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Abstract. Large-scale flow structures are vital in influencing the dynamic response of floating wind turbines and wake me-

andering behind large offshore wind turbines. It is imperative that we develop an inflow wind turbulence model capable of

replicating the large-scale and low-frequency wind fluctuations occurring in the marine atmosphere since the current turbulence

models do not account well for this phenomenon. Here, we present a method to simulate low-frequency wind fluctuations. This

method employs the two-dimensional spectral tensor for low-frequency, anisotropic wind fluctuations presented by Syed and5

Mann (2024) to generate stochastic wind fields. The simulation method generates large-scale 2D spatial wind fields for the lon-

gitudinal u and lateral v wind components, which can be converted into a frequency domain using Taylor’s frozen turbulence

hypothesis. The low-frequency wind turbulence is assumed to be independent of the high-frequency turbulence; thus, a broad

spectral representation can be obtained just by superposing the two turbulent wind fields. The method is tested by comparing

the simulated and theoretical spectra and co-coherences of the combined low- and high-frequency fluctuations. Furthermore,10

the low-frequency wind fluctuations can also be subjected to anisotropy. The resulting wind fields from this method can be

used to analyze the impact of low-frequency wind fluctuations on wind turbine loads and dynamic response and to study the

wake meandering behind large offshore wind farms.

1 Introduction

Several models are available for generating high-frequency wind fluctuations within a three-dimensional space. These mod-15

els can generate realistic wind fields that can be used for load estimation on structures such as bridges, wind turbines, and

buildings. For wind turbine design and load calculations, the International Electrotechnical Commission (IEC) standards (IEC,

2019) recommend two commonly used models: the Mann uniform shear model (Mann, 1994, 1998) and Kaimal spectral and

coherence model (Kaimal et al., 1972; Veers, 1988). A notable advantage of these two models is simulating realistic small-scale

turbulence without exorbitant computational time and resources. In contrast, Large Eddy Simulation (LES) or other numerical20

solutions of the Navier-Stokes equations have proven to be computationally expensive and unfeasible for the wind turbine

design process.

While high-frequency fluctuations have more influence on the stresses and fatigue loads experienced by the blades and

tower of a wind turbine, low-frequency fluctuations can significantly affect the overall energy production and capacity factor

of a wind farm. In the context of floating offshore wind turbines, low-frequency wind fluctuations may be of significant25

importance in terms of dynamic response and loading since these structures can have very low natural frequencies (Nybø et al.,
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2022). Low-frequency fluctuations are also crucial for meandering wakes behind wind farms, affecting power fluctuations and

dynamic loads. The dynamic wake meandering model of Larsen et al. (2008) uses the low-frequency turbulence to move the

wake deficit, but it uses a normal turbulence spectrum that does not take into account the excess power spectral energy at low

frequencies often seen offshore (Sathe et al., 2013; De Maré and Mann, 2014; Cheynet et al., 2018). Thus, we need a fast30

method for simulating realistic low-frequency wind fluctuations that can be easily integrated with high-frequency wind fields

to get a comprehensive spectral range representation.

Here, we present a method for simulating low-frequency wind fluctuations based on the two-dimensional spectral tensor

introduced in Syed and Mann (2024). At low frequencies, only the longitudinal (u) and lateral (v) wind components have

strong fluctuations since, at least close to the ground, the presence of the land or sea blocks the vertical large-scale movements.35

Thus, the vertical wind (w) fluctuations at low frequencies attenuate or weaken considerably, rendering the turbulence two-

dimensional (2D). The 2D turbulence model only describes the u and v fluctuations in the low-frequency range and assumes

that these fluctuations do not vary in the vertical direction. The algorithm to generate stochastic wind fields from the 2D

turbulence model is similar to the one described in Mann (1998). The 2D wind field is represented as a discrete Fourier series,

which takes the mean squared amplitude of the Fourier coefficients from the 2D spectral model. These coefficients are then40

multiplied by a random Gaussian field. Subsequently, the resulting product’s inverse discrete Fourier transform yields the

stochastic wind field.

Section 2 of this paper describes the low-frequency, 2D turbulence model, along with model validation details. Section

3 outlines the process for simulating 2D wind fields containing 2D turbulence. Section 4 describes combining 2D and 3D

wind fluctuations to create turbulence boxes that represent a wide spectral range. Finally, a discussion regarding the effect of45

anisotropy on the 2D turbulence and some basic guidelines to generate 2D wind fields for the wind turbine design load process

is presented in Section 5.

2 Low-frequency turbulence model

The two-dimensional, incompressible, and isotropic turbulence has the spectral tensor form of (Batchelor, 1953)

ϕij(k1,k2) =
E(k)

πk

(
δij −

kikj
k2

)
, (1)50

where E(k) is the energy spectrum, k is the magnitude of the horizontal wave vector k = |k|=
√
k21 + k22 and δij is the

Kronecker delta. The assumption of incompressibility is an approximation. Alcayaga et al. (2022) observe some divergence in

a horizontal plane at wind turbine relevant heights. We assume that the energy spectrum is given by

E(k) =
ck3(

L−2
2D + k2

)7/3 , (2)

where c is a constant and a scaling parameter, and L2D is the corresponding length scale of low-frequency fluctuations. This55

particular shape of (2) is inspired by the von Kármán (1948) spectra. The variance of any horizontal velocity component can
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be found by

σ2 = σ2
11 = σ2

22 =

∞∫
0

E(k) =
9

8
cL

2/3
2D . (3)

Due to isotropy, the variance is the same for both wind components. Now, let us introduce scale-independent anisotropy in the

energy spectrum. We replace the horizontal wave vector k = |k|=
√
k21 + k22 with κ where60

κ2 = 2(k21 cos
2ψ+ k22 sin

2ψ) , (4)

and 0< ψ < π/2 is the anisotropy parameter. Now, the energy spectrum with anisotropy parameter takes the form of

E(κ) =
cκ3(

L−2
2D +κ2

)7/3 . (5)

When ψ = π/4, k = κ and (5) takes the form in (2). By inserting E(κ) into (1) we can obtain two-point cross spectra χ2D
ij and

one-point spectra F 2D
ij using65

χ2D
ij (k1,∆y) =

∞∫
−∞

ϕij(k1,k2)exp(−ik2∆y)dk2 , (6)

where F 2D
ij (k1) = χ2D

ij (k1,0) is the one-point cross- or auto-spectrum depending on whether the component indices i and j are

different or equal. The anisotropy parameter ψ determines the spectral distortion in the wavenumber domain and the spectrum

magnitudes of longitudinal and transverse wind components. When the 2D turbulence is isotropic (ψ = π/4), F 2D
11 = 3

5F
2D
22 in

the k−5/3
1 range. For the anisotropic cases, the ratio can be found using70

F 2D
11

F 2D
22

=
3

5
cot2ψ . (7)

The anisotropy parameter can be obtained from measured spectra at frequencies below ∼ 10−3 Hz. As observed from the

analysis of real offshore measurements in Syed and Mann (2024), the subrange below f < 10−3 Hz follows a S(f)∝ f−5/3

relation, where S(f) is the velocity spectrum in terms of frequency. Thus, ψ can be evaluated as:

ψ = arctan

(√
3

5

Sv(f)

Su(f)

)
, (8)75

for f < 10−3 Hz, corresponding to fluctuations with a period longer than approximately 16 minutes. The energy spectrum

must be attenuated at the wavenumbers corresponding to small-scale 3D turbulence. This is necessary because we assume

low-frequency fluctuations are independent of high-frequency fluctuations, and at very high wavenumber, only small-scale

3D turbulence is present. This high wavenumbers range is referred to as the inertial subrange. The turbulence is isotropic

in this range and follows a power law (Pope, 2000). For practical reasons, we attenuate the low-frequency turbulence at80
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wavenumbers higher than 1/zi where zi is the boundary-layer height. This implies that any eddy with a length scale smaller

than the boundary-layer height would be considered 3D turbulence. The attenuated E(κ) can be defined as

E(κ) =
cκ3(

L−2
2D +κ2

)7/3 1

1+κ2z2i
. (9)

Here, the attenuation factor 1/(1+κ2z2i ) is an activation function that ensures the energy spectrum smoothly drops to zero for

wavenumbers greater than 1/zi. This drop is accelerated due to an increased negative slope of the spectrum for κ > 1/zi, i.e.,85

E(κ)∝ κ−11/3. Sigmoid functions such as a hyperbolic tangent or a logistic function can also be used as an attenuation factor.

From (6) we can obtain F 2D
ij as following

F 2D
11 (k1) = c

(
Γ
(
11
6

)
L

11
3

2D

{
− p2F1

(
5
6 ,1;

1
2 ;p
)
− 72F1

(
5
6 ,1;

1
2 ;p
)
+22F1

(
− 1

6 ,1;
1
2 ;p
)}

10
√
2πΓ

(
7
3

)
(L2

2D − z2i )sin
3(ψ)a

5
6

+
L

14
3

2D

√
b

2
√
2d

7
3 z3i sin3(ψ)

)
, (10)

and

F 2D
22 (k1) = ck21

(
−

z4i a
1
6 L

11
3

2DΓ
(
17
6

)
55
√
2π (L2

2D − z2i )
2
bΓ
(
7
3

)
sin(ψ)

(
−9− 262F1

(
−1

6
,1;

1

2
;p

)
+ p2

{
15− 302F1

(
−1

6
,1;

1

2
;p

)
− 592F1

(
5

6
,1;

1

2
;p

)}
+352F1

(
5

6
,1;

1

2
;p

)
+15p3 2F1

(
5

6
,1;

1

2
;p

)
+ p
{
− 54+882F1

(
−1

6
,1;

1

2
;p

)
+92F1

(
5

6
,1;

1

2
;p

)})

−
L

14
3

2D√
2bd

7
3 zi sin(ψ)

)
, (11)90

where

a= 1+2k21L
2
2D cos2(ψ) ,

b= 1+2k21z
2
i cos

2(ψ) ,

p=
L2
2D b

z2i a
,

Γ is the Gamma function and 2F1 is the hypergeometric function. The two-point cross spectra χ2D
11 (k1,∆y) and χ2D

22 (k1,∆y)95

for the attenuated energy spectrum in (9) to our knowledge do not have any analytical solution but can be obtained through

numerical integration techniques. An example of F11 with and without attenuation at high wavenumbers is shown in Fig. 1.

It is important to note that although this model utilizes the wavenumber information to generate a spatial field containing

large-scale fluctuations, Taylor’s frozen turbulence hypothesis can be used to sweep the spatial field into a frequency domain.
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Figure 1. Effect of attenuation at high wavenumbers on F11 spectrum. Here the model parameters are: L2D = 20 km, zi = 500 m, and

ψ = 43◦

More intricate models, such as those presented by Wilczek et al. (2015) and de Maré and Mann (2016), characterize spatio-100

temporal turbulence structures as a function of both wavenumber and frequency. However, for the sake of simplicity, the model

presented here disregards the temporal variation or distortion of eddies.

The 2D turbulence model (Syed and Mann, 2024) combined with the Mann Uniform Shear model for 3D turbulence was

validated against measurements from two offshore sites: 10 Hz ultrasonic measurements from FINO1 research platform in

the North Sea and line-of-sight (LOS) wind measurements from a forward-looking nacelle lidar in the Hywind Scotland105

offshore wind farm. A good agreement was recorded between observed and predicted auto-spectra, cross-spectra, and co-

coherences. The measured data was classified into different atmospheric stability classes, and it was found that for a 1-hr time

series, low-frequency fluctuations existed in all stability classes. However, the relative strength of 2D turbulence, compared

to 3D turbulence, was more dominant during stable stratification. For the 1-hr time series, the mesoscale turbulence peak

corresponding to L2D was also not observed. At both sites, the low-frequency turbulence was in the F (k)∝ k
−5/3
1 range. For110

the FINO1 site, the measured value of ψ was close to 45◦ in the low-frequency range, representing isotropic 2D turbulence. At

Hywind Scotland, we observed ψ < 40◦ reflecting the anisotropy in the 2D turbulence.

In summary, the low-frequency turbulence model has four input parameters:

1. σ2
2D the variance exhibited by low-frequency fluctuations (excluding the attenuation),

2. L2D the length scale corresponding to the peak of mesoscale turbulence,115

3. ψ the anisotropy parameter, and
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4. zi the attenuation length, which is assumed to be the boundary layer height.

3 2D wind field simulation

Here, we follow the recipe of Mann (1998) to simulate low-frequency, anisotropic wind fields. The 2D turbulence is assumed

to be statistically homogeneous in horizontal directions and constant in the vertical direction. Taylor’s frozen turbulence hy-120

pothesis is also employed to convert the wavenumber domain into the frequency domain. The wind field will be simulated

on a horizontal grid with N1 and N2 grid points in the longitudinal and transverse directions, respectively. The length of the

grid in two directions would be L1 =N1 · dx and L2 =N2 · dy. Following Mann (1998), the incompressible, homogeneous,

two-dimensional velocity field can be written as a sum of discrete Fourier modes:

ui(x) =
∑
k

exp(ιk ·x)Cij(k)nj(k) , (12)125

where
∑

k denotes the sum over all wavevectors k, where ki =m2π/Li for m=−Ni/2, ...,Ni/2. Cij(k) are the Fourier

coefficients, and nj(k) are independent Gaussian stochastic variables. Here, the summation over repeated indices is assumed.

The solution to (12) is approximately

Cij(k)nj(k) =
1

L1L2

∫
A

ui(x)exp(−ιk ·x)dx , (13)

where
∫
A
dx is integration over the area L1 ×L2. The process of obtaining Cij involves multiplying (13) with its complex130

conjugate which gives

C∗
ij(k)Cij(k) =

∫
ϕij(k

′)

2∏
(l=1)

sinc2
(
(kl − k′l)Ll

2

)
dk′ , (14)

where sincx≡ (sinx)/x. In the case if Ll ≫ L2D where l = 1,2 , (14) can be simplified to

C∗
ij(k)Cij(k) =

(2π)2

L1L2
ϕij(k) (15)

The length scale L2D corresponding to the mesoscale turbulence peak is quite large, usually in the order of 105 to 106 m.135

Simulating a high-resolution wind field containing the wavenumbers corresponding to L2D would be costly in terms of com-

putation time. Usually, L2 ≪ L2D when simulating wind fields for single wind turbine load calculations. So, the simplified

relation in (15) no longer holds true. We have observed that if we simplify the sinc2 function for L1 and replace it with 2π/L1

but integrate the sinc2 function for L2, we would get simulated spectra much closer to the target spectra.

C∗
ij(k)Cij(k) =

2π

L1

∫
ϕij(k1,k

′
2) sinc2

(
(k2 − k′2)L2

2

)
dk′2 . (16)140

To speed up the numerical integration, the limits of integration are k2−2π/L2 to k2+2π/L2. A correction factor is multiplied,

compensating the loss in variance due to the limited integration interval. This problem with discretization has been discussed
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Figure 2. Simulated and target F11 and F22 spectra for 2D rectangular grids having dimensions of (a) 40L2D × 5L2D and (b) L2D ×

0.125L2D . Solid lines represent the target spectrum, dashed lines represent simulated spectra from Cij(k) obtained using (15), and dash-dot

lines represent Cij(k) obtained using (16). The simulated spectra are obtained from the mean of 10 realizations. Other parameters are:

σ2 = 2 m2s−2, zi = 500 m, and ψ = 45◦
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Figure 3. Simulated low-frequency fluctuations of longitudinal u and transverse v wind components. Here the input parameters are: L2D =

15 km, σ2 = 0.6 m2s−2, zi = 500 m, and ψ = 43◦

in detail by Mann (1998). The Fourier coefficients obtained from (15) or (16) after taking a matrix square root are then

multiplied by a random Gaussian field. The resulting product’s inverse discrete Fourier transform would yield the wind field.

Figure 2 illustrates the effect of discretization on the simulated spectra. In Fig. 2(b) when L2 ≪ L2D, Cij(k) obtained via (15)145

underestimate F11(k1) and overestimate F22(k1) at very low k1 values. In such cases, Cij(k) must be evaluated using (16).

Figure 3 shows the simulated u and v low-frequency fluctuations, where the input parameters are: L2D = 15 km, σ2 = 0.6

m2s−2, zi = 500 m, and ψ = 43◦. These parameters, with the exception of L2D, are representative of typical neutral conditions

for 8< U <10 ms−1 at the FINO1 offshore site. Here, large-scale coherent structures can be identified along the longitudinal

axis for the u component. We can also observe the almost equal variance in the u and v fluctuations due to ψ being close to150

the isotropic value of 45◦. The one-dimensional spectra of this simulated 2D wind field are illustrated in Fig. 7 (a). The spectra

derived from the simulated wind field are in excellent agreement with the theoretical spectra mentioned in (10) and (11).

Normalized cross spectra (co-coherence, the real part of the cross-spectrum divided by the auto-spectrum) for the simulated

2D wind field components are also compared with the theoretical expression in 6. In Fig. 4, co-coherence of u and v is plotted

as a function of k1 for separations ranging from 750 m to 7500 m. Once the lateral separation distance ∆y approaches L2D (in155

this case 15 km), the normalized cross-spectra decreases significantly.
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Figure 4. Co-coherence of u and v fluctuations at different ∆y separations for the 2D wind field shown in Fig. 3. The dashed curves show

theoretical values, and solid curves show simulated values

4 Combining 2D and 3D fluctuations

Mann (1994) presented the Uniform shear model for small-scale turbulence in the neutral atmosphere. We combine the two

models, assuming that the large-scale and small-scale fluctuations are independent. Combining the mesoscale and microscale

turbulence in the frequency or wavenumber domain requires an assumption of weak or no correlation between the two scales.160

Högström et al. (2002) provided a qualitative framework for combining the spectra at large and small scales in the atmosphere

by a simple superposition method. On a similar pattern, Kim and Adrian (1999) noted that the one-dimensional spectrum of

streamwise velocity in a turbulent pipe flow has a bimodal representation of high and low wavenumber modes. These two

modes are associated with small and large-scale turbulent motions, respectively. Superposing these two modes gives a good

general representation of the measured spectra over the whole wavenumber domain since the two modes are uncorrelated.165

Figure 5 displays a 2D+3D turbulence wind field of u and v wind components for relatively smaller dimensions. The

3D wind field is generated by the Mann uniform shear turbulence model, which has three input parameters: the dissipation

parameter αϵ2/3 = 0.01 m4/3s−2, the turbulence length scale L3D = 50 m, and the anisotropy parameter Γ = 2.5. The values

of the parameters selected here are typical of offshore wind conditions at the FINO1 site for neutral conditions (Syed and

Mann, 2024). The 3D turbulent wind field is also generated by the procedure presented in Mann (1998). Since the wind fields170

are assumed statistically independent, they can be added to get the combined fluctuations. In this case, the 2D wind field

components are directly added to all the vertical planes of the corresponding 3D turbulence box. We can observe the increased

variance in the combined 2D and 3D wind fluctuations. The large-scale coherent structures are still dominant, but we now also

observe smaller structures. A smaller vertical slice of the same wind field is illustrated in Fig. 6. Here, one can observe the
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Figure 5. Combined 2D+3D fluctuations of longitudinal u and transverse v wind components. The 2D turbulence parameters are the same

as in Fig. 3. 3D turbulence parameters are αϵ
2/3 = 0.01 m4/3s−2, L3D = 50 m, and Γ = 2.5

large shear in the v component compared to the u component. This implies that the phase difference between v fluctuations at175

different heights is higher (φv > φu), as observed in atmospheric turbulence measurements at multiple sites(Chougule et al.,

2012; Syed and Mann, 2024). The one-dimensional two-sided spectra of the 3D turbulence wind field by itself and combined

with the low-frequency fluctuations are shown in Fig. 7 (b) and (c), respectively. The resulting spectra add individual 2D and

3D wind field spectra over the wavenumber domain.

The u and v co-coherences of simulated combined 2D+3D wind field at different lateral and vertical separations are illus-180

trated in Fig. 8. The co-coherences are plotted for lateral and vertical separations ranging from 150 to 450 m. At lower k

values, the low-frequency fluctuations are fully coherent for all vertical ∆z separations, and we obtain co-coherence values

close to 1. This is because the low-frequency fluctuations are assumed to be constant in the vertical direction at any instant. The

same can not be said about the lateral ∆y separations, as we have observed a decrease in the u co-coherence of low-frequency

fluctuations for increasing lateral separations in Fig. 8(a).185
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Figure 6. Same as Fig. 5 but a vertical slice of combined 2D+3D fluctuations

Figure 7. Spectra of 2D, 3D, and combined 2D+3D fluctuations of longitudinal u and transverse v wind components. Solid lines present the

simulated spectra, and dashed lines reflect the theoretical spectra. The w spectra for 3D turbulence is also shown
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Figure 8. u and v co-coherences at different ∆y and ∆z values for combined 2D+3D fluctuations. The dashed curves show theoretical

values, and solid curves show simulated values
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5 Discussion

5.1 The effect of anisotropy parameter on 2D turbulence

As mentioned earlier, ψ = 45◦ represents isotropic 2D wind fields. Altering the ψ parameter by decreasing or increasing it

from 45◦ leads to the elongation of significant coherent structures, extending them longitudinally and laterally, respectively.

The effect of changing the anisotropy parameter ψ can be observed in Fig. 9. Here u and v fluctuations are shown on a 15190

km × 15 km grid for different values of ψ. Fig. 9(a) shows the u and v fluctuations for ψ = 20◦, and we can observe the

large-scale coherent structures in the longitudinal direction. These structures exhibit significantly larger values of fluctuations,

i.e. σ2
u > σ2

v . Fig. 9(b) illustrates the isotropic case when both u and v fluctuations have similar strength and σ2
u = σ2

v . By

increasing the value of ψ to 70◦ (Fig. 9(c)), the large-scale coherent structures in the lateral direction get stretched and we also

observe σ2
u < σ2

v .195

The length scales of the two velocity components can be determined by identifying the maximum of kiF 2D
ii (ki) for i=

1,2. Let Li,ki
≡ 1/kmax,i, where kmax,i denotes the wavenumber at the peak of kiF 2D

ii (ki). These length scales can be

computed numerically. At ψ = 45◦, the ratio Lu,k1
/Lv,k2

equals 1, indicating that the length scales of u and v are equivalent

in the k1 and k2 directions, respectively. When ψ < 45◦, turbulence structures elongate in the longitudinal direction, resulting

in Lu,k1/Lv,k2 > 1. Conversely, for ψ > 45◦, the inverse holds true. Moreover, the ratios Lu,k1/Lv,k1 and Lv,k2/Lu,k2 are200

independent of the anisotropy parameter. It is noted that these length scale ratios are approximately equal to
√
3, or about 1.73.

5.2 Guidelines for simulating 2D wind-fields

Usually σ2
2D, and ψ are obtainable at a specific site through fitting (10) and (11) to the measured spectra. For zi, some advanced

measurements like ground-based remote sensing tools such as a ceilometer can be used or obtained through reanalysis data

sets or simply estimated. To obtain L2D through measurements, we would need a time series spanning from 10 days to 1205

month (see Fig. 3 in Larsén et al. (2016)). This suggests L2D to be in the order of 105-106 m. Such extremely low frequencies

corresponding to L2D are not interesting for the wind turbine design process. For fitting (10) and (11) to the measured spectra

we can assume L2D →∞. But for wind field simulation purposes, this is not realistic since it would lead to σ2
2D →∞. For

load estimation on wind turbine structures, a 1-hr time series is usually sufficient for estimating the impact of low-frequency

fluctuations. Hence, an arbitrarily high value of L2D can be used to simulate low-frequency wind fluctuations. An example of210

this is shown in Fig. 10 where a value of L2D = 150 km is used to plot the theoretical spectra in (10) and (11) over the u and

v spectra measured at FINO1 test site.

An unwanted effect of the simulation method presented here is the periodicity in wind fluctuations, which was also discussed

by Mann (1998). The periodicity implies that wind fluctuations at grid points on either side of the box j and N2 − j+1 for

small j are coherent. This behavior is shown in Fig. 11 where co-coherence of u fluctuations is plotted as a function of lateral215

distance. It can be observed that both the simulated and model co-coherence values decrease when y approaches L2/2. Due to

periodicity, the simulated co-coherence increases for y > L2/2. The solution to this problem is choosing L2 at least twice the

characteristic length of the structure under analysis. In the case of wind turbines, L2 should be at least greater than twice the
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Figure 9. Effect of anisotropy parameter ψ on the wind field: (a) ψ = 20◦, (b) ψ = 45◦ (isotropic turbulence), and (c) ψ = 70◦. Here the

other input parameters are: L2D = 5 km, σ2 = 1 m2s−2, zi = 100 m
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Figure 10. An example of theoretical spectra plotted over measured spectra obtained from FINO1 at z = 81 m, and U = 10 ms−1. (10) and

(11) are plotted with L2D = 150 km and zi = 100 m

Figure 11. An example of periodicity in 2D wind field simulation

rotor diameter of the wind turbine. A good practice is to simulate the low-frequency fluctuations on a much larger grid than the
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high-frequency fluctuations. To combine the 2D and 3D turbulence, a smaller section of the 2D wind field, equal in length and

grid points to the 3D turbulence plane, is added to all the vertical levels of the 3D turbulence box.220

6 Conclusions

A method to generate the low-frequency wind fluctuations is introduced. This method utilizes the spectral tensor presented

by Syed and Mann (2024) to generate 2D stochastic wind fields for the longitudinal u and lateral v wind components. The

generated wind fields contain large-scale and low-frequency wind fluctuations called 2D turbulence. The model employs four

input parameters: (i) the variance characterizing low-frequency fluctuations σ2
2D, (ii) a length scale corresponding to large-225

scale flow structures L2D, (iii) an anisotropy parameter ψ, and (iv) a cutoff or attenuation length zi. The simulation method

uses the wind field presented as a discrete Fourier series, where Fourier coefficients are derived from the 2D spectral model.

The coefficients are then multiplied by a random Gaussian field. Subsequently, the product’s inverse discrete Fourier transform

yields a 2D wind field featuring low-frequency, anisotropic wind fluctuations. Issues arising from the discretization, such

as underestimation of the spectral density at very low wavenumbers and periodicity, are also addressed in this study. Some230

guidelines to simulate the wind fields containing 2D turbulence are also provided in the context of wind energy applications.

The 2D turbulence wind field can be added to a 3D turbulence field to get the spectral representation over a wide frequency

range. We combined the 2D turbulence wind field with a 3D turbulence field generated using the Mann uniform shear turbulence

model. The spectra and co-coherences from the combined simulated 2D+3D turbulence wind are compared with the theoretical

expressions, and an excellent agreement was observed. The 2D turbulence simulation program is open-source and can be235

accessed via the link in the "Code Availability" section.
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