rotation180

of the induction plane about the (horizontal) unit vector yg . Using Eq. (A4b), it is readily found that ψg = ψ cosµ. Following

Meyer Forsting et al. (2018), the cosine term is proportional to both the shear k and the thrust CT coefficients, i.e.

κ1c = κ∗1ckCT . (8)

The cosine term significantly complicates the analytical derivations of power, torque and thrust, which must now be expressed

in terms of Bessel functions (Abramowitz et al., 1988) because of the term cos(ψ cosµ). Before attempting the modeling of185

the proportionality coefficient κ∗1c, this term was numerically optimized to best fit the numerical simulations and experimental

measurements, as explained later in Sect. 3.

The inclusion of the sine and cosine induction terms has only an extremely modest effect on the quality of the results. In

fact the match of CP improves by 0.35% when the sine term is included, and by 0.60% when both terms are used, as more

precisely shown in Appendix B. Because of their modest effects, these terms are dropped from the following discussion, to190

simplify the resulting expressions, and they were not used in the results reported later in this article. However, these terms are

retained in the software implementation of the model (Tamaro et al., 2024), and can be switched on if desired by the user.

It should also be noted that the present model neglects the effects of the tangential induction, which in fact does not appear

in the tangential velocity component expressed by Eq. (5a). This is justified by the fact that the rotor swirl is concentrated close

to the hub, and it is small for a large extent of the blade span (Burton et al., 2011), where most of the thrust and power are195

generated.
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More in general, there are several other effects that are present in a rotor, and that are not modelled here, such as for example

radial drag, tip and root losses, blade sweep, prebend and cone, and others. All these effects can be taken into account in

detailed BEM models (Hansen, 2015; Burton et al., 2011), but would significantly complicate the present simplified analytical

method. However, notwithstanding these limitations, the results of Sect. 4 show a remarkable ability of the proposed approach200

in predicting the trends of power and thrust as functions of various operating and inflow conditions. Additionally, the ability

of the model in predicting actual power and thrust values (instead of trends) can be improved by the use of loss functions, as

explained in Sect. 3.2.

2.5 Streamtube model

An expression for the axial induction can be derived using the concept of a streamtube (Hansen, 2015), as shown in Fig. 4 with205

reference to the present case of a misaligned rotor. Four stations are considered along the stream tube: inlet i; outlet o; section

r− located immediately in front of the rotor; and section r+ located immediately behind the rotor.

Figure 4. Schematic view of a streamtube around a misaligned wind turbine. Cross-sectional stations: inlet i, outlet o, r− immediately in

front of the rotor; r+ immediately behind the rotor.

The principle of impulse and momentum applied to the streamtube is written as

T cosµ= ṁ(u∞ −uo), (9)

where T is the thrust force, uo is the longitudinal flow speed at the streamtube outlet, while ṁ is the mass flux210

ṁ= ρAun. (10)
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By using the thrust coefficient, Eq. (9) yields the non-dimensional longitudinal flow speed at the streamtube outlet:

uo
u∞,hub

= 1− 1

2

CT

1− a0
. (11)

Next, Bernoulli’s energy conservation theorem is applied between the streamtube inlet and the section immediately upstream

of the rotor (stations i and r− in Fig. 4), and between the section immediately downstream of the rotor and the streamtube outlet215

(stations r+ and o in the same figure):

pi +
1

2
ρV 2

i = pr− +
1

2
ρV 2

r− , (12a)

pr+ +
1

2
ρV 2

r+ = po +
1

2
ρV 2

o , (12b)

where p is pressure and pi = po = p∞, while p∞ is the ambient value. Additionally, Vr− = Vr+ for continuity, and furthermore

V 2
o = u2o + v2o at the outlet section, where vo is the lateral (sidewash) speed component.220

Following a customarily text-book assumption used for helicopters rotors in forward flight (Johnson, 1995), only more

recently adopted also for wind turbines by Shapiro et al. (2018), the misaligned rotor can be seen as a lifting wing of finite

span (albeit of a small aspect ratio AR=D2/A= 4/π) operating at an angle of attack µ1. The chord C(yd) of the wing in

the streamwise direction has an elliptic distribution: (C(yd)/2)2+y2d =R2. According to Prandtl’s lifting line theory (Tietjens

and Prandtl, 1957; Katz and Plotkin, 2001), the wing has consequently an elliptic lift distribution, which induces a spanwise-225

constant downwash (in this case, sidewash) vo = Γ/4R. Γ = L̄/ρu∞,hub is the circulation at the wing mid section yd = 0, and

L̄= LC(0)/A is the lift per unit span at that same location. Since the wing lift is the rotor side force, i.e. L= T sinµ, it follows

that the non-dimensional sidewash at the streamtube outlet can be expressed as (Heck et al., 2023)

vo
u∞,hub

=
1

4
CT sinµ. (13)

Combining the previous equations, yields an expression for the 0P axial induction a0 as a function of the misalignment µ and230

thrust coefficient CT :

1− a0 =
1+

√
1−CT − 1

16
C2

T sin2µ

2

(
1+

1

16
CT sin2µ

) . (14)

2.6 Thrust force

Equation (14) furnishes an expression for the 0P axial induction as a function of the thrust coefficient. To close the problem,

an expression for the thrust coefficient in terms of the operating conditions of the turbine is necessary. To this end, the thrust235

force T is expressed in terms of the normal sectional force Fn as

T =
B

2π

2π∫
0

R∫
0

Fn dψdr, (15)

1This interpretation also reveals that the so-called curled shape of laterally deflected wakes (see e.g. Martínez-Tossas et al. (2021) and references therein) is

nothing else than the effect of the horseshoe vortex structure generated behind a lifting wing, albeit with the addition of the swirl caused by the rotor rotation.
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where B indicates the number of blades. Using Eq. (4b) under the assumption of a small inflow angle (i.e. sinφ≈ φ and

cosφ≈ 1), yields

T =
B

2π

2π∫
0

R∫
0

1

2
ρu2c(CDφ+CL) dψdr. (16)240

The lift coefficient is written as CL = CL,αα= CL,α(αg −α0), where CL,α is the lift slope, and α= φ− θ is the angle of

attack measured with respect to the zero-lift direction, whereas αg is the angle of attack measured with respect to a generic

direction. Without any loss of generality, the use of α is preferred in the following, to avoid carrying along in the derivations

the unnecessary extra term α0. Furthermore, θ = θp+β is the local pitch angle (see Fig. 3), where θp is the blade pitch rotation

at the pitch bearing, and β indicates the blade twist referred to the zero-lift direction.245

Neglecting swirl induction, the inflow angle is tanφ= (1−a0)/(λr/R), where λ=ΩR/u∞,hub is the tip speed ratio. For a

turbine operating close to optimal induction (i.e., a0 = 1/3) and a typical tip speed ratio of 8.5, the inflow angle at three-quarter

span is less than 6◦, justifying the small angle assumption. This assumption clearly becomes less accurate for small inductions

and tip speed ratios, or close to the blade root, where however only a modest contribution to the thrust is generated.

Using again the small inflow angle assumption, it follows that φ≈ un/ut and u≈ ut, and the thrust T becomes250

T =
B

2π

2π∫
0

R∫
0

1

2
ρu2t c

(
CD

un
ut

+CL,α

(
un
ut

− θ

))
dψdr. (17)

Using Eqs. (3) and (5), solving the double integral and expressing T through the thrust coefficient CT = CT1
+CT2

, finally

gives

CT1
=
σ

2
(CD +CL,α)cosµ(λ− k cosδ sinγ) (1− a0) , (18a)

CT2 =−σ
2
CL,αθ

(
sin2µ+

2

3
λ2 − k cosδ

12

(
8λsinγ− k cosδ(cos2 γ sin2 δ+3sin2 γ)

))
, (18b)255

where σ =BcR/A is the rotor solidity.

For null shear, i.e. k = 0, this expression simplifies to

CT =
σ

2

(
(CD +CL,α)cosµ

(
(1− a0)λ

)
−CL,αθ

(
sin2µ+

2

3
λ2
))

. (19)

Notice that the terms in Eqs. (18) depending on shear k also depend on the angles γ and δ, whereas Eq. (19) only depends

on the total misalignment angle µ. This is because the wind shear is defined with respect to the ground frame, which is mapped260

into the nacelle frame by the γ and δ angles, whereas µ only depends on the relative orientation of the wind vector with the

rotor axis, as explained in Sect. 2.1.

Furthermore, we note that – differently from the approach of Heck et al. (2023) – these expressions for thrust are applicable

to any desired control policy, as they depend explicitly on the tip speed ratio λ and the pitch setting θ.
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2.7 Power265

The aerodynamic power P generated by a wind turbine is P =QΩ, where the aerodynamic torque Q writes

Q=
B

2π

2π∫
0

R∫
0

Ft rdψdr. (20)

Considering small angles, power can be written as

P =
B

2π

2π∫
0

R∫
0

1

2
ρu2t c

(
−CD +CL,α

(
un
ut

− θ

)
un
ut

)
Ωrdψdr. (21)

Using Eqs. (3) and (5), expressing the angular velocity as Ω = λu∞,hub /R, and solving the double integral yields the power270

coefficient CP :

CP =
σ

2
λ

(
CL,α(1− a0)cosµ

(
(1− a0)cosµ−

2

3
λθ

)
− 1

2
CD(λ2 +sin2µ)

+ k cosδ sinγ

(
2

3
cosµCL,αθ(1− a0)−

1

2
λCD

)
+

1

4
k2 cos2 δ

(
cos2µCL,α(1− a0)

2 − 1

4
CD(sin2µ+2sin2 γ)

))
. (22)

For null shear, i.e. k = 0, the power coefficient simplifies to

CP =
σ

2
λ

(
CL,α(1− a0)cosµ

(
(1− a0)cosµ−

2

3
λθ

)
− 1

2
CD(λ2 +sin2µ)

)
. (23)275

Due to the explicit dependency of CP on cosµ and of 1− a0 on sin2µ (see Eq. 14), it follows that – in an unsheared inflow –

the aerodynamic power does not depend on the misalignment direction.

2.8 Dependency on misalignment direction

The power model reveals that vertical shear is the culprit for the observed lack of symmetry with respect to yaw misalignment.

In fact, the term responsible for the asymmetry in Eq. (22) is280

Casymm
P = k cosδ sinγ

(
2

3
cosµCL,αθ(1− a0)−

1

2
λCD

)
. (24)

This term shows that yawing a rotor out of the wind in a sheared inflow will produce a non-symmetric behavior with respect to

positive and negative yaw angles γ, i.e. P (−γ) ̸= P (+γ). In fact, the following can be noted:

– For small θ, the two terms within the parenthesis of Eq. (24) are small. Consequently, the asymmetry is small. Fur-

thermore, either positive or negative yaw angles could produce more power, depending on the balance of these two285

terms.
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– On the other hand, for larger θ the thrust coefficientCT decreases, in turn increasing the term (1−a0). As a consequence,

the first of the two terms of Eq. (24) prevails. The origin of this prevailing term can be traced to the contribution to power

of the fraction of lift that depends on the pitch angle, which is proportional to CL,αθutun (see Eq. 21). When the rotor is

misaligned, ut exhibits a cosψ variation (see Eq. 5a) that is in phase or in opposition with a similar cosψ variation of un290

caused by shear (see Eq. 5b and 3). The integral of the product of these two terms over one revolution is different form

zero, and it has the sign of the misalignment, resulting in some extra power for positive yaw angles and some losses for

negative ones, when the thrust is low.

This complex balance of effects is probably the cause for the lack of agreement in the literature on which misalignment

direction yields more. As shown by the model, there is no simple answer, and the behavior depends on the rotor design and on295

how it is operated.

Very similar conclusions apply also to the thrust coefficient. According to Eqs. (18), CT1
(−γ)>CT1

(+γ), because CT1

depends on −k sinγ; whereas CT2
(−γ)<CT2

(+γ) (when θ > 0), because CT2
depends on +θk sinγ. Therefore one can

expect a slightly higher thrust for negative yaw angles at low pitch settings, and viceversa at the higher pitch values (the effect

being more pronounced at larger tip speed ratios).300

To illustrate these findings in an exemplary case, Fig. 5 shows the thrust and power coefficients as functions of the mis-

alignment angle γ, for different shear coefficients k and blade pitch angles θp. All coefficients have been normalized by their

respective value in aligned conditions.

Figure 5. Normalized thrust CT /CT (γ = 0◦) (a) and power CP /CP (γ = 0◦) (b) coefficients, plotted as functions of the misalignment

angle γ, for different shear coefficients k and pitch angles θp. Pitch values: colors; k = 0: solid lines; k = 0.3: dotted lines. The plots were

generated considering the following values: λ= 8.5, CD = 5.2× 10−3, CL,α = 4.76, β = 3.35◦, σ = 4.16%, δ =−5◦, R= 65 m. An

interactive version of the figure that allows one to plot the thrust and power coefficients for user-defined values of the model parameters is

available as a Jupyter notebook at the link https://tinyurl.com/btcl-fig-5.
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The lack of symmetry of the rotor with respect to misalignment direction is in general rather small. In a typical field imple-

mentation of wake steering, various uncertainties – e.g., due to limits in the knowledge of the ambient conditions, actual yaw305

orientation of the rotor, asymmetric behavior of the onboard anemometry, etc. – and other model errors probably dominate the

problem, making the asymmetric behavior of misalignment a negligible effect, especially for small pitch values and moderate

tip speed ratios.

3 Implementation

3.1 Integration with a wake model310

The analytical model derived in the previous pages can be readily implemented in engineering flow models (NREL, 2023b;

Pedersen et al., 2019). An open-source implementation in FLORIS (NREL, 2023b) is available on Github (Tamaro et al., 2024).

As a summary, we report here for convenience the governing Eqs. (14) and (18), which write

1− a0 =
1+

√
1−CT − 1

16
C2

T sin2µ

2

(
1+

1

16
CT sin2µ

) , (25a)

CT =
σ

2

(
(CD +CL,α)cosµ(λ− cosδ sinγ k) (1− a0)−315

CL,α θ

(
sin2µ+

2

3
λ2 − k cosδ

12

(
8λsinγ− k cosδ(cos2 γ sin2 δ+3sin2 γ)

)))
. (25b)

This represents a closed system of equations that can be solved for the axial induction a0 and thrust coefficient CT , given the

tip speed ratio λ, the pitch setting θp = θ−β, and the yaw misalignment γ. Crucially, the presence of λ and θp enable using

any desired control policy when misaligning the turbine. Having obtained a0 and CT , the power coefficient CP (γ,θp,λ) is

obtained by Eq. (22) and, finally, the rotor power is computed as320

P (λ,θp,γ) =
1

2
ρAu3∞,hubCP (γ,θp,λ). (26)

3.2 Improved accuracy by the use of loss functions

The analytical derivation of the equations implies that the model lacks many of the features that are present in more sophis-

ticated BEM implementations, such as radially and azimuthally non-uniform induction, swirl induction, tip and root losses,

radial flow, spanwise varying geometric characteristics, prebend, etc. Clearly, this lack of accuracy could be resolved by nu-325

merically implementing the same model in a BEM code (Hansen, 2015). However, this way the use of the misaligned rotor

model in combination with an engineering wake model would become much more complex and numerically expensive.
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To address this problem, the following implementation is recommended, which was used in the validation and the examples

reported in the following section. A power loss function ηP is computed by using Eq. (22) to yield

ηP (λ,θp,γ) =
CP (λ,θp,γ)

CP (λ,θp,0)
. (27)330

Next, a refined power coefficient C rf
P is obtained as

C rf
P (λ,θp,γ) = ηP (λ,θp,γ)C

hf
P (λ,θp,0), (28)

where C hf
P is the power coefficient computed in aligned conditions through a higher-fidelity model, for example based on

a sophisticated BEM implementation or even on experimental measurements, when available. In other words, the analytical

model is used not to predict the actual power coefficient, but only the fraction of it that is lost by misalignment. The actual335

power coefficient is obtained by applying the loss model to a more accurate power coefficient model in aligned conditions.

The same approach is adopted for thrust. First, a thrust coefficient loss factor is computed by using the proposed model as

ηT (λ,θp,γ) = CT (λ,θp,γ)/CT (λ,θp,0). Next, a refined estimate in misaligned conditions is obtained by computing C rf
T from

a higher-fidelity aligned value C hf
T , i.e.

C rf
T (λ,θp,γ) = ηT (λ,θp,γ)C

hf
T (λ,θp,0). (29)340

In the following, we always adopt this approach for the power and thrust coefficients. However, to simplify the notation, we

drop the superscript (·) rf. Hence, for example, when we write CP (λ,θp,γ), we in reality imply that Eq. (28) is used; the same

holds for CT .

3.3 Implementation of arbitrary control strategies

When a wind turbine yaws out of the wind, the inflow seen by the rotor changes with respect to the aligned condition. The345

controller reacts to the changed inflow, modifying the setpoint, which in turn affects the power captured by the rotor and its

loading. Hence, the problem is implicit, in the sense that the misalignment model has to be solved together with the controller.

This general implicit approach should be contrasted with the explicit one proposed in Heck et al. (2023), which assumes a

rotor performance parameter, C ′
T = 2T/(ρAu2n), to remain constant even in misaligned conditions. This section explains how

arbitrary control laws can be integrated with the present more general model.350

The control of a modern variable-speed wind turbine is typically based on the definition of two or three main operational

regions.

In region II (also called the below-rated or partial-load regime), the turbine should maximize its power output. This is

achieved by operating at the maximum power coefficient C∗
P (λ

∗,θ∗p), which corresponds to the optimal tip speed ratio λ∗

and pitch setting θ∗p . As the tip speed ratio must remain constant at its value λ∗ throughout this control region, the rotor speed355

increases linearly with wind speed, i.e. Ω= λ∗u∞/R. The aerodynamic torqueQa is readily computed asQa =K(ρ)Ω2, with

K(ρ) = 1
2ρAR

3C∗
P /λ

∗3

. Once the aerodynamic torque is known, the torque provided by the generator Qg is obtained from

the expression Qa = ηmηeQg , where ηm and ηe are the mechanical and electrical efficiencies, respectively.
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When the ambient wind speed is above the rated value u∞r
=ΩrR/λ

∗, there is enough power carried by the wind for the

turbine to produce its maximum (rated) output Pr. This is called region III (also termed the above-rated or full-load regime),360

and the turbine operates at the constant (rated) rotor speed Ωr. Hence, the aerodynamic torque is constant, i.e. Qa = Pr/Ωr,

whereas blades are progressively pitched into the wind to reduce CP as wind speed increases.

To implement these standard region II and III control strategies in the proposed model, the following power equation is

introduced:

1

2
ρAu3∞CP (λ(Ω),θp,γ) =Qa(Ω)Ω. (30)365

The equation has three unknowns: the rotor speed Ω, the blade pitch θp, and the aerodynamic torque Qa. Given ambient

conditions u∞ and ρ, two additional conditions are necessary before the three unknowns can be computed. To this end, one can

first assume that the machine operates in region II. Hence, Eq. (30) is solved by appending to it the following two constraints:

θp = θ∗p, (31a)

Qa =K(ρ)Ω2. (31b)370

If the computed rotor speed exceeds the rated value, i.e. Ω> Ωr, then it means that – for the given ambient conditions and

misalignment angle – the turbine operates in region III and not region II. Hence, the solution is discarded, and Eq. (30) is

solved again by appending this time the following two constraints:

Ω= Ωr, (32a)

Qa = Pr/Ωr. (32b)375

This same approach can be used for curtailment and derating strategies (Juangarcia et al., 2018).

Figure 6 shows the application of this approach to the IEA 3.4 MW reference wind turbine, a typical onshore machine with

contemporary design characteristics (Bortolotti et al., 2019). In this example the turbine is exposed to an inflow characterized

by a wind speed u∞ = 10.5 ms−1, an air density ρ= 1.22 kgm−3, and a linear vertical shear coefficient k = 0.2. For these

ambient conditions, the turbine operates in region III when it is aligned with the wind (γ = 0◦). As the turbine starts yawing380

out of the wind, it initially keeps operating in region III. Accordingly, the tip speed ratio λ (Fig. 6d) and the power coefficient

CP (Fig. 6b) remain constant, while the thrust coefficient increases (Fig. 6a) and the blades pitch back (Fig. 6c). However, at

around |γ| ≈ 15◦, the turbine enters into region II, because the rotor-orthogonal component of the wind speed is not anymore

large enough to maintain the rated power output. As the misalignment keeps increasing, the pitch angle remains fixed at its

optimal value (Fig. 6c), whereas the tip speed ratio drops on account of the slowing rotor speed (Fig. 6d), in accordance with385

the region II policy.

Often turbines present an additional intermediate operating regime, called region II1/2, which occupies a wind speed interval

across the rated value ulb∞ ≤ u∞r
≤ uub∞ . In such cases, the turbine operates in region II when u∞ < ulb∞, in region III when

u∞ > uub∞ , and in region II1/2 when ulb∞ ≤ u∞ ≤ uub∞ .
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Figure 6. Behavior of the IEA 3.4 MW reference turbine as it yaws out of the wind, transitioning between the above-rated region III and the

below-rated region II. Thrust coefficient CT (a), power coefficient CP (b), blade pitch angle θp (c), and tip speed ratio λ (d). An interactive

version of the figure is available as a Jupyter notebook at the link https://tinyurl.com/btcl-fig-6.

Differently from regions II and III, where controllers only require knowledge of the rotor speed, the control policy in390

region II1/2 typically requires prescribing the desired pitch and torque settings as functions of wind speed. In other words, one

has to provide the schedules θp = θp(u∞) and Qa =Qa(u∞) in the desired range ulb∞ ≤ u∞ ≤ uub∞ . Two common examples

of region II1/2 control policies are provided by load and noise alleviation techniques.

Load alleviation is often necessary because thrust reaches a sharp maximum at rated wind speed, Tr = 1
2ρAu

2
∞r
CT (θ

∗
p,λ

∗).

To reduce the effects of this large load on the sizing of various turbine components, thrust clipping (or peak shaving) is used,395

where blades are pitched to feather according to a desired schedule θp = θp(u∞). This has the effect of reducing the angle

of attack and hence the thrust (Zalkind et al., 2022), at the price of some reduced power. To minimize power losses for a

given pitch schedule, the optimal power coefficient schedule can be computed as CP (u∞) = maxΩCP (ΩR/u∞,θp(u∞))

under the constraint Ω≤ Ωr, which also returns the rotor speed schedule Ω(u∞). Consequently, the torque schedule becomes

Qa(u∞) = 1
2ρAu

3
∞CP (u∞)/Ω(u∞).400

One effective way of constraining noise emissions is to limit the rotor speed (Leloudas et al., 2007; Bottasso et al., 2012) to a

maximum noise-acceptable value Ωn. When Ωn < Ωr, the increase in rotor speed as a function of wind speed that characterizes

region II is stopped before the machine reaches rated power. In this case, region II1/2 is entered when u∞ > ulb∞ =ΩnR/λ
∗

and, above this wind speed, the rotor operates at the constant speed Ωn. To minimize power losses, the blade pitch setting can

be computed for each wind speed u∞ as θp(u∞) = argmaxθpCP (λ(u∞),θp), where λ(u∞) = ΩnR/u∞. The corresponding405

aerodynamic torque schedule is readily obtained as Qa(u∞) = 1
2ρARCP (λ(u∞),θp(u∞))/λ(u∞). The end of region II1/2 is

reached when, for sufficiently high u∞, the turbine reaches rated power, finally entering into region III.

In order to implement a given control policy for region II1/2 with the proposed model, we assume that the controller will

implement the desired schedules θp(u∞) andQa(u∞) (whether computed as explained above or according to different criteria)
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by reacting to the rotor-orthogonal wind speed component u∞ cosγ. In the absence of specific details on the implementation,410

this is a reasonable assumption, as region II1/2 controllers are typically based on rotor-effective wind speed estimates (Bottasso

et al., 2012; Zalkind et al., 2022) that, in a misaligned condition, will sense u∞ cosγ and not u∞. Therefore, when ulb∞ ≤
u∞ cosγ ≤ uub∞ , Eq. (30) is solved by appending to it the following two constraints:

θp = θp(u∞ cosγ), (33a)

Qa =Qa(u∞ cosγ). (33b)415

In summary, using Eq. (30) in combination with the constraint Eqs. (31), (32), or (33), yields the setpoint achieved by the

turbine for given ambient conditions and a given misalignment, no matter what region it corresponds to and what control

strategy is implemented by the controller.

3.4 Model calibration420

Through Eq. (25b) and (26), the analytical model depends on CD, CL,α and β. These are average parameters, which represent

in the model the “equivalent” effect caused by corresponding quantities that in reality exhibit a spanwise variability.

When numerical or experimental measurements are available, the parameters CD, CL,α, and β can be calibrated to minimize

the error produced by the model in the prediction of the power loss factor ηP and of the thrust coefficient CT . Notice that CT

is preferred to ηT for this scope, because it was found that the informational content of ηT is very similar to the one of ηP ,425

reducing the quality of the tuning. Calibration is here performed by numerically solving the following minimization problem

min
CD,CL,α,β

√√√√ 1

N

N∑
i=1

(
ηobs
P,i − ηmod

P,i

)2
+

√√√√ 1

N

N∑
i=1

(
Cobs

T,i −Cmod
T,i

)2
, (34)

where (·)obs
i are N numerical or experimental observations, and (·)mod

i the corresponding model predictions. For each data set,

tuning was performed solving N/2 times the problem expressed by Eq. (34) using a gradient based optimization, each time

with a different random 50% subset of the available data, and finally averaging the resulting parameters.430

3.5 Simplified choice of model parameters in the absence of calibration data

When calibration is not possible, the equivalent model parameters CD, CL,α and β must be estimated from the corresponding

actual spanwise distributions CD(r/R), CL,α(r/R) and β(r/R) .

Examining the expression for thrust given by Eq. (16), neglecting drag, it appears that the lift force has roughly a spanwise

triangular distribution. In fact, inspecting Eqs. (5), ut is proportional to r, whereas un does not depend on r. Additionally,435

the leading term of the Taylor series of the optimal twist distribution is 1/r (Burton et al., 2011). Similarly, inspecting the

expression for power given by Eq. (21), again neglecting the contribution of drag, it appears that – for the same reasons – also

the spanwise power capture has a triangular distribution. This suggests to evaluate the spanwise integrals at the centroid of the
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triangle, which is located at r/R= 2/3. Adopting this approach, the model parameters are then set to the following values:

CD = fdCD(2/3), (35a)440

CL,α = flCL,α(2/3), (35b)

β = β(2/3). (35c)

Coefficient fd is a correction factor for drag, while fl is a knockdown factor for lift, which accounts for the finite span of

the blades. Based on comparisons with calibrated values (see Sect. 4.2), we recommend a drag correction factor fd = 1 for

moderate yaw (up to 20◦) and pitch values, and a smaller value of 0.45 if the model has to be used also for large yaw and pitch445

settings. This smaller value is probably due to the approximation of a small inflow angle used in the model, which is partially

corrected by a smaller drag coefficient. For lift, we recommend the value fl = 2/3.

The performance of this simplified choice of model parameters is demonstrated later in Sect. 4.2.

4 Model validation

4.1 Validation with respect to LES-ALM simulations450

LES-ALM simulations are used for testing the accuracy of the model in representing misaligned conditions, similarly to what

done by other authors (Gebraad et al., 2016; Liew et al., 2020; Nanos et al., 2022). The effects of the rotor on the flow are

modelled with the filtered ALM of Troldborg et al. (2007) and Martínez-Tossas and Meneveau (2019), by projecting forces

computed along the lifting lines onto the LES grid. The Cartesian mesh consists of approximately 3.5 million cells, and uses

four refinement levels. The smallest cells measure 1 m, and are located in correspondence of the rotor.455

Simulations were conducted for the IEA 3.4 MW reference wind turbine, whose complete technical specifications are re-

ported in Bortolotti et al. (2019). Here we only note that the turbine has a 5◦ uptilt angle, i.e. δ =−5◦. The parameters of the

proposed model were calibrated as explained in Sect. 3 based on the LES-ALM simulations described in Sect. 4.1.2, but not

the ones of Sect. 4.1.1, obtaining the values CD = 0.0052± 0.0001, CL,α = 4.759± 0.007 rad−1, and β =−3.345± 0.007◦,

for a 95% confidence level.460

4.1.1 Simulations in control regions II and III

First we demonstrate the integration with a standard controller, including operations in region II, III, and the transition between

the two as the turbine is progressively yawed out of the wind. For the LES-ALM simulations, setpoints were computed using

a controller in the loop, based on an implementation similar to the one of Bortolotti et al. (2019). For the proposed model,

setpoints were obtained from Eq. (30) in combination with the constraint Eqs. (31) and (32).465

We consider laminar inflows with four wind speeds: one below-rated speed of 8.5 ms−1, and three above-rated speeds of

10.5, 11, and 13 ms−1. Figure 7 reports the results in term of the thrust loss factor ηT (panel a), power loss factor ηP (panel b),
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blade pitch θp (panel c), and tip speed ratio (panel d), all plotted as functions of the misalignment angle γ. The solid markers

are the results of the LES-ALM simulations, while the lines represent predictions of the proposed model.

For the lowest wind speed of 8.5 ms−1, the turbine always operates in region II. This is the only case where the method of470

Heck et al. (2023) is strictly applicable. In fact, their method does not contain a generic thrust model, but rather it is formulated

in terms of the modified thrust coefficient C ′
T , which is constant when a turbine yaws out of the wind in region II. The results

of this alternative model are shown with a dashed orange line in the figure. The benchmark LES simulations feature a negative

uptilt δ =−5◦, which is not modelled in the approach of Heck et al. (2023). To avoid cluttering the results with this additional

effect, here and in the following examples the total true misalignment µ (instead of γ) is provided as input to the model of475

Heck et al. (2023). The figure shows that both methods are in excellent agreement with the CFD results.

For the highest wind speed of 13 ms−1, the turbine operates in region III for all misalignment angles. On the other hand, for

a wind speed of 11 ms−1 the machine enters region II around γ = 27◦, and for 10.5 ms−1 at about γ = 16◦.

In general, there is a very good agreement of the model with the higher fidelity CFD results, not only in terms of loss factors,

but also on the calculation of the setpoints.480

Figure 7. Thrust loss factor ηT (a), power loss factor ηP (b), blade pitch θp (c), and tip speed ratio λ (d), plotted as functions of the

misalignment angle γ, for various below, above and around rated wind speeds. Proposed model: lines; LES-ALM: solid markers; Heck et al.

(2023) (only for the 8.5 ms−1 case): dashed orange lines.

4.1.2 Simulations with fixed tip speed ratio and pitch setting

Next, we present a second set of results obtained by varying the misalignment while keeping the tip speed ratio and pitch

constant, for different inflows. These conditions are meant to provide a more general view of the performance of the proposed

method in a variety of conditions, although – as explained in Sect. 3.3 – tip speed ratio and pitch in general do not both remain

constant when a turbine yaws out of the wind.485
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The four operational scenarios of Table 1 are considered. The flow is laminar and steady in all scenarios. Cases 1 and 2 have

no shear and different tip speed ratios, whereas cases 3 and 4 are sheared and have the same λ.

Table 1. Operational scenarios for the LES-ALM simulations.

Scenario # 1 2 3 4

λ [-] 8 9.5 8.38 8.38

k [-] 0 0 0.06 0.19

Figures 8 and 9 report the power loss factor ηP in the range of yaw misalignment angles −30◦ < γ < 30◦ for different pitch

settings, each corresponding to a different thrust coefficient CT,0 in aligned conditions. Figure 8 corresponds to scenarios 1

and 2 of Table 1, i.e. no shear, while Fig. 9 reports the solution for the sheared cases 3 and 4 of that same table.490

Figure 8. Power loss factor ηP vs. misalignment angle γ in the unsheared scenarios 1 (λ= 8) (a-d) and 2 (λ= 9.5) (e-h). Each subplot

corresponds to a different value of the thrust coefficient in wind-aligned conditions: CT,0 = 0.74 (a); CT,0 = 0.54 (b); CT,0 = 0.44 (c);

CT,0 = 0.36 (d), CT,0 = 0.86 (e); CT,0 = 0.60 (f); CT,0 = 0.47 (g); CT,0 = 0.35 (h).

In the figures, LES-ALM results (shown with black circular markers) are compared with the proposed approach (shown with

blue solid lines) and the method proposed by Heck et al. (2023) (shown with orange dashed lines). For the latter, the modified

thrust coefficient C ′
T was obtained directly from each LES simulation at the corresponding γ value.

Overall, there is a very good match between the predictions of the proposed model and numerical simulations. For the null

shear cases of Fig. 8, results are reported only for positive yaw angles, as power is symmetric. On the other hand, power is not495

symmetric for the sheared inflow cases of Fig. 9, which shows clear evidence of the complex behavior described in Sect. 2.8. At
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Figure 9. Power loss factor ηP vs. misalignment angle γ in the sheared scenarios 3 (k = 0.06) (a-d) and 4 (k = 0.19) (e-h). Each subplot

corresponds to a different value of the thrust coefficient in wind-aligned conditions: CT,0 = 0.77 (a); CT,0 = 0.56 (b); CT,0 = 0.45 (c);

CT,0 = 0.36 (d), CT,0 = 0.77 (e); CT,0 = 0.56 (f); CT,0 = 0.45 (g); CT,0 = 0.36 (h).

high CT (low pitch), curves are very nearly symmetric with respect to γ. However, as thrust is decreased (and pitch increased),

power capture is larger at positive than negative γ values.

The model of Heck et al. (2023) performs similarly well at high and moderate rotor loading, when C ′
T is roughly constant.

However, as the CT is reduced, the model tends towards the solution cos3 γ, and therefore its accuracy is compromised.500

Moreover, the model fails to predict the shear-induced asymmetry (see Fig. 9).

As predicted by the proposed model, the power asymmetry increases with shear (see Table 1 and the explanation given in

Sect. 2.8). To facilitate the visualization of this effect, Fig. 10 shows the difference ∆ηP,γ=±30◦ between the two values of ηP

at γ =±30◦ as a function of shear, for varying thrust coefficients. The asymmetry exhibits also a noticeable dependency on the

thrust coefficient, larger asymmetries being observed for lower values of CT , as predicted in Sect. 2.8 by examining Eq. (22).505

Figures 11 and 12 report the thrust loss factor ηT as a function of yaw misalignment, for the same four scenarios and

different thrust settings. Here again, model predictions are indicated with lines, and LES-ALM results with markers. There is a

consistently good match, for all scenarios, and for all yaw and pitch values. The lack of symmetry is again consistent with the

model, similarly to the case of power discussed above. Figures 12a to 12d show a higher thrust for positive yaw angles at low

thrust coefficients (high pitch values), because of the high tip speed ratio of scenario 3, indicating that term CT2 prevails over510

CT1
. The opposite happens in Fig. 12e to 12h, due to the lower λ of scenario 4.

Overall, it appears that the performance of the rotor is strongly dependent on thrust coefficient and tip speed ratio, and

hence on the way it is controlled when it yaws out of the wind. Therefore, the standard power law cospp may oversimplify the
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Figure 10. Difference ∆ηP,γ=±30◦ between power loss factors ηP evaluated at misalignments γ = 30◦ and at γ =−30◦, as a function of

vertical linear shear coefficient k, for varying thrust coefficient CT . Proposed model: solid lines; LES-ALM simulations: markers.

Figure 11. Thrust loss factor ηT vs. misalignment angle γ in scenario 1 with λ= 8 (a-d) and scenario 2 with λ= 9.5 (e-h). Each subplot

corresponds to a different value of the thrust coefficient in wind-aligned conditions: CT,0 = 0.74 (a); CT,0 = 0.54 (b); CT,0 = 0.44 (c);

CT,0 = 0.36 (d), CT,0 = 0.86 (e); CT,0 = 0.60 (f); CT,0 = 0.47 (g); CT,0 = 0.35 (h).
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Figure 12. Thrust loss factor ηT vs. misalignment angle γ in scenarios 3 with k = 0.06 (a-d) and scenario 4 with k = 0.19 (e-h). Each

subplot corresponds to a different value of the thrust coefficient in wind-aligned conditions: CT,0 = 0.77 (a); CT,0 = 0.56 (b); CT,0 = 0.45

(c); CT,0 = 0.36 (d), CT,0 = 0.77 (e); CT,0 = 0.56 (f); CT,0 = 0.45 (g); CT,0 = 0.36 (h).

complex aerodynamics that are typical of this problem. On the other hand, notwithstanding its simplicity, the proposed model

is in very good agreement with sophisticated CFD simulations, and it is capable of describing even relatively minor effects of515

the complex behavior of a misaligned wind turbine rotor in a sheared inflow.

4.2 Validation of the simplified choice of model parameters

The simplified choice of model parameters described in Sect. 3.5 is based on Eqs. (35), which include the correction factors

fd and fl. To verify the existence of typical values for these factors, we considered four different wind turbines: IEA 3.4 MW

(Bortolotti et al., 2019); NREL 5 MW (Jonkman et al., 2009); G178, which is a modified version of the DTU 10 MW (Bak520

et al., 2013; Wang et al., 2021); and the small-scale G1 turbine (Bottasso and Campagnolo, 2022; Campagnolo et al., 2020). For

the three full-scale machines, the model parameters were first calibrated using the LES-ALM simulation results of Sect. 4.1.2,

whereas for the G1 model the calibration was performed using wind tunnel measurements (see later Sect. 4.3).

The parameters calibrated this way were then compared to the ones based on the simplified approach of Eqs. (35), leading

to the recommended values reported in Sect. 3.5. The CD(r/R) and CL,α(r/R) coefficients were obtained by averaging over525

the interval of angles of attack 2◦ below the negative and positive stall limits. In all cases, the calibrated value of the twist

corresponded remarkably well with the actual twist at 2/3 span, i.e. β(2/3).

The simplified choice of the model parameters was then applied to the NREL 5 MW and G178 10 MW wind turbines.

Simulations were performed with a steady inflow, at different misalignments and for two different blade pitch settings. The
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proposed model was calculated with the parameters based on Eqs. (35), using the default correction coefficients fd = 0.45 and530

fl = 2/3 (in other words, without using LES-ALM calibrated values, replicating what one could do in the absence of suitable

tuning data).

The results in terms of ηT and ηP for the two turbines are reported in Fig. 13, and compared with LES-ALM simulations.

For both turbines there is an excellent match between model predictions and CFD results. This seems to indicate that the even

a simplified choice of the model parameters is sufficient for a good performance of the model.535

Figure 13. Thrust ηT (a) and power ηP (b) loss factors as functions of the misalignment angle for two pitch settings. Results obtained

with the NREL 5 MW (Jonkman et al., 2009) and G178 10 MW (Bak et al., 2013; Wang et al., 2021) wind turbines, using the simplified

calculation of the model parameters based on Eqs. (35). Proposed model: lines; LES-ALM simulations: markers.

4.3 Validation with respect to wind tunnel measurements

Next, the model is compared to data recorded during wind tunnel experimental campaigns performed with a G1 wind turbine

(Campagnolo et al., 2016). This scaled machine has a diameter of 1.1 m, a rated rotor speed of 850 RPM, and null tilt. The

design of the G1 is described in Bottasso and Campagnolo (2022), and its rotor aerodynamic and wake characteristics have

been reported in Wang et al. (2021) and references therein.540

Tests were performed in a boundary layer wind tunnel (Bottasso et al., 2014) with three different inflows: the first one,

termed Low-TI, has no shear and a very low turbulence intensity (approximatively equal to 1%); the other two, termed Mod-TI

and High-TI, have respectively TIs of about 6% and 13% at hub height, and vertical linear shears in the rotor region equal

to k = 0.11 and k = 0.15, respectively. Figure 14a reports the vertical profiles of the longitudinal wind speed component u

measured by means of CTA probes (Bottasso et al., 2014), normalized by the wind speed upitot measured by a Pitot tube placed545

at hub height. Figure 14b shows the vertical profiles of the turbulence intensity, as measured with the same instrumentation.
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Figure 14. Wind tunnel inflows. Vertical wind speed profiles, with corresponding best-fitted linear shears (dotted lines) (a); vertical profiles

of turbulence intensity (b).

The experimental characterization of power losses in misaligned conditions was performed based on the three campaigns of

Table 2, totalling 119 observations of a duration of 2 minutes each. The measured average θp and λ are reported in Appendix C

for campaigns 1 and 2, and in Fig. 19 for campaign 3.

The first campaign was conducted in region II (i.e., the below-rated partial-load regime), using the classical variable-rotor-550

speed maximum-power tracking strategy. Tests were conducted in all three Low-TI, Mod-TI, and High-TI inflow conditions,

with hub-height wind speeds of 5.86, 5.69, and 5.40 ms−1, respectively.

The second campaign was also conducted in region II, but in this case the turbine was derated in the range Pd ∈ [50,100]%

while adopting two different strategies: iso-λ, where the tip speed ratio is held constant (Campagnolo et al., 2023), and min-

CT , where the thrust coefficient is minimized (Juangarcia et al., 2018). Tests were conducted only in the Mod-TI inflow, with555

a hub-height wind speed of 5.62 ms−1,

The third campaign was conducted in region III (i.e., the above-rated full-load regime) in the Low-TI and Mod-TI inflows,

with hub-height wind speeds of 6.97 and 6.11 ms−1, respectively.

Table 2. Characteristics of the wind tunnel campaigns.

Campaign #
Inflow wind speed

Control region Used for tuning
Low-TI Mod-TI High-TI

1 - Max P tracking 5.86 ms−1 5.69 ms−1 5.40 ms−1 II Yes

2 - Derating - 5.62 ms−1 - II Yes

3 - Above rated 6.97 ms−1 6.11 ms−1 - III No

Various sources of error affect the experimental observations. These include measurements of the wind speed upitot upstream

of the model (obtained by a Pitot tube placed at hub height 3D in front of the turbine), of the air density ρ, of the rotor speed560
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Ω, of the shaft torque Q, of the bending moment at tower base (which is used to estimate thrust), of the blade pitch angle,

and of the nacelle orientation with respect to the wind tunnel (i.e., of the misalignment angle). The error in upitot is related

to the uncertainty associated with the measurements of flow density and dynamic pressure. This latter quantity is measured

with a MKS Baratron-Type 226A transducer (MKS Instruments, Inc., 2022) with full span equal to 1 Torr, characterized by an

accuracy of ±0.4 Pa. Density is instead derived from measurements of air pressure, temperature and humidity, and it is affected565

by an error equal to ±0.01 kgm3 (Wang et al., 2020). Torque is measured with a load cell installed on the rotor shaft, and it is

affected by an uncertainty of ±0.005 Nm. The rotor speed measurement, provided by an optical incremental encoder, is instead

affected by an error equal to ±1.5 RPM. The measurement uncertainty on power P =QΩ is derived by adding in quadrature

the uncertainties on Q and Ω. Thrust T is obtained by correcting the measurements of the bending moments at tower base

by the effects induced by the drag of the tower, nacelle and hub spinner (Wang et al., 2020). The calibration of the load cell570

at tower base revealed an uncertainty in the thrust of ±0.14 N. Blade pitch and nacelle orientation are measured by optical

encoders, affected by uncertainties of ±0.2◦. In turn, all these effects are used to quantify uncertainties in the tip speed ratio

λ, and yaw-induced power and thrust losses ηP and ηT , again by adding errors in quadrature. In the following, the resulting

uncertainties are reported for a 95% confidence level.

Uncertainties in some experimental measurements affect also the predictions of the proposed model. The uncertainties of the575

four model inputs – tip speed ratio, blade pitch, rotor speed, and yaw misalignment – were propagated forward throughout the

model by Latin hypercube sampling with ten thousand sample points, using the UQLab software (Marelli and Sudret, 2014).

Tuning of the model parameters CD, CL,α and β was performed with Eq. (34), using a total of 94 observations from the

experimental campaigns 1 and 2.

Given the small size of the G1 wind turbine, the Reynolds number at its blade sections is particularly low. Although special580

low-Reynolds airfoils are used in the design of the G1 blades (Bottasso and Campagnolo, 2022), their aerodynamic charac-

teristics are particularly sensitive to the operating conditions of the turbine (Wang et al., 2020). In fact, the Reynolds number

has a significant effect on the drag and on the zero-lift direction, which in turn affects the parameter β, whereas the effect on

the lift slope CL,α is negligible (Wang et al., 2020). Accordingly, the model parameters CD and β are assumed to depend on

the rotational speed Ω, since the relative speed at the airfoils is close to the tangential speed (u≈ ut, see Fig. 3). The values585

of CD and β at Ω= [850,625,400] RPM were assumed as unknowns, and a piecewise linear interpolation was used at other

intermediate values of the rotor speed.

Figure 15 reports the tuned CD and β parameters, whiskers representing the corresponding 95% confidence intervals. As

expected, drag decreases for increasing rotor speed, i.e. for increasing sectional Reynolds number. The twist β also exhibits

the same trend, since the zero-lift direction rotates nose-up as the Reynolds number increases (Wang et al., 2020). The tuned590

parameter CL,α is equal to 4.5033± 0.0459.

For maximum power tracking operation in region II (test campaign 1), Fig. 16 reports a comparison between model-predicted

and measured power and thrust losses. The present model results are indicated with blue solid lines, while measurements are

indicated by black circles. Whiskers indicate the respective 95% confidence intervals. There is a very good match between

experimental measurements and the present model, the latter falling within the uncertainty range of the measurements in most595
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Figure 15. Tuned model parameters CD and β as functions of rotational speed Ω.

cases. As predicted by the model, the sheared inflow conditions Mod-TI and High-TI exhibit the expected non-symmetric

behavior with respect to positive and negative yaw angles.

Figure 16. Experimental campaign 1. Power loss factor ηP (a-c) and thrust loss factor ηT (d-f) vs. yaw misalignment γ, in region II operation

for the three different inflow conditions. Whiskers indicate the 95% confidence intervals.

In principle, the model of Heck et al. (2023) would be applicable to these tests in region II. However, their method does

not directly consider the aerodynamic characteristics of the blades, as it expresses their behavior through the single parameter

represented by C ′
T . Therefore, it is blind to the variability of twist and drag with respect to the Reynolds number, which600

drops significantly as the misalignment angle increases. Since this strong Reynolds-dependency is specific to the small scale
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of wind tunnel models, the results of the method of Heck et al. (2023) are not shown here, because its poor match with the

measurements would be misleading, as these effects would not be present at full scale. The present method is not affected

by this issue, because it uses a lifting line approach and specifically includes the blade aerodynamic characteristics in the

governing Eqs. (22) and (25b).605

The loss factors are reported for derated operation (test campaign 2) in Fig. 17. Here again the match between experimental

data and predictions of the present model is very good, the latter being mostly within the uncertainty band of the measurements.

Slightly larger deviations are observed for the min-CT case at Pd=50%. This can be explained by the fact that the machine

operates at significantly low λ values, with consequent low rotational speeds. This results in particularly high angles of attack

(Juangarcia et al., 2018) and very low chord-based Reynolds. Both have significant impacts on the airfoil performance, which610

are likely not properly captured by the analytical model. Overall, it appears that the model is capable of capturing the reduction

in the thrust coefficient as derating Pd increases, as well as the lack of symmetry with respect to the misalignment angle.

Figure 17. Experimental campaign 2. Power loss factor ηP (a-h) and thrust loss factor ηT (i-p) vs. yaw misalignment γ, in derated operation

in region II for the Mod-TI inflow case. Whiskers indicate the 95% confidence intervals.
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The effects of thrust and shear are visualized in Fig. 18 in terms of the average and the difference of the power loss factors

at γ±20◦, respectively noted η̄P,γ=±20◦ and ∆ηP,γ=±20◦ . It appears that power losses tend to decrease with increasing thrust

coefficients (panel a), whereas there is no significant dependency on shear (panel b). The power loss asymmetry grows with615

increasing shear (panel d). On the other hand, the asymmetry is roughly constant with respect to the thrust coefficient (panel c).

Figure 18. Power loss factor η̄P,γ=±20◦ (averaged between γ =±20◦) as a function of CT (γ = 0◦) (a) and of shear k (b). Difference

∆ηP,γ=±20◦ between power loss factors ηP evaluated at misalignments γ = 20◦ and at γ =−20◦, as a function of CT (γ = 0◦) (c) and of

shear k (d). Proposed model: solid lines; experimental measurements: black circles. Whiskers indicate the 95% confidence intervals.

In the third test campaign, the wind turbine is operated above rated conditions. Figure 19 reports the 2-minute average tip

speed ratio and pitch angles measured during the experiment, and plotted as functions of the misalignment angle γ. For the

Low-TI case, the turbine operates in region III for all misalignment angles. Recalling that the tip speed ratio is defined as

λ=ΩR/u∞,hub, since both the ambient wind speed u∞,hub and rotor speed Ω are constant, when the turbine yaws away from620

the wind λ (indicated by red circles in Fig. 19a) remains constant, while the blades are pitched back (red circles in Fig. 19b)

in order to keep the power output equal to the rated value. The same happens for the Mod-TI case. However, when γ <−25◦,

the turbine exits region III and enters region II. Therefore, as blade pitch (purple squares in Fig. 19b) reaches the value for

maximum power coefficient, λ starts decreasing (purple squares in Fig. 19a).

Figure 20 shows the results for the power and thrust loss factors in this scenario. Once again the proposed model exhibits a625

very good match with the experiments, falling within the uncertainty bands in most cases.

These results confirm the ability of the method to correctly represent the effects of different control approaches, covering

both regions II and III, including derating. This is crucially important because, as shown, control laws have a strong impact on

the behavior of power and trust in misaligned conditions.
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Figure 19. Experimental campaign 3. Blade pitch angle θp (a) and tip speed ratio λ (b) in Low-TI and Mod-TI inflows.

Figure 20. Experimental campaign 3. Power loss factor ηP (a-b) and thrust loss factor ηT (c-d) vs. yaw misalignment γ, in above-rated-

speed operation for the Low-TI and Mod-TI inflow cases. Model predictions: solid lines; experimental measurements: black circles. Whiskers

indicate the 95% confidence intervals.

5 Optimal wake steering630

The insight provided by the new model suggests two questions:

– What is the power-optimal way to yaw a single turbine out of the wind?

– And does the new model affect the way wake steering should be conducted?

We try to give some initial answers to these questions in the following two sections.

5.1 Optimal power capture of a single misaligned turbine635

The new model was used to compute the optimal power of a wind turbine when it is misaligned with respect to the wind. The

analysis was conducted for the same IEA 3.4 MW wind turbine used for the previous numerical validation of the model.
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The optimal control strategy was computed by numerical optimization using an adaptive Nelder-Mead algorithm (Gao and

Han, 2012), and results are shown in Fig. 21. The figure reports also the standard region II control approach, which consists in

holding the pitch angle fixed while the generator torque is varied proportionally to the square of the rotor speed, i.e. Q∼ Ω2,640

as explained in Sect. 3.3. Assuming as a first approximation that P = cosγpp , and considering that Q= P/Ω, it follows that

Ω∼ cosγpp/3. The figure reports the solution computed for a coefficient pp = 1.88, following Fleming et al. (2015).

Figure 21. Comparison between standard and optimal control strategies for different yaw angles γ. Tip speed ratio λ (a); pitch angle θp

(b); percent thrust difference between the optimal and standard strategies (c); percent power difference between the optimal and standard

strategies (d).

As the yaw misalignment increases, the tip speed ratio drops for the standard control strategy, driven by the reduced rotor-

orthogonal component of the wind. Since the pitch angle remains fixed, the reduced λ leads also to a decreased thrust coeffi-

cient. Although this might be beneficial for reducing loading on the yawed turbine, the resulting drop in power is significant.645

On the other hand, the optimal strategy governs the turbine to keep a much more constant tip speed ratio and thrust coeffi-

cient, while the blade pitches back a little. This results into some power boost, which is small for moderate angles but reaches

above 3% around ±30◦. These findings are in line with results presented by Cossu (2021a) and Heck et al. (2023). While the

higher CT implies that the turbine is loaded more than in the standard case, it has also an effect on the wake that will be felt

downstream, as explored in the next section.650

5.2 Optimal power capture of two turbines

The previous section showed that a single turbine can extract more energy from the wind in misaligned conditions when its

CT is increased compared to a standard region II control approach. This so-called overinductive yaw control (Cossu, 2021a)

increases the velocity deficit in the wake, but it also affects its recovery and enhances its deflection. It is therefore necessary

to find the optimal tradeoff among these complex effects when considering wake steering wind farm control (Meyers et al.,655

2022).
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FLORIS v3 (NREL, 2023b), modified with the present model, was used to optimize the power capture of a cluster of two

IEA 3.4 MW wind turbines placed at a distance of 5 diameters. The wake was modelled with the Gauss-Curl-Hybrid model

(King et al., 2021). The inflow is characterized by an ambient wind speed u∞,hub = 9.7 ms−1, a shear of 0.12, and a turbulence

intensity of 6%. A 60◦ range of wind directions Φ was considered, in order to realize different degrees of overlap between the660

wake and the downstream rotor. The optimal wind farm control strategy was computed by numerically maximizing the cluster

power with the same adaptive Nelder-Mead algorithm used for the single-turbine case of the previous section.

Results are shown in Fig. 22. The plots report in green dotted lines the results obtained with greedy control (i.e., each

turbine maximizes its own power capture), in blue solid lines the solution obtained with wake steering control based on

the cospp law using pp = 1.88, and in red dashed lines with wake steering control based on the present model. For the three665

control strategies, results were validated with LES-ALM simulations run for five different wind directions, namely Φ= {270±
5.74,270± 2.5,270}◦, corresponding to rotor overlaps of 50%, 78.2%, and 100%, respectively. The LES-ALM results are

indicated in the figure with markers, where the colors correspond to the control strategy.

Figure 22. Control of a cluster of two turbines in wake interference conditions. Green: greedy policy; blue: optimal wake steering solution

based on cospp ; red: optimal wake steering solution based on the proposed model. Lines: FLORIS engineering wake model; markers: LES-

ALM CFD. Tip speed ratio λ (a); thrust coefficient CT (b); absolute yaw misalignment |γ| (c); percent power changes with respect to the

greedy policy for the upstream wake-steering turbine (d); percent power changes with respect to the greedy policy for the downstream turbine

(e); overall percent power changes for the cluster of two turbines (f).

Figures 22a, 22b, and 22c respectively show the front turbine tip speed ratio λ, pitch angle θp, and absolute misalignment

angle |γ|, all plotted as functions of wind direction Φ. The solution for the present model is characterized by a fairly constant670

tip speed ratio that, in conjunction with some pitch back of the blades at the highest misalignments, results also in a roughly

constant thrust coefficient (not shown for brevity). This is in contrast with the solution based on the cospp law, where both tip

speed ratio and thrust coefficient drop at the higher misalignments that correspond to the strongest wake overlap conditions. In

addition, the present model also results into slightly larger misalignment angles, as shown by Fig. 22c.
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The bottom three plots show the effects of the various control strategies on power as function of wind direction Φ. Figures 22d675

and 22e report the power changes with respect to the greedy strategy for the front and back turbines, respectively. It appears

that the upstream machine, due to a larger misalignment, looses more power than in the cospp case. Conversely, it also appears

that the second machine gains more power with the strategy based on the new model, thanks to the larger misalignment of the

upstream turbine but also due to its larger thrust coefficient. Finally, Fig. 22f shows the overall gain at the cluster level. Results

indicate a fairly consistent improvement, in excess of roughly 1%, for almost the entire wake-overlap range.680

The LES-ALM results confirm the findings based on the FLORIS engineering wake model: more power losses for the front

turbine, more gains for the downstream one, resulting in a positive net gain for the cluster.

6 Conclusions

We have presented a new model to estimate the power performance of a misaligned wind turbine rotor. The model is a modified

version of the classical blade element momentum theory, where the rotor is considered as a lifting wing of finite span operating685

at an angle of attack.

The new model reveals the following characteristics of the behavior of a misaligned rotor:

– Power does not depend on the misalignment angle according to the cospp law, a formula in widespread use in the

literature.

– The true effective misalignment angle that drives wake behavior is a combination of both yaw and tilt. Therefore, a690

two-dimensional wake model should be described in the plane formed by the rotor axis and wind vectors, not on the

horizontal plane as commonly assumed.

– Power depends on the true misalignment angle, but – crucially – also on the way the rotor is governed as it is pointed out

of the wind, a fact that probably explains the widely different performance observed by various authors. This fact also

means that power losses due to misalignment can be mitigated by using a suitable control strategy.695

– According to the model, the observed lack of symmetry between positive and negative misalignment angles is caused by

the interaction with a sheared inflow. In these conditions, there is a complex interplay of various effects that may lead to

different outcomes in terms of which yaw sign yields more or less power. In general, one can expect a small asymmetry

at high thrust coefficients, while a more pronounced asymmetry emerges for low thrust and high tip speed ratios, where

a higher power is generated for positive yaw angles. However, in general the behavior of power (but of thrust too, which700

also exhibits an asymmetric behavior) depends not only on the rotor design characteristics but also on the way it is

governed, through the values of the pitch setting and of the tip speed ratio. Additionally, in the field other effects may be

present (e.g., due to an asymmetric behavior of the onboard wind vane), which may add to the phenomena described by

the model.
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– A constant-over-the-rotor induction is sufficient to accurately describe the power and thrust behavior of a misaligned705

rotor in a sheared inflow. In fact, under classical small angle assumptions, the tilting of the inflow due to misalignment

and shear has only a negligible effect on the quality of the results.

The model was derived in a semi-analytical form, leading to a closed system of equations that can be directly integrated with

engineering wake models, at an irrelevant computational cost. To improve its accuracy, we proposed a specific implementation

that overcomes the intrinsic limits brought by the analytical solution of some model integrals. The proposed implementation710

corrects for the effects of misalignment a higher-fidelity power model obtained in aligned conditions, and calibrates the model

parameters based on measurements.

The model was validated in a broad range of cases, considering LES-ALM numerical simulations of various multi-MW

machines as well as experimental observations on a scaled wind tunnel model, in different inflows (from unsheared laminar to

sheared highly turbulent conditions), operating with controllers in the loop in regions II, III, as well as in derated conditions.715

In all cases, the model achieved a very satisfactory agreement with the numerical and experimental reference power and thrust

values. Additionally, we demonstrated how the model can be integrated with given control laws, achieving an excellent match

in the calculation of the setpoints. The model was also compared with a similar model recently developed by Heck et al.

(2023), limitedly to the control region II where it is applicable, consistently improving on its predictions and exhibiting a wider

applicability to arbitrary control strategies.720

Using the proposed model, we maximized the power capture of a wind turbine for a range of misalignment angles, obtaining

the optimal power strategy in terms of pitch setting and tip speed ratio. Results indicate that the maximum power extraction is

obtained by keeping an almost constant tip speed ratio and by slightly reducing the blade pitch as the turbine yaws out of the

wind. This also implies a roughly constant thrust coefficient, which will increase the loading on the yawed turbine, but will

also have an effect on its wake.725

Next, we applied the new model to the maximization of the power by wake steering for a cluster of two turbines. The

resulting control strategy was compared to the one obtained by the classical cospp power loss model, and validated by means of

LES-ALM simulations for a few selected cases. Results indicate that the proposed model results in slightly greater power losses

for the wake-steering turbine, which are more than compensated by greater power gains for the wake-affected one, achieving a

small but consistent gain in power at the cluster level for the full range of possible wake overlaps.730

Future work should investigate the effects of the new model and its resulting control strategy in more complex conditions.

Of particular interest is the analysis of the effects on loads, which might increase because of the eliminated drop in thrust

coefficient as the turbine is yawed out of the wind.
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Appendix A: Transformation matrices

A1 Transformation from ground to nacelle frame of reference735

The nacelle-fixed frame of reference is obtained from the ground-fixed frame by a first rotation δ about the horizontal axis yg ,

followed by a rotation γ about the vertical axis zg . The components of a generic vector v are noted vg when measured in the

ground frame Fg , and vn when measured in the nacelle frame Fn. Combining the two successive rotations, one obtains the

transformation of components from one frame to the other as

vn =


cosδ 0 −sinδ

0 1 0

sinδ 0 cosδ



cosγ −sinγ 0

sinγ cosγ 0

0 0 1

vg =

cosδ cosγ −cosδ sinγ −sinδ

sinγ cosγ 0

sinδ cosγ −sinδ sinγ cosδ

vg. (A1)740

The inverse transformation is simply given by the matrix transpose.

Using Eq. (A1), the components of the ambient velocity vector u∞ in the nacelle-attached frame are readily found to

be u∞n = u∞{cosδ cosγ,sinδ,sinδ cosγ}T , where the scalar wind speed is u∞ = |u∞|, while xnn
= {1,0,0}T . Hence, it

follows that

u∞

u∞
·xn = cosµ= cosδ cosγ. (A2)745

A2 Transformation from wake-deflection to ground frame of reference

The nacelle and wake-deflection frames share the same unit vector xn = xd , which corresponds to the rotor axis of rotation.

The zd unit vector is orthogonal to the plane composed by u∞ and xd, and therefore it can be written as zd = zxd ×u∞,

where z is a normalization scalar such that z · z = 1. Performing the cross product and the normalization, one finds zdn
=

z{0,−sinδ cosγ,sinγ}T and z = 1/
√
cos2 γ sin2 δ+sin2 γ = 1/sinµ. A right-handed triad is completed by setting yd =750

−xd × zd, which yields y
dn

= z{0,sinγ,sinδ cosγ}T . The transformation matrix between the wake-deflection and nacelle-

fixed components is therefore readily obtained as

vn =


1 0 0

0 z sinγ −z sinδ cosγ
0 z sinδ cosγ z sinγ

vd. (A3)

Finally, the transformation between wake-deflection and ground-fixed components follows by using Eq. (A3) and Eq. (A1),

which yields755

vg =


cosδ cosγ sinγ sinδ cosγ

−cosδ sinγ cosγ −sinδ sinγ

−sinδ 0 cosδ



1 0 0

0 z sinγ −z cosγ sinδ
0 z cosγ sinδ z sinγ

vd, (A4a)

=


cosδ cosγ 1/z 0

−cosδ sinγ z cos2 δ sinγ cosγ −z sinδ
−sinδ z sinδ cosδ cosγ z cosδ sinγ

vd. (A4b)
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The inverse transformation is simply given by the matrix transpose.

Using Eq. (A4b), the longitudinal (given by Eq. 11) and lateral (sidewash, given by Eq. 13) flow velocity components at the

streamtube outlet can be transformed into the corresponding longitudinal and lateral components in the ground frame:760

vo,g
u∞

=
CT

4
cosδ sinγ, (A5a)

wo,g

u∞
=
CT

4
sinδ. (A5b)

Appendix B: Effect of a non-uniform axial induction on the rotor disk

As mentioned in Sect. 2.4, misalignment and shear cause a non-uniform distribution of the induction over the rotor disk.

Following the classical approach used for helicopter rotors in forward flight (Johnson, 1995), the simplest model of non-765

uniform axial induction is the one expressed by Eq. (6), based on the 1P harmonics κ1s and κ1c. For the present application,

however, it appears that the inclusion of these terms is not necessary. To show this, we consider the κ1s term, which is triggered

by the misalignment µ and results in the largest induction in the most downstream portion of the rotor disk. Figure B1 presents

the loss factors ηT and ηP predicted by the model with (red dotted line) and without (solid blue line) the 1P sine term κ1s.

Differences appear to be negligible, especially for ηT . Neglecting κ1s leads to a slight decrease in ηP as the misalignment770

increases, reaching a maximum difference of 0.21% at γ =−30◦.

Figure B1. Thrust loss factor ηT (a), and power loss factor ηP (b) computed with the proposed model, with and without the 1P sine harmonic

κ1,s in Eq. (6). Results are computed for the IEA 3.4 MW reference wind turbine, subjected to a vertical shear k = 0.2, operating at a tip

speed ratio λ= 8.5, and with a blade pitch angle θ = 1◦.
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Appendix C: Experimental data set

Figures C1 and C2 report the blade pitch θp and tip speed ratio λmeasured in the experimental campaigns 1 and 2, respectively.

The same quantities for experimental campaign 3 are reported in Fig. 19.

Figure C1. Experimental campaign 1. Blade pitch angle θp (a) and tip speed ratio λ (b) in Low-TI, Mod-TI, and High-TI inflows.
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Figure C2. Experimental campaign 2. Blade pitch angle θp (a) and tip speed ratio λ (b) in the Mod-TI inflow.
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Appendix D: Nomenclature775

A Rotor disk area

a Axial induction

B Number of blades

CD Drag coefficient

CL Lift coefficient780

CL,α Lift slope

CP Power coefficient

CT Thrust coefficient

C ′
T Modified thrust coefficient of Heck et al. (2023)

D Rotor diameter785

Fn Normal force

Ft Tangential force

K Coefficient relating aerodynamic torque and squared rotor speed in control region II

k Linear vertical wind shear coefficient

ṁ Mass flux790

p Pressure

P Power

Pd Power demand (derating)

Q Rotor torque

R Rotor radius795

r Spanwise coordinate

T Thrust force

u∞ Free-stream wind speed

u∞,hub Free-stream wind speed at hub height

u Longitudinal velocity component800

un Rotor-orthogonal velocity component

ut Rotor-tangential velocity component

v Lateral velocity component

x Cartesian coordinate

y Cartesian coordinate805

z Cartesian coordinate

α Angle of attack
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β Blade twist angle

δ Rotor tilt angle810

ηP Power loss factor

ηT Thrust loss factor

γ Rotor yaw angle

λ Tip speed ratio

µ Rotor total (true) misalignment angle815

Ω Rotor angular speed

φ Inflow angle

Φ Wind direction

ψ Rotor azimuth angle

ρ Air density820

θ Local pitch angle

θp Blade pitch rotation at the pitch bearing

vf Components of vector v in frame f825

(·)d Quantity evaluated in the wake-deflection intrinsic frame of reference

(·)g Quantity evaluated in the ground frame of reference

(·)n Quantity evaluated in the nacelle frame of reference

(·)1c Once-per-revolution cosine harmonic

(·)1s Once-per-revolution sine harmonic830

0P Zeroth (constant) harmonic

1P One per revolution harmonic

ALM Actuator Line Method

BEM Blade Element Momentum835

CFD Computational Fluid Dynamics

CTA Constant Temperature Anemometry

FLORIS FLOw Redirection and Induction in Steady State

LES Large Eddy Simulation

RPM Revolutions Per Minute840

SOWFA Simulator fOr Wind Farm Applications

TI Turbulence Intensity
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Code and data availability. An implementation of the model described in this article in the FLORIS framework is available on Github

at https://github.com/sTamaroTum/Beyond_the_cosine_law/ (Tamaro et al., 2024). The repository also contains all the data and the Jupyter845

notebooks used to generate the figures. The code and the scripts to reproduce the figures can be run on Binder at the link https://tinyurl.com/btcl-figs.

The notebook of Fig. 5 can be used to interactively plot the thrust and power coefficients for other user-defined values of the model param-

eters, while the one of Fig. 6 can be similarly used to visualize different control trajectories. The notebooks of Figs. 21 and 22 contain also

the code used for computing the optimal control policies. The complete data sets from the LES simulations and wind tunnel experiments are

available upon request.850
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