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Abstract. Aeroelastic simulations are used to assess wind turbines in accordance with IEC standards in the time domain.

Doing so can calculate fatigue and extreme loads on the wind turbine’s components. These simulations are conducted for

several reasons, such as reducing safety margins in wind turbine component design by covering a wide range of uncertainties

in wind and wave conditions, and meeting the requirements of the digital twin, which needs a thorough set of simulations

for calibration. Thus, it’s essential to develop computationally efficient yet accurate models that can replace costly aeroelastic5

simulations and data processing. We suggest a data-driven approach to build surrogate models for the Damage Equivalent

Load (DEL) based on aeroelastic simulation outputs to tackle this challenge. Our method provides a quick and efficient way to

calculate DEL using wind input signals without the need of time-consuming aeroelastic simulations. Our study will focus on

utilizing a sequential Machine Learning (ML) method to map wind speed time series to DEL. Furthermore, we demonstrate

the versatility of the developed and trained surrogate models by testing them for a wind turbine in the wake and using transfer10

learning to enhance their prediction.

1 Introduction

For design, optimization and maintenance purposes of a wind turbine, wind turbine researchers and engineers need to simu-

late a wind turbine’s dynamic behaviour. This has been done based on the IEC standards (IEC 61400-1) using time-marching

aeroelastic codes such as Fatigue, Aerodynamics, Structures, and Turbulence (FAST) (Jonkman et al., 2005), HAWC (Larsen15

and Hansen, 2007) or Bladed (Bossanyi, 2003). We utilize these time-marching simulations to calculate extreme and fatigue

loads on wind turbine components caused by wind and wave as the inputs. The time-marching simulations are necessary for

our work and research as they enable us to consider the inherent and necessary non-linearity in the wind turbine models. As

both wind and waves are stochastic processes, a large set of simulations is preferred to understand the turbine behaviour fully

and consider the uncertainty the stochasticity introduces. However, this increase in the number of simulations increases the20

computational costs. One solution to this is developing a computationally efficient Surrogate Model (SM) which is cheaper to

run yet accurate for our purposes.
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The concept of the SM can be traced back to the field of Uncertainity Quantification (UQ) analysis, as stated in Sudret

(2007). SMs, emulators or response surfaces are simple representations of a complex model, which can map the input to the25

output. At the same time, they can encapsulate the complexity of the original model (Williams and Cremaschi, 2019). Asher

et al. provides an overview of the different categories of SMs (Asher et al., 2015). There are different methods to develop a SM

such as Polynomial Chaos Expansion (PCE) (Xiu and Karniadakis, 2002; Crestaux et al., 2009), or Gaussian Process Regres-

sion (GPR) (O’Hagan, 1978; Rasmussen and Williams, 2006). Recently, the application of Artificial Neural Network (ANN)

and ML has become increasingly prevalent among researchers and engineers developing SMs (Wang et al., 2022; Kudela and30

Matousek, 2022; Dadras Eslamlou and Huang, 2022; Sun and Wang, 2019). This trend can be attributed to the widespread

recognition of the ANN as a way to approximate any complex function with a few layers with high accuracy (Leshno et al.,

1993), and the increase in the data accessibility and availability.

Researchers and engineers have been using SMs for increasingly diverse applications in the wind energy domain. In the load35

emulation domain, Dimitrov et al. (2018); Schröder et al. (2018); Dimitrov (2019) utilized PCE, Kriging, and ANN SMs to ap-

proximate wind turbine loads by considering stochastic variables such as turbulence intensity, mean wind, and wind direction.

Avendaño-Valencia et al. (2021) employed a GPR-based SM to predict the fatigue load on a wind turbine affected by the wake

in an onshore wind farm. Similarly, Shaler et al. (2022) used multiple SMs, such as GPR and ANN, to map inflow parameters

in an array of wind turbines to the fatigue loads of the wind turbines in that array. Nispel et al. (2019) used a GPR-based SM for40

UQ of an offshore wind turbine’s fatigue based on a wide range of environmental and structural variables. van den Bos et al.

(2018) employed polynomial interpolation as an SM for estimating ultimate loads on a wind turbine, while Nielsen and Rohde

(2022) used a random forest-based SM for ultimate load emulation. Singh et al. (2022) implemented a probabilistic SM for

offshore wind turbine loads using chained GPR. Ransley et al. (2023) utilized an SM as an aerodynamic emulator for real-time

testing of floating wind turbines. In a different approach, Fluck and Crawford used intrusive PCE to build a surrogate model45

for lifting line and Blade Element Momentum (BEM) models (Fluck, 2017; Fluck and Crawford, 2018). Similarly, Haghi and

Crawford built SMs on a BEM model of NREL 5MW turbine simulations output time steps using non-intrusive PCE (Haghi

and Crawford, 2022). In their work, the SMs mapped the random phases in the unsteady wind generation (Fluck and Crawford,

2018; Veers, 1988) to the output loads of the simulations at each time step.

50

As wind and waves are both uncertain, the high computational cost associated with the simulator in a Digital Twin (DT)

may make it impractical to propagate uncertainty. Hence, employing a SM within the DT framework becomes beneficial when

simulations are computationally expensive (Wright and Davidson, 2020). Also, using a surrogate model in a DT system creates

the potential for the surrogate model to operate in real-time (Errandonea et al., 2020). In recent years, DT for wind turbines

has gained popularity among researchers and engineers. DTs have been used at different levels in the energy systems and wind55

turbine industries. Song et al. provided an overview of DT applications and challenges for energy systems in the future (Song

et al., 2023b). De Kooning et al. laid out an overview of DT applications in wind energy conversion (De Kooning et al., 2021).

Fahim et al. provided a method to develop a DT for wind turbines in a wind farm-level system using machine learning methods
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(Fahim et al., 2022). More specifically, with regard to DT applications for loads, Song et al. used measurements from the Block

Island offshore wind farm to develop a DT for the turbines in the field (Song et al., 2023a). In other work, Branlard et al. built60

a DT based on a linearized model of a wind turbine (Branlard et al., 2020). Later, Branlard et al. developed a DT based on the

Tetra spar floating platform full-scale prototype successfully (Branlard et al., 2023). With numerous instances of successful

applications of DTs in the wind energy sector and the potential enhancements that a SM could bring to the DT framework, it is

crucial to conduct further research on developing accurate and efficient SMs for wind energy systems.

f65

Recently, there has been a surge in using ML and ANN techniques to create wind system SMs. This subject has garnered

considerable attention and interest among professionals in the field. A recent study conducted by Schröder et al. utilized

Transfer Learning (TL) and physics-informed ML to enhance wind farm monitoring from Supervisory Control and Data Ac-

quisition (SCADA) data. The study aimed to improve the efficiency and effectiveness of wind farm monitoring using TL. The

results showed that integrating TL and physics-informed ML can enhance the accuracy and reliability of wind farm monitoring70

systems (Schröder et al., 2022). Schröder et al. also used an ANN to build a SM that examined how changes in loads within

a wind farm affect the reliability of wind turbine components. Their study aimed to evaluate the impact of load changes on

wind turbine components’ overall performance and reliability. The results showed that ANN-based SMs can provide valuable

insights into the behaviour of wind turbine components under different load conditions (Schröder et al., 2020). Additionally,

Mylonas et al. used a conditional variational autoencoder to create a probabilistic model of fatigue using SCADA data. Their75

goal was to predict the probability of fatigue load in wind turbine components using SCADA data. The results showed that

ML-based methods predict fatigue accurately (Mylonas et al., 2021). Lastly, Dimitrov and Göçmen used a time-based ML

model Long Short-Term Memory (LSTM) to develop a virtual sensor that can predict and forecast the high-resolution load-

time series of wind turbine components based on a series of environmental and turbine behaviour variable inputs. The results

showed that ML-based time series models are accurate in their prediction and forecasting; however, a less complex ANN can80

still effectively predict outcomes (Dimitrov and Göçmen, 2022).

1.1 Objective

The available literature and research indicate a lack of sufficient exploration and demonstration of a SM capable of mapping

high-resolution environmental time series, specifically wind and/or wave for both on- and off-shore wind turbines, to the fa-85

tigue and extreme loads on wind turbine components. The development of such a SM could potentially enable the prediction

of the DEL of the wind turbine components using just a few input time series, thereby enhancing the efficiency of wind turbine

control systems and increasing the overall lifespan of the turbine. Moreover, the use of this system in a DT framework would

further enhance efficiency and facilitate real-time application.

90

Our ultimate is to develop a fully generalized SM that can predict wind turbine fatigue and extreme loads in any condition

without the need for extra customization or tweaking based on wind, wake, and wave time history. This manuscript specifically
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begins to explore the approach by using sequential ML methods to build such a SM, which will map synthetic wind and wake

time series to DEL. The objectives of the present manuscript are as follows:

– Building extensive wind time histories and wind turbine loads databases based on a Quasi Monte Carlo (QMC) sampling95

of the synthetic wind generation input variables.

– Developing simple Fully Connected Neural Network (FCNN) base SMs (Goodfellow et al., 2016) that maps synthetic

wind generation inputs to DEL (Dimitrov, 2019), serving as a literature benchmark for performance and accuracy.

– Developing a sequential ML base SM using Temporal Convolutional Network (TCN) (Bai et al., 2018) to project syn-

thetic unsteady wind time series to wind turbine components DEL.100

– Showing the capability of the trained sequential ML SMs by developing a TL framework to predict DEL while dealing

with wake-induced synthetic wind time series.

1.2 Paper outline

This paper is organized as follows. Section 2 provides an overview of the methodology used in this study. The basics behind

the data-driven models are then described in Sections 2.1 and 2.2. Sections 2.3 and 2.4 explain the process of building the105

databases in detail. Section 3, we delve into the essential prerequisites for constructing the databases, imparting knowledge

to the SMs, and leveraging their predictive prowess for both the free stream and downstream wake. In the same section, we

also compare the accuracy of different SM architectures developed in this study and discuss the amount of data required for

training, as well as the limitations of the developed SMs. The paper concludes in Section 4, where we summarize the main

findings of this work and suggest future research in the area of wind turbine surrogates using sequential ML models.110

2 Methodology

The presentation of the methodology section in this document has been adapted from the approach outlined in Schröder et al.

(2020) due to its clarity and relevance to the current topic. The chosen framework is deemed to be an appropriate and effective

means of conveying the necessary information in a concise and organized manner. The methodology used in this manuscript

to map synthetic wind high-resolution time series to DEL is shown in Figure 1. It involves developing a sequential ML model115

combined with a FCNN architecture as the main SMs and utilizing a simpler FCNN for comparison purposes.

The configuration presented in Figure 1 has three blocks. The bottom block is for Data generation, which shows the proce-

dure for building a database for the DEL from the input variables. The top two blocks are two methods to build a SM from the

generated data and input variables. The middle block presents the approach to building a SM that maps high-resolution wind120

time series to DEL based on TCN-FCNN architecture. The top block exhibits the process of creating a FCNN that projects the

input variables to DEL (Dimitrov, 2019; Schröder et al., 2018). The larger frameworks and three blocks can be segmented into
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twelve smaller stages. Each step is summarized below. Throughout this document, when we mention wind, we are specifically

referring to unsteady wind.

(1) Specify the input variables space, their distributions and boundaries, and afterwards, generate n samples X from the125

predefined variables. To enable tracking, every sample has been indexed. The database is split into two for training and

testing:

(1a) Training Input Variables which includes 90% of the samples randomly selected. Therefore, the size of this database

is 0.9n. The indices of the randomly selected samples idxinput have been stored.

(1b) Testing Input Variables which includes the 10% remaining of the samples. As a result, the size of this database is130

0.1n

(2) The n generated samples are the input to a wind generator. Each sample from the input variable space generates one

synthetic wind time series with the length of t time steps.

(3) The n synthetic wind time series are stored in Wind Database. The database size is n× t where t is the number of time

steps in the time series. For training/testing purposes, this database is split into two parts:135

(3a) Training Wind Database, which includes 90% of the main synthetic wind time series database randomly selected.

Consequently, the size of this database is 0.9n× t. The indices of the randomly selected samples idxwind have

been stored.

(3b) Testing Wind Database, which includes the remaining 10% of the main synthetic wind time series database. The

size of this database is 0.1n× t.140

(4) The Wind Turbine Model is an input to the Aero-servo-elastic Simulator. The model comprises three modules: aerody-

namic, controller, and aeroelastic.

(5) Aero-servo-elastic Simulator is a time-marching solver that takes synthetic wind time series and wind turbine model as

the input and delivers forces and moments, loads, time series at l wind turbine components as the output.

(6) All the n outputs of the previous step simulations are stored in a database. In the Simulation Database, each simulation145

includes the l wind turbine components load time series for t time steps for one sample from the input variable space.

Therefore, the database size is n×m× t

(7) The time-series output is analyzed to determine the DEL of the loads on the l wind turbine components.

(8) For every wind turbine component in the DEL database, each simulation output yields a single DEL data point. There-

fore, the database size is n× l. Every row in the DEL database has an index that corresponds to the index of its input150

variable sample. As we train two SMs with the database, we split the database into training and testing databases twice.

Thus, there appears to be an overlap between the testing and training databases. However, as we have utilized them to

train and test two distinct SMs, we do not anticipate any issues arising from this situation.
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(8a) Training DEL Database members are selected based on the idxinput indices. Therefore, this database includes

90% of the DEL and the size is 0.9n× l155

(8b) Testing DEL Database which includes the remaining 10% members of the DEL databases. Hence, this database

size is 0.1n× l

(8c) Training DEL Database members are selected based on the idxwind indices. Therefore, this database includes 90%

of the DEL, and the size is 0.9n×l. As mentioned before, there is an overlap between this database and the database

in 8a.160

(8d) Testing DEL Database which includes the remaining 10% members of the DEL databases. Correspondingly, this

database size is 0.1n× l

(9) The SM with FCNN composition trains and validates using the databases in 1a as the input and 8a as the output.

(9a) For testing, the trained FCNN SM takes the database in 1b as the input and provides FCNN Prediction DEL as the

output.165

(10) The SM with TCN-FCNN architecture trains and validates using the databases in 3a as the input and 8c as the output.

(10a) For testing, the trained TCN-FCNN SM takes the database in 3b as the input and provides TCN Prediction DEL as

the output.

(11) By comparing 9a with 8b, one can determine the accuracy of the of the trained FCNN SM.

(12) By comparing 10a with 8d, one can determine the accuracy of the of the trained TCN-FCNN SM.170

The aim to build and train a simple FCNN SM is to compare the accuracy and performance of TCN-FCNN SM to it. The

FCNN SM is not the ground truth in this piece of work; however, it has proven to provide acceptable accuracy for the similar

input variable space (Dimitrov, 2019; Schröder et al., 2018).

After building and training the TCN-FCNN, we will show its versatility by examining the SMs with a synthetic wind175

including wake time series input. In other words, we test the SMs for a turbine in the downstream wake of another turbine. We

developed smaller synthetic wind time series databases with wake effects, simulation outputs and their DEL. Also, we use TL

to improve the SMs’ performance over the wake.
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Figure 1. The data generation and SMs training and testing methodology
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2.1 Fully Connected Neural Network Surrogate Model

After preparing the DEL database, we can begin training the SMs. The primary objective for the SMs is to map the input space180

to the output. Various mapping and regression methods are available for this task, but we suggest utilizing data-driven ML

methods due to their ease of use and versatility. We developed two SM architectures; a FCNN and a TCN-FCNN. Here, the

FCNN is a simple three-layer feed-forward ANN. The feed-forward ANNs are well studied and explained in the literature. For

further explanation, we recommend referring to Goodfellow et al. (2016).

185

In order to train the FCNN, the input variable samples database is randomly divided into two parts: a training set comprising

90% of the samples and a testing set comprising 10% of the samples. These samples are uniquely indexed, and the training

and testing sets indices are stored and tracked. The DEL database is similarly divided into training and testing sets, using

the same indices as the input samples. To prevent data leakage, we ensure that there is no overlap between the training and

testing databases. Once the training and testing databases are prepared, the FCNN is trained using the input variable space190

samples as input and DEL as output. The trained network is then tested using the testing input variables database to generate

the prediction DEL. Finally, we compare the prediction with the testing DEL to measure accuracy. By following this process,

we can ensure that the FCNN is accurately trained and tested, producing reliable results. Figure 2 shows the implemented

network architecture. The input layer receives three input variables in the FCNN, while the output layer is responsible for the

DEL. The weights on each neuron are determined through the training process using the weight optimizer. After the training,195

the FCNN is ready to predict the output based on the unseen (testing) data. Table 1 presents the FCNN model details.

Input Layer Hidden layer 1
8 nodes

Hidden layer 2
16 nodes

Hidden layer 3
8 nodes

Output layer

DEL

Figure 2. Architecture of the FCNN with three hidden lay-

ers. The number of nodes represents the implemented archi-

tecture

Table 1. FCNN architecture details

Property Value

Number of hidden layers 3

Number of nodes per layer 8, 16, 8

Number of trainable parameters 321

Activation function ReLu

Learning rate 0.001

Cost function Mean Square Error (MSE)

Training optimizer Adam
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2.2 Temporal Convolutional Network-Fully Connected Neural Network Surrogate Model

In this section, we explain the TCN-FCNN architecture that we used to build a SM. Firstly, we provide an overview of the key

components that make up a TCN. We will demonstrate how it can be effectively combined with a FCNN.

200

TCN is a novel approach that utilizes the benefits of a one-dimensional convolutional neural network to perform sequential

modelling (Bai et al., 2018). One can define sequential modelling as a tool to map a sequential input x0,x1,x2, . . .xn to a

sequential output y0,y1,y2, . . .yn as shown in Equation 1.

ŷ0, . . . , ŷn = f(x0, . . . , x̂n) (1)

TCN is a member of the Convolutional Neural Network (CNN) family. CNNs have been used and are well known for clas-205

sification proposes (Long et al., 2015). CNNs basics are well studied in the literature, and the interested reader is referred to

Goodfellow et al. (2016); Long et al. (2015). Research has shown that TCN is better than Recurrent Neural Network (RNN)

and LSTM in terms of performance, implementation, flexibility and versatility (Fawaz et al., 2019; Bai et al., 2018). TCN is

based on three main concepts: a) the length of the output and input is the same, b) data should not leak from past to future. In

other words, the value of each data sequence in the output only depends on the past data sequences in the input, and c) it needs210

to be applicable to a long data sequence. To tackle these three, one can use the following techniques (Bai et al., 2018):

(a) The TCN employs a one-dimensional CNN architecture, wherein each hidden layer is of the same length as the input

layer. To ensure consistent length, zero padding is incorporated in successive layers.

(b) In order to avoid data leakage, TCN utilizes causal convolutions architecture. In causal convolutions, the sequence n of

the output solely relies on the sequences proceeding sequence n in the prior layer.215

(c) For the simple causal convolutions, the length of the sequences that it can capture is a multiplication of the network

depth. It makes the model deep and computationally demanding for long sequential data with vanishing gradients. The

solution to this challenge is to utilize the dilated convolution. By using dilated convolution, the network is able to increase

its receptive field significantly in an exponential manner. For a one-dimensional sequential input x, a filter f , and the

element s of the sequence, one can define the operation F as:220

F (s) = (x ∗d f)(s) =
k−1∑

i=0

f(i) ·xs−d·i (2)

where ∗ is the convolution operator, d is the dilation factor, k is the kernel size and s− d · i points out the direction of

the past. In dilated convolution, the dilation factor increases exponentially with the level of the network depth. Figure 3a

shows an illustration of a dilated convolution. The history of the sequences that a layer can take into account is (k−1)d.
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Input

Hidden

Hidden

Output

(a) Illustration for a dilated causal convolution example, with kernel size k = 3 and

dilation factors d = 1,2,4. The receptive field has the ability to encompass all values

present within the input sequence. The white circles show the zero padding in the

layers.

Dilated Causal Conv

Batch Normalization

Leaky ReLU

Dilated Causal Conv

Batch Normalization

Leaky ReLU

Dilated Causal Conv

Batch Normalization

Conv 1x1

Dropout

Dropout

Leaky ReLU

Dropout

Input

Output

Residual block

(b) TCN residual block used in this

work

Figure 3. Dilated Causal CNN and the Residual Block for TCN

As the TCN network needs to take into account larger sequential data, it needs many layers and, as a result, gets deep225

quickly. This causes the network’s problem of performance degradation, which needs to be stabilized. Therefore, we utilize a

residual block as a replacement for a convolutional layer (Bai et al., 2018; He et al., 2015). The residual block methodology

incorporates a branching mechanism where the input is injected into the output, passing through a CNN. The residual block

used in this study is shown in Figure 3b.

230

For this study, we utilized the aforementioned TCN to extract features from the input time series. Feature learning or feature

extraction is the process by which the machine learning model converts the raw data into an “internal representation”, feature

vector or latent space (LeCun et al., 2015). Then this feature vector is employed to detect the output pattern through a sec-

ondary machine learning subsystem. In this study, we took advantage of TCN ability to extract features in the sequential data.

Thereafter, we used the features as the input to a FCNN. The integration of TCN and FCNN enabled us to map the wind time235

series into DEL. Westermann et al. used a similar approach but for a different application in Westermann et al. (2020). The ex-
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Figure 4. The TCN-FCNN architecture. The tower top side-side acceleration is an optional input that we will discuss further in Section 3.5

plained technique is illustrated in Figure 4. The “Residual Block” in Figure 4 made up of the components depicted in Figure 3b.

With all the requisite SM components in place, we can proceed with the training and testing phases. As mentioned before,

we indexed the samples and TurbSim generated wind time series outputs. In the same manner as explained in Section 2.1,240

the synthetic wind time series database is divided into training and testing databases, where 90% of the database is randomly

selected for the training, and the remaining 10% goes for testing. As the indices for the training and testing databases are

known, they are used to divide the DEL database into training and testing databases. As the selection of the training and testing

indices is random, the DEL training and testing databases members are different from the ones explained in section 2.1. With

the training and testing databases ready, the TCN-FCNN is trained on the training data. Afterwards, we utilized the trained245

model to forecast DEL using the synthetic wind time series that was not included in the training database. The predicted DEL

is then compared with the testing DEL to measure the accuracy of the mapping. The specifications of the TCN-FCNN SM

employed have been detailed in Table 2.
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Table 2. TCN-FCNN architecture properties and details for both the main approach and TL approach. TL FCNN learning rates are for the

initial training and fine-tuning consequently.

Property Residual block FCNN TL FCNN

No of Conv1D filters 6, 6, 6 - -

Kernel size 20, 13, 8 - -

Dilation factor 1, 2, 4 - -

Drop out rate 0.05 - -

Average pooling size 100 - -

Activation function Leaky ReLU Linear Leaky ReLU

Trainable parameters 1950 1681 500

Number of hidden layers - 3 3

Number of nodes per layer - 16, 32, 16 8,11,8

Learning rate 0.001 0.001, 0.00001

Cost function MSE MSE

Training optimizer Adam Adam

2.3 Variable input space boundaries, distributions and sampling250

For the data generation, selecting the appropriate input variable space, the boundaries for each variable, and their distributions

is crucial. Depending on the problem at hand, different input variables might be needed. As for this study we only considered

one onshore wind turbine, only the input variables that affect the wind generation are considered. These three variables are

mean wind speed ū, turbulence intensity TI and wind shear α. Therefore, the input space Θ can be defined as:

Θ = [ū,T I,α] (3)255

The boundaries and distributions of our input variables help define the conditions for which our models are designed. It

is important to note that wind speed is considered an independent variable, while the other two variables’ boundaries and

distributions depend on the wind speed. We have selected the variables, their boundaries and distributions to build the database

based on research presented in Dimitrov (2019). Our use of QMC Sobol’s sampling method (Sobol’, 1967) allows for accurate

sampling of the predefined joint distributions in a deterministic non-repetitive manner. In this study, Sobol’s sampling method is260

preferred as it is consistent and computationally efficient (Kucherenko et al., 2015). Also, this sampling method is reproducible

and provides better uniformity properties of the samples over the distributions (Renardy et al., 2021). In the following, when

we refer to the sample, it means a vector of three elements of mean wind speed, turbulence intensity and wind shear.
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2.4 Simulation and Damage Equivalent Load databases creation

The samples from the input variable space are the input to the synthetic wind generator. Each sample from the space provides265

one input to the generator. The output of the generator is a "full field" synthetic wind time series (Jonkman and Buhl Jr, 2006).

The synthetic wind generation basics are explained in length in Veers (1988). In this study, we employed TurbSim to generate

the synthetic wind fields (Jonkman and Buhl Jr, 2006). From each sample, the three input variables [ū,T I,α] are directly taken

into the TurbSim input file and generate one synthetic wind time series using TurbSim. In order to guarantee that every time

series created is distinct, a unique seed number is assigned to each sample. The output of the wind generator can be defined as270

a function of the sample:

U(t,y,z) = f(Θ) (4)

The output has spatial and temporal components U(t,y,z). The spatial component of the full field synthetic wind comes

from the grid points, which are defined over the wind turbine rotor plane. The output of Turbsim provides one time series of

synthetic wind at each grid point in x, y and z directions, namely u, v and w. These time series are correlated to each other,275

depending on mean wind speed and their distance from each other (Veers, 1988; Jonkman and Buhl Jr, 2006).

The full-field synthetic wind is the input to the aero-servo-elastic simulations. To run these simulations, next to the syn-

thetic wind time series, the aerodynamic model, aeroelastic model and controller model are required too. This study used an

onshore model of the National Renewable Energy Lab (NREL) 5MW reference wind turbine (Jonkman et al., 2009). The wind280

turbine model includes aerodynamic, aeroelastic and controller submodules. To run the simulations, we used OpenFAST, the

time marching aero-servo-elastic solver developed by NREL (Jonkman et al., 2022). OpenFAST’s output includes both tem-

poral and spatial dimensions, with loads provided from various wind turbine components located at different positions, such as

blades, towers, and gearboxes. This spatial aspect is integral to understanding the full scope of the data. The simulations in this

study follow the IEC standards for power production Design Load Case (DLC) 1.2, as stated in IEC standards (IEC 61400-1).285

Thus far, we have established a database that comprehensively incorporates all the simulation output time series data. Once

we have that, the data is processed to obtain the simulation time length statistics and DEL for evaluating the loads and fatigue.

DEL calculation is based on the Palmgren–Miner linear damage rule as explained well in Thomsen (1998) and Stiesdal (1992).

DEL can be formulated as:290

DEL =
(

ΣniR
m
i

neq

)1/m

(5)

In the given context, m represents the Wöhler slope, while Ri and ni correspond to load ranges and the respective number of

cycles. The output is obtained through rainflow counting of the load time series (Thomsen, 1998). neq is the equivalent number
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of load cycles which is usually the length of the simulation in s. The DEL database includes all the calculated DELs from every

simulation at its outputs.295

2.5 Simplified Wake Model

Once the SMs are built and trained, we assess their versatility by testing them with a turbine in the wake. To proceed, we must

create a new database that includes the synthetic wind and DEL with consideration given to wake effects.

The wake caused by a wind turbine has been studied extensively and is out of this manuscript’s scope. Different methods300

and models exist to implement wakes in the aerodynamic simulation of a wind turbine (Sanderse et al., 2011; Göçmen et al.,

2016). For the sake of simplicity and ease of implementation, we limit the study to a simplified wake definition, with the study

turbine in the wake of one turbine only. The simplified wake includes a non-uniform wind speed deficit and an increase in

turbulence intensity across the rotor. For implementing wakes in the synthetic wind time series, we used the method explained

in William et al. (2022).305

For the velocity deficit caused by the wake over the rotor plane, we utilized the super-Gaussian deficit (Blondel and Cathelain,

2020). We used the formulation developed by Ishihara and Qian (2018) for the added turbulence intensity model. Also, the

same as Bastankhah and Porté-Agel and Ishihara and Qian, we are assuming the linear expansion of the wake that occurs

downstream of a turbine. The following are the steps we took to implement the downstream simplified wake model:310

(1) Using Sobol’s sampling method, take 2n samples from the input variables [ū,T I,α] as explained in Section 2.3.

(2) Knowing the turbine thrust coefficient Ct at each wind speed, the ambient turbulence of the free stream and the distance

between the turbines, one can calculate the downstream wake width based on the formulation in Ishihara and Qian

(2018).

(3) With wake width calculated in the previous step, one can calculate the velocity deficit (William et al., 2022; Blondel and315

Cathelain, 2020) and added turbulence intensity (Ishihara and Qian, 2018).

(4) Both calculated velocity deficit and added turbulence intensity have spatial distribution over the rotor plane. We consid-

ered this distribution by modifying the mean wind speed and turbulence intensity of the samples for the first step. For the

added turbulence intensity, the average over the rotor disk is added to the TI value of the sample. For the deficit wind

velocity, harmonic mean over the rotor disk is deducted from the samples mean wind speed ū (William et al., 2022).320

(5) With the modified Sobol’s samples in our possession, we used TurbSim to generate synthetic wind time series from each

modified sample. Remember that these synthetic wind time series have modified turbulence intensity and reduced mean

wind speed, but the Gaussian deficit has not yet been included.
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(6) For the generated synthetic wind by TurbSim, for the mean wind speed of ū, the wind speed in time t at each (y,z) point

can be defined as:325

U(t,y,z) = ū(y,z) + ũ(t,y,z) (6)

where ũ(t,y,z) is the zero mean turbulence. The inclusion of the velocity deficit caused by the wake in the generated

synthetic wind can be expressed as:

U∗(t,y,z) = ϕ(y,z) + ũ(t,y,z) (7)

where U∗(t,y,z) is the modified wind field and ϕ(y,z) is the velocity deficit distribution over the rotor yz plane, which330

we calculated in 3.

We will use synthetic wind with a velocity deficit and added turbulence intensity to run OpenFast simulations containing the

simplified wake model and calculate the DEL as described in Section 2.4.

2.6 Transfer Learning

According to Goodfellow et al., transfer learning aims to utilize what has been learned in one context to improve the “gen-335

eralization” in another context (Goodfellow et al., 2016). For this study, we use TL for the cases with wake to improve their

prediction.

After following the steps outlined at the beginning of this section, we obtain trained SMs that are able to accurately predict

the DEL of wind turbine components under freestream synthetic wind conditions. We then use these models to predict DEL340

in the wake of a turbine. We implement TL to enhance our predictions by loading the trained SMs and freezing their weights,

making them untrainable. Then, we remove the FCNN part of the TCN-FCNN and replace it with a trainable FCNN. The new

FCNN we are using now has a simpler architecture compared to the one we previously used for training and testing on the free

stream data. Essentially, we now have a frozen weight (untrainable) TCN along with a trainable FCNN. As with the previous

training process, we utilize 90% of the wake databases for training and 10% for testing. The training has two steps; the first step345

is to train the aforementioned combination of untrainable TCN and trainable FCNN to the desired accuracy, and then fine-tune

the TL model by unfreezing the TCN part weights and training it on the same data again but this time with a smaller learning

rate. The properties and details of the TL FCNN are shown in Table 2. Figure 5 illustrates the architecture used for the TL.
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Figure 5. The frozen TCN with trainable simple FCNN for the first step of TL, the the fine-tuning step.

3 Results and discussion

To this point, we explained the background methods that have been used in this piece of work. This section will discuss the350

conditions that were utilized to generate the results.

3.1 Input variables boundaries, distributions and sampling

For generating the synthetic wind time series and DEL, we used the input variables space as it is explained in Section 2.3. The

mean wind speed is sampled from a uniform distribution, where the boundaries are decided based on the NREL 5MW wind

turbine characteristics between the cut-in to cut-out wind speed (Jonkman et al., 2009). For every wind speed sample, we took355

a sample from the TI and α too. The other two input variables are also defined as a uniform distribution, whose boundaries are

a wind speed function. For the TI , the boundaries are based on the IEC class 1A values (IEC 61400-1). We choose the same

boundaries for wind shear α as Dimitrov (2019). The input variables and their boundaries can be found in Table 3.

Table 3. The input variables boundaries

Input variable Lower boundary Upper boundary

Mean wind speed ū ū≥ 3m/s ū≤ 25m/s

Turbulence Intensity TI TI ≥ 0.04 TI ≤ Iref (0.75+ 5.6/ū)

Wind shear α α≥ αref,LB − 0.23
(

ūmax
ū

)(
1−

(
0.4log R

z

)2)
α≤ αref,UB +0.4

(
R
z

)(
ūmax

ū

)
where

- from IEA class 1A, Iref = 18%

- αref,LB = 0.15 and αref,UB = 0.22 are reference wind shear a 15 m/s

- ūmax = 25m/s is the upper bound of the wind speed

- R is the rotor radius, and z is the hub height
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Once we have established the joint distributions and boundaries, we can generate sample points for the input variable space.360

As described in Section 2.3, we used Sobol’s sampling method for this study. The Sobol’s samples need to be in the order of

2n, otherwise they lose their balance properties (Owen, 2021). Therefore, we took n = 215 samples from the predefined distri-

butions. We decided to have a conservative number of samples, as Sobol’s sampling method enables us to reduce the number

of samples without losing the benefits of the method or resampling the domains. To generate an example of the variable space,

we took 210 = 1024 samples from the predefined distribution in Table 3. The samples and the input variable boundaries are365

displayed in Figure 6.
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Figure 6. 1024 Sobol’s samples from the predefined distributions for ū, TI and α with the boundaries of the variables.

3.2 Turbsim and OpenFAST output

As mentioned before, we use each sample from the input variables to generate a unique synthetic wind time series using Turb-

Sim. Every TurbSim output generated from each sample is assigned a unique seed number to ensure that there are no repeating370

seeds. The TurbSim output format is well described in (Jonkman, 2009). For this study, we used a 15 by 15 grid over the

rotor’s plane. For training and testing purposes, we only took into account nine synthetic wind time series in x direction out

of 225 synthetic wind time series. Our tests show including the wind in y and z directions would not improve the training or

testing results; therefore, they are omitted. These nine synthetic wind time series are approximately located at the middle of

the rotor and hub height. Our tests show other configurations of the points (e.g. circular layout of points) have little impact on375

the results. The grid points are selected to be roughly located at the blades’ mid-span. This selection is illustrated in Figure 7a.

Regarding the time component, the synthetic wind time series has a frequency of 20Hz, with a duration of 720sec. After run-

ning the simulation and later in the training/testing step, we upsample the synthetic wind to 1Hz due to the hardware constraint.

As mentioned before, we run aeroelastic simulations on an onshore NREL 5MW model using OpenFAST. OpenFAST can380

provide an extensive set of outputs, namely channels, at different components of the turbine. The channels and their descrip-
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Rotor Plane

(a) TurbSim output

Blade Root
Flap-wise

Tower Top 
Side-Side

Tower Bottom 
Side-Side

(b) OpenFAST output channels y,z plane

Blade Root
Edge-wise

Tower Top 
Fore-aft

Tower Bottom 
Fore-aft

(c) OpenFAST output channels x,z plane

Figure 7. (a) Illustration for selected TurbSim output grid point locations as the input to the SM for training and testing. (b) and (c) show a

schematic drawing of a turbine, with the output load channels.

tions can be found in Jonkman et al. (2005). For this study, we took into account six moment output channels and the average

generated power for the training/testing objectives. These six moments are blade root edgewise and flap-wise moments, tower

top fore-aft and side-side moments, and tower bottom fore-aft and side-side moments. Figure 7b and 7c illustrate a schematic

drawing of the wind turbine with the load channel locations that we used for training/testing in this study. The OpenFAST385

output channel label and its corresponding naming for this study are provided in Table 4.

Table 4. Channel label, naming and units

OpenFAST Channel label Naming Post Processing Unit

GenPwr Generated Power 10 minutes average [kW]

RootMxb1 Blade edgewise moment DEL [kNm]

RootMyb1 Blade flapwise moment DEL [kNm]

YawBrMxp Tower-top side-side DEL [kNm]

YawBrMyp Tower-top fore-aft DEL [kNm]

TwrBsMxt Tower bottom side-side DEL [kNm]

TwrBsMyt Tower bottom fore-aft DEL [kNm]

We run n = 215 = 32768 aeroelastic simulations using OpenFAST for this study. We run the simulations in 2048 batches of

16 simulations in parallel using Digital Research Alliance of Canada resources. Each simulation ran for 720sec, but the first

120sec of the simulation output was discarded to avoid any initialization effect. The time step for the aeroelastic simulation390

was set to 0.00625sec, while the output resolution is 20Hz. After running all the simulations and building the simulations

output database, we calculate the DEL for each simulation, for the interested output channels for Wöhler slope m = 4 and
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neq = 600 in Equation (5). Also, we considered the 10-minute average of the generated power. To read the OpenFAST output

files and calculate the DEL, we used python pyfast library (Branlard, 2023).

3.3 Turbine in wake output395

Our aim is to test the effectiveness of the trained TCN-FCNN SMs by using wake input. Specifically, to determine if the model,

which is trained on a turbine in the free stream, can accurately predict the DEL of a turbine in wake as well. The test scenario

involves one turbine in free stream, which the SMs are trained on, and one turbine in downstream wake. The distance between

the two turbines is 7D, where D represents the rotor diameter. In our specific case, we are considering the rotor diameter of

126m for NREL 5MW, which results in a distance of 882m between the two turbines.400

We followed the same process described in Section 3.1 by taking 2048 samples from the distributions outlined in Table

3. To calculate the wind velocity deficit and add turbulence, we used the Gaussian model (Blondel and Cathelain, 2020) and

(Ishihara and Qian, 2018), respectively, as explained in Section 2.5. We then adjusted the ū and TI of each sample based on

the harmonic mean of the wind velocity deficit and the arithmetic mean of the added turbulence intensity over the rotor. Using405

the modified samples, we generated 2048 Turbsim full-field outputs, following the process explained in Section 3.2. With the

Turbsim output now available with modified ū and TI , we utilized a Python script to offset the generated synthetic wind with

the Gaussian velocity deficit profile (William et al., 2022).

In Section 2.5, it was explained that the wind velocity deficit has a distribution across the yz plane. This distribution can shift410

across the rotor plane depending on the location of the wake centre. We established three wake cases with wake centres located

at (−30m,90m), (0m,90m), and (30m,90m) on the rotor plane yz. The wake centre is assumed not to move vertically since

both turbines have the same hub height of 90m. Figure 8 illustrates an example of the velocity deficit effect on the TurbSim

output. In Figure 8, the first column shows the TurbSim output with the added turbulence intensity, the middle column is the

Gaussian velocity deficit for the aforementioned wake centers, and the last column is the first column with the velocity deficit415

offset. They are all a snapshot of the TurbSim output at 320s, and the input samples are [ū = 13.42m/s,TI = 11%,α = 0.107].

The red circle is the rotor disk.

As all the 2048 TurbSim outputs are at hand, one can run OpenFast simulations and calculate DEL as explained in Section

3.2.420
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Figure 8. The velocity deficit implementation on a TurbSim output with the added turbulence intensity.

3.4 Training-Testing

Now that we have constructed all the necessary databases, we can begin the training process. We must first normalize the data

before training the SMs. In this study, we employ min-max scaling for both input and output values, scaling them to a range
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Table 5. Training setting for the SMs

Parameter TCN-FCNN FCNN TL TCN-FCNN

Batch size 256 256 64

Trainable parameters 3631 321 500

Maximum number of epochs 3000 3000 3000

Validation split 5% 5% 5%

Early stopping - monitoring validation loss validation loss validation loss

Early stopping - patience epochs 300 300 3000

Early stopping - best weight restoration True True True

Input shape (batch size, 600, 9) (batch size, 3) (batch size, 600, 9)

of 0 to 1. The input variables are scaled individually, while all the synthetic wind time series, regardless of the mean wind

speed, are included in a single scaling procedure. During the training process of the TCN-FCNN and FCNN models, we imple-425

mented a separate scaling of the DEL of each output channel. This approach was necessary to ensure the scaling was tailored

to the specific needs of each channel. A total of twelve SMs were trained, with six models being trained for each respective type.

The total number of samples in the dataset is 32768. As mentioned in Section 2.2, this dataset is split into two parts for

different purposes randomly by choosing the indices of the samples through a non-repetitive random number generator. The430

training set contains 90% of the samples, and the testing set contains 10% of the samples. Rather than training the SMs on all

the training data, the training data set is divided into batches of 256 samples. Afterwards, the SMs trained on each batch, and

after going through all the batches of the training, one “epoch” is completed. The main optimization method used in ML com-

munity is Stochastic Gradient Descent (SGD) (Bottou, 2010). Taking all the training data set for the training while employing

SGD requires a large amount of memory, and SGD may land you at a “saddle point” (Ge et al., 2015). One can tackle both435

of these issues in training by dividing the training data into batches, as explained before. One disadvantage of this method is

that it requires more epochs for the model weights to be fully trained and converged. In this study, we used Python package

tensorflow for the ML model development, training, and testing (Abadi et al.). The table outlining the settings and details

for training in tensorflow can be found in Table 5.

440

We employed early stopping for the training as it reduces the required training time. Once the training phase is complete, the

remaining 10% of the data that was not used during training is utilized for testing purposes. The output of the testing procedure

provides the accuracy of the fitted models. For this study, we use coefficient of detemination, R2, and Normalized Root Mean

Square Error (NRMSE) as the measures for the fitted models’ accuracy.
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3.5 TCN-FCNN results445

This section provides the output of the testing process, as explained before, for the TCN-FCNN SMs. Figure 9 shows the

results of the testing on the trained SMs for each output channel scaled DEL. Each plot in the figure delivers one channel,

and data connects to the mean wind speed of the samples using a colour map. Upon reviewing the outcomes, it is evident that

the SMs offer precise prediction based on synthetic wind time series data that it has not previously encountered. Based on the

colour maps, it is inconclusive to determine the correlation between the input variables of the sample and the accuracy of the fit.450
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Figure 9. Testing results for TCN-FCNN trained SMs. The colour map represents a range of changes in the mean wind speed of the samples.

Although all channels have high R2 values, the values decrease as we move from the blade root moments downwards. This

decrease can be explained by the physical problem we are dealing with. The SMs have only one input, and they map wind input

time series in x direction to DEL outputs. The loads closer to the rotor are more affected by the wind input, while the structural

dynamics of the wind turbine influence the further loads. Both fore-aft and side-side moments exhibit similar behaviour, but455

fore-aft moments are predicted more accurately. Therefore, it is reasonable to assert that the fore-aft moments are predomi-

nantly attributable to the wind, whereas the structural dynamics more significantly influence the side-to-side moments. To test

this hypothesis, we infused the input of the TCN-FCNN input with the tower top side-side time series acceleration aTTy . In

other words, the TCN-FCNN maps the combination of synthetic wind time series and tower top side-side acceleration time
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series to DEL. Figure 4 visually represents this network with tower top side-side acceleration as an optional input.460

The modified SMs used for this are identical to those shown in Tables 2 and 5. The only difference is that the third dimension

of the input shape in Table 5 has changed to 10 due to the concatenated time series. We followed the same process for training

and testing these acceleration-enhanced SMs as we did for the original ones. In Figure 10, the data indicates that incorporating

the tower top acceleration time series into the input led to a better fit for the side-side moments, particularly for the tower bot-465

tom side-side moment. This confirms our hypothesis that these SMs can accurately capture the physics of the model at hand.

One may argue that including the wind time series in the y direction in the input would improve the tower bottom side-side

moment R2 value. We tested this hypothesis, but it did not improve the accuracy of the TCN-FCNN model.
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Figure 10. Testing results for TCN-FCNN trained SMs. The input for these SMs is infused with the tower top acceleration time series. The

colour map represents a range of changes in the mean wind speed of the samples

3.6 FCNN results470

As mentioned in Section 3.4, we trained and tested the FCNN SM on the three input variables samples, namely wind speed,

wind shear and turbulence intensity. The FCNN aims to map the three input variables to DEL. This is very similar to the

approach that was employed in Schröder et al. (2020). The results are presented in Figure 11. Similar to the TCN-FCNN

23

https://doi.org/10.5194/wes-2023-157
Preprint. Discussion started: 18 December 2023
c© Author(s) 2023. CC BY 4.0 License.



results, the R2 values decrease from the top to the bottom of the turbine. Considering the simplicity of the FCNN SMs, they

perform very well in the testing phase.475
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Figure 11. These are the testing results for the FCNN on the trained SMs.

3.7 Results comparison

To this point, we trained three different types of SMs on our data set. These SMs showed a good ability to predict the DEL from

a limited amount of sequential data or input variable data. Each SM architecture has its own advantages and disadvantages. For

TCN-FCNN architecture, the SMs can digest the complexities of wind time series. However, the model is complex and loses

accuracy for the channels that are not close to the rotor. On the other hand, FCNN architecture is simple and cheap to train,480

while it has higher R2 values for the channels below the rotor. However, this model suffers from the same challenge in terms of

R2 values decline, and it is not prepared to take time series and needs input variables that may not be available all the time. To

make the comparison more straightforward, the R2 value for power and output channels and the required Graphics Processing

Unit (GPU) time for the training is provided in Table 6.

485

The data presented in Table 6 reveals that all three SMs have consistently produced high R2 values and low NRMSE. No-

tably, the utilization of tower top acceleration as the added input to wind has significantly enhanced the accuracy of prediction

for the tower bottom side-side moment. This improvement is a testament to the TCN-FCNN SMs’ ability to comprehend the

mechanics behind the input-output correlation. Regarding the computational cost, FCNN SMs are more efficient for all the
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Table 6. The accuracy of the fit and computational time for the SMs training. NRMSE is in percentage.

TCN-FCNN TCN-FCNN Accl. infused FCNN

Channel R2 NRMSE GPU Time [Sec] R2 NRMSE GPU Time [Sec] R2 NRMSE GPU Time [Sec]

GenPwr 1.000 0.006 442 1.000 0.005 337 0.999 0.010 271

RootMxb1 0.995 0.018 578 0.996 0.016 594 0.990 0.031 379

RootMyb1 0.998 0.009 805 0.998 0.010 689 0.998 0.013 397

YawBrMxp 0.968 0.140 800 0.972 0.126 1042 0.987 0.190 110

YawBrMyp 0.987 0.039 807 0.986 0.040 781 0.996 0.064 397

TwrBsMxt 0.936 0.153 363 0.994 0.013 274 0.944 0.156 106

TwrBsMyt 0.971 0.094 613 0.977 0.099 756 0.977 0.119 163

outputs.490

When examining Table 6, one might question the purpose of developing the TCN-FCNN SMs as they are more complex and

computationally expensive. The TCN-FCNN approach offers a significant benefit by examining the wind’s time series rather

than solely its statistical properties. The DEL results from wind and/or wave time series oscillations. If we were to reduce these

oscillations solely to wind or wave input statistics, this would undermine the accuracy of the DEL prediction. However, the495

TCN-FCNN can incorporate these oscillations and map them to the DEL. One challenge here is to free the input from the time

series’ length, which is not within the scope of this study. We will explore this further in our future studies. We briefly discuss

the simulation length effect in Section 3.10.

We underline that the TCN-FCNN model can effectively decompose the wind field into its constituent features, which in-500

clude the input variables. This capability was tested by expanding the feature vector in Figure 4 with the three input variables.

Even with this augmentation, the R2 values remained consistent, reaffirming the robustness of the TCN-FCNN in characteriz-

ing the wind field. Essentially, a latent space has been identified by the TCN suitable for accurate DEL prediction by the FCNN

stage.

505

We tested the TCN-FCNN architecture to assess its ability to handle ultimate loads. During our analysis, we found that the

SMs could accurately predict ultimate loads with a comparable level of precision as DEL prediction.

3.8 TCN-FCNN SMs in wake with TL

Considering the methodology employed for incorporating wake effects into our simulations, the use of a FCNN proves ineffec-

tive in this context. The FCNN relies on input parameters such as mean wind speed, turbulence intensity TI , and wind shear510

α, which cannot adequately capture the complexities of wake interactions, as they cannot be condensed into a single scalar

value. In a study by Dimitrov, an FCNN-based Surrogate Model was utilized to model wake effects. It was noted that their
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Table 7. The results for the turbine in wake SMs in predictions after going through two stages of TL. The TL is done on both TCN-FCNN

and the acceleration infused TCN-FCNN. For the sake of space acceleration infused TCN-FCNN indicates as TCN-FCNN A.I. NRMSE is

in percentage.

Wake centre (-30m,90m) (0m,90m) (30m,90m)

TCN-FCNN TCN-FCNN A.I. TCN-FCNN TCN-FCNN A.I. TCN-FCNN TCN-FCNN A.I.

Channel R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

GenPwr 0.999 0.998 0.999 1.214 0.998 1.949 0.999 1.002 0.999 1.275 0.999 0.996

RootMxb1 0.970 3.546 0.972 3.654 0.961 4.381 0.918 5.281 0.969 3.689 0.971 3.642

RootMyb1 0.979 3.335 0.972 3.580 0.975 3.793 0.962 4.844 0.968 4.234 0.976 4.636

YawBrMxp 0.952 4.787 0.953 4.617 0.960 3.808 0.938 5.756 0.960 4.560 0.955 4.690

YawBrMyp 0.925 6.783 0.960 5.104 0.923 7.593 0.962 4.899 0.909 7.957 0.950 5.540

TwrBsMxt 0.804 10.750 0.994 1.488 0.814 10.466 0.992 1.982 0.804 10.871 0.992 1.573

TwrBsMyt 0.858 7.837 0.944 4.312 0.911 5.643 0.944 5.310 0.939 5.343 0.955 4.927

model required additional inputs depending on the wind farm layout. In contrast, the TCN-FCNN approach, which relies solely

on the flow information at the turbine location, demonstrates the capability to address wake challenges without necessitating

additional inputs, provided that the flow characteristics over the turbine are well-defined.515

After training the TCN-FCNN and FCNN SMs, we tested the SMs on the input with the wake. The initial results without

any TL did not provide an accurate prediction. Therefore, we used the TL as explained in Sections 2.5 and 3.3. Table 5 details

the training setting for the TL models. The training is done on the 90% of the turbine in wake databases, and testing is based

on the remaining 10%. We used both normal TCN-FCNN and acceleration infused TCN-FCNN in the TL for the turbine in the520

wake. The results for three wake centers are presented in Table 7.

The results predicted in Table 7 follow a similar trend to those obtained from the free stream turbine for all three wake cen-

ters. However, the SMs infused with acceleration provide higher R2 values for almost all cases compared to the free stream,

where the effect was mainly limited to tower bottom channels. Since the turbine’s behaviour is more complex in the wake,525

knowledge of its structural dynamics can be more influential in prediction. Therefore, including a channel from the turbine

structure can aid the SMs in training a more accurate model and providing better predictions. It is worth noting that this train-

ing is conducted on only 1844 out of 2048 data points in the wake database, which is relatively small. Despite this, the model’s

ability to have a low NRMSE and high R2 values demonstrates its strength.

530
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Figure 12. Sensitivity of R2 to the number of training samples. The y-axis is on a logarithmic scale with a base of ten, while the x-axis is on

a logarithmic scale with a base of two.

3.9 How much data is enough data?

One question that needs to be answered is how much data is enough to train these SMs accurately. In other words, we need

to determine if reducing the number of sample points will affect the accuracy of the predictions made by the SMs. As we

used the QMC method for sampling in this study, we can easily decrease the number of samples without having to redo the

simulations. However, as our samples are based on Sobol’s samples, we need to stick to the 2n rule. To determine the amount535

of data needed, we trained the SMs on a smaller number of samples ranging from 26 to 214. Then, we randomly selected 1000

samples from the remaining input samples for prediction. For example, in the case of 210, we trained the SMs on 1024 Sobol’s

samples data points and randomly selected 1000 samples from the remaining 215−210 samples for prediction. This enabled us

to ensure fairness in comparing the R2 values without any data leakage. The sensitivity analysis results in Figure 12 indicate

that the R2 value remains relatively high across all channels until the number of samples is reduced to 28.540

This shows that the SMs are versatile and do not require many sample points to make accurate predictions. The versatility

of the SMs can be attributed to the simplicity and power of the models for providing accurate predictions and the effectiveness

of Sobol’s sampling in covering the input variable domains even with a low number of data points. This coverage helps the

SMs interpolate well between the data they are not trained on. The displayed data in Figure 12 indicates that FCNN SMs545

exhibit less sensitivity to the number of samples. This observation aligns with the expectation that FCNN SMs possess a

simpler architecture and fewer parameters to be trained. Therefore, the trained model improvement is minimal after passing

the threshold of the number of samples. In the TCN-FCNN SMs, the improvement of the R2 value varies depending on the

channel. The tower channels exhibit a greater rate of R2 improvement as compared to the rotor channels, with the side-side

moment channels of the tower being the most prominent example. Additionally, acceleration infused TCN-FCNN shows higher550

improvement rates for tower top side-side and tower bottom fore-aft channels.
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3.10 Time series length and data augmentation

In this study, we used a ten-minute time series for both input and output of the OpenFAST simulation. This is a common

practice in the wind turbine engineering field as recommended by standards IEC 61400-1. Yet from the perspective of LiDAR

and wind turbine controller, a ten-minute time series may be relatively long. Therefore, we aimed to include the ability to handle555

shorter synthetic wind time series and map them to DEL, which would be more attractive. Besides, in the field of machine

learning, having enough training data is a challenge, and data augmentation is a solution (Mikołajczyk and Grochowski,

2018). To satisfy these two purposes, we attempted to augment data by dividing the 600-second synthetic wind and load time

series into shorter segments and calculating DEL from those segments. If possible, the goal was to use even less than the

minimum required number of simulations. However, our investigations have revealed that subsampling the 600-second load560

time series into segments shorter than 300 seconds adversely affects the accuracy of the DEL calculation. This is due to missed

cycle counting of a the shorter data length obtained from OpenFAST output. Hence, this approach was not included in this

manuscript.

4 Conclusion

This study explores the potential of employing a sequential ML model to develop a SM that correlates high-resolution wind565

time series with the DEL of wind turbine components. The methodology utilized in this manuscript involves creating a TCN-

FCNN architecture for mapping synthetic wind time series to DEL, alongside a simpler FCNN for comparative purposes. We

divided our methodology into twelve stages, including specifying the input variable space, generating synthetic wind time

series, conducting aero-servo-elastic simulations, calculating DEL, splitting the data into training and testing databases, and

building SMs. Also, we build a database of synthetic wind time series and DEL for a turbine in wake to test the versatility of570

the TCN-FCNN SMs using TL.

Our work begins with defining the input variable space and determining their boundaries, distributions, and sampling meth-

ods. We use a QMC Sobol’s sampling technique to generate non-repetitive samples, guaranteeing uniformity, traceability

and reproducibility. Next, we continued with the generation of synthetic wind time series using TurbSim, based on the input575

variable samples. These time series are stored in the Wind Database, forming the basis for subsequent simulations. The aero-

servo-elastic simulations are performed using an NREL 5MW reference wind turbine model and OpenFAST, following IEC

standards for power production DLC 1.2 (IEC 61400-1). The simulation output is stored in the Simulation Database, providing

load time series data for various wind turbine components. With the loads time series data at hand, we calculate the DEL for

each wind turbine component, adhering to the Palmgren-Miner linear damage rule. To train and test the SMs, we split the580

DEL database into training and testing sets, while ensuring no overlap between them. Two SM architectures were developed:

a simple FCNN and a more complex TCN-FCNN. Both models are trained and tested to predict DEL based on unseen input

variables or synthetic wind time series data. The FCNN SM serves as a benchmark for comparison with the more advanced
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TCN-FCNN SM. By comparing the accuracy and performance of these models, we gain insights into the effectiveness of our

approach. Moreover, we introduced the concept of testing our SMs in the context of a wake scenario. We created a new dataset585

that considers the wake effect on a wind turbine by implementing simplified wake models, thus expanding the versatility of our

SMs.

In the results section, three different SM architectures were investigated: TCN-FCNN, FCNN, and an enhanced version of

TCN-FCNN infused with tower top acceleration time series. The TCN-FCNN architecture was designed to take advantage590

of the wind time series data, making it capable of capturing the complex temporal dependencies in the wind field. Yet, its

performance varied for different output channels, with higher R2 values obtained for loads closer to the rotor and decreasing

accuracy for loads influenced by structural dynamics. The addition of tower top acceleration time series as an input feature

improved the accuracy of predicting the tower bottom side-side moment, demonstrating the SM’s ability to discern relevant

physics. In contrast, the FCNN architecture, which solely relies on input variables, offered a simpler and more efficient model595

with competitive predictive accuracy. The FCNN SMs performed well for all output channels, with R2 values having an inverse

relationship with the distance from the rotor. We further analyzed the trained TCN-FCNN models to determine how well they

can predict DEL for a turbine situated in the downstream wake, a use case the FCNN SM could not tackle and illustrative of the

TCN-FCNN architecture motivation. Our findings indicate that by using TL on a limited dataset, we can accurately forecast the

DEL of a turbine in a wake. A sensitivity analysis was conducted to determine the minimum required sample size for training600

the SMs. It was found that both TCN-FCNN and FCNN SMs remained accurate with a relatively small number of samples,

making them versatile and efficient for practical applications such as wind farm layout optimization. The choice between TCN-

FCNN and FCNN SMs depends on the specific application requirements. TCN-FCNN is suitable when capturing fine-grained

temporal dependencies in the wind field is crucial, while FCNN offers a simpler and more computationally efficient alternative

with competitive performance. These SMs provide valuable tools for predicting DEL and enhancing wind turbine reliability,605

reducing the need for extensive and expensive sets of simulations. One of the drawbacks of this work is the input time signal

length. One needs to investigate the possibility of liberating the SM from this time constraint, as it would make the model more

versatile and more applicable to the wind speed time series of any length.

4.1 Future work610

This study is the initial phase of building a ready-to-use and generalizable SMs for wind turbines. In this manuscript, we

explore the ML based SM for this purpose and specifically TCN application in wind turbine engineering, while there is an

extensive scope for further investigation. In future studies, we will implement TCN-FCNN methodology on an offshore wind

turbine introducing complicated wave loading magnitude and directional spectra. Also, we will investigate the possibility of

extending TL in a wind farm to train the SMs on one turbine and use transfer learning to build SMs for others in different wake615

conditions quickly. In this study, we took nine wind time series from the synthetic wind field as the input; therefore, reducing

the number of wind time series is another interesting investigation alongside optimization of the placement of the points as a
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hyperparameter.

Unfortunately, we were unable to access high-resolution wind turbine measurement data for our study. However, we recog-620

nize that incorporating this type of data into our methods could greatly enhance our research and should be a focus for future

work. Additionally, we acknowledge that the synthetic data and mathematical models used in our SMs may not be as accurate

as reality. As the saying goes, "All models are wrong, but some are useful." While the models that we use to build the databases

and train the SMs may not be perfect, they still hold value. Therefore, one idea for future work is that the trained SMs can be

applied effectively on high-resolution measurement data by utilizing TL and inserting them between two trainable layers at the625

input and output stages. This approach can prove especially helpful when faced with limited measurement data.
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