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Abstract. We investigated the predictive capability of various configurations of the Weather Research and Forecasting (WRF) 

model version 4.4, to predict hub-height offshore wind speed and wind power density in the Northeast US wind farm lease 

areas. The selected atmospheric conditions were high-pressure systems (anticyclones) coinciding with wind speed below the 

cut-in wind turbine threshold. There are many factors affecting the potential of offshore wind power generation, one of them 15 

being low winds, namely wind droughts, that have been present in future climate change scenarios. The efficiency of high-

resolution hub-height wind prediction for such events has not been extensively investigated, even though the anticipation of 

such events will be important in our increased reliance on wind and solar power resources in the near future. We used offshore 

wind observations from the Woods Hole Oceanographic Institution's (WHOI) Air-Sea Interaction Tower (ASIT) tower located 

south of Martha’s Vineyard to assess the impact of initial and boundary conditions, number of model vertical levels, and 20 

inclusion of high-resolution sea surface temperature (SST) fields.  Our findings showed that the initial and boundary conditions 

exhibited the strongest influence on hub height wind predictions above all other factors, such as SST and model vertical layers. 

NAM/WRF and HRRR/WRF were able to capture the decreased wind speed, and there was no single configuration that 

systematically produced better results. However, when using the predicted wind speed to estimate wind power density, 

HRRR/WRF had statistically improved results, with lower errors than NAM/WRF. Our work underscored that for predicting 25 

offshore wind resources, it is important to evaluate not only the WRF predictive wind speed, but also the connection of wind 

speed to wind power. 

1 Introduction 

Offshore wind is an abundant energy resource with significant environmental and economic benefits. When it comes to 

assessing the magnitude of wind produced over the sea compared to land surface, offshore wind outperforms due to it being 30 

less impacted by topographical influences like surface roughness and low turbulence (Pryor and Barthelmie 2002; Aird et al. 

2022). Quantifying wind in the lowest part of the atmospheric boundary layer is a challenge due to the combination of forcing 

produced from friction and vertical motion due to heat over the surface that affect wind formation (Yoo et al. 2012; Ryu et al. 
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2016). Compared to land, the ocean produces a larger amount of water vapor that is transferred into the atmosphere, and the 

heat budget also differs which affects the atmospheric stability conditions (Archer et al. 2016). As a result of being strongly 35 

impacted by the atmospheric stability associated with turbulence exchange and interaction with the ocean waves, the offshore 

wind shear profile is often complicated (Aird et al. 2022; Vickers and Mahrt 1999). 

The operational efficiency of offshore wind farms relies on highly accurate information, and thus high-quality measurements, 

of wind and waves, which is a challenge due to the lack of routine atmospheric measurements (Colle et al. 2016; Optis et al. 

2021). To fill the gap of inadequate measurements, numerical weather prediction (NWP) models are used to predict 40 

atmospheric conditions at fine spatial and temporal scales. While many current studies apply NWP models to predict wind for 

wind energy farms located both offshore and onshore, there are some challenges that have been identified particularly for the 

offshore region (Banta et al. 2017; James et al. 2017). Complexities arise due to land-ocean interactions, the formation of low-

level jets, the dynamic nature of ocean-atmosphere waves and high wind shear due to stable boundary layer over the ocean as 

warm air from the land rapidly moves toward the relatively cold ocean water (Li et al. 2021, Floors et al., 2013, Nunalee and 45 

Basu, 2014, Svensson et al., 2019a, Svensson et al., 2019b, Hallgren et al., 2020). 

According to the Offshore Wind Market report 2023 edition, the United States (U.S.) offshore wind energy project 

development and operational pipeline grew to a potential generating capacity of 52,687 megawatts (U.S. DOE, 2023) in 2022. 

Further, a national goal set in March 2023 of 112,286 MW of offshore wind energy is expected to be in line with global growth 

patterns by 2050. The Mid-Atlantic Bight has recently seen heavy investment in offshore wind power farms, with most 50 

installations still ongoing or planned in the next few years, as of this writing (Musial et al., 2021). Offshore wind farms must 

be designed to withstand extreme weather including tropical storms, extreme wind/wave events, icy conditions, extreme heat 

or cold. In addition, wind drought (very low wind occurrences) is an extreme condition that hinders the energy production 

capacity of wind farms (Novacheck et al. 2021). Given the plan by most NE U.S. States to move to 100% clean energy by 

2040 to 2050 (Clean Energy States Alliance website, accessed Sep 2023), we expect increasing reliance on renewable resources 55 

in the near future. Climate assessment studies point to a potential future decrease of wind speed and wind power density for 

the offshore region of the NE U.S. (Pryor et al. 2012; Liu et al. 2014; Johnson and Erhardt, 2016; Costoya et al. 2020; EPRI 

2021; Martinez and Iglesias, 2022), which could affect wind power generation reliability. Anticipating, and, thus, reliably 

predicting such wind drought offshore conditions, would be beneficial for the wind power industry and utility operators.  

The efficiency of high-resolution hub-height wind prediction for such events has not been extensively investigated. Moreover, 60 

due to the relationship between wind power density and cubed wind speed, small changes in wind speed prediction will lead 

to important changes in wind power density prediction.  We investigated the performance of a high-resolution NWP model 

that can address the mentioned challenges, focusing on the U.S. Northeast Atlantic region. To apply a high-resolution 

mesoscale (horizontal grid cell spacing, dx = 600m) model suitable for predicting offshore wind at vertical height 

corresponding to the wind turbine hub level, we performed multiple sensitivity simulations using the Weather Research and 65 

Forecasting (WRF; Skamarock et al. 2019) model version 4.4. Domain configurations with multiple nested domains, variations 

in initial and boundary conditions, number of model vertical layers, and sea surface temperature fields have been explored.  
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While designing and analyzing the modeling experiments, the following questions were considered: What is the impact of 

initial and boundary conditions, and number of vertical layers for the prediction of offshore hub height wind during anticyclonic 

conditions? How important is an accurate representation of the sea surface temperature (SST) field in WRF to accurately depict 70 

hub height wind? How is wind power density affected by changes in predicted hub height wind? These questions guide our 

assessment of the WRF model’s efficiency to accurately predict offshore wind speed over the Northeast US cluster of wind 

farm lease areas. The long-term goal is to be able to accurately forecast conditions of wind extremes, in both sides of the 

spectrum, low and high winds that affect offshore wind turbine operations. 

2 Materials and Methods 75 

2.1 WRF Model Configuration 

The WRF v4.4 model, which for many years has been a useful tool for operations and research (Skamarock et al. 2005, 2008, 

2019), is applied here with two different initial and boundary conditions and two-way nested domains with the finest domain 

having dx = dy = 600m (Fig. 1). We chose the dynamic solver Advanced Research WRF (ARW), which uses a fully 

compressible, non-hydrostatic Euler equation and consists of a vertical coordinate system with terrain-following hydrostatic-80 

pressure (Skamarock et al. 2019). Our project is a partnership with Eversource-Orsted focusing on the South Fork Wind Farm 

(SFWF) in the Northeast US coast. The relatively high model resolution is chosen due to our collaboration with the research 

group that has developed the University of Connecticut’s large-eddy simulation model to depict wind turbines at a very fine 

scale (Matheou et al. 2022), using the WRF output as initial and boundary conditions to the LES model.  

For the domain selection, we considered available offshore observations covering the north-east U.S. coastline, especially near 85 

the South Fork Wind Farm (Fig. 1). The parent domain had an equal ratio of covering both land and ocean to observe the 

interaction of land and ocean with the atmosphere. The initial sensitivity tests revealed two datasets as the preferred ones for 

the initial and boundary conditions: the North American Mesoscale Forecast System (NAM) (Environmental Modeling Center, 

National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce) and the 

High-Resolution Rapid Refresh (HRRRv3) (Benjamin et al., 2016) (Fig. 1 and Table 1). The choice of these two modeling 90 

systems is based on the intention to deploy the WRF model operationally in the near future, and we needed to test modeling 

systems that can be used in forecast mode while offering sufficient high-resolution outputs. Both WRF configurations use the 

same physics parameterizations. The NAM/WRF configuration has three domains as the model had to dynamically downscale 

data from a coarse resolution of 12 km to 5.4km, 1.8km, and further 600m. The HRRR/WRF configuration has two domains 

since downscaling needed to be performed from 3 km to 1.8km and 600m. We tested two sets of vertical levels for both 95 

initializations: (a) 56 vertical levels with 10 levels within 200m and stretched above, and (b) 131 vertical levels with 21 levels 

(10m intervals) up to ~400m.  For the rest of the article, we will refer to each configuration as NAM/WRF and HRRR/WRF 

for simplicity. 
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Table 1: WRF model configuration  

 

 

 105 

 

Numerical Weather Prediction Model  WRF v4.4 

Initial/boundary conditions  The North American Mesoscale Forecast System (NAM) 12km 

(every 6h)  

 The High-Resolution Rapid Refresh (HRRRv3) 3km (every 6h)  

Grid Structure Test 1 (with NAM): 

5.4km (D01), 1.8km (D02) and 

600m (D03)  

Test 2 (with HRRR):  

1.8km (D01) and 600m (D02) 

Vertical levels Test 1: 56 vertical levels (Ptop = 

50 hPa, 10 levels up to ~200m) 

Test 2: 131 vertical levels (Ptop = 

50 hPa, 21 levels up to ~400m) 

Cloud Microphysics scheme Thompson et al. (2008)  

Planetary Boundary Layer Yonsei University scheme (Hong et al. 2006) 

Radiation scheme Goddard for shortwave radiation (Chou and Suarez 1994) 

RRTM for longwave radiation (Mlawer et al. 1997) 

Land surface scheme Noah LSM (Niu et al. 2011) 

https://doi.org/10.5194/wes-2023-148
Preprint. Discussion started: 9 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

5 

 

5 

   

 

Figure 1: (Top row) WRFv4.4 model domains and location of the ASIT tower. (Bottom row) Location of South Fork Wind (left) and 

Revolution Wind (right) leased areas (taken from https://southforkwind.com/ and https://revolution-wind.com/). 

2.2 Offshore Observations 

Historically, there have been more wind observations available up to the turbine hub height inland than offshore. With the 110 

increase of offshore wind farm developments in the Mid-Atlantic Bight, lidar buoys have been deployed to ensure the timely 

characterization of atmospheric condition. Our study area covers the cluster of leased wind farm areas in the Northeast US 

(South Fork Wind and Revolution Wind; Fig. 1). There is no lidar buoy deployed in that area that provides free accessible 

data. To alleviate this observational gap, we used the Woods Hole Oceanographic Institution's (WHOI) Air-Sea Interaction 

Tower (ASIT) (Filippelli et al., 2015; Bodini et al. 2019). Wind observations are available from anemometers located at 26m 115 

AMSL (above mean sea level) and a single wind direction vane located at 23m AMSL, as well as additional sensor data of air 

temperature, pressure, and relative humidity at 18m AMSL and ocean temperature and salinity at 4m BMSL (below mean sea 

level). More importantly, a lidar (WLS7-436) placed at the tower's platform level, provided wind observations up to 187m 

AMSL (Kirincich et al. 2020).  
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In terms of evaluating the model's accuracy in forecasting offshore wind, one of the key factors is SST, as it has a direct impact 120 

on atmospheric stability conditions. Though WRF can use the SST input from the relatively coarse initialization data, previous 

studies like Redfern et al. (2023) and Hawbecker et al. (2022), have performed simulations with external SST inputs which 

have higher resolution compared to the initial and boundary conditions (ICs and BCs). They have observed that the differences 

in both temporal and spatial resolution between SST products have an impact on wind speed characterization, with higher 

resolutions tending to enhance model performance. We have compared the following SST datasets: the 0.01o Multiscale 125 

Ultrahigh Resolution (MUR), the 0.054o Office of Satellite and Product Operations (OSPO) analysis, the 0.054o Operational 

Sea Surface Temperature and Sea Ice Analysis (OSTIA), the 1o Naval Oceanographic Office (NAVO) and the 0.02o 

Geostationary Operational Environmental Satellites (GOES-16) dataset, to find the SST that is closer to the observations. As 

the externally available SST products have resolutions ranging from 0.1 degree to 1 degree, our tests showed that OSPO was 

closest to the observed SST, and we chose to use this product and compare with the SST values from NAM and HRRR. Details 130 

will be discussed in section 3.3. 

2.3 Statistical evaluation metrics 

The statistical metrics of interest are systematic and random components of the model error (bias, Root-mean-squared-error 

(RMSE), Centered-root-mean squared-error (CRMSE)). Table 2 lists the formulas for each error metric. We also calculated 

95th percentile confidence intervals for each error metric through bootstrapping (10,000 bootstrap samples with random 135 

replacement). 
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Table 2: Statistical Error Metrics 

Error Metrics Equation  

mean BIAS 

𝑚𝑒𝑎𝑛 𝐵𝐼𝐴𝑆 =  √
1

𝑁
∑ 𝑃𝑛 − 𝑂𝑛

𝑁

𝑛=0

 

𝑃𝑛 𝑎𝑛𝑑 𝑂𝑛 represent the model prediction and observation, where N is the 

number of available data.  

Root-mean-squared-error 

(RMSE) 𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑃𝑛 − 𝑂𝑛)2

𝑁

𝑛=0

 

The RMSE consists of both systematic and random error components (bias and 

CRMSE) (Taylor 2012). 

𝑅𝑀𝑆𝐸 = √𝐵𝐼𝐴𝑆2 + 𝐶𝑅𝑀𝑆𝐸2 

Centered-root-mean squared-

error (CRMSE) 𝐶𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑[(𝑃𝑛 − 𝑃𝑎𝑣𝑔) − (𝑂𝑛 − 𝑂𝑎𝑣𝑔)]

2
𝑁

𝑛=0

 

CRMSE describes the centered pattern of the error, the differences in wind speed 

variations around the mean. 𝑃𝑎𝑣𝑔 and 𝑂𝑎𝑣𝑔 represent the model prediction and 

observation averages over the number of available data, N values. 

 

2.4 Selection of Events 155 

Previous studies performed over offshore region like Kempton et al. (2010) presented multiple scenarios explaining the impact 

of synoptic-scale circulation on wind power production. They showed that high winds are found mostly at locations with the 

highest surface pressure gradients, with weaker winds observed at the core of the high-pressure system. According to the DOE 

Office of Energy Efficiency & Renewable Energy, a wind velocity at the turbine height between 6 and 9 mph (2.7-4 m/s) is a 

typical range needed to drive wind turbines (or 3 m/s according to Zeng et al. 2019), but the duration of wind at that cut-in rate 160 

is equally important. 

Self-Organizing Maps (SOMs) are used to objectively select cases that would be simulated with WRF. The SOMs algorithm, 

developed by Kohonen at al. (1995), is a type of unsupervised artificial neural network, used for clustering data and performing 

pattern identification. SOMs create structured maps with contiguous nodes holding similar data based on the number of 

nodes/matrixes the user selects. To begin a SOM, initialization weight vectors are assigned to the connections/nodes with input 165 

vectors. The initialization process employs principal component analysis, which evenly distributes weights depending on the 
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two greatest principal component eigenvectors of the input data (Ciampi & Lechevallier, 2000; Wang et al., 2022). Based on 

Euclidean distance, nodes compete to claim input vectors and winners are selected upon minimum distance. The weight vectors 

of the winning node and its neighbors keep updating to match the input patterns and final maps are generated through multiple 

iterations (Stauffer et al., 2016; Juliano et al., 2020; Wang et al., 2022).  170 

We have used an open-source Python package, minisom (Vettigli, 2018), to create the maps. For input data, we used the 

normalized (spatial anomaly, data was normalized by subtracting the mean from each array) 00z geopotential height field at 

850-hPa over the year 2020 from HRRR 3km data (Benjamin et al., 2016). The total number of input vectors was 366 and for 

the training we used 1000 iterations. We have selected geopotential height as our input vector as it can provide valuable 

information regarding atmospheric circulation. Sensitivity tests with different SOM node configurations (Fig. 2) helped define 175 

a suitable number of nodes. We have compared the topographic error (TE) and quantization error (QE) for each combination.  

QE is a measure of how well a map resembles the original data and is computed by averaging the distance between each input 

data point and its closest representative node on the map. As the number of nodes increases, QE decreases. On the other hand, 

the preservation of spatial links between data points on a map is evaluated by TE. The percentage of input data points for 

which the first and second best-matching nodes on the map are not neighbors is known as topographic error, and it can be used 180 

to determine how well the map preserves the topological structure of the data. A lower topographic error indicates greater data 

topological retention (Juliano et al., 2020; Wang et al., 2022). Apart from the error values, we also considered availability of 

sufficient sample size in each node and based on all these criteria, we have selected the 3x4 matrix with 12 nodes, where we 

have around 5% or more samples in each node (Fig. 3). 

We selected two nodes (7 and 12) that are characterized by relatively weak forcing (Fig. 3). From each node we have selected 185 

two events: August 20-22 and November 8-10, 2020, from Node 7. May 20-22 and June 15-17, 2020, from Node 12. Each of 

the selected events had a high-pressure system present throughout the 48-hour evaluation period (which excluded a 12-hour 

model spin-up time) of the simulated event. Additionally, the persistence of the high-pressure system did not extend beyond 

the event period. 

 190 
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 210 

Figure 2: Comparing errors for different numbers of SOMs nodes. The purple rectangle indicates our selected matrix suitable for 

the study. 
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Figure 3: Self Organizing Maps (SOMs) created using spatial anomaly of the geopotential height field at 850hpa from HRRR 

analyses simulations for the year 2020. The plots are showing wind speed at 80m AMSL with wind direction. We also show the 

percentage of samples that falls within each node, and highlight the two nodes, N7 and N12, that we focus on in this study. 
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Regarding the high-pressure system location and occurrence time, we have consulted the surface analysis synoptic maps 235 

produced by NOAA’s Weather Prediction Center (Fig. 4) to confirm our SOM results. According to the synoptic maps, a 

persistent high-pressure system with 1032 mb central pressure is observed near Martha’s Vineyard throughout the event that 

took place on May 20. The core of the anticyclone is positioned over the New England coast, where the wind speed decreases 

below 5 m/s (Fig. 4, May 21, 2020, 12UTC).  On June 15, a high-pressure system with the highest recorded pressure of 1029 

mb, was positioned over the Great Lakes, with its extension influencing the location of the ASIT tower. Like the May event, 240 

a high-pressure system reaching 1017 mb was recorded on August 21 over the New England coast. The anticyclone is not as 

well organized as the May one, and the wind speed at the hub height did not exhibit the same decrease as shown in the wind 

speed time series that follow in Fig.5. The wind speed decrease for the May event was about 8 m/s within 18 hours, while for 

the August event the decrease is about 5 m/s within 9 hours (according to the time series presented in section 3.1).  On 

November 8, a well-organized high-pressure system with a peak pressure reading of 1024 mb, was located over Pennsylvania, 245 

influencing the New England coast. The anticyclone moved east and over the Atlantic. During all these high-pressure systems, 

the ASIT tower observed a decrease in wind speed and a shift in wind direction for three of the systems. 
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May 21, 2020, 12UTC 

 

June 16, 2020, 03UTC 

 

August 21, 2020, 12UTC 

 

November 08, 2020, 15UTC 

 

Figure 4:  Surface Analysis maps from NOAA’s Weather Prediction Center (https://www.wpc.ncep.noaa.gov/).  

3 Results and Discussion 260 

In the following sections, we examine the performance of the various WRF configurations for sensitivity to initial and boundary 

conditions, vertical levels, SST inputs, and influence on prediction of wind power density. 

3.1 Influence of Initial and Boundary conditions 

In this section we discuss the hub height wind prediction for the four anticyclones due to the influence of initial and boundary 

conditions. We have created time series plots of wind speed and wind direction at the closest available observation height of 265 

the wind turbine hub height (Fig. 5). The wind turbine hub height is 140m AMSL (Dr. Astitha’s personal communication with 
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Orsted, July 2023, site under construction), so we performed model evaluations at the lidar’s height that is closest to the hub 

height by interpolating the model to 147m (ASIT tower lidar measurement height). 

A major concern when conducting NWP simulations at grid spacing below ~1km is the impact of the turbulence gray-zone, or 

Terra Incognita (Wyngaard 2004). According to Rai et al. (2019) and Haupt et al. (2022), the planetary boundary layer depth 270 

is the maximum limit of the terra incognita, meaning that horizontal spacing smaller than the boundary layer depth (but greater 

than around 100 m) is likely to produce fictitious secondary structures. For the events on August 20 th, November 8th, and May 

20th, the modeled PBL height at the location of the lidar buoy was nearly always lower than the horizontal grid spacing of 

600m (Fig. 5). Such an outcome supported findings from previous studies that showed no impact of Terra-incognita when the 

PBL height is less than the horizontal grid spacing (x) but greater than 100m (Rai et al. 2019; Haupt et al. 2022) and provided 275 

confidence in our use of the 600m gridded domain results.  

The time series plots highlighted that both model configurations for the four different anticyclonic events captured the temporal 

evolution of wind speed at the hub height quite well (Fig. 6). Both model configurations struggled to capture the November 

event, which exhibited a steady upward trend of wind speed, though NAM/WRF reached the peak at the very end of the 

simulation. Also, there was sudden and frequent shift in wind direction which prevailed from the northwest, but as wind speed 280 

dropped, the wind direction changed to become southward, ultimately settling into a southwesterly direction over time. Neither 

model could capture the clear westerly wind seen in the observations. In the May event, the wind was initially northeast and 

then shifted to a south-southeasterly direction due to the influence of the transition of high pressure. The models captured the 

transition very well. In June, a northeast wind was predominant, which the models represented accurately. Finally, during the 

August event, winds were predominantly south-southwesterly, briefly shifting to northwesterly at the end of the event. 285 

Particularly, during the drop of wind speed, HRRR/WRF tended to portray the change in wind direction closer to the 

observations. 

Hub height winds, for the four anticyclones, were, for the most part, below the rated power wind speed for the South Fork 

wind farm, which is ~ 12m/s (Dr. Astitha’s personal communication with Orsted, September 2023). This is the wind speed 

that the wind turbine will start producing its maximum constant power (or rated power), until, and if, the wind reaches a cut-290 

out speed (varies by turbine). There are many consecutive hours in the individual four 48-hr events, where the wind power 

generation would be highly variable (from the cut-in speed until 12m/s) or zero (when the wind is less than the cut-in wind 

speed) (Fig. 6).  According to the New York State Wind Energy Guidebook, typically, wind turbines start producing electricity 

at wind speeds of about 6.7 mph (3 m/s), which is the value we used in our study. The wind turbine's performance would be 

hindered when faced with reduced wind speeds, such as during the high-pressure systems we have analyzed, and being able to 295 

forecast them well in advance would be essential for wind farm operators and power utilities.  

The performance of HRRR/WRF was significantly better than NAM/WRF for the May and August anticyclones regarding 

RMSE and CRMSE (Fig. 7). Note that we used CRMSE to determine the discrepancies between modeled and observed values 

that are due to random processes, and hence difficult to reduce. The May and August cases were very similar in the geographic 

positioning of the high-pressure system, which HRRR/WRF captured better than NAM/WRF. The systematic error (mean 300 
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bias) for both cases was not statistically different between the two model configurations, pointing to no obvious change that 

would impact the statistical performance. For the June and November events, NAM/WRF was statistically better than 

HRRR/WRF for RMSE (overall error). Overall, the initial and boundary conditions played an important role for the WRF hub 

height wind prediction, with no clear indication about one preferred set of initial conditions that worked best for all simulated 

cases. We should note here that the NAM/WRF configuration had one extra nested grid compared to the HRRR/WRF domain 305 

setup, which likely contributed to some variation in the 600m domain simulated wind speed. In general, NAM/WRF and 

HRRR/WRF were capable to describe the low wind speed occurrences, with some under-prediction of higher winds, and 

difficulty to depict the hub height wind speed increase (but still below the rated wind speed) during the November anticyclone. 

We further investigated the NAM/WRF and HRRR/WRF model performance differences as related to vertical model levels, 

SST, and wind power density in the next sections. 310 
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Event 1: May 20-22, 2020 

  

Event 2: June 15-17, 2020 

  

Event3: August 20-22, 2020 

  

Event 4: November 8-10, 2020 

  

 

Figure 5: Time series of PBL height from the 600m domain for NAM/WRF and HRRR/WRF and two sets of vertical levels (56 and 335 
131) at the ASIT Lidar Buoy location. 
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Event 1: May 20-22, 2020 

 

Event 2: June 15-17, 2020 

 

Event 3: August 20-22, 2020 Event 4: November 8-10, 2020 

 

Figure 6: Time series of wind speed and wind direction from Lidar Buoy observations and WRF simulations at the turbine hub 

height (147 m) (NAM/WRF in red and HRRR/WRF in green color) and 56 vertical levels for the 600 m domain. The blue horizontal 

lines designate the cut-in and rated wind speeds. 
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 340 

3.2 Influence of model vertical levels 

We increased the vertical levels up to 400m and added more levels within the boundary layer to investigate the impact in the 

prediction of hub height wind speed. Bootstrapping confidence intervals for all combinations helped with the assessment of 

statistical improvement. HRRR/WRF showed less varied PBL heights between simulations with 56 vertical levels versus 131 

vertical levels compared to NAM/WRF (Fig. 5). For all events, there was no statistically significant change due to adding more 345 

vertical levels within the lower boundary layer (Fig. 7). The confidence intervals clearly showed that the influence of the initial 

and boundary conditions was more important compared to adding more vertical levels (Fig. 7). These results underscored that 

increasing the vertical resolution did not systematically improve the prediction capability of each model configuration for these 

four cases. 
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 365 

 

Figure 7: Bootstrapping confidence intervals for Mean bias, RMSE, and CRMSE of wind speed at 147m height, testing the NAM vs. 

HRRR initializations and 56 vs 131 vertical levels. Non-overlapping confidence intervals designate statistically different errors. 
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3.3 Impact of SST 

Sea surface temperature plays a critical role in the ocean-atmosphere interaction processes through vertical turbulent exchanges 370 

of momentum, heat, and moisture (Feng et al. 2022); thus, we assessed its impact on wind prediction capability. To this end, 

we evaluated two SST products at the observation location. We compared the model SST (NAM and HRRR), and five external 

SST datasets (OSPO, OSTIA, MUR, NAVO and GOES-16) with the ASIT observation (as mentioned in Section 2.2), to find 

the SST input that was closest to observations.  We decided to use the 5 km OSPO SST product as it best represented the 

observed SST (Fig. 8). The OSPO product has incorporated data from multiple sources, including satellite imagery and in situ 375 

measurements from ships and buoys, to provide accurate and detailed information on SST across the region, while having 

good coverage over the Northeast U.S. (Maturi et al. 2016).   

The SST time series revealed cases where: a) there was substantial deviation in the model SST magnitude compared to the 

observations, and b) there was available high-resolution SST that matched the observations (Fig. 8). Therefore, of the four 

anticyclone cases, we selected the May and November cases to further investigate the impact to the hub height winds from a 380 

better SST input (Fig. 8). For the August case, the SST from OSPO was close to the NAM and HRRR SST. For the June case, 

the ASIT tower did not provide SST data. We decided to use the HRRR initialization and 56 vertical levels, as the SST from 

HRRR exhibited greater deviation from the observations (blue line in Fig.2), and the 131 vertical levels did not significantly 

improve the results. The change of SST input from HRRR to OSPO for these two simulations did not significantly change the 

hub height wind speed prediction (Fig. 9). The simulation with OSPO SST tended to correct the time series of wind and bring 385 

it closer to the observation during the descending period of wind, while it tended to increase the under-prediction during the 

rising period of wind for both simulations. 
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Event 1: May 20-22, 2020 

 

Event 2: June 15-17, 2020 

 

Missing observation 

Event 3: August 20-22, 2020 

 

Event 4: November 8-10, 2020 

 

 405 

Figure 8: Time series of SST from NAM/WRF and HRRR/WRF with 56 layers, ASIT tower observations and the OSPO product. 
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Event 1: May 20-22, 2020 

 

 

Event 4: November 8-10, 2020 

 

 

 

 

 

 

 

Figure 9: Time series of wind speed at the wind turbine hub height from the HRRR/WRF simulations and bootstrapping confidence 410 
intervals for Mean bias, RMSE, and CRMSE for the May and November anticyclones. We tested the HRRR initializations with 56 

vertical levels and with/without the high-resolution SST input (OSPO 5km). 

https://doi.org/10.5194/wes-2023-148
Preprint. Discussion started: 9 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

20 

 

20 

3.4 Wind power density prediction 

From the previous sections, the conclusion was that initial and boundary conditions exhibited the largest influence to the hub 

height WRF wind prediction. NAM/WRF and HRRR/WRF configurations were able to capture low wind speed occurrences 415 

during the presence and movement of anticyclones, providing confidence that the model is capable to reliably predict such 

wind drought occurrences. Even though we selected similar types of weather patterns over the Northeast US (anticyclones 

with low wind), there was no single configuration that performed best for all cases. Naturally, the next question was whether 

a similar significance would apply to the prediction of offshore wind power density, given that wind power is based on cubic 

wind speed.     420 

The calculation of Wind Power Density (WPD) (Elliott et al. 1987; Johnson and Erhardt 2016; Martinez and Iglesias, 2022; 

Li et al. 2023), which represents the hypothetical wind power content of atmospheric flow, is shown below.  

Wind Power Density (WPD) =
1

2
ρV3 

where ρ is air density (1.207448 kg/m3), and V wind speed in m/s. The unit of WPD is W/m2. The calculation of air density 

included a correction for elevation (Li et.al. 2023, NOAA 1976):  ρ = 1.225 − (1.194 ∗ 10−4)Z(station elevation) 425 

For the selected cases, hub height wind speed did not reach the rated speed of 12 m/s, except for a few hours in May and 

August (Fig. 6). This indicated the importance of weakly forced events that produce low wind speed and how they might 

influence offshore wind energy production. We plotted time-series of WPD for each event (Fig. 10) to investigate the impact 

of wind speed biases on wind power. As the WPD is proportional to cubic wind speed, a small deviation of modeled wind 

from observations can have a great impact on wind power. This feature was more pronounced for higher wind speeds, as 430 

expected (May and August cases, Fig. 6 and Fig. 10).  

The statistically significant difference between WRF model configurations, followed the same patterns as for the hub height 

wind speed for the individual events (Fig. 11). For the May and August anticyclones, HRRR/WRF had statistically lower 

RMSE and CRMSE compared to NAM/WRF for WPD. For June and November, NAM/WRF showed better error statistics, 

not consistently for the same metrics though. When testing the confidence of all events together, the HRRR/WRF model 435 

configuration had a significant low model and random error (RMSE & CRMSE) compared to NAM/WRF, while the mean 

bias did not exhibit any significant difference. As with hub height wind speed, the difference between vertical levels was 

insignificant for the WPD error metrics (Fig. 11).   
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Event 1: May 20-22, 2020 

   

Event 2: June 15-17, 2020 

  

Event 3: August 20-22, 2020 

 

Event 4: November 8-10, 2020 

  

 445 

Figure 10: Time series of Wind Power Density (WPD in W/m2) from NAM/WRF and HRRR/WRF with 56 layers and ASIT tower 

observations. 

 

 

 450 

 

 

 

 

 455 

https://doi.org/10.5194/wes-2023-148
Preprint. Discussion started: 9 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

22 

 

22 

 

 

 

 

 460 

 

 

 

 

 465 

 

 

 

 

 470 

 

 

 

 

 475 

 

 

 

 

 480 

 

 

 

Figure 11: Bootstrapping confidence intervals for Mean bias, RMSE, and CRMSE of WPD (W/m2). The blue square denotes 

statistically better error metrics. 485 

Event 1: May 20-22, 2020 

Event 2: June 15-17, 2020 

Event 3: August 20-22, 2020 

Event 4: November 8-10, 2020 
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4 Concluding remarks 

The main objective of this study was to investigate the performance of different WRF model configurations in predicting 

offshore wind speed and wind power density for anticyclones that coincide with low wind speeds and, thus, underproduction 

of wind energy. We explored the impact of initial and boundary conditions (NAM versus HRRR), number of vertical layers 490 

(56 versus 131), and SST (NAM/HRRR versus OSPO) on hub height wind prediction over the Northeast US cluster of wind 

farm lease areas. The only available offshore measurements at the time of the study came from the WHOI’s ASIT tower which 

was adjacent and not directly inside the intended leased area of the offshore wind farm. This resulted in configuring the WRF 

modeling domains to include the tower location for model evaluation purposes.  

We used SOMs to objectively select events that shared similar synoptic-scale conditions. We selected events of a similar type, 495 

originating from the same SOM node, that exhibited relatively weak winds coming from similar directions (northwesterly 

winds for events under node 7 and southerly winds for events under node 12). The maps also aided in identifying events with 

relatively weak forcing due to the regional pressure gradient which translated in wind below the wind turbine rated wind speed 

limit. As the rated wind speed represents the operational condition of the wind farm, it is very important for NWP models to 

accurately predict events with weak forcing when they are persistent in time.  500 

Overall, the performance of the WRF model in predicting offshore wind at hub-height during the influence of anticyclones 

was primarily influenced by initial and boundary conditions. Adding model vertical levels did not change the model 

performance significantly and consistently. Another important factor to consider was the SST that could impact atmospheric 

stability and air-sea fluxes, as variations in SST affect the stability of the marine boundary layer and thus the generation of 

offshore winds. The OSPO SST was closer to the actual observed SST and corrected part of the wind profile for two of the 505 

selected cases, but it didn’t provide any significant improvement in the error statistics. 

There was not a single model configuration that consistently gave statistically better hub height wind speed predictions, and 

when wind speed translated to wind power density, the statistics remained the same. Individually, wind power density was 

better predicted by HRRR/WRF for the May and August anticyclones, while NAM/WRF had better error statistics for the June 

and November events. The HRRR/WRF configuration showed significantly lower RMSE (266-316 W/m2) and CRMSE (208-510 

266 W/m2) compared to NAM/WRF, when we considered all four events together. Our work underscored that for predicting 

offshore wind resources, it is important to evaluate not only the WRF predictive wind speed, but also the connection of wind 

speed to wind power. The long-term goal of this project is to deploy WRF operationally for the NE US wind farms by choosing 

the best potential configuration. Future work includes the expansion of WRF simulations for other offshore meteorological 

conditions that are important for offshore wind energy forecasting, such as low-pressure systems, cold fronts, and presence of 515 

low-level jets. 
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Code and data availability 

Offshore wind speed observations are taken from the Air-Sea Interaction Tower (ASIT) archived at the Woods Hole 

Oceanographic Institution's (WHOI), and are publicly accessible. SST data are also publicly available from the 0.054o Office 520 

of Satellite and Product Operations (OSPO) analysis dataset. The WRF model is a community modeling system and its code 

is freely available to the public. We have used the open-source Python package, minisom, to create the Self Organizing Maps. 
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