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Abstract. Predictions of the dynamic wake meandering model (DWMM) were compared to flow measurements of a scanning

Doppler lidar mounted on the nacelle of a utility-scale wind turbine. We observed that the wake meandering strength of the

DWMM agrees better with the observation, if the incoming mean wind speed is used as advection velocity for the downstream

transport, while a better temporal agreement is achieved with an advection velocity slower than the incoming mean wind speed.

A subsequent investigation of the lateral wake transport revealed differences to the passive tracer assumption of the DWMM in5

addition to a non-passive downstream transport reported in earlier studies. We propose to include the turbulent Schmidt number

in the DWMM to improve (i) the consistency of the model physics and (ii) the prediction quality. Compared to a benchmark, the

thus modified DWMM showed a root-mean-square error reduction by 5% for mean velocity deficit and 7% for the turbulence

intensity, relative to the unmodified DWMM, in addition to better temporal agreement of the dynamics. This is in contrast to an

error increase of 64% and 41% if only a more accurate downstream transport velocity is used without including the turbulent10

Schmidt number.

1 Introduction

Wind turbine wakes impinging on other wind turbines within a wind farm are a significant source of power losses and they

decrease the lifetime of affected wind turbines. Wake meandering is a low-frequency horizontal and vertical oscillation of the

entire wake (Taylor et al., 1985). It affects power production due to its impact on the velocity deficit recovery, and it affects15

loads due to the turbulence added to the downstream flow (Larsen et al., 2013). Therefore, the modelling of wake meandering

is one important aspect of wind farm development.

Modelling approaches for wake meandering can be grouped into two categories. The first group are computationally expen-

sive large-eddy simulations (LES) that solve filtered flow equations at a high temporal and spatial resolutions (Mehta et al.,

2014). However, their high fidelity comes at the cost of a time consuming forward integration and a difficult initialisation of the20

simulation. The second group are computationally inexpensive engineering models like the dynamic wake meandering model

(DWMM) (Larsen et al., 2008) and a statistical modelling approach (Thøgersen et al., 2017). The DWMM is based on the

assumption that the wake behaves like a passive tracer, which is transported in the vertical and horizontal directions due to
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Incoming Flow Wind Turbine Wake

Figure 1. Illustration of wake meandering at an isolated wind turbine as assumed by the dynamic wake meandering model. Large-scale

turbulence of the inflow displaces the wake of a wind turbine in the spanwise direction while it is transported downstream.

large-scale turbulence without (Fig. 1). The DWMM has the advantage of fast computation time and it can be initialized with

measurement data that are commonly available at a wind farm.25

The DWMM model has seen validation efforts in literature, which are reviewed in the following. The underlying passive

scalar assumption of the DWMM has been accepted with the exception of the downstream transport velocity of wake me-

andering, which is slower than the mean wind speed (Bingöl et al., 2010; Keck et al., 2014b; Machefaux et al., 2015; Conti

et al., 2021; Brugger et al., 2022). Machefaux et al. (2015) additionally investigated the lateral transport velocity of the wake

while it is meandering, but they had no measurements of the lateral velocity of the inflow for comparison. A validation of the30

mean velocity field and turbulence intensity predicted by the DWMM against field measurements showed good agreement and

revealed a sensitivity to the eddy-viscosity parametrisation used (Reinwardt et al., 2018, 2020).

The above-mentioned discrepancies between the passive tracer assumption of the DWMM and observed transport behaviour

warrant closer examination. Specifically, assuming the wake as a passive tracer in the cross-stream directions and non-passive

in the streamwise direction is physically inconsistent. Also, an investigation of the impact of the downstream advection velocity35

on the predictions of the DWMM has not been carried out so far. Further, previous validation efforts for the velocity deficit

and the turbulence intensity predicted by the DWMM focused on validating all components of the DWMM simultaneously,

with the exception of Reinwardt et al. (2020). Here, we extend the validation of the wake meandering module of the DWMM

by Reinwardt et al. (2020) to the turbulence intensity. This is especially interesting, because the meandering framework of the

DWMM is what sets it fundamentally apart from analytical wake models.40

Therefore, this paper will compare the wake dynamics modelled by the DWMM to the wake dynamics observed with field

measurements and, further, how it affects the predictions of the DWMM for the effect of wake meandering on the mean velocity

deficit and the turbulence intensity. These research questions will be studied across a wide range of atmospheric conditions

using field measurements of two pulsed Doppler LiDARs at a utility-scale wind turbine.
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2 Methods45

This section introduces first the DWMM (Sect. 2.1) followed by the research site and the instrument setup (Sect. 2.2) with

which the data set for the model validation was collected (Sect. 2.3).

2.1 Dynamic wake meandering model

The dynamic wake meandering model (DWMM) was introduced by Larsen et al. (2007, 2008) and assumes the wake as a

passive tracer that is advected by the large-scale turbulence of the atmospheric boundary layer. The model decomposes the50

wake into three parts: (i) a quasi-steady velocity deficit calculated with the thin shear layer approximation of the Naviar-Stokes

equations (Ainslie, 1988), (ii) a wake meandering part modelled as a displacement of the entire wake with the large-scale

turbulence of the background flow (Larsen et al., 2008), and (iii) small-scale turbulence that is superimposed on the flow field.

A schematic illustation of part (i) and (ii) is on the right of Fig. 1 with the quasi-steady velocity deficit in blue and the wake

displacement in black. We follow here the implementation of Reinwardt et al. (2020) for the quasi-steady velocity deficit,55

including their recalibration, and Bingöl et al. (2010) for the wake meandering part. The small-scale turbulence part of the

DWMM is not required here, because the present investigation focuses on the wake meandering part of the DWMM. The

DWMM was implemented using the commercial software Matlab for this study.

2.1.1 Quasi-steady velocity deficit

The quasi-steady velocity deficit is modelled with the steady-state, axisymmetric thin shear layer approximation of the Naviar-60

Stokes equations with an eddy-viscosity turbulence closure (Ainslie, 1988). The momentum equation is given by

u
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and the continuity equation is given by

1
r

∂

∂r
(rvr) +

∂u

∂x
= 0, (2)

where u is the mean wind speed in the axial direction, vr is the mean wind speed in the radial (or spanwise) direction, r is the65

radial coordinate, x is the downstream coordinate, and ν is the eddy viscosity. The recalibrated mixing-length parametrisation

of the eddy viscosity of Reinwardt et al. (2020) is given by
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where uhub is the mean wind speed at hub height, umin is the minimum velocity of the wake, TIu is the longitudinal turbulence

intensity at hub height, x̃= x/R, R is the rotor radius, Rw is the wake width, k1 = 0.0914 and k2 = 0.0216 are calibration70

constants, and F1 and F2 are empirical filter functions given by

F1 =





0.25x̃, for x̃ < 4,

1, for x̃≥ 4,
(4)
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and

F2 =





0.035, for x̃ < 4,

1− 0.965exp(−0.35(0.5x̃− 2)), for x̃≥ 4.
(5)

The system of partial differential equations given by Eq. (1) and Eq. (2) was solved on an isotropic grid with a resolution75

of 0.01D spanning 10D from the origin at the nacelle using the method of Crank and Nicolson (1947). The inner boundary

condition is V (r = 0) = 0, and the outer boundary condition isU(r = 10D) = uhub. The initial condition at x= 0 is introduced

in the next section.

2.1.2 Initial velocity deficit at the rotor plane

The thin shear layer equations (Eq. 1 and Eq. 2) omit the pressure gradient terms. The effect of the pressure gradients is80

considered negligible at a distance of 3D (Madsen et al., 2010). Therefore, the boundary condition at x= 0 is designed to

account for the effect of the neglected pressure gradient by including expansion and deceleration of the flow at the rotor disc

such that the resulting flow field after 3D is accurately represented. The initial velocity deficit is iteratively given by

uini (rw,i) = uhub(1− (1 + fu)a) (6)

and85

rw,i = ri

√
1− a

1− (1 + fR)a
(7)

with fu = 1.1, fR = 0.98, a is the induction factor averaged along all radial positions, ri is the rotor radius at position i, and

rw,i is the wake radius at position i (Keck et al., 2013). The induction factor is computed from the thrust coefficient of the wind

turbine (CT ) by using the relationship

CT = 4a(1− a), (8)90

where a is assumed to be constant across the rotor area. The assumption is necessary because the radial distribution of the

induction factor is not available to us for the wind turbine at the research site. However, testing with two different induction

factor distributions of model wind turbines shown in literature (scaled so that they yield the same mean induction factor)

showed that the two initial velocity deficits at x > 4D had a mean absolute difference of 0.9% with a maximum of 1.5% based

on the mean wind speed for the wind speed range covered in the results.95

2.1.3 Wake meandering

The DWMM uses the hypothesis that the wake can be modelled as a passive tracer that is transported by the large-scale

turbulence structures of the atmospheric boundary layer. The process can be imagined as a continuous sequence of velocity

deficits emitted by the wind turbine that are passively transported by the large-scale turbulence (Larsen et al., 2008). Therefore,
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a suitable description of the turbulence field is required. We depart here from the implementation of Reinwardt et al. (2020),100

who used a Kaimal spectrum to generate a stochastic turbulence field, and instead we will follow the approach of Bingöl

et al. (2010) that is more suitable for a direct comparison with wake measurements. They adopted Taylor’s frozen turbulence

hypothesis (Taylor, 1938) and assumed that the large-scale turbulence is correlated across the rotor area. The instantaneous

wake position is then given by

dxpre(t,∆T )
dt

= ua, (9)105

dypre(t,∆T )
dt

= v(t,∆T ), (10)

and

dzpre(t,∆T )
dt

= w(t,∆T ), (11)

where the subscript "pre" stands for prediction, ua is the downstream advection velocity (also called downstream transport110

velocity), v and w are the large-scale lateral and vertical turbulent velocity fluctuations, t is the time of velocity deficit "emis-

sion", and ∆T is the time that has elapsed since a specific velocity deficit "emission". Using the lateral velocity at the turbine

location for the right-hand side of Eq. (10), the instantaneous wake center position in the horizontal plane is given by

ypre(x,t) = v(t−∆T (x))∆T (x), (12)

where ∆T was expressed as a function of the downstream distance x with115

∆T (x) =

x∫

0

dx

ua(x)
. (13)

We will compare two assumptions for the downstream advection velocity in the results: (1) the advection velocity is the

same as mean wind speed with ua(x) = uhub, and (2) the advection velocity is given by the average of the mean wind speed

and mean velocity at the wake center with

ua(x) = 0.5(ucen(x) +uhub) (14)120

as proposed by Cheng and Porté-Agel (2018). For the latter, the mean velocity at the wake center ucen(x) is computed with

the analytical wake model of Bastankhah and Porté-Agel (2016) (see Eq. (A2) in appendix B). Assumption (1) is following

the simplified DWMM in Larsen et al. (2008). Assumption (2) is an improvement on Keck (2015), who assumed that the

downstream advection velocity is a constant 80% of the mean wind speed.

The vertical component of wake meandering cannot be computed directly, because measurements for the right-hand side125

of Eq. (11) are not available. Instead, we assume that the vertical wake meandering can be modelled to be proportional to the

lateral wake meandering with

zpre(x,t) = ryzypre(x,t), (15)
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where the factor ryz is the ratio between the horizontal and the vertical wake meandering strength.

We assume that a suitable choice of ryz is the ratio of lateral to vertical turbulence intensity. For a purely shear driven ABL,130

ratios of TIv/TIu and TIw/TIv are about 0.5, while for a purely convective ABL TIv ≈ TIu < TIw above the surface layer

and TIv ≈ TIu > TIw within the surface layer (Moeng and Sullivan, 1994). Wind tunnel experiments with purely shear-driven

flows showed that wake meandering in the vertical direction had a smaller amplitude than the lateral direction (España et al.,

2012; Bastankhah and Porté-Agel, 2017), which supports the assumed proportionality to the turbulence intensity ratios. Keck

et al. (2014a) presented ratios for vertical to lateral wake meandering of approximately 0.6, 0.8, and 0.9 for stable, neutral, and135

unstable conditions, respectively. We do not have direct measurements of TIw/TIv and the data available to us from a nearby

meteorological tower was not suitable to determine the boundary layer state. Therefore, we assume ryz = 0.8 as an average

ratio.

Further, Eq. (15) implies a perfect correlation between ypre and zpre, which might not be the case in reality. However,

randomly rearranging zpre changed the slopes of the linear regressions shown in Sect. 3.2 by less than 0.02 (no detectable140

change for the intercept and the correlation coefficient) and, therefore, does not affect the drawn conclusions.

2.2 Research site and measurement setup

The research site and the measurement setup is the same as reported in Brugger et al. (2022). The setup was implemented

between 19 August 2017 and 2 October 2017. Quality assurance and data selection criteria are summarized at the beginning of

Sect. 3.145

The site consists of an isolated wind turbine located at Kirkwood Community Collage in Cedar Rapids, Iowa (Fig. 2). The

wind turbine is a 2.5 MW Liberty C96 from Clipper Windpower with a hub height of zhub = 79 m and a rotor diameter of

D = 96 m. The area in the vicinity of the wind turbine is urbanized with some agricultural farmland to the south and east. Data

from the supervisory control and data acquisition (SCADA) system of the wind turbine are available to us with a 10-minute

resolution.150

We installed two pulsed Doppler LiDARs on the roof of the nacelle (Fig. 3a). A Doppler LiDAR emits infrared laser pulses

that are scattered by aerosols within the atmosphere. The backscattered light receives a frequency shift due to the Doppler effect

caused by the movement of the aerosols. Assuming that aerosols are transported by the wind, the line-of-sight velocity of the

air along the laser beam can be estimated from the frequency shift detected by the instrument. The instruments were Stream

Line models from Halo Photonics Ltd. (Worecestershire, UK). The instruments were programmed to sample the velocity with155

a temporal frequency of 3 Hz and spatial resolution of 18 m along the laser beam.

The Doppler LiDAR mounted towards the rear of the nacelle was programmed to perform 230 successive Plan Position

Indicator (PPI) scans in the downstream direction with an opening angle of ±12◦ and an azimuth step of 2◦ to capture the

wake (Fig. 3). Each individual PPI sweep with the return to the starting position took 7.2 s and the full scan was completed

in approximately 28.4 minutes. The scans were designed to be slightly shorter than the 30 minute period allocated in the160

scan schedule to ensure smooth operation of the measurements. Simultaneously, the front mounted Doppler LiDAR was pro-

grammed to measure the lateral velocity component with a horizontal, fixed beam at a 90◦ to the rotor axis for a period of
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Figure 2. Satellite image of the measurement site with the location of the wind turbine (© Google Earth). The wind turbine coordinates are

41.9165◦ latitude and −91.6508◦ longitude.

14 minutes (for the remainder of the 30 minute period, it measured with a fixed beam parallel to the rotor axis upstream, but

those measurements are not used here). This scan pattern of the two Doppler LiDARs was scheduled to begin every second

hour at the half hour mark.165

2.3 Model inputs and reference data

The input values of the DWMM and the reference of the validation use data from separate measurement instruments to keep

them independent. The model input is generated from the SCADA data and the measurements of the front-mounted Doppler

LiDAR. The measurements of the rear-mounted Doppler LiDAR are used as the reference for the validation.
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Figure 3. Photo of the front-mounted Doppler LiDAR on the nacelle of the wind turbine (a). Scan patterns of the nacelle mounted

Doppler LiDARs viewed from top (b). Wake scans of the rear-mounted Doppler LiDAR (red) were accompanied by measurements in

a lateral staring mode of the front-mounted Doppler LiDAR (blue). LiDAR beams are shown as lines with range gate centers indicated

as points. The wind turbine is stylized in black and the rotor-edge projection in the wind direction is indicated with black dashed lines.

The bottom panel shows the scanner path for a section of a wake scan (c), where the grey area indicates the successive PPIs that, to-

gether, become a wake scan. Figure adapted from Brugger et al. (2022) with changes under the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/).

2.3.1 Model inputs170

The input variables of the DWMM and the measurements from which they are taken are listed below:

– uhub is the mean wind speed at hub height. It is measured by a cup anemometer located on the roof of the wind turbine

and reported in the SCADA data. Because the SCADA data has a 10-minute resolution, the averaging period of the mean

wind speed is longer than the 14-minute measurement period of the front-mounted Doppler LiDAR.

– v(t) is the time series of the large-scale lateral velocity of the inflow. It is generated from the measurements of the175

front-mounted Doppler LiDAR using the range gate at a distance of 117 m, which is the closest range gate that is not

affected by the rotor. A linear trend is removed and a low-pass filter with a threshold of β∆T with β = 0.8 is applied

to isolate the large-scale turbulence fluctuations (Cheng and Porté-Agel, 2018). This threshold of the low-pass filter is
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considerably larger than the rotor diameter and it is therefore reasonable to assumed that v(t) is representative for the

full rotor area. A trend is removed from v(t) instead of the mean to remove non-stationary effects, like a steady change180

of the wind direction over a 14-minute period, that are not considered wake meandering. Further, the lateral turbulence

intensity (TIv) and the integral time scale (Ti,v) are computed from v(t) prior to the low-pass filtering. A proportionality

between longitudinal and lateral turbulence intensity with TIu = 3
2TIv is assumed.

– CT is the wind speed dependent thrust coefficient of the wind turbine. It is selected from the thrust curve in Fig. A1

based on uhub.185

2.3.2 Reference data set

The instantaneous wake center position, the turbulence intensity added by wake meandering, and the reduction of the mean

velocity deficit due to wake meandering are extracted from the measurements of the rear mounted Doppler LiDAR. The

processing steps listed below and illustrated in Fig. 4 are similar to those in Brugger et al. (2022):

1. A signal-to-noise ratio (SNR) threshold of −17 dB is used to reject low quality Doppler LiDAR measurements (Pearson190

et al., 2009).

2. The remaining line-of-sight velocities are gridded on a polar coordinate system ur(φ,r, t) with an azimuth (φ) resolution

of 2◦, a radial (r) resolution of 18 m, and a time step (t) aligning with the PPIs of the wake scans. The az positions of

the LiDAR scans and the φ positions of the polar coordinate system can have a difference of 0.2◦ towards the end of a

PPI resulting from the acceleration phase of the scanner head, small variations of the scanner behaviour, and fluctuations195

of the sampling frequency. Multiple measurements are available for the outside grid points due to a short resting time of

the scanner at the turn-around point and the measurements closest in time are used at those grid points.

3. The transformation to a Cartesian coordinate system is made using y = r sin−1(φ) and x= 〈r cos−1(φ)〉, where the

angle brackets indicate the lateral averaging.

4. An instantaneous velocity deficit is computed with ∆ur(x,y, t) = uhub−ur(x,y, t). This approach maps all measure-200

ments during a PPI on a single time stamp neglecting the travel time of the scanner head.

5. The instantaneous position of the wake center is detected with the centroid of the velocity deficit with

ywc(x,t) =

∑
y y∆ur(x,y, t)∑
y ∆ur(x,y, t)

, (16)

where the subscript "wc" stands for wake centroid.

6. The instantaneous velocity deficit in the meandering frame of reference (∆ur(x, ỹ, t)) is computed by transformation of205

the lateral coordinate with ỹ = y− ywc and interpolated on the original y grid points.
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Figure 4. The data processing steps to quantify the effect of wake meandering on the mean velocity deficit and the turbulence intensity are

illustrated for an example at a downstream distance of x = 5D. The instantaneous velocity deficit in the nacelle frame of reference (a) and

meandering frame of reference (b) have a temporal average (c, e) and standard deviation (d, f) applied. The reduction of the mean velocity

deficit due to wake meandering is then quantified as amplitude difference (g) of two Gaussian fits to the two velocity deficits in (c) and (e).

The turbulence intensity added by wake meandering is quantified as the spatially averaged difference in turbulence intensity (h).
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7. The temporal mean and the standard deviation of ∆ur(x,y, t) and ∆ur(x, ỹ, t) provide profiles of the mean velocity

deficit and the turbulence intensity in the nacelle frame of reference (NFOR) and the meandering frame of reference

(MFOR), respectively. The NFOR is identical to a fixed frame of reference here, because data was selected to have no

yaw activity of the wind turbine.210

8. The reduction of the mean velocity deficit due to wake meandering is then quantified by the amplitude difference of two

Gaussian functions fitted to the mean velocity deficit in the NFOR and the MFOR, respectively. The difference will be

denoted as C̃ −C where C (C̃) is the amplitude of the Gaussian function in the NFOR (MFOR).

9. The turbulence added by wake meandering is quantified by the laterally averaged difference in turbulence intensity

between the NROR and the MFOR. It will be denoted as 〈TIu− T̃ Iu〉.215

10. Lastly, a temporal linear trend is also removed ywc(x,t) and a low-pass filter is applied to make it comparable to ypre(x,t)

of the DWMM that is based on the detrended and low-pass filtered v(t). Note that C̃ −C and 〈TIu− T̃ Iu〉 still include

non-stationary effects and we will deal with that in Sect. 3.2.1.

The above processing steps are applied for downstream distances between xD−1 = 3 and xD−1 = 7. The Doppler lidar’s field

of view and the double-peak shape of velocity deficit in the near-wake were problems for the detection of ywc for xD−1 < 3,220

and the lateral resolution of the lidar scans became coarser than 10 m for xD−1 > 7. Some parts of the results will focus on a

downstream distance of x= 5D, because the scanning cone has an ideal width of 2D there and 5D is typical distance between

wind turbines in onshore wind farms.

3 Results

The first part of the results will focus on the modelling of wake meandering itself, while the second part will focus on the225

validation of the predicted effects that wake meandering has on the mean velocity deficit and the turbulence intensity. A set

of 43 cases, each covering an approximately 14-minute period, was selected from the measurement data of the campaign. The

selection criteria were a mean wind speed above 5 m s−1, no yaw movement of the wind turbine, a sufficient mean SNR of the

Doppler lidar, and a wake within the Doppler lidar’s scanning cone. The 43 cases cover a wind speed range from 5 m s−1 to

11 m s−1, turbulence intensities of the lateral velocity component up to 8% (for higher turbulence intensities, the wake is not230

covered by the Doppler LiDARs scanning cone due to very strong wake meandering). The selection criteria and the data set

are identical to Brugger et al. (2022).

3.1 Testing of the passive scalar assumption of the DWMM

First, the predictions of the instantaneous wake center positions will be validated. The root-mean-square error (RMSE) and the

correlation coefficient between the predicted wake center position (Eq. 12) and the observed wake center position (Eq. 16) will235

be used as quality metrics. The observed wake center position has been detrended and low-pass filtered with the same filter
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Figure 5. The correlation coefficient (a) and normalized root-mean-square error (b) between the wake center position predicted by the

dynamic wake meandering model (ypre, Eq. 12) and the observed wake position by the wake scanning Doppler lidar (ywc, Eq. 16) at a

downstream distance of 5D from the wind turbine. The ratio between the integral time scale of lateral velocity (Ti,v) and the time delay due

to downstream advection (∆T−1) quantifies the rate of evolution of the turbulent wind field during the time of downstream advection.

threshold as the input of the DWMM for comparability. The results of the evaluation at x= 5D are shown in Fig. 5. They

have a general trend of an increasing correlation and a decreasing normalized RMSE with Ti,v∆T−1. The ratio Ti,v∆T−1

quantifies the rate of evolution of the turbulent wind field during the time of downstream advection (or in other words how

well the Taylor’s frozen turbulence hypothesis holds). This behaviour is in agreement with the recommendation that for large240

downstream distances, the spatial variability of the large-scale turbulence components should be taken into account (Larsen

et al., 2008), which is supported by the results of a previous data analysis (Brugger et al., 2022).

Next, we will investigate the effect of the downstream advection velocity on the predicted wake-center positions. We will

compare predictions using the reduced downstream advection velocity given by Eq. (14) with predictions using the mean wind

speed of the inflow as the downstream advection velocity. The effect of the choice of advection velocities on the correlation245

coefficient is shown in Fig. 6a. Using the reduced advection velocity ua improved the correlation between predictions and

observations for x < 5D, indicating better temporal alignment for the predictions using the reduced downstream advection ve-

locity. No systematic effect on the correlation is observed beyond 5D, which can be explained by ua(x) approaching uhub with

increasing x and the decorrelation of the two turbulent signals with increasing separation. Despite the increase in correlation

coefficient, using ua had a detrimental effect on the normalized RMSE (Fig. 6b). This will be investigated in more detail in the250

following section.
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Figure 6. The effect of the downstream advection velocity on the correlation coefficient (a) and on the normalized root-mean-square error

(b) between ypre and ywc as a function of the downstream distance. The subscript "a" ("hub") indicates ua (uhub) as downstream advection

velocity. The whiskers show the range of the data, the top and bottom of the blue box indicating the 25th and 75th percentile, and the red

center marker showing the median.

3.1.1 Overestimation of the wake meandering strength

It was previously observed that using ua as the advection velocity increases the RSME despite having a higher correlation with

the observation. Analysing several cases visually, we observed that the predictions had in many cases a too large amplitude

of the wake displacement compared to the observations. Figure 7 shows three examples from the data set to illustrate the255

behaviour. It is apparent that the better temporal alignment of the predictions using ua is accompanied by an overestimation

of the wake displacement compared to the predictions with uhub. Quantifying the overestimation with the difference in wake

meandering strength for the whole data set, it becomes clear that this is a systematic bias that is introduced by the reduced

advection velocity (compare Fig. 8a and Fig. 8b).

Better temporal agreement of the DWMM when using a downstream advection velocity slower than the mean wind speed260

was observed in several studies (Bingöl et al., 2010; Keck et al., 2014b; Machefaux et al., 2015). However, a subsequent

overestimation of the wake meandering strength has not been reported as a problem so far. While Keck et al. (2014a) showed

in their Fig. 3 that the lateral wake meandering strength predicted by the DWMM increases with a slower downstream transport

velocity for x < 10D, they did not further investigate the matter (possibly due to a scaling of the wake meandering strength at a

later stage of their DWMM implementation). In a previous validation of the passive scalar assumption by Bingöl et al. (2010),265

this phenomenon was not reported, but a visual inspection of their Fig. 8 suggests that three of their four cases also exhibit

a larger displacement of the wake center position in the DWMM predictions compared to the wake measurements. Trujillo

et al. (2011) showed an example case in their Fig. 5 which we digitized (linearly interpolating the parts that where obstructed
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Figure 7. The time series of the observed and the predicted wake center positions at x = 5D for three example cases, which were selected

for their high correlation between reference and prediction. The predictions are shown for uhub (dashed blue) and ua (solid blue) as the

downstream transport velocity. The reference from the observations is shown in black.
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Figure 8. Error between observed and predicted wake meandering strength with uhub (a) and ua (b) as downstream advection velocity. The

whiskers show the range of the data, the top and bottom of the blue box indicate the 25th and 75th percentile, and the red center marker

shows the median.
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by other plot elements) and found similar displacements of the wake center position for the predictions and the observations.

However, the description of their data processing mentions low-pass filtering only for the modelled wake of the DWMM and270

not the observed wake, which could mask the overestimation. Other validations might not have observed this issue previously,

because using the mean wind speed for the downstream advection and a temporally averaged validation approach masks the

issue (Reinwardt et al., 2018, 2020; Conti et al., 2021).

Based on our own findings and the literature review, we believe that the discrepancy between temporal agreement and wake

meandering strength points towards a short-coming of the passive scalar assumption of the DWMM. In the following section,275

we will provide a hypothesis to addresses this problem. Other possible explanations for the overestimation that were tested on

the data and rejected are listed in Appendix C.

3.1.2 Improvement of the DWMM to account for momentum transport

We hypothesize that the transport of the wake with large-scale turbulence is more akin to the transport of momentum than the

transport of a passive tracer and that, subsequently, the turbulent Schmidt number should be considered in the modelling of280

wake meandering. The turbulent Schmidt number characterises the ratio between the turbulent transport of momentum and the

turbulent transport of passive scalars. Previous experiments indicated that momentum is transported less efficiently than scalars

in turbulent wakes (Reynolds, 1976; Antonia et al., 1993). First, we provide support for this hypothesis by comparing observed

transport behaviour of the wake with the expectation of a passive scalar. Then we include the turbulent Schmidt number into

the DWMM and compare those new predictions with the observations.285

We use the diffusion theory of Taylor (1922) to compare the observed transport of wake meandering with the expected

transport of a scalar. Cheng and Porté-Agel (2018) adapted the diffusion theory from a point source to an area source for wind

turbine wakes. The standard deviation of a lateral profile of a scalar concentration in a wake at ∆x downstream of the virtual

point source is then given by

σy,scalar =
〈
v2
〉0.5 ∆x

ua
, (17)290

where
〈
v2
〉0.5

is the standard deviation of the lateral air velocity. If momentum is considered, which is transported less efficient

than a scalar in a wake (Reynolds, 1976), this expression becomes

σy,wake =
√
Sct
〈
v2
〉0.5 ∆x

ua
, (18)

where Sct is the turbulent Schmidt number. We assume that the standard deviation of the lateral transport velocity of the

wake centroid can be expressed as
〈
v2

wake

〉0.5 =
√
Sct
〈
v2
〉0.5

. With this assumption, we can determine the turbulent Schmidt295

number of wake meandering from the ratio of the standard deviation of the lateral velocity to the standard deviation of the

lateral velocity of the wake centroid:

Sct =
(〈
v2

wake

〉0.5 〈
v2
〉−0.5

)2

. (19)

The lateral transport velocity of the wake center (vwake) can be determined from the lateral displacement of the wake center

position following a method of Machefaux et al. (2015). First, the time lag ∆t between v(t) and the wake center position ywc(t)300
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Figure 9. Turbulent Schmidt numbers of wake meandering (Eq. 19) as function of the downstream distance from the wind turbine. The

whiskers show the range of the data, the top and bottom of the blue box indicate the 25th and 75th percentile, and the red center marker

shows the median.

for a given downstream distance is determined with a cross-correlation. We do not use Eq. (13) to compute the time delay to

make no assumptions on the downstream transport velocity here. Then, the lateral transport velocity of the wake center is

estimated with vwake = ywc/∆t. If the cross-correlation for determining ∆t is lower than 0.8 the estimate of vwake is rejected.

The turbulent Schmidt number was determined with Eq. (19) using v measured by the front-mounted Doppler lidar as

described in Sect. 2.3.1 and vwake determined as described in the previous paragraph. Both time series were low-pass filtered305

and detrended to make them comparable. The results in Fig. 9 show that the turbulent Schmidt numbers of wake meandering

are smaller than unity for the majority of the data set. The average of the observed Sct is 0.68, which close to 0.7 used by Cheng

and Porté-Agel (2018) for wind turbine wakes based on Reynolds (1976). This suggests that wake meandering is more akin to

the transport of momentum than the transport of a passive scalar. Using an average over multiple range gates to determine v to

mirror the spatial averaging of the wake center detection changes the average Sct to 0.69. Down sampling v to the temporal310

resolution of ywc prior to low-pass filtering has also only a small effect on the results by changing the average Sct to 0.64.

Following our hypothesis, we modified the DWMM to account for a reduced momentum transport efficiency by including
√
Sct with constant Sct = 0.7 in Eq. (12). The results are shown in Fig. 10. Including Sct reconciled 81% of the overestimation

of the wake meandering strength.
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Figure 10. Observed wake meandering strength and predicted wake meandering strength of the DWMM. Blue indicates the DWMM with the

passive scalar assumption and red indicates the DWMM modified with turbulent Schmidt number to account for a less efficient momentum

transport.
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Figure 11. Schematic of the benchmark used to validate the DWMM. The instantaneous wake center position (a,c) and the velocity deficit

in the MFOR (b,c) are combined to create a benchmark wake (e) for comparison with the DWMM.

3.2 Validation of the modified DWMM315

The second part of the results will compare the original DWMM and the modified DWMM for the effect of wake meandering

on the mean velocity deficit and the turbulence intensity. The validation is focused on the effect of wake meandering instead of

the absolute values, because the absolute values can be predicted with an analytical model (e.g Qian and Ishihara, 2018) and

the ability to predict the effect of wake meandering sets the DWMM apart.

3.2.1 Benchmark data for the model validation320

Before going into the validation, a benchmark is defined. The motivation for this is that the reference data set as introduced in

Sect. 2.3.2 includes the effects of a non-stationary flow (e.g. turbulence scales that are longer than the 14-minute measurement

period for each case or a steadily changing wind direction for synoptic reasons) and measurement errors that are not part of the

DWMM and thus should be removed for a fair comparison. The goal of the benchmark is to isolate the part of the observations

that can be explained by the framework of the DWMM.325

As the benchmark, we use the observed mean velocity deficit in the MFOR, which is spatially shifted based on the detrended

observations of wake center positions. A schematic of the benchmark workflow is shown in Fig. 11. The mean velocity deficit

in the MFOR was extrapolated with zeros outside the scanning cone of the rear-mounted Doppler LiDAR and only the part

of the benchmark overlapping with the time delayed predictions of the DWMM is used. The effect of wake meandering on

the mean velocity deficit and the turbulence intensity was then determined from the benchmark in the same way as for the330

observations (see Sect. 2.3.2 points eight and nine). The benchmark can be regarded as the best possible result that the DWMM

could achieve.
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A comparison of the benchmark with the observations is shown in Fig. 12. The two main differences between the observa-

tions and the benchmark for the reduction of the mean velocity deficit (Fig. 12a, b) are (i) that for a weak wake meandering

strength (small values of σ(ywc)D−1) the observations scatter around zero, but the benchmark has strictly positive values, and335

(ii) that the observations reach much larger values for strong wake meandering. This causes the benchmark to have smaller

slope in a linear regression and a larger intercept compared to the observations. The negative values in the observations can be

explained by the method of isolating the effect of wake meandering. Random fluctuations of the detected wake center position

due to measurement errors or small-scale turbulence introduce erroneous variability into the MFOR. If the wake meandering

is weak, this erroneous variability in the MFOR can be of the same magnitude as the variability in the NFOR, thus leading340

to values scattering around zero. The larger values in the observations for strong wake meandering can be explained with a

non-stationary flow that is attributed to the effect wake meandering in the observations, but is removed from the benchmark

with the detrending of ywc. If only a mean value is removed from ywc instead of a linear trend, the differences in the slope of

the linear regression between observation and benchmark reduces to 0.02.

For the added turbulence intensity (Fig. 12c, d), the slope of the linear regression has better agreement between the obser-345

vations and the benchmark than for the mean velocity deficit, while the offset for the intercept persists. The overall smaller

differences between observations and benchmark can be explained by the lateral averaging of the quantification method, which

averages strongly affected regions of the wake with more weakly affected regions further out (in contrast, the amplitude of the

velocity deficit is quantified at the wake center only). Otherwise, the same arguments as for the mean velocity deficit discussed

in the previous paragraph apply.350

The observations (Fig. 12a, c), which include non-stationary effects, were plotted against the trend removed wake mean-

dering strength. If the observations are plotted against the wake meandering strength including linear trends, the correlation

coefficients increase to 0.8 and 0.9, respectively, and the linear regression assumes similar values as reported in Brugger et al.

(2022).

3.2.2 Prediction of the mean velocity deficit355

First, we validated the predicted reduction of the mean velocity deficit by the DWMM. The DWMM using the passive tracer as-

sumption (uhub as the downstream advection velocity and Sct = 1.0) produces comparable results to the benchmark (Fig. 13a).

The DWMM treating the wake as non-passive (i.e. using ua as the downstream advection velocity and Sct = 0.7) also produces

comparable results to the benchmark (Fig. 13b). Both implementations of the DWMM reproduce the trend of an decreasing

mean velocity deficit with an increasing wake meandering strength. Only when including dynamics into the validation as in360

Sect. 3.1, the benefit of non-passive implementation of the DWMM becomes apparent. The good results of DWMM with the

passive tracer assumption are explained by the temporally averaged validation approach used here, where the errors of a too

fast downstream transport and a too efficient lateral transport mostly cancel out, which might also explain why the issue was

not noticed in previous studies. Overall, the good agreement to the benchmark shows that the DWMM is well parametrised

and differences to the observations can be explained by factors that are not part of the framework of the DWMM.365
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Figure 12. The reduction of the mean velocity deficit (a, b), and the added turbulence intensity (c, d) due to wake meandering as a function

of the wake meandering strength at a downstream distance of x = 5D. The left column shows the observations and the right column shows

the benchmark for the model validation. The red lines indicate a linear fit to the data.
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Figure 13. The reduction of the mean velocity deficit as a function of the wake meandering strength at a downstream distance of x = 5D.

Panel (a) shows predictions of the DWMM using uhub as the downstream advection velocity with a turbulent Schmidt number of Sct = 1.0

and panel (b) shows the DWMM using ua with Sct = 0.7.

Recommendations in the literature for the application of the DWMM suggest a downstream transport velocity slower than

the mean wind speed, but do not mention further changes to the lateral and vertical transport equations of the DWMM (Bingöl

et al., 2010; Brugger et al., 2022). However, treating the wake inconsistently in the DWMM by using ua (non-passive in the

x direction) and Sct = 1.0 (passive in the y and z direction) leads to an overestimation of the mean velocity deficit reduction

compared to the benchmark (Table 1, compare slopes of the three DWMMs). This result shows that only using a slower370

downstream transport velocity increases the errors compared to the other two implementations of the DWMM. This is in line

with our finding from the first part of the results, that only using a slower downstream transport velocity in the DWMM is not

fully accounting for the non-passive nature of the wind turbine wake. Including the Schmidt number is required to accurately

represent momentum transport in the wake.

3.2.3 Prediction of the added turbulence intensity375

Lastly, the model predictions of the turbulence intensity added by wake meandering are validated. The predictions of the

DWMM have good agreement with the benchmark for both the passive and non-passive implementation (Fig. 14a and Fig. 14b).

The reason why both advection velocities lead to good agreement with the benchmark is the same as for the reduction of the

mean velocity deficit in the previous section. Overall, the impact of the downstream transport velocity and turbulent Schmidt

number on the added turbulence intensity is smaller compared to the reduction of the mean velocity deficit shown in the380
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Table 1. Correlation coefficient (r), slope (a), and intercept (b) of a linear regression as well as the root-mean-square error (RMSE) between

the benchmark and three versions of the DWMM. The left site shows the results for the mean wake depth (C̃ −C) and right site shows the

average turbulence intensity added by wake meandering (〈TIu− T̃ Iu〉). All values were computed at a downstream distance of x = 5D.

C̃ −C
〈
TIu− T̃ Iu

〉
r a b RMSE r a b RMSE

Benchmark 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

Observations 0.79 1.58 0.00 0.09 0.82 1.09 -0.95 1.12

DWMM (uhub, Sct = 1.0) 0.86 1.17 0.02 0.06 0.85 0.89 0.29 0.62

DWMM (ua, Sct = 1.0) 0.87 1.48 0.04 0.09 0.86 1.01 0.56 0.87

DWMM (ua, Sct = 0.7) 0.85 1.06 0.03 0.05 0.86 0.85 0.41 0.58
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Figure 14. The added turbulence intensity as a function of the wake meandering strength at a downstream distance of x = 5D. Panel (a)

shows predictions of the DWMM using uhub as the downstream advection velocity with a turbulent Schmidt number of Sct = 1.0 and panel

(b) shows the DWMM using ua with Sct = 0.7.

previous section (Table 1). This is explained in part by the quantification method that includes a lateral average, which averages

the most strongly affected regions of the wake with less affected regions further out.
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4 Conclusions

A test of the existing formulation of the DWMM and a new formulation that incorporated additional physics was presented.

The test site was an isolated wind turbine in Cedar Rapids, Iowa. A Doppler lidar deployed on the nacelle of the wind turbine385

scanning the velocity field of the wake at hub height was used as reference to which the models were compared. A second

Doppler lidar and the SCADA data of the wind turbine was used to initialize the wake meandering models.

The results for the instantaneous wake center position exposed an issue with the passive tracer assumption of the existing

formulation of the DWMM. The wake meandering strength had better agreement with the observation, if the mean wind

speed is used for the downstream transport, while at the same time, a better temporal agreement is reached if the downstream390

transport used a special wake velocity to more accurately represent the advective transport. Analysing the transport behaviour

of the wake, we found that both the downstream transport of wake meandering as well as the lateral wake displacement showed

differences compared with the DWMM assuming a passive scalar transport. Therefore, we propose to include the turbulent

Schmidt number in the DWMM to account for the less efficient turbulent transport of momentum compared to a passive scalar

in addition to the a slower downstream transport velocity. This will also make the DWMM physically more consistent, because395

the wake is considered fully non-passive with this modification, while previously it has been treated as non-passive in the

downstream direction and passive in radial direction.

A comparison of the thus modified DWMM with measurements showed that it reconciles the previously noted discrepancy

of statistics and dynamics. The DWMM model using only the more accurate downstream transport velocity had an error

increase of 64% for the mean velocity deficit reduction and 41% for the added turbulence intensity compared to the original400

DWMM using the passive tracer assumption. The DWMM that included the Schmidt number in addition to the more accurate

downstream transport velocity had an error reduction for those statistics by 5% and 7%, respectively (and better temporal

agreement for the dynamics of wake meandering).

In future work, we propose a validation of our findings with a different experimental approach or through simulations to

exclude site factors or methodological biases.405

Data availability. The data is currently prepared to be published on Zenodo.

Appendix A: Equations of the Bastankhah and Porté-Agel (2016) model

The normalized mean velocity deficit of the Bastankhah and Porté-Agel (2016) model for a wind turbine aligned with the mean

wind direction is given by

∆u
uhub

=A(x)exp
(
−1

2
y2 +x2

σ2

)
, (A1)410
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Figure A1. Thrust coefficient curves of six wind turbines from manufacturer data (first compiled by Abdulrahman, 2017) and the ensemble

average, which is assumed as the CT curve for wind turbine at the measurement site. Figure reused from Brugger et al. (2020) without

changes under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).

where A is the normalized mean velocity deficit at the wake center and σ is the wake width. The normalized mean velocity

deficit at the wake center is given by

A(x) =

(
1−

√
1− CT

8σ(x)2/D2

)
(A2)

with the thrust coefficient CT . The thrust curve for this turbine model is not available to us and we will use an ensemble

averaged thrust curve of several wind turbine models given there general similarity of CT between different wind turbines415

(Fig. A1). The CT is then chosen from the assumed thrust curve based on uhub. The wake width is given by

σ(x) = k∗
(x−x0)

D
+

1√
8
, (A3)

where x0 is the near wake length and k∗ is the wake growth rate. The growth rate is computed with k∗ = 0.35TIu assuming

the linear relationship between k∗ and the turbulence intensity found by Carbajo Fuertes et al. (2018). The near wake length

x0 is given by420

x0 =
1 +
√

1−CT√
2(α∗TIu +β∗(1−√1−CT ))

, (A4)

where α∗ = 2.32 and β∗ = 0.154. For the computation of the advection velocity in Eq. (14) we use ucen(x) = uhub(1−A(x))

with A(x) given by Eq. A2 the assumption that A(x0) is valid for x < x0.
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Appendix B: Tested hypotheses for the overestimation of the wake meandering strength

The following hypotheses for the overestimation of the wake meandering strength observed in Sect. 3.1.1 were tested:425

– Temporal variations of the downstream advection velocity during a 14-minute period would lead to a reduced (increased)

amplitude of the wake meandering during times with faster (slower) than average advection velocity. Utilizing the outside

points of PPI of the wake scanning LiDAR to gain a time series of the wind speed, we found that the effect on the

predicted wake center position is too small to explain the overestimation.

– A misalignment of the wind turbine could contaminate the lateral velocity measured by the front-mounted Doppler430

LiDAR with contributions from the longitudinal velocity. We used the yaw angle reported in the SCADA data, and the

mean wake center position within the wake scanning LiDAR’s field of view to quantify the yaw misalignment of the

wind turbine. The overestimation did not show any relationship to both neither in average nor trend.

– The overestimation persists if the mean instead of a linear trend is removed from v and ywc. A decrease in magnitude in

case of a removed linear trend is explained by removing the largest scales of turbulence.435

– In case any remaining flow distortion of the wind turbine affecting v(t) went unnoticed, range gates at a greater distance

than y = 117 m were tested, but the overestimation persisted.

– We had the hypotheses that the onset of wake meandering is delayed due to a sheltering effect within the near wake until

entrainment has reached the wake center. However, this assumption seems unrealistic based on the fact that the wake

scanning LiDAR shows wake meandering within the near wake. Testing hypotheses on the data led to a increased of440

the RMSE for xD−1 < 5 due to an underestimation of the wake meandering there, and small decrease of the RMSE at

greater x.
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