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Abstract.

This paper demonstrates the observation of wind shear and veer directly from the operational response of a wind turbine
equipped with blade load sensors. Two independent neural-based observers, one for shear and one for veer, are first trained
using a machine learning approach, and then used to produce estimates of these two wind characteristics from measured blade
load harmonics. The study is based on a data set collected at an experimental test site, featuring a highly-instrumented 8§ MW
wind turbine, an IEC-compliant met mast, and a vertical profiling lidar reaching above the rotor top.

The present study reports the first demonstration of the measurement of wind veer with this technology, and the first vali-
dation of shear and veer with respect to lidar measurements spanning the whole rotor height. Results are presented in terms
of correlations, exemplary time histories and aggregated statistical metrics. Measurements of shear and veer produced by the
observers are very similar to the ones obtained with the widely adopted profiling lidar, while avoiding its complexity and

associated costs.

1 Introduction

The goal of this paper is to demonstrate the observation of wind shear and veer, directly from the operational response of
a wind turbine. This is achieved by the concept of the rotor as a sensor where the blades, scanning the flow field, are able
used to measure relevant characteristics of the inflow. A key advantage of this approach, termed wind sensing, is that it does
not require extra hardware, but simply relies on the standard operational data available in the supervisory control and data
acquisition (SCADA) system, in addition to blade load measurements. Although the latter are not always available on all
production turbines, they are becoming more and more widespread, as they are used for other functions, such as load mitigation
and condition monitoring.

A novelty of this paper is the first ever — to the authors’ knowledge — demonstration of the observation of veer using this
technology. This is made possible by the formulation recently proposed in Kim et al. (2023), where feed-forward neural
networks are trained to estimate various wind characteristics from blade load harmonics. This machine-learning approach

improves on various previous formulations all-based on the use of load harmonics, starting with the study of Bottasso and
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Riboldi (2014) and then further developed over the years, as more completely described in Bertele et al. (2021) and references
therein. In addition to vertical shear and veer, load harmonics can be used to estimate horizontal shear and directions (lateral
misalignment and upflow). However, load harmonics are not the only way to estimate wind inflow characteristics. For example,
Bottasso et al. (2018) use the rotor blades as local scanning wind sensors, which produce estimates of the vertical and horizontal
shears, the latter serving also as a wake detector (Schreiber et al., 2020).

A second novelty of the paper is the demonstration of the observation of shear (and veer) over the entire rotor disk. Al-
though the field validation of shear has been reported before, previous studies were based on measurements from met masts
reaching only up to hub height (Bertele et al., 2021; Schreiber et al., 2020), and not to the top of the rotor. The present work
is based on the BHV test site (Meyer and Gottschall, 2022), which features the large 8 MW AD8-180 wind turbine;-, In
the framework of unrelated projects, the turbine was equipped with various sensors that include optical strain gauges along
the blades (Wegner et al., 2022). The site is complemented by an IEC-compliant met mast and by a vertical-profiling pulsed
scanning lidar, capable of reaching well above the rotor top.

Results reported in this paper indicate that both shear and veer can be measured by wind sensing, in general exhibiting a
very good match with the corresponding measurements provided by the vertical profiling (VP) lidar, an IEC-approved and
widely-adopted device for resource assessment and power performance testing (IEC, 2022). This is remarkable, because —
when load sensors are already installed on a turbine — the measurement of these inflow quantities comes at no additional
hardware purchase or maintenance cost, as the technology simply amounts to an on-board software upgrade.

Most turbines today operate based only on a very limited knowledge of the ambient conditions, as provided by the on-

board anemometry system. Although this is the current standard, it is reasonable to expect that a more complete knowledge

of the inflow might improve the way future turbines will be operated The-recent-stady-of-Sucamelietal(2023)presents—a

utAs an example, the control of wakes might benefit
from an improved knowledge of the inflow (Meyers et al., 2022 ) In fact, the-authorseconsidered-an-extenstve-dataset-colected

%‘M@%@féﬁ%{ and veer on Wake%ehaweﬁmghﬁxegaﬂvelyﬂﬂﬂtwﬂ%me—peffefmaﬂee
iopwakes
are of a similar order of magnitude as the ones caused by the control action (e.g., an intentional yaw misalignment), neglecting.

their presence will lead to a loss of performance. The shear and veer observers demonstrated here could provide-such-information
inform a park controller of the inflow conditions at the rotor disk of each turbine in a park-farm (in contrast to a met mast,

which will never be exactly co-located with a turbine, and only rarely will be exactly in front of it), at essentially no cost and
with no extra hardware (in contrast with lidar-based solutions).
The paper is organized in two main parts. First, Sect. 2 presents the methods. Section 2.1 reviews the formulation of the

shear and veer observers, following the approach developed by Kim et al. (2023). Next, Sect. 2.2 describes the BHV test site
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and its instrumentation. Finally, Sect. 2.3 describes the calculation of shear and veer from the lidar and mast measurements.
This first methodological section is followed by Sect. 3, which presents the results. First, Sect. 3.1 discusses the training of the
neural-based observers on a portion of the data set. Next, Sect. 3.2 provides an analysis of their performance on an independent
validation data set, considering correlations between estimates and lidar-provided references, an exemplary time history, as

well as aggregated statistical quality metrics. Finally, SeetionSect. 4 concludes the work discussing its main findings.

2 Methods

2.1 Formulation of the shear and veer observers

Following Kim et al. (2023), the wind observer is formulated as

ye = NN(p,zm), (1)

where y represents a scalar wind characteristic, NN(+, -) is a single-output neural network (Bishop, 2006) with free parameters
P, x is the vector of N, network inputs, while (-)g and (-)m respectively indicate estimated and measured quantities. In this
work, two separate networks are considered, one for vertical linear wind shear ., and one for vertical linear wind veer A§'.

Considering a single-hidden-layer feed-forward neural network with M hidden neurons, function NN(-,-) writes
NN(p,z) =wle(Vix +a)+b, 2)

where o (+) is a vector of sigmoid activation functions, V;; and a, are the synaptic weights and biases connecting the input layer
with the hidden layer, whereas w; and b connect the hidden layer with the output scalar y, with i = [1, M] and j = [1, N, ]. These
free model parameters are stored in vector p = {...,w;,...,Vi;,...,a;,..., b},

The free network parameters p are trained by backpropagation to minimize the error cost function

N Np
1 1
E(p) =+ ;ﬂ (ye, (Pong,) — Y)W N, mE_lpfm 3)

where N, = M (N, +2)+ 1. The first term of the objective function drives the estimates yg, produced by the network towards
the NV available measurements ¥y, . The second term of the objective is a Bayesan regularization, which reduces the chances of
being trapped in local minima (Burden and Winkler, 2009). The tunable coefficient W sets the relative weight of the Bayesan
and error terms. The unknown network weights are iteratively corrected as Ap = —ndE(p)/0p, where 7 is the learning rate.
The implementation of the neural network and its training in-this-paper-is based on Matlab-(2023)the Matlab Deep Learning

! As shown in Kim et al. (2023), a similar formulation can be used to estimate the horizontal shear as well as the yaw misalignment angle, although these

quantities are not considered further in the present work. In fact, horizontal shear is presumably very modest at the test turbine #sed-hereof this study, since it
is never waked by other machines. Additionally, only modest variations in yaw misalignment were observed during the present field trials, and therefore the

data set does not contain significant-enough information to allow for the identification of a misalignment observer.



The network input vector is defined as
85 x={m” V,p}7, 4

where m is a vector of blade load harmonics, V' is wind speed, and p is air density. The presence of wind speed V' among the

inputs accounts for the different behavior, control and deformation of the wind turbine in different operating conditions. This
scheduling wind speed is computed as a 30 sec moving average of the estimated rotor-effective wind speed (Soltani et al., 2013

. The dependency on air density p accounts for the acrodynamic origin of the loads; further details are available in Kim et al. (2023

90
Harmonics are computed for the out- and in-plane load components, respectively noted (-)° and (-)'F, from the corre-
sponding strain gauge signals via the Coleman-Feingold transformation (Coleman and Feingold, 1958), and then filtered to
remove any remaining spurious noise. Following the analysis developed in Kim et al. (2023), only once-per-revolution (1P)

harmonics are used for the vertical linear shear case, and vector 1 is defined as
_ op _op _1p _1P\T
9% m= {mlc , My , My, mls} . )

On the other hand, the estimation of linear veer requires a richer input including also the twice-per-revolution (2P) harmonics,

leading to the following definition of vector m:

_ op _op . Ip _IP_ _OP ,_OP _IP . IP\T
m= {mlc y Myg y Mycy Myg, Mo 5 Mag 5 Mo, m2s} . (6)

In the previous expressions, subscripts (-)s and (). respectively indicate kP sine and cosine harmonic amplitudes. A simple

100 explanation of the harmonic content of the shear and veer observers is offered in Appendix A. Kim et al. (2023) offers a more

detailed analysis of the relationship between inflow characteristics and harmonic content of the loads. The analysis developed

there can be used to estimate the number of harmonics that are theoretically necessary in order to resolve a desired polynomial
order in the shear and veer.

105

average-of Both the simple analysis of the appendix and the more refined one of Kim et al. (2023) indicate that veer can be
estimated based only on 2P harmonics. However, it was verified that an implementation based on both the 1P and 2P harmonics
provides slightly more precise estimates; the results shown later are therefore based on the 1-2P implementation. The reason
for this apparent discrepancy might be due to the approximate nature of the theoretical analysis, which is based on a number
110 of simplifying assumptions.

=1 and 2P harmonics has potential
advantages over more complex implementations. First, higher harmonics are associated with higher-order variations of the
inflow characteristics, which may be affected by the fast and small eddies in the flow caused by turbulence. Conversely,
115 slower-varying inflow characteristics are mostly driven by changes in the stability of the atmosphere, which in turn drives
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wake path and recovery. If the goal of the observer is to inform a wind farm controller, these latter slower effects are of

interest, whereas the former fast disturbances should be rejected (Meyers et al., 2022). Additionally, it is reasonable to assume

that the lower harmonics between two turbines of the same type implementing the same controller will be similar, whereas

higher harmonics might exhibit some increased turbine-to-turbine variability. Therefore, limiting the use to the sole 1 and 2P

harmonics might make it possible to train the observers on a machine and then use it on another (of the exact same type)

although there is not yet any direct proof of this assertion.

A graphical depiction of the neural observers for shear and veer is reported in ¥igFigs. 1a and 1b, respectively.
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Figure 1. Graphical representation of the neural observer of vertical wind shear (a) and vertical wind veer (b), with their respective inputs.

2.2 Test site

The shear and veer observers were identified and validated using wind field and turbine load measurements from the BHV test
site (Meyer and Gottschall, 2022), a former airport located in close proximity to Bremerhaven, in the northwest of Germany
next to the Weser river. The test site is built around the 8 MW research wind turbine AD8-180. Flat and homogeneous terrain
conditions are present in the westerly direction, whereas an urban terrain prevails in the easterly direction. Various wind and
turbine-related measurements have already been carried out at this site, as reported in previously published studies (Giyanani
et al., 2022; Huhn and Gémez-Mejia, 2022; Meyer and Gottschall, 2022; Hung et al., 2022; Wegner et al., 2022). The test site
is shown in Fig. 2, with a view looking east.

The ADS-180, an 8 MW machine with a 180 m rotor diameter (D) and a 115 m hub height, is equipped with several sensors,
including strain gauges placed at various spanwise positions along the blades. Operational data from the SCADA system,
together with the strain gauge measurements, are available at a 25 Hz frequency. Flapwise and edgewise measurements from
the strain gauges placed at blade root were converted into out and in-plane components, based on blade pitch angle. Next, using

the azimuthal rotor position, the load signals were converted into 1 and 2P harmonics, to be used as network inputs (see Eq. 4).
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Figure 2. View from west to east of the BHV test site, with the AD8-180 wind turbine on the left, and the met mast and VP lidar on the right.

An [EC-compliant met mast is installed at a distance of 399.3 m (= 2.2D) from the turbine, in the 189° direction. The mast
is equipped with cup anemometers at five heights up to 114.7 m, as well as wind vanes at three heights reaching up to 110 m,
i.e. just below the hub. Data from the mast is available at a sampling rate of 1 Hz. Additionally, a barometer, thermometer, and
hygrometer are available to derive air density.

A VP lidar of the type WindCube V2 is installed next to the met mast, measuring wind speed and direction at heights from
40 m up to 290 m. Various studies have shown a good agreement between cup anemometers and VP lidars for the measurement
of wind speed and direction (Gottschall et al., 2012; Clifton et al., 2018). Furthermore, the VP lidar is an established mea-
surement device for power performance testing and wind resource assessment according to IEC 61400-50-2:2022 (IEC, 2022).
The lidar sequentially measures line-of-sight velocities for a fixed scan pattern of 4 beams along a cone with half-opening
angle of 28°, combined with one vertically scanning beam. Wind speed and direction are then reconstructed at each measured
height from the line-of-sight velocities with every updated line-of-sight measurement, i.e. every 0.8 seconds. As the met mast
provides wind speed and direction measurements only for the lower half of the rotor, the VP lidar is used for measuring these
quantities from a height of 40 m to the top of the rotor.

A sketch of the relevant heights and distances of turbine, met mast and lidar are shown in Fig. 3. This study is based on a data

set of synchronized turbine, mast and lidar measurements collected for 115 days within the period from 30 July to 12 December
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2021. The data set contains significant variability of the ambient conditions as well as a large occurrence of southerly winds,

where the met mast is directly upwind of the turbine.

_ . _290m

! 250m
il

i 220m

205m

Figure 3. Sketch (to scale) of the test site with the relevant dimensions rounded to the next integer. Heights are given relative to ground level

at the turbine location. Blue labels: met mast measurement heights; red labels: lidar measurement heights.

2.3 Field measurements of shear and veer

The wind observer networks are trained based on measurements of the wind shear and veer, together with their corresponding
network inputs, as expressed in the first term of the objective function given by Eq. (3).

In this work, wind shear and veer measurements were provided by the VP lidar. In fact, the VP lidar measures at 12 heights
from 40 to 290 m above ground, thus including most of the rotor-swept area, which ranges from the lower blade tip (LBT)
point zr,pT = 25 m to the higher blade tip (HBT) point zgpT = 205 m.

Both for shear and veer, a linear best fit was first computed using the nine VP lidar measurements of wind speed V' and
direction I' included within the rotor-swept area, i.e. between 40 and 195 m above ground (see Fig. 3). Next, shear and veer

were computed as

_ V(zupt) — V(2LBT)
Y ZHBT — 2LBT
A — F(ZHBT) - 1—‘(ZLBT)7 (7b)

ZHBT — ZLBT

(7a)

where the terms at the numerators of these two expressions are computed via the linear fit evaluated at the lower and higher

blade tip points, respectively.
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Before using these lidar-based rotor-effective wind characteristics for training, their accuracy was verified against the IEC-
compliant met mast present at the site. Vertical shear and veer were derived from the mast measurements following the same
linear-fitting procedure previously described for the lidar, i.e. using

V(znuB) — V(2LBT)
ZHUB — ?LBT

N I'(zauB) — F(ZLBT)‘

ZHUB — ALBT

Ry Low =

(8a)

(8b)

Notice that, since the mast reaches only up to hub height zgup, the resulting shear and veer are defined over only the lower
half of the rotor disk.

To perform a valid comparison, also the shear and veer derived from the lidar were computed over the lower part of the
rotor, which was obtained by considering only measurements in the range from 40 to 115 m. Figure 4 shows the results of this
comparison in the form of +6-min-10-min averages, reporting the met mast measurements on the  axis and the corresponding
lidar quantities on the y axis. Wind speeds at hub height, shown in Fig. 4a, have a high Pearson coefficient R of 0.99 and a mean
absolute error (MAE) of about +220.122 ms~!. There is a high correlation also for wind shear and veer, which have Pearson
coefficients of 0.97 and 0.95, respectively, as shown in Fig. 4b and c. In addition to the different measurement technology,
differences might be caused by the fact that the mast reaches down to 25 m above the terrain, whereas the lowest measurement
point for the lidar is at 40 m. Figure 4c suggests the existence of a slight slope difference for veer. This might be caused by
the met mast, because vertical veer is obtained only from two heights above ground, and possibly because of some minor
misalignment of its wind direction sensors. Given its uncertain origin, lidar measurements were not recalibrated to eliminate
this effect.
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Figure 4. Correlation of 10-min averages of measured quantities from the met mast (z axis) and VP lidar (y axis). Hub-height wind speed (a);
lower-half-rotor vertical shear (b); lower-half-rotor veer, both in absolute [°] (i.e. between z gt and zyyp) and in relative [°m™!] terms (c).
Black solid line: ideal match; R: Pearson’s correlation coefficient; N: number of data points; MAE: mean absolute error; RMSE: root mean

square error.



3 Results

185 The wind observers for shear and veer formulated in Sect. 2.1 were tested on a dataset collected at the site described in Sect. 2.2.
The next pages explain first in Sect. 3.1 the identification of the observers from a subset of the data. Next, Sect. 3.2 presents

the results obtained by using the observers on an independent validation subset.
3.1 Observer identification

The data set was cleaned, to retain only data points when the turbine was operational and all necessary measurements (SCADA,

190 strain gauges, lidar) were available. This resulted in about 18 full days of valid data points, ef-which-about-spread between

August and December. The training subset was obtained by picking at random 67% of the data points (i.e. about 290 hours)
were-used-for-training,leaving-the-rest-within the whole set, to exclude effects due to seasonal variability. The remaining set

(i.e. about 138 hours) was used for validation. Although in principle the observer could be trained directly on high-frequenc
data, following the example of Kim et al. (2023) 10-min averages were preferred, in order to mitigate the effects of possible

195 outliers. The ranges and number of occurrences of values of wind speed V, air density p, vertical shear x,, and veer Af in the

two data sets are shown in Fig. 5.
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Figure 5. Range and number of occurrences of +0-min-10-min averages of wind speed (a), density (b), vertical shear (c), and wind veer (d).

Blue: training data set; red: validation data set.

Air density p and wind speed V' appearing in the network inputs (see Eq. 4) were measured as follows. Air density was
derived from the available measurements of pressure, temperature, and humidity, using the ideal gas laws. Wind speed was
obtained by means of an observer based on the standard SCADA signals of power, rotor speed and blade pitch (Soltani et al.,

200 2013). The use of an observer, which is based only on standard operational data, renders the shear and veer observers usable
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on common production machines, where a lidar or a neighboring met mast might not be available. A MoWiT model (Fricke
et al., 2021) of the ADS turbine was used to generate offline a look-up table (LUT), storing the dependency of produced power
on ambient wind speed, pitch angle and rotor speed, considering mechanical losses in the drive-train and the efficiency of the
generator. Next, the LUT was inverted by a Newton iteration using the aerodynamic torque obtained from the dynamic torque-

balance equation, and on measured power, pitch and rotor speed from the SCADA data stream; rotor acceleration was obtained

by deriving with respect to time the measured rotor speed. Figure 6 shows the correlation between +0-min-10-min averages of
the rotor-effective wind speed (REWS) from the observer, reported on the y axis, and the wind speed obtained by averaging the
available lidar measurements along the rotor height, reported on the x axis. The match between these two quantities is good;

with-characterized by a Pearson coefficient of 0.98 and a MAE of about 0.35 ms™1.

20
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Figure 6. Correlation of +6-min-10-min averages between the rotor-average wind speed measured by the lidar (x axis) and the rotor-effective

wind speed measured by the observer (y axis). Black dashed line: ideal match.

Both for the shear and veer observers, the best-performing network configuration was found by trial and error to comprise
of one single hidden layer and 10 neurons. Both networks took of the order of a few seconds for training on a standard desktop

computer.
3.2 Shear and veer observer performance

After training, the two observers of shear and veer were tested on the 10 Hz 138-hour-long validation data set.
Figure 7 reports the results in terms of +0-min-10-min averages. Quantities estimated by the observers are reported on the
y axis, while the lidar-measured references are on the x axis. Figure 7a indicates an excellent match for shear, with a Pearson

coefficient R = 0.947 and an RMSE of about 4.015- 1072 s~!. Figure 7b indicates a slightly lower quality of the results for

10
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veer, with R = 0.879 and a larger scatter, as quantified by an RMSE of about 5.78°. MAEs are 3-10~3 s~! and 4°, respectively,

for shear and veer.
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Figure 7. Correlation of +6-min-10-min averages between estimated wind characteristics (y axis) and their reference lidar-measured quantities

(x axis). Vertical shear k., (a); wind veer Af¢a} (b). Black dashed line: ideal match.

Exemplary time histories of observed and reference quantities are given in Fig. 8. Figure 8a and b show the estimated (red)
and reference (blue) wind shear and veer, respectively. Additionally, Fig. 8c reports the wind direction at the site, where a
horizontal black solid line indicates the 189° direction for which lidar and turbine are aligned. The observation of shear and
veer was performed at 1 Hz, and results were then averaged with a 1 min moving window. The figures indicate that the observed
quantities follow quite well their respective references, both in terms of trends and mean values. There is a particularly good
match between 5 am-AM and 7 amAM, when lidar and turbine are aligned, although some of the worst match is between
4 am-AM and 5 amAM, when the two are also almost aligned. However, the two observes are clearly capable of detecting the

diurnal cycle, characterized by a higher shear and veer during the night, but also rapid events such as the spike observed around
9:30

Finally, to provide with more statistically relevant results, Fig. 9a and b respectively show the MAEs of the observed shear

and veer as functions of wind speed, for different turbulence intensity (TT) values. Figure 9c reports the number of available

data hours for each specific speed and TI bin. MAEs were computed after averaging 1 Hz observations over 10 minutes, and

then comparing them with their respective lidar-measured references. Interestingly, both-the-observed-shear-and-veer-appear

11
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Figure 8. Time histories of vertical shear (a), wind veer (b), and wind direction measured at the mast (c). Blue: observed quantities; red:

lidar-measured reference.

It is difficult to draw strong.
conclusions, as not all wind speed bins are equally populated. In the intermediate wind speed region — where more data points
are available — it appears that, as expected, errors are slightly larger for higher TI values. However, in the 7 to 11 ms" range
there are more than twice the data points for low (5-10%) TI than for intermediate (5-10%) TI values. It also appears that
errors might be increasing around the lowest and highest wind speeds. This could be due to the smaller loading on the wind
turbine in these conditions, because of the small dynamic pressure at low wind speeds and of the large blade pitch at the higher
ones. However, these findings should be confirmed by larger and better populated data sets. These findings should-however be

4 Conclusions

This paper has demonstrated that it is possible to observe vertical wind veer from the operational response of a large wind
turbine. The paper also performed the first validation of the observation of shear and veer over the full rotor height with
respect to reference measurements obtained with a VP lidar. The study was conducted at the BHV test site using the highly

instrumented 8 MW ADS8-180 wind turbine. Additionally, the presence on site of an IEC-compliant met mast allowed for a
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Figure 9. MAE of vertical shear r.,,_(a) and wind veer AbL (b), and hours of available data (c) vs. binned rotor-effective wind speed V/, for

different TI levels.

comparison — although limited only to the lower half of the rotor — of the lidar-measured wind speed, shear and veer, enhancing
the confidence in the results.

250 Based on the results reported herein, the following conclusions can be drawn:

— The correlation between +6-mir-10-min averages of the observed and lidar-measured shear and veer results in Pearson
coefficients of R =0.947 and R = 0.879, respectively. The quality of shear is presumably better because its observation
relies only on 1P harmonics, whereas veer requires also the 2P components, which are probably more affected by

turbulence.
255 — For the same reason, veer has a higher scatter than shear, as seen in Fig. 7.

— Both the shear and veer observers seem capable of tracking both slow and relatively fast changes in ambient conditions.
In particular, the exemplary time history reported in Fig. 8 indicates the ability to follow rapid-changes of the duration
of the order of tens of minutes with good accuracy. The examination of other similar time histories, not reported here for

brevity, supports and confirms this finding.
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— Results-Definitive indications on the effects of TI and speed on the quality of the estimates are not possible because of
the uneven population of the bins. However, results aggregated over the whole validation data set indicate typical MAEs

for-veerin the neighborhood of 4° and-fershearfor veer and around 3-1073 s~! —Forboth-quantities; there-is-apparently

speedsfor shear.
In general, these results seem to indicate the ability of the harmonic-based observers to estimate shear and veer from the

operational response of a wind turbine, with a close match to the widely adopted vertical profiling lidar. In evaluating these

results, however, two remarks are in order:

— The lidar measurements cannot be assumed as an absolute ground truth. In fact, as all measurements, they are affected
by various sources of error, and they represent spatial and temporal averages that differ from the ones performed by the
observer and by the anemometry installed on the mast. Additionally, the mast-lidar is not exactly co-located with the
turbine, it is not always exactly in front of it, and it is does not even span exactly the same height, as it starts measuring
a bit-small distance above the LBT. Therefore, an exact match between observers and lidars cannot and should not, in
general, be expected. One source of discrepancy could be removed by the use of a forward staring lidar, which would at

least always provide wind measurements directly upwind of the turbine.

— Some of the speed and TI bins are not well populated, which might have some effect on the significance of the perfor-
mance statistics. This source of uncertainty could be removed by the use of longer data sets, which however were not

available for this study.

Appendix A: Harmonic content of the observers

Following Eggleston and Stoddard (1987), the-an elementary model of blade dynamics can be obtained by considering a rigid

flapping blade, connected to the rigid hub by a hinge, as shown in Fig. Al.
The flow speed components normal (noted u,,) and tangential (noted ;) to the-retor-disk—a generic cross section of the

flapping blade can be written

un:V(l—a)—Vns%cosdz—Vgﬁsinzb, (Ala)

uy = Qr, (Alb)

where a is the axial induction, {3 is the (small) blade flap angle, 1) is the azimuthal blade position (where 1) = 0 when the blade
is vertical pointing downwards), r is a-spanwise-position-the spanwise position of the cross section, R the rotor radius, Vj is

the cross-flow (i.e., a lateral wind speed component parallel to the rotor disk plane), and €2 the rotor speed. When the inflow is

veeredpresents a veer Af, the cross-flow can be written as Vo = Af(r/R) cos . The flapwise bending moment on the blade is

14
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Figure Al. Elementary model of a flapping blade. (a): side view, with rigid flapping segment hinged at the rigid hub at point H. (b): view

erpendicular to the plane of the cross section, showing the section-relative flow components u,, and ;.

obtained by integrating the lift L along the blade span, where

1 1
L= §pu2cC’Laoc ~ §ch'La (uppue — Oyu?), (A2)
where u ~ u, is the flow speed at the blade section, c is the chord, C7,, is the lift slope, e-retip/tr—H-0 = uy /us — 7 the

angle of attack (considering small angles), and finally ¢~y is the pitch angle.
Inserting the second-expression-of-Eqexpression for u,, and u; given by Egs. (A2Al) into Eq. (A+A2), it follows that lift, and

hence bending moments, depends on terms proportional to x4 cost) and Afsine) cosyp = 2A0sin(21)). Hence, shear leaves a

mark on the 1P harmonic of blade loads, and veer on their 2P harmonics.

Data availability. Data from the field measurements can be requested to JG. All figures and the data used to generate them can be retrieved
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