
Response to Reviewer 1

Many thanks for your detailed comments and questions regarding our Brief Communication. In this response,
we have included your comments/questions (framed, black font, italics) followed by our response (red font)
to each point raised. When references are used, they can be found in the submitted manuscript or full
citations are given in this response.

When preparing our response we noted a typo in Table 2 in the paper. The value of the proportional
gain kp must be changed from 3e-6 s/rad to 3e-2 s/rad.

“This paper considers the optimization of wind turbine torque controllers that track an optimal TSR
value for below-rated load operation. Due to wear/tear/ fouling the properties of the turbine rotor change
over time, possibly leading to a shifted location of the optimal TSR, leading to suboptimal operation when
this parameter remains nominal and uncalibrated. A novel LP-PIESC scheme is proposed to calibrate
the TSR setpoint value.

The motivation of the paper is relevant, although numerous other works have been done in this field,
which should be included and acknowledged in the introduction. Furthermore, I think that the major
contribution of this paper is the LP-PIESC scheme, which supposedly can provide faster (instantaneous?)
convergence. First, the new ESC scheme is not well described, leaving many questions about its working
principles. Second, the tuning procedure of the scheme is not explained (only Appendix A elaborates
on the excitation frequency). Third, the instantaneous convergence results are questionable: there is
no excitation before the convergence, so how is the gradient obtained? Also, please explain how it is
possible that there is instantaneous convergence; to me, this seems impossible without prior knowledge
of the optimal setpoint value. Overall, I think this work needs significant improvements before it can be
considered for publication in WES.”

The aim of our work is to provide numerical evidence of the existence of a class of extremum seeking
algorithms (LP-PIESC) that can quickly identify optimal TSR despite changes in average wind speed and
turbulence intensity (TI) for situations where TSR values have shifted to unknown values. We heavily rely
on existing literature on extremum seeking control without presenting rigorous mathematical proofs.

The LP-PIESC algorithm has two main components: an identifier for parameter estimation and a PI
controller using one of the the estimated parameters. Both components have been described in great detail
already; see, for example, Guay and Dochain (2017). The parameter estimation in this reference has roots in
prior work such as Guay and Dochain (2015), “A time-varying extremum-seeking control approach,” Auto-
matica, 51. Thus, there is already available literature to understand the working principles of this algorithm.
Note that our WES manuscript is a “Brief communication.” Thus, we must rely on the open literature for
existing work. Having said that, we are happy to provide some intuition behind the parameter estimation
algorithm to facilitate understanding of the working principles of the PIESC. The intuitive arguments given
below are based on the work of Guay, M., and Dochain, D. (2015).

Let us consider a simpler static optimization problem, where the goal is to minimize an instantaneous
cost J(u) by proper choice of control u. Let y denote the instantaneous measurement of J(u). That is,
y = J(u). Now take the time derivative of y to get

ẏ =
∂J

∂u

T

u̇ = ϕT θ (a)

where ϕ = u̇ is the regressor and θ = ∂J/∂u the time varying gradient we seek to identify.

Let θ̂ denote the estimate of θ at time t. The algorithm to estimate θ̂ belongs to a class of prediction error
methods for problems with time-varying parameters. The proposed predictor ˙̂y for the output dynamics ẏ
is given by

˙̂y = ϕT θ̂ +Ke+ cT
˙̂
θ (b)

where e = y − ŷ is the output predication error (y is measured), K is a constant (scalar) gain to drive the
prediction dynamics ˙̂y with the output prediction error e and cT is a filtered regressor obtained by low pass
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filtering ϕ; i.e.,
ċT = −KcT + ϕT (c)

where K is the scalar gain introduced in (b). Note that cT
˙̂
θ also drives the predictor dynamics ˙̂y to account

for the time-varying nature of θ.
The parameter estimate θ̂ we seek is calculated from the following differential equations:

˙̂
θ = Proj(Σ−1(c(e− η̂)− σθ̂), θ̂) (d)

Σ̇−1 = −Σ−1ccTΣ−1 + kTΣ
−1 − σΣ−2 (Σ̇ = ccT − kTΣ+ σI) (e)

˙̂η = −Kη̂ (f)

Guay and Dochain (2015, 2017), define the auxiliary variable η := e − cT θ̃, where θ̃ = θ − θ̂ is the actual
parameter error (with θ unknown). Note that cT θ̃ = e − η. Thus, if we also want to drive the update
differential equation (d) with information about the time-varying parameter error θ̃, then using e− η̂ in (d)
seems reasonable.This argument is based on intuitive interpretations of variables only.

A rigorous proof of convergence to a neighborhood of an optimum using this parameter estimation
algortihm coupled with a specific extremum seeking control law for u is given in Theorem 1 of Guay and
Dochain (2015). It’s proof is based on a Lyapunov argument. Let us now give an idea of the role of the
matrix Σ and the projection operator Proj(·).

The matrix Σ−1 is the gain matrix for the parameter update law (d) This matrix has an update law
(e) similar to the one in continuous-time least-squares with forgetting (Shaferman et al., European Jou. of
Control, V. 62, Nov. 2021). In eqn. (d), the operator Proj(·) is a Lipschitz projection operator designed
to ensure that the estimates are bounded within a fixed constraint set. This projection algorithm was
implemented as discussed in Appendix E of (Krstic et al. (1995), “Nonlinear and Adaptive Control Design,”
1st edition, John Wiley & Sons Inc.) and the constraint set adaptation was adopted as per Adetola and
Guay (2011) (“Robust adaptive MPC for constrained uncertain nonlinear systems,” Int. J. Adapt. Control
Signal Process., 25, 155–167). Given the space limitations of a WES Brief Communication, it is not possible
to provide all the equations. However, we could provide all the relevant references as done in this reply if a
revised version is invited.

This approach from Guay and Dochain (2015) is then extended in Guay and Dochain (2017) using a PI
controller for extremun seeking. This is the method we use in our Brief communication. In this case, there
is dynamics between the control variable u and the cost function we seek to optimize. Thus, there is an
extra parameter to model the dynamics of the instantaneous cost function y, which is parameterized by the
differential equation

ẏ = θ0 + θ1(u− û) = [1 (u− û)] ∗ [θ0 θ1]
T = ϕT θ (g)

where u and û are defined in equation (2) in our paper. Then we apply back calculation anti-windup to
obtain us. This is done because we want to maintain the TSR within practical limits. The final TSR set-
point λsp is obtained by rate limiting us to smooth the final set point. In equation (g) one may associate
θ0 with the dynamics of the system we seek to optimize and θ1 with the gradient of the cost function. Note
that now the parameter we seek to estimate is θ = [θ0 θ1]

T and the regressor is ϕ = [1 (u − û)]T . The
remaining equations for the identifier are as shown in the text above and in Fig. 5 of the paper.

In a revised version of this paper we could eliminate Fig. 5 and instead give a clear block
diagram of the solution with input P and output λsp (λopt in Fig. 1). Due to space limits we
will also eliminate Fig. 1 and instead write down that our solution provides the TSR set-point
value required by the NREL ROSCO controller. In addition, we could provide the equations
(with brief explanation) for the parameter estimation algorithm in the text rather than inside
the block diagram in Fig. 6.

To conclude the response to your opening comments, time series of key signals are given to enhance
the understanding the working principle of the algorithm. First note that the complete algorithm has been
implemented in Simulink with a step size of 0.0125 sec for discretization (i.e., we have 80 Hz sampling
frequency). In this explanation, we focus on the case of eroded blade, where the TSR set point needs to
move from 7.6 (for clean blade) to 8.4 for the eroded blade; i.e., a 0.8 increase in TSR (see Fig. 4 in the

paper). As shown in the block diagram of Fig. 5, θ̂1 is the only estimated parameter used by the PI controller

2



in equation (2). The Simulink scope in Fig. A shows the time series of θ̂1.
1 Only 1 sec of the simulation

leading to Fig. 12 in the paper is shown, which represents about 80 samples. The two terms of PI controller
are shown in Fig. A (right-hand side). Note that the proportional term reaches 0.8 in one sample after the
LP-PIESC is turned on at 500 sec. Then the proportional term decays to zero and the integral term û grows
to 8.4 asymptotically after multiple samples. The estimated new TSR is the sum of the proportional and
integral terms. We rate limit the result to obtain the final TSR set-point to ROSCO as shown in Fig B. The
final value is above 8.4 due to the addition of the sinusoidal dither. Note the accelerating effect of adding
the proportional term (entry 1-2 in Fig. A) relative to using the integral term only (entry 2-2 in Fig. A).
While we do not have a formal proof, this effect resembles the increase in bandwidth that a PI controller
can offer over a P-only controller.

Figure A: Simulink Scope for LP-PIESC signals – Eroded blade (U=8m/s, TI =10%).

Figure B: Simulink Scope showing TSR command to the ROSCO controller – Eroded blade (U=8m/s, TI
=10%).

1If one thinks of θ̂1 as the relevant gradient, note that it is negative because the algorithm actually minimizes the sign
inverted performance function. This can be done because the max of a function f can be obtained by minimizing −f .
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“- Announce in the abstract what type of wind turbine controller you are assuming.
- State the significance of using LP-PIESC as compared to regular ESC, as this is the main contribution
of the paper.”

• Please note that the type of controller used (ROSCO) is mentioned in the last sentence of the abstract.
This turbine controller is as developed by Abbas et al. (2022), which is referenced in the technical
brief.

• Your suggestion to “state the significance of using LP-PIESC as compared to regular ESC” can be found
in Kumar and Rotea (2022) for a different torque and pitch turbine controller. This reference actually
shows a comparison between LP-PIESC and the conventional LP-ESC. Thus, since our technical brief
has no comparison, we would prefer to keep this statement in the Introduction, line 52.

Introduction:
- You write: “The LP-PIESC has been shown to be a faster variant of the traditional perturbation-based
ESC (Kumar and Rotea, 2022).” This might be interpreted that you do not need perturbation using
LP-PIESC. You would still need a perturbation to estimate the gradient, right?
- A more elaborate literature study and acknowledgment of the works in the field of set-
point/model/controller calibration should be included.

• The dither signal ensures the persistence of excitation (PE) condition in assumption 5 of Guay and
Dochain (2017). This assumption is used to prove the convergence of the PIESC algorithm to a
neighborhood of the unknown optimum using a Lyapunov stability argument. While our dither is
of low frequency, the PE condition is satisfied after turning the dither on as shown by the following
integral ∫ 501s

500s

c(τ)cT (τ)dτ =

∫ 501s

500s

=

[
2.0250e− 01 1.4631e− 03
1.4631e− 03 1.4856e− 05

]
≥ (4.3e− 06) ∗ I (h)

where c is the filtered regressor.

• Please note that our paper is a Brief Communication; thus, an elaborate literature study and acknowl-
edgment of the works in the field of setpoint/model/controller calibration would be difficult to include.
This is particularly notable in our case because we already need to reduce the length of the original
submission. We can, however, include a couple of the top most cited papers in TSR estimation if
requested by the associate editor. Of course, we welcome any suggestions you may have concerning
salient archived journal papers in this area.

Background:
- Is it a valid assumption to have a precise measurement of the rotor effective wind speed?
- Fig 1: In the figure you indicate that v̂ comes from a wind speed estimator, while in the text you say
something different.
- Fig 3: There seem to be few data points for Cd-curves. Can you increase the resolution?

• We assume you are referring to the statement after line 85 in the submitted manuscript, where we
explain the use of the rotor disk average (RtVAvgxh) wind speed calculated by OpenFAST and not from
the wind speed estimator inside ROSCO. We understand that the ROSCO wind speed estimator makes
use of the power curve, which changes as the blades degrade. Thus, ROSCO may not calculate the
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correct rotor speed reference from the TSR set-point unless the power curve is modified to account for
degradation/erosion. While our assumption may not be most practical, it is necessary to demonstrate
the LP-PIESC by avoiding unknown complexities of ROSCO’s wind speed estimator (which is not the
main purpose of our study).

• We introduced Fig. 1 (in paper) as a graphical representation of the ROSCO architecture, as per Abbas
et al. (2022). The reason for using the rotor disk average (RtVAvgxh) wind speed has been explained
already. To reduce the length of the Brief Communication, it is likely that we would need to remove
Fig. 1 and add a few sentences with the key aspects of ROSCO used in our study.

• The resolution of lift and drag coefficients for the clean blade as well as the contaminated and eroded
blade are shown with markers in Figure C below. The aerodynamic coefficients for clean blade were ob-
tained from the NREL OpenFAST package of the 5MW reference turbine available at https://github.
com/OpenFAST/r-test/blob/main/glue-codes/openfast/5MW_Baseline/Airfoils/NACA64_A17.dat.
These were used to run simulations to obtain Cp for every 0.2 change in TSR (shown in Fig. D). If
this resolution of Cp is considered low, we can increase it but we cannot increase the resolution of the
lift and drag coefficients as those are the only points for which we have available data for the NACA64
airfoil. We are happy to replace the plots in the Brief Communication with the ones shown below.

Figure C: Change of lift and drag coefficients for
NACA64 airfoil.

Figure D: Nominal and modified (due to contamina-
tion and erosion of blades) CP − λ curve for NREL
5-MW wind turbine reference model.

Section 2
- You state that θ1 is proportional to the gradient. It could be better explained that in (2), you can
observe that this quantity is subject to a proportional action with kp and an integral action with
saturation capabilities.
- What estimation problem are the parameters in θ a result of? What do they represent, and in which
context?
- The paper does not describe the rationale behind the gradient estimation scheme. As this is the major
contribution of the paper, you should have a proper description of its working principles.

• The statement we made on θ̂1 is intuitive but not rigorous. Per equation (g), θ̂1 estimates a parameter
used to model the influence of the control increment (i.e., u− û) on the dynamics of the cost function.
From this equation, the “gradient interpretation” can be understood, at least intuitively.
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• The actual estimation problem solved is for the 2D vector θT := [θ0, θ1]
T in equation (g). These

parameters are used to parametrize the time derivative of the performance index y (e.g., log of power
after moving average filtering) using

ẏ = θ0 + θ1(u− û) (i)

which forms the basis for the parameter estimation algorithm in the box of Fig. 5. Key elements of
this algorithm where intuitively explained at the beginning of this reply. Further details can be found
in Guay and Dochain (2017).

• We believe the introductory part of this reply cover the essentials of the LP-PIESC algorithm. Space
permitting, we would be happy to include the estimation problem being solved, with identifier equa-
tions, in a revised Brief communication if requested.

Section 3
- Consider using a more state-of-the-art reference turbine model, like the IEA 15 MW turbine.
- Fig 5: The complete algorithm of finding θ is given in this figure in the large block, without any
explanation. It is too complex to understand from a list of relations without explanation and justification!
- All Figures in the paper are given without a proper elaborate caption that allows for interpretation of
the figure. Improve on this.
- Table 2: How did you arrive at these ESC parameters? Through trial and error or a systematic tuning
procedure?
- In Appendix A, you provide justification for the dither frequency but not for the other values.
- You write: ”The LP-PIESC converges to the new optimal tip-speed ratio almost instantaneously for
all the cases.” How is this possible? As far as I understand, you only estimate the gradient in the form
of θ1. Instantaneous convergence is only possible if you know how far you are from the optimum value,
e.g., tuning the proportional gain to precisely the correct value. But this is just guessing, and maybe I
am missing something. However, the paper does not clarify this aspect.
- Figure 8: How can the gradient be estimated without perturbation before 500 s? How is it possible to
arrive at the optimal value instantaneously?
- It is unclear which variable you excite by dithering, is this λsp?

• This will be considered for future work. Currently, we do not have the resources to apply the LP-PIESC
to the IEA 15 MW as the first author has moved to industry and this project has concluded.

• We agree with you that Fig. 5 is complex to understand. We will have one single figure with input P
and output λsp. The parameter estimation algorithm can be given as separate equations as done in
(Kumar and Rotea, 2022), and brief intuition behind these equations provided. Given that this reply
can be included with the paper, the beginning of this reply should help readers gain additional insight
behind the method. Please note that we cannot include the rigorous proofs given in Guay and Dochain
(2017), but we can cite them.

• We feel we already have well detailed captions for all figures. Please let us know if there are any specific
figure captions that would need update.

• Table 2: yes, all parameters in Table 2, except the dither frequency, are obtained by trial and error
at 8 m/s wind speed and 10% TI for the clean blade (see line 250). Parameter tuning is an area of
improvement for this algorithm, which is left for future research. Please note that due to the use of the
log-of-power, once we calibrate parameters at one wind condition, the same parameters can be used at
other wind conditions. We have observed this behavior in simulations (this technical brief, Kumar and
Rotea (2022) and in wind tunnel experiments (Kumar et al. (2023), “Wind plant power maximization
via extremum seeking yaw control: A wind tunnel experiment,” Wind Energy, Vol. 26 (3))

• In a revised version of the paper we will state that all parameters, other than dither frequency, have
been obtained by trial an error.
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• Please refer to Figs. A and B in this reply, which we believe clarifies the point you raised on convergence.

• As shown in Fig. A, the parameter θ1 (“the gradient”) is being estimated after 500s. It takes around
0.4-0.5s for this parameter to converge to zero.

• The variable that is being excited is u - see eqn. 2 - which is the set point λsp for the TSR.
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Response to Reviewer 2 

Many thanks for your detailed comments and questions regarding our Brief 
Communication. In this response, we have included your comments/questions 
(framed, black font, italics) followed by our response (red font) to each point raised. 
When references are used, they can be found in the submitted manuscript or full 
citations are given in this response.  

Before responding to your points, please note that in the response to reviewer #1, we 
provided explanations on the working principle of the LP-PIESC algorithm. There are 
several details, provided through “the lens of continuous time algorithms for 
estimating time-varying parameters,” which is our case. We hope that the response to 
reviewer #1 plus specific answers to your points are satisfactory.  

In addition, please note that there is a typo in Table 2 of the paper. The proportional 
gain 𝑘𝑘𝑝𝑝 should be replaced by 3e-2 s/rad.  

This paper presents an extremum seeking controller for optimizing a wind turbine 
controller's tip speed ratio set point.  It's nice that the control scheme fits with an existing 
wind turbine architecture.  However, the benefit of using the log of the power is unclear, and 
the algorithm seems to converge to the optimal solution too quickly without adequate 
explanation. 

Our algorithm uses the log-of-power signal to determine the optimal TSR set-point. The 
significant advantage is that ln(P) = constant + ln(Cp) + 3*ln(V). Thus, for algorithms 
based on some form of gradient estimation, like ours, the gradient of log(P) depends 
only on Cp, which is exactly the quantity we seek to maximize. This use of the “log” 
transformation has huge implications because it eliminates the need to schedule 
control parameters on wind speed. That is, once you calibrate the any gradient-based 
algorithm for one wind speed, the same parameter values work at other wind speeds. 
Given that between cut-in and rated wind speeds, V^3 could change significantly, the 
use of log-of-power is highly advisable when adjusting control parameters (e.g., TSR, 
Torque Gain, Pitch Angle) to improve performance. The use and advantages of log-of-
power have been explained and documented earlier in Rotea (2017) and Ciri, et al. 
(2019). In addition, we are providing two charts below that articulate this point.  



 

 

The issue of quick convergence is addressed in the response to your major questions 
below and the reply to reviewer #1. 

How does the algorithm converge to the optimal solution before a single dither signal 
cycle can compute the gradient?  I think that justification, in wind energy terms, should 
be provided in this article. 

 
We do not have rigorous proof of rapid convergence for this specific application of LP-
PIESC. Having said that, please see the response to reviewer #1, where we provide 
empirical evidence of convergence using a persistence of excitation condition like the 
one required in the main reference of our work Guay and Dochain (2017; eqn. (22)). 
The method we use for parameter estimation is not the conventional 
perturbation/demodulation method used in prior ESC algorithms, which is slower and 

Region II ESC

Dither signal 𝑑

𝑃𝑃 𝑢𝑢 + 𝑑 𝑢𝑢 + 𝑑

Gradient
Es�mator

+
+

Signal
Condi�oning

Integrator

Wind

𝑢𝑢

then but convergence rate

• ESC sluggish at low wind speeds and aggressive (even unstable) at
high wind speeds

A solu�on to this problem: LP-ESC*

• Is there a transforma�on of𝑃𝑃 with the following proper�es?
– Increasing (monotone) func�on of power 𝑃𝑃 = 𝑃𝑃𝑤𝑖𝑛𝑑 ∙ 𝐶𝑝 𝑢𝑢
– Gradient with respect to control parameters 𝑢𝑢 independent of 𝑃𝑃𝑤𝑖𝑛𝑑

• Yes, the logarithm!

• Gradient ascent algorithm becomes

Transient response does not depend on 𝑉𝑉!

At steady state

*Rotea, US Patent 11,327,448; Proc. of the 20th World Congress of the International Federation of Automatic Control , 2017



may require a few full dither cycles to estimate unknown parameters. Instead, we use a 
method that is applicable to estimating and tracking time-varying parameters. This 
method, developed by Guay and co-authors, has similarities with continuous-time 
least-squares with forgetting (Shaferman et al., European Jou. Of Control, V. 62, Nov. 
2021), which may not require a full cycle of the dither to converge if a persistence of 
excitation (PE) condition is met. This PE condition involves the positive definitiveness of 
a matrix obtained by integrating 𝑐𝑐(𝑡𝑡) ∗ 𝑐𝑐(𝑡𝑡)𝑇𝑇, where 𝑐𝑐(𝑡𝑡) is the filtered regressor defined 
by equation (c) in the reply to reviewer #1, with 𝜙𝜙𝑇𝑇 = [1   𝑢𝑢(𝑡𝑡) −  𝑢𝑢�(𝑡𝑡)] denoting the 
actual regressor (see eqn. (g) in the reply to reviewer #1), where 𝑢𝑢(𝑡𝑡) is the commanded 
TSR with no anti-windup compensation.  
 
While we do not have formal proof, we believe that when the LP-PIESC algorithm is 
turned on, and the power (i.e., the input to the LP-PIESC) is fluctuating, the PE condition 
is met rather quickly, which might explain the rapid convergence of the parameter 𝜃𝜃1�. 
See Figs. A and B and eqn. (h) in reply to reviewer #1. In addition, please note that the 
Cp curves between 7.6 TSR (initial condition for the algorithm) and the new optimal TSR 
values shown in Fig. 4 in the paper are fairly simple concave segments with well-
behaved slopes, which combined with the small TSR increase required to reach optimal 
values, suggest that rapid convergence may not unrealistic. 

How exactly is the gradient estimated over time?  What signals from the turbine are 
needed?  The variables in Fig. 5 are not defined in the text.  Can you show the gradient 
estimate over time? 

The only signal we need from the turbine is the rotor power 𝑃𝑃 (not the aerodynamic 
power), which is correlated with the turbine’s electrical power output. The 
instantaneous rotor power is time-averaged with a moving average filter and then the 
natural log is applied. Fig. 5 is unclear and not consistent with Fig. 6. This situation will 
be corrected in a revised version of the paper. Now, with some abuse of notation, if we 
let 𝑦𝑦(𝑡𝑡) = ln𝑃𝑃(𝑡𝑡), then this is the input signal to the PI-ESC algorithm in Fig. 5 (note that 
𝑦𝑦 is misplaced in the diagram; it should be after the natural log block).  
 
The equations for estimating the parameter  𝜃𝜃1� , which can be thought as a gradient, 
are given in pages 1-3 in the reply to reviewer #1. The time series of 𝜃𝜃1�  is shown in Fig. 
A (reviewer’s #1 reply) for the case of eroded blade. 

It appears that the TSR set point reaches the "optimal" before the power coefficient or 
actual tip speed ratio changes in any measurable way.  How is this possible?  The 
bandwidth of the torque controller limits the actual TSR; how can this algorithm 
converge faster than the torque controller? 



A change in the TSR or Cp may not be necessary for the algorithm to converge. As 
mentioned earlier, and in the response to reviewer #1, 𝜃𝜃1� is the key parameter that 
needs to converge to determine the new optimal TSR. This parameter is used to 
parametrize the time derivative of the performance index (log-of-power in our case); 
see equation (g) in response to reviewer #1 and eqn. (8) and in Guay and Dochain 
(2017). While we do not have formal proof, we believe that when the LP-PIESC 
algorithm is turned on, and the power (i.e., the input to the LP-PIESC) is fluctuating, the 
PE condition is met rather quickly, which might explain the rapid convergence of the 
parameter 𝜃𝜃1� . Please note that all simulations in OpenFAST are sampling signals at 80 
Hz (0.0125 sec sampling interval). In addition, the accelerating effect of the proportional 
term in the controller contributes to the fast convergence to the new optimal value for 
the TSR. One may see this effect by adding the (1,2) entry and the (2,2) entry in Fig. A in 
the reply to reviewer #1. The effect of adding the proportional term is like the increase 
in control bandwidth obtained when replacing a pure integral controller (as in several 
prior ESC algorithms) with a PI control law.  
 

From cited work within this article, the authors claim that the log of the power allows 
the Cp to be maximized directly without requiring the wind speed.  \frac{\del J}{\del u} 
= 1/Cp \frac{\del Cp}{\del u}.  Doesn't the Cp in the denominator depend on the wind 
speed? 

The known approximations of Cp show that the power coefficient is a strong function 
of TSR and blade pitch angle but not necessarily the incoming mean wind speed V in 
isolation. See, for example, Carpintero-Renteria et al., “Wind turbine power coefficient 
models based on neural networks and polynomial fitting,” IET Renewable Power 
Generation, Vol. 14, Issue11, August 2020, which contains a complete review of existing 
Cp models. As explained earlier in this reply, the main advantage of using log-of-power 
is the removal of 𝑉𝑉3 from the gradient of the performance index we seek to maximize. 
Please refer to Rotea (2017) and Ciri, et al. (2019) to see how calibration of parameters 
(these papers do not use LP-PIESC) at one wind speed 𝑉𝑉 works at any other wind speed 
below rated without the need for retuning algorithm parameters – this is a significant 
benefit of using the logarithm before processing the power signal.  

In Fig. 8, there is a step change as soon as the algorithm is enabled, and then it seems 
to converge slowly to another point.  How do you account for this behavior?  Was an 
initial guess provided to the algorithm? 

The initial TSR was set at 7.6 (i.e., start with the clean blade optimum). To answer your 
question, we run one of the simulations in Fig. 8 for 3000 s, instead of the 1500 s in the 
paper. The result is shown below in Fig. A2 below. Note that the dither is active since 
the algorithm is turned on at 500 s. The time series of the TSR set point after 1500 s 



appears to oscillate (dither with amplitude 0.1 or 0.2 peak-to-peak around a mean 
value between 8.1 and 8.2 (8.2 is the optimum for this case, as it can be seen from Fig. 
4). Note also from Fig. 4 (and Fig. D in reply to reviewer #1) that Cp does not change 
much (less than 10%) between TSR 8.1 and TSR 8.2 for the case of contaminated blade. 

 
Figure A2: Tip Speed Ratio setpoint (LP-PIESC output) – Contaminated blade (U=9m/s, TI =10%). 

Please note that the dynamics of the turbine with ROSCO and LP-PIESC is complex. For 
the simulation shown in Fig. A2, there are time intervals where the turbine is in above-
rated conditions (see pitch signal in Fig. 9 of the paper). Thus, any small fluctuations 
around the mean value of the commanded TSR, which are not accounted for by dither, 
would require an analytical investigation with the full nonlinear system. Our paper is 
only aimed at providing numerical evidence that the LP-PIESC offers an alternative to 
retune the TSR. In a practical application, one could turn off the dither as soon as the 
new optimal TSR is reached. A stopping criterion for the dither could be based on the 
magnitude of the parameter 𝜃𝜃1� (see Fig. A in reply to reviewer #1). In this paper, we 
have run the dither continuously. 
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