
Analysis of Turbine Yaw Misalignment Estimated by LIDAR
Assuming Homogeneous Flow
Zhaoyu Zhang1, Feng Guo2, David Schlipf2, Paolo Schito1, and Alberto Zasso1

1Department of Mechanical Engineering, Politecnico di Milano, 20156 Milano, Italy
2Wind Energy Technology Institute, Flensburg University of Applied Sciences, 24943 Flensburg, Germany

Correspondence: Zhaoyu Zhang (zhaoyu.zhang@polimi.it)

Abstract. The 2D homogeneous flow assumption derived wind field reconstruction method is widely employed in the Doppler

LIDAR. This paper aims to analyse the uncertainty in wind direction estimation and to improve the estimation accuracy. First,

to quantify the uncertainty, a static model is proposed to describe the relationship between horizontal wind shear and yaw mis-

alignment in LIDAR measurement. Subsequently, an analytic model of temporal-averaged misalignment uncertainty is built

by using the Kaimal turbulence spectral model. This analytic model reveals that the standard deviation of yaw misalignment5

reaches approximately ±14◦ and ±12◦ for IEC turbulence class ’A’ and ’B’, respectively, regarding a temporal average over

60s. Obviously, these findings demonstrate that this LIDAR estimation method is insufficient to supervise the turbine yaw con-

trol system in terms of both accuracy and timeliness. Then, the temporal-averaged uncertainties obtained from the proposed

analytic model are compared with simulations in various complexity, i.e. Kaimal, Mann spectral models, and Computational

Fluid Dynamics, respectively. The rotor-average wind is set as the reference for measurement. Compared to an ideal sonic10

measurement, the LIDAR presents a worse estimation of rotor-effective wind direction estimation. These results show that in-

creasing the fidelity of turbulence models does not alleviate the measurement uncertainty issue. Lastly, in an attempt to address

the uncertainty issue, this study investigates the effects of adjusting the scanning pattern. The optimised parameters include

measurement distance and horizontal half-open angle in a 2-beam LIDAR case and the additional vertical half-open angle in a

4-beam LIDAR case. However, even with the optimal scanning pattern, u and v wind components estimation could not acquire15

the same accuracy on the ideal sonic measurement simultaneously. Thereby, LIDAR can not guarantee wind speed and direc-

tion estimation quality simultaneously. In conclusion, this study highlights the yaw misalignment uncertainty in the LIDAR

wind field reconstruction method based on 2D homogeneous flow assumption. The observed error levels remain consistent

across varying fidelity turbulence models and scanning pattern adjustments. To address this challenge, future research should

apply more advanced wind flow models to explore more accurate wind field reconstruction methods.20

1 Introduction

The demand for wind energy is keeping increasing as an environment-friendly and renewable energy source. Wind turbines

are equipped with a yaw control system and usually follow the changing wind direction. Wake and turbulence generated by

upstream turbines in a wind farm cause 10% to 20% power loss (Barthelmie et al., 2009). Therefore, modern wind farm
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controller aim to reduce the wake interactions by misaligning the upwind turbines and by this redirecting the wind turbine25

wakes Fleming et al. (2017). Thus, for single turbines and wind farm control, the wind energy production highly depends on

an accurate measurement of the wind direction.

There are several traditional measurement methods for the wind direction for wind turbines, such as nacelle-mounted cup

anemometers or sonic anemometers. However, the measurement on the nacelle is becoming less and less representative of the

increasing rotor sizes of modern wind turbines. The induction zone caused by turbine rotation as well as the flow distortion30

due to blades are also significant drawbacks for traditional measurement (Smith et al., 2006). In contrast, nacelle-based LIDAR

(Light Detection and Ranging) systems measure in various points in front of the rotor and thus are expected to be more

representative for large rotors and less impacted by the induction zone and rotating blades.

As a remote sensing technology, LIDAR measurement offers wind preview for control strategies designing that can be used

to reduce turbine loads and optimize power production. Several improvements in control systems of wind farms benefited35

from reliable axial wind speed measurements from LIDAR. In many modern wind farms, the nacelle-based LIDAR has been

implemented and verified in practical applications (Sathe et al., 2015). Assisted by the LIDAR measurement, Zhao et al. applied

a wind turbine yaw strategy with adaptive yaw speed in a real wind farm. Implemented with the advanced yaw control system,

Zhang and Yang investigated that the investment of LIDAR system can be covered by improving the power to be generated by

the wind turbines within 2 years in a certain wind farm.40

Wind field reconstruction by LIDAR currently relies on the 2D homogeneous flow assumption, in which the wind is assumed

identical at the same height plane. LIDAR obtains the projection of wind speed along the Line Of Sight (LOS) of laser beams.

Then, wind components, u and v, are estimated approximately back to real environment wind by applying the pseudo-inverse

on LOS information (Raach et al., 2014).

However, a significant uncertainty in wind direction measurement of LIDAR is observed in several studies. The first reason is45

that the 2D homogeneous flow assumption does not consider the horizontal shear between two laser beams at the same height.

Schlipf et al. compared the single probe record on turbine height with LIDAR simulation results applying the IEC Kaimal

turbulence model. After applying a 1-minute average to measurement results, he found that the wind direction estimation of

LIDAR does not show an advantage over a single probe because the horizontal shear caused misalignment.

Another reason is that the pseudo-inverse method could not fully revert speed projection to the real wind. In a spinner LIDAR50

experiment, Mikkelsen et al. found that the observed oscillation is caused by the increasing horizontal shear and a narrow cone

angle. But this issue, so call ‘Cyclops’ problem, could be partially solved by tuning the open angle between two laser beams

(Simley et al., 2011).

Some researchers have found the misalignment issue and attempted to solve it. To exclude the impact from different tur-

bulence models, Dong et al. (2021) compared the LIDAR simulation results from Kaimal and Mann turbulence models re-55

spectively. However, the uncertainty issue did not be greatly improved. Towers and Jones (2016) replace the 2D homogeneous

flow assumption with an advanced inflow model, such as Kalman filter-based dynamic inflow model. Moreover, a fast CFD

(Computational Fluid Dynamics) solver-based inflow model is applied to reconstruct the wind field in real-time, which also
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reduces the LIDAR measurement uncertainty (Mikkelsen et al., 2016). However, these advanced inflow models are limited by

the computational cost in a practical LIDAR application.60

This study aims to analyse the reason for LIDAR measurement uncertainty and improve the wind turbine yaw misalign-

ment issue. An analytic model is first proposed to describe the relationship between yaw misalignment and horizontal shear.

Then, three turbulence models with different fidelity are applied and compared as the simulation environment for LIDAR

measurement. Finally, an optimal LIDAR scan pattern is calculated after compared with the measurement quality of the sonic

anemometer and rotor average wind. The analytic model and simulations of LIDAR measurement uncertainty have not been65

completely illustrated, although this topic has been explored in some previous research. This research, for the first time, fo-

cuses on the yaw misalignment analysis and improvement against the 2D homogeneous flow assumption-based wind field

reconstruction.

This paper is organized as follows: In Section 2, relevant background information is provided such as LIDAR measurement

models, the wind field reconstruction method, and turbulence models. Section 3 describes the relationship between LIDAR70

yaw misalignment and horizontal shear in a 2-beam LIDAR. Section 4 compares averaged yaw misalignment to avoid the

effect of different turbulence models. In section 5, optimal scanning patterns for 2-beam and 4-beam LIDAR are proposed to

minimize the measurement uncertainty. Finally, the conclusion and outlook are illustrated in Section 6.

2 Background

This section introduces previously developed models and methods, which are used in this work.75

2.1 LIDAR point measurement model

Using the optical Doppler effect, a LIDAR system extracts the line-of-sight (LOS) wind speed along the laser beams. A simple

point measurement model assumes a measurement in a single point i:

Vlos,i = xn,iui + yn,ivi + zn,iwi, (1)

where xn,i, yn,i, and zn,i are the components of the normalized vector of the laser beam (pointing to the LIDAR system) in80

Cartesian coordinate system. Further, ui, vi, and wi are the wind components in the measurement point i. This measurement

model is usually used in wind field reconstruction.

2.2 LIDAR volume measurement model

In contrast to the simple point measurement model, real LIDAR systems extract the line-of-sight wind speed within a probe

volume rather than in a single point. This is caused by the averaging effect by providing a certain fraction of the back-scattered85

signal to Fast Fourier transform (FFT)-based frequency shift detection, as well as by the pulse length for pulsed LIDAR systems

(Sathe and Mann, 2012; Cariou, 2013).

3

https://doi.org/10.5194/wes-2023-162
Preprint. Discussion started: 11 January 2024
c© Author(s) 2024. CC BY 4.0 License.



The LOS measurement including the volume is modelled by

Vlos,i =

∞∫

−∞

(xn,iui (a) + yn,ivi (a) + zn,iwi (a))fRW (a)da, (2)

where a is the distance between the local measurement point and focus point along the laser beam. Further, fRW is the range90

weighting function along the variable a.

In this paper, we focus on pulsed LIDAR systems with a Full Width at Half Maximum (FWHM) of W = 30m. The weight-

ing function is discretized in three points with the distances [− 1
2W,0, 1

2W ] and the corresponding weight parameters of

[0.25,0.5,0.25].

2.3 2D homogeneous flow model95

In current industrial applications, the 2 dimensions homogeneous flow model is usually applied to estimate yaw misalignment

using LIDAR measurements (Lundquist et al., 2015). This model is widely applied in flat terrain and assumes that the longi-

tudinal wind component ui and lateral wind component vi are the same for all points i within each horizontal plane, and the

vertical wind components wi are zero, i.e.

u1 = u2 = · · ·= un = u100

v1 = v2 = · · ·= vn = v

w1 = w2 = · · ·= wn = 0. (3)

2.4 Quasi-Static wind field reconstruction

Wind field reconstruction is the process of extracting information about the wind field from LIDAR measurements. It combines

LIDAR and wind flow models. For the case of a horizontally nacelle-based LIDAR with 2 beams, the 2D homogeneous flow105

model from Equation (3) is combined with the simple LIDAR point measurement model from Equation 1.

Vlos,1

Vlos,2




︸ ︷︷ ︸
m

=


xn,1 yn,1

xn,2 yn,2




︸ ︷︷ ︸
A


u

v




︸︷︷︸
s

. (4)

The components of the normalized vector of the laser beam can be calculated by

xn,1 = xn,2 = cos(θH)

yn,1 =−yn,2 =−sin(θH)110

zn,1 = zn,2 = 0 (5)

θH is the horizontal half-open angle (HOA) between two beams and the vertical beam components are zero, because the

LIDAR is scanning horizontally.
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From Equation 4, the longitudinal wind component u and the lateral wind component v can be reconstructed by a matrix

inversion of matrix A. Consider horizontal shears, δH

(
m · s−1 ·m−1

)
, is linear along the horizontal direction between two115

same-height beams. The resulting estimated longitudinal wind speed component is

û =
xn1yn2

xn1yn2−xn2yn1
(ū + δHd)− xn2yn1

xn1yn2−xn2yn1
(ū− δHd)

= ū− xn1yn2 + xn2yn1

xn1yn2−xn2yn1
δHd

= ū + Θ1δHd

(6)

and the estimated lateral wind speed component is

v̂ =
−xn1xn2

xn1yn2−xn2yn1
(ū + δHd) +

xn1xn2

xn1yn2−xn2yn1
(ū− δHd)

=− −2xn1xn2

xn1yn2−xn2yn1
δHd

= Θ2δHd

(7)

where Θ1 and Θ2 are constant derived on the scanning pattern of LIDAR120

Θ1 =−xn1yn2 + xn2yn1

xn1yn2−xn2yn1

Θ2 =− −2xn1xn2

xn1yn2−xn2yn1

(8)

It reveals that the estimation of speed components only depends on the horizontal wind shear δH and the scanning pattern of

LIDAR. The method is named ’quasi-static’ because no dynamic model is used, but it is assumed that the wind is the same in

the two points.

2.5 Kaimal spectrum and exponential coherence model125

As one of the International Electrotechnical Commission (IEC) Standard recommended turbulence models (Commission et al.,

2005), the Kaimal spectrum and exponential coherence model shows concise theory and low computational cost in wind energy

system design areas (Kaimal et al., 1972). The non-dimensional power spectral densities (PSDs) for three wind components

are shown as

fSk(f)
σ2

k

=
4fLk/Vhub

(1 +6fLk/Vhub)5/3
, (9)130

where f is the frequency, k represents the wind component direction (1 for longitudinal u, 2 for lateral v, and 3 for vertical w).

Further, σ and L are the standard deviation and integral scale parameter, respectively. In this paper, the wind speed at turbine

hub height Vhub is set to 10m/s.

2.6 Mann uniform shear turbulence model

Another turbulence model recommended by the IEC Standard is the Mann uniform shear turbulence model (Mann, 1994, 1998),135

which is used for comparison with the Kaimal model in this paper.
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The Mann uniform shear turbulence model is a spectral tensor model based on von Kármán’s model and linearized Navier-

Stokes (N-S) equations (Von Karman, 1948). It is an integration of eddy lifetimes and rapid distortion theory by assuming

the incompressible flow. The 3D velocity wind components are defined as the summation of average wind speed and 3D

fluctuations caused by turbulence. The spectral tensor is shown by the following equation:140

Φi,j(k) =
1

(2π)3

∫
Ri,j(r)e−ik·rdr, (10)

where R is the covariance tensor and r is separation vector, k is non-dimensional spatial wave-parameter.

2.7 Large eddy simulation

Large Eddy Simulation (LES) is a high-fidelity mathematical model as a Computational Fluid Dynamics (CFD) approach. The

dynamic turbulence simulation is built by solving Navier–Stokes (NS) equations numerically (Piomelli, 1999; Zhang et al.,145

2022). An LES-based low-pass filter is applied to reduce the computational cost by eliminating small-scale items. This method

makes it possible to be widely used in many areas with a reasonable computational cost.

In this paper, the LIDAR estimated misalignment model is verified in LES simulation and compared with results from lower

fidelity models.

3 Yaw misalignment estimation models150

This section describes the models developed in this work to estimate the yaw misalignment of wind turbines using the homoge-

nous flow model from Section 2.3.

3.1 Static yaw misalignment model due to horizontal shear

In a realistic environment, the assumptions of the 2D homogeneous flow model from Equation (3) are not perfectly fulfilled.

The difference in the longitudinal u wind speeds components horizontally, here characterized as horizontal shear, is mainly155

depending on the turbulence characteristics. As a result, the homogeneous assumption leads to errors in the wind field recon-

struction. In this subsection, a measurement uncertainty model is built to determine the impact of the horizontal shear on wind

speed and direction estimation of a 2-beam LIDAR system.

Here we assume that the flow deviates from the of the 2D homogeneous flow model from Equation (3) in the following form:

160

u1 = ū + δHd

u2 = ū− δHd

v1 = v2 = 0

w1 = w2 = 0.

(11)
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where ū is the mean longitudinal wind speed and d = tan(θH)L is the horizontal distance from the horizontal center point to

one of the measurement focus points, where L is the LIDAR measurement distance. We further consider δH, is to be the linear

horizontal shear. The lateral and vertical wind speed components are considered to be zero for simplicity.

With the LIDAR point measurement model from Equation (1), we obtain following line-of-sight wind speeds for the two-165

beam LIDAR system:

Vlos,1 = xn,i(ū + δHd)

Vlos,2 = xn,i(ū + δHd)
(12)

Then, substituting the line-of-sight wind speeds in Equation (4) with the ones from Equation (12) and applying a matrix

inversion, the estimated longitudinal wind speed component is

û =
xn,1yn,2

xn,1yn,2−xn,2yn,1
(ū + δHd)

− xn,2yn,1

xn,1yn,2−xn,2yn,1
(ū− δHd)

= ū

(13)170

and the estimated lateral wind speed component is

v̂ =
−xn,1xn,2

xn,1yn,2−xn,2yn,1
(ū + δHd)

+
xn,1xn,2

xn,1yn,2−xn,2yn,1
(ū− δHd)

= 2δHd

(14)

The estimated wind speed and yaw misalignment considering horizontal shear are shown as

V =
√

û2 + v̂2 , αH = tan
(

û

v̂

)
. (15)

Compared with the wind assumed wind conditions at the centre point, homogeneous assumption based estimation errors are175

εu = û− ū = 0

εv = v̂− v̄ = 2δHd− v̄
(16)

Component errors indicate that only the v component is affected by the horizontal shear in a linear manner, shown in Figure

1. Therefore, the wind speed estimation V is slightly influenced by the horizontal shear, because the û component plays a

majority role in Equations 15, i.e. û >> v̂. In contrast, wind direction estimation αH earns a significant misalignment. Figure180

2 shows that the misalignment up to 10◦ as horizontal shear is 0.02 m · s−1 ·m−1. The static misalignment model is shown

below,

△αH = atan
(

ū1

v̄1

)
− atan

(
ū1 + εu

v̄1 + εv

)

= 0.5π− atan
(

ū1

2δHd

) (17)
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(a) Estimated error on longitudinal direction
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(b) Estimated error on lateral direction

Figure 1. Estimated wind components errors caused by horizontal shear
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(b) Estimated misalignment

Figure 2. Estimated wind speed and direction errors caused by horizontal shear

This low-accuracy situation has not attracted enough attention in the current measurement and yaw control area. In this

paper, the horizontal shear caused wind direction estimation error is analysed and improved.185

3.2 Spectral model of horizontal shear

The horizontal shear between two LIDAR beams along the lateral direction is e(t) = u1(t)−u2(t). The auto-spectral density of

wind components is identical in a certain turbulence model (Schlipf, 2016), i.e. Su1 = Su2 = Su. Then, the magnitude-squared

coherence of u components between two points is defined as

C2
u1,2 =

R2(Su1,2)
Su1Su2

=
R2(Su1,2)

S2
u

(18)190
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where functionR calculates the magnitude of the spectral density, Su1,2 is cross-spectral density of u component between two

points.

The auto-spectral density of horizontal shear, Se, is derived by the product of Fourier Transform F (e) and its complex

conjugate F∗ (e) (Chen et al., 2022). Then, substituting the equation 20,

Se = F (e)F∗ (e)

= (F(u1)−F(u2))(F∗(u1)−F∗(u2))

= Su1 + Su2− 2R(Su1,2)

= 2Su (1−Cu1,2)

(19)195

In this paper, the horizontal wind speed uncertainty Ue is defined as twice standard deviation within 95.45% confidence

interval. The standard deviation is square root of variance which is the integral of the auto-spectrum Se, i.e.

Ue = 2σ (e) = 2

√√√√√
∞∫

−∞

Sedf (20)

Then substituting Equation 17 and replacing the horizontal wind speed difference εu with averaged wind speed uncertainty

Ue in Equation 20, the average misalignment estimation can also be evaluated.200

3.3 Temporal-averaged misalignment uncertainty model

In addition to the LIDAR average misalignment derivation, different averaging time based statistical misalignment has signif-

icant guidance on trend analysis and error elimination. In this section, the approximated moving average of e during the time

window T is calculated by a convolution (∗) (Schlipf et al., 2020), shown as

e(t) = e(t) ∗ rect
(

t−T/2
T

)
(21)205

where rect() is time depended rectangular function

rect(t) =





1,
∣∣∣t

∣∣∣≤ 0.5

0,
∣∣∣t

∣∣∣ > 0.5
(22)

From Equation 21, the auto-spectrum of averaged horizontal shear, Se, is calculated by product of Fourier Transform F (e)

and complex conjugate F∗ (e). Moreover, the convolution could be derived as the product of the Fourier transform as a linear

operator. The auto-spectrum Sē is rewrote as following considering the difference averaging time T ,210

Sē = F (ē)F∗ (ē)

= F (e)F∗ (e)sinc2 (fT )

= 2Su (1−Cu1,2)sinc2 (fT )

(23)

9

https://doi.org/10.5194/wes-2023-162
Preprint. Discussion started: 11 January 2024
c© Author(s) 2024. CC BY 4.0 License.



0 500 1000 1500 2000 2500 3000 3500 4000

Averaging Time [s]

-50

-40

-30

-20

-10

0

10

20

30

40

E
s
ti
m

a
te

d
 Y

a
w

 M
is

a
lig

n
m

e
n

t 
[d

e
g

]

Kaimal Model Simulation

Misalignment Uncertainty Model

0 500 1000 1500 2000 2500 3000 3500 4000

Averaging Time [s]

-40

-30

-20

-10

0

10

20

30

40

E
s
ti
m

a
te

d
 Y

a
w

 M
is

a
lig

n
m

e
n

t 
[d

e
g

]

Kaimal Model Simulation

Misalignment Uncertainty Model

Figure 3. Kaimal model based temporal-averaged misalignment uncertainty with IEC standard turbulence class ’A’ (left) and ’B’ (right)

where function sinc is the normalized cardinal sine function. Su and Cu1,2 are obtained by a certain turbulence model. Then

substituting Equation 17 and 20, the averaged horizontal shear and its misalignment estimation can also be calculated in

sequence.

In this paper, the Kaimal turbulence based Misalignment Uncertainty Model is defined as a reference to compare different215

turbulence environments and LIDAR scanning patterns, since the low computational cost Kaimal turbulence model (in section

??) and a clear calculation processing (in section 3.2). According to the IEC standard, turbulence conditions are divided into

several classes based on wind speed and turbulence intensity (TI), such as class ’A’ for 0.18 TI and class ’B’ for 0.16 TI

(Dimitrov et al., 2015).

Derived using auto spectrum Su and coherence Cu1,2 from the Kaimal model, the Misalignment Uncertainty Model is220

indicated by the red line in Figure 3. Additionally, the Misalignment Uncertainty Model is validated through simulations.

The Kaimal turbulence is generated randomly by different computer random seeds, in which the wind difference between

two beams is recorded. The figure also demonstrates the misalignment within various temporal average windows. Simulation

results are represented by colourful points, while the standard deviation is shown by black error bars.

The results reveal that during the 60s time window, the misalignment reaches a standard deviation of around±14◦ and±12◦225

regarding turbulence class ’A’ and ’B’, respectively. Even when the temporal average window increased to 600s, the standard

deviation of misalignment is still around ±5◦ and ±6◦.

In conclusion, the Misalignment Uncertainty Model model demonstrates that the homogeneous flow assumption derived

wind field reconstruction of LIDAR can not fulfil the requirement for yaw control, because the yaw misalignment is too large

to be dismissed by a moving average filter. This analysis presents a significant challenge in the field of LIDAR measurement and230

turbine control. To identify the possible reasons and avoid the effect of specific setups and environments, different turbulence

models and LIDAR scanning patterns are evaluated in the next two sections.
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Figure 4. LIDAR estimation comparison with rotor average and ideal sonic in Mann model with 0.35 turbulence intensity

4 Turbulence model comparison for 2-beam LIDAR

To determine and quantify the effects of horizontal shear on wind direction estimation, there are several approaches for building

a turbulence environment. Two of them, Kaimal model and Mann model, are employed by International Electrotechnical Com-235

mission (IEC) standard, in which the wind energy generation system is designed and normalized. Moreover, the Large Eddy

Simulation (LES) is also widely used for high-fidelity turbulence simulation using a mathematical model in Computational

Fluid Dynamics (CFD).

In this section, the Kaimal turbulence based Misalignment Uncertainty Model is compared with simulation results of Mann

model and LES. The initial LIDAR scanning pattern sets measurement distance L as 100m, horizontal half open angle θH as240

15◦.

4.1 Mann model derived yaw misalignment

A 4-Dimensions Mann model derived turbulence generator is developed by fengguoFUAS (2022), which is an open-source

tool running on MATLAB. The turbulence parameters and wind field scale, etc are fully manipulated in this tool. To enable

a direct comparison of results, the simulation time and turbulence intensity are set to match those used in the simulation of245

Kaimal model.

In this simulation, a virtual LIDAR on the nacelle reconstructs the wind field by reading interpolated wind information.

A simulation probe is located at the turbine height to emulate an ideal sonic anemometer which has no measurement errors

or system errors. As a reference, the wind speed and direction on the rotor plane are averaged following mesh resolution.

Comparison results of wind speed and direction estimation are shown in Figure 4.250

Results illustrate that the mean wind speed estimation of LIDAR mostly follows the temporal-averaged wind on the rotor

plane, even though it is not as accurate as the ideal sonic anemometer. Considering the significant measurement errors of sonic
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Figure 5. Mann model based temporal-averaged misalignment uncertainty with 0.35 turbulence intensity

anemometers and the effects of the induction zone during the real operation of the turbine, LIDAR earns much more advantages

on wind speed estimation than sonic anemometers.

However, there is a large error in the wind direction estimation of LIDAR, which is difficult to guide the turbine yaw control.255

In the real wind direction measurement, the data is typically filtered by a low-pass filter, such as the moving average filter. The

pass frequency of the filter is controlled by the temporal-averaged window, which is designed regarding LIDAR measurement

distance and wind speed. Based on simulation results in Figure 4 and misalignment estimation in Equation 17, the measurement

misalignment within different temporal-averaged windows are shown in Figure 5.

To eliminate the effect of random turbulence on misalignment statistics, 20 turbulence simulations are recorded and generated260

using the different computer random seeds. As a result, the mean misalignment is approximately 0. The standard deviation with

the large averaging time is larger than the result of a single simulation.

Excluding the impact of multi-simulations statistics, the Kaimal model derived Misalignment Uncertainty Model and temporal-

averaged simulation results of Mann model are consistently consistent under the various turbulence intensity, shown in Figure

6.265

4.2 LES derived yaw misalignment

Limited by the computational cost requirement, the LES turbulence environment was reconstructed from an open-science data

set provided by the Technical University of Denmark (Andersen, 2020). The 3-dimensions wind components in the simulation

wind field were extracted using MATLAB. After simple interpolation on the simulation mesh, the full field wind information

was obtained (Liew et al., 2020).270

In contrast to simulations based on Kaimal model and Mann model, the turbulence intensity is 0.028 in LES data set. The

comparison between LIDAR estimation, ideal sonic and rotor average is shown in Figure 7. The estimation of both wind speed
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Figure 7. LIDAR estimation comparison with rotor average and ideal sonic in LES model with 0.028 turbulence intensity

and direction have much less error because of the smaller horizontal shear in the LES data set. However, the uncertainty in

wind direction estimation is still significant.

The Kaimal based Misalignment Uncertainty Model is rebuilt following the same turbulence intensity of LES simulation.275

The LES-based misalignment with different temporal-averaged windows is shown in Figure 8.

As the LES data set consists of only one simulation, the results do not reflect the exact statistics. For instance, the mean of

misalignment is not 0. Nonetheless, it is evident that the trend of LES-based misalignment approximately follows the Kaimal

model-based Misalignment Uncertainty Model.
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Figure 8. LES-based temporal-averaged misalignment uncertainty with 0.028 turbulence intensity

In conclusion, the yaw misalignment of LIDAR estimation produces similar results with different turbulence models. Hence,280

it can be inferred that the misalignment is mainly contributed by the LIDAR scanning pattern or wind reconstruction method

rather than turbulence simulations.

5 Analysis for more complex LIDAR scanning pattern

This section aims to analyze the significant yaw misalignment and explore the reasons behind it by tuning the LIDAR scanning

pattern. There are three factors that affect the quality of wind direction measurement with respect to the horizontal shear, i.e.285

measurement distance, open angle between beams and number of beams.

5.1 Quality evaluation of LIDAR and sonic

In this paper, the temporal-averaged wind on the rotor plane is calculated as the reference of inflow wind. From Equation 18,

the quality of LIDAR measurement is evaluated using the coherence between LIDAR-estimated wind and rotor-averaged wind

(C2
RL) (Guo et al., 2022). Similarly, the quality of ideal sonic anemometer measurement is defined by the coherence between290

its measurement result and rotor-averaged wind (C2
Rs), i.e.

C2
RL =

R2(SRL)2

SRRSLL
, C2

RS =
R2(SRS)2

SRRSSS
(24)

Furthermore, to simplify the calculation, the quality of LIDAR measurement is rewritten in a transfer function (Simley and

Pao, 2013),

TRL =
R(SRL)

SLL
, TRS =

R(SRS)
SSS

(25)295
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Figure 9. Transfer function comparison between LIDAR and Sonic with original scanning pattern of 2-beam LIDAR

In an ideal measurement process, gains of TRL and TRS should be 1 for all frequencies. However, in the simulation or

practical measurement, the results are affected by measurement errors and wind uncertainty. Similar to a low-pass filter, the

transfer functions of LIDAR and Sonic are considered of good quality only if they have high gains in a wide low-frequency

range.

5.2 LIDAR scanning pattern optimization300

The current LIDAR scanning pattern has a measurement distance of 100m and a horizontal half-open angle (HOA) of 15◦.

only the u component has an effective gain on low-frequency, shown in Figure 9. The small gain during low frequency on the

v component causes dominant misalignment uncertainty.

Based on Equation 18, a Measurement Coherence Bandwidth (MCB) is defined as the frequency when the coherence (gain)

drops to 0.5 (Guo et al., 2023). The MCB is usually used as a criterion to evaluate the measurement quality of LIDAR. Black305

circles illustrate points that reach 0.5 coherence in Figure 9.

To ensure that both wind speed and direction estimation of LIDAR are more robust than the ideal sonic anemometer, the

transfer function between rotor-averaged wind and LIDAR estimation (shown by LIDAR-Rotor) should have a larger gain on

low-frequency than the transfer function between rotor-averaged wind and ideal anemometer record (shown by Sonic-Rotor),

i.e. a larger MCB.310

5.2.1 2-Beam LIDAR verification

The horizontal half-open angle (HOA) between two beams and measurement distance are key parameters of yaw misalignment

estimation for a 2-beam LIDAR. In this section, brute force optimization is applied to find an optimal LIDAR scanning pattern,

in which both u and v components of LIDAR estimation have better low-pass performance than the ideal sonic anemometer.
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To simplify the comparison of transfer functions and signal qualities, the MCB is set as a threshold to determine the effective315

low-pass frequency. Hence, the transfer function of an accurately estimated signal should have a larger frequency when the

gain reaches 0.5, i.e. the rotor-averaged wind is estimated effectively in a wider frequency range.

Then, frequencies at 0.5 gain, MCB, with different scanning patterns are extracted into Figure 10. Colourful lines represent

different horizontal half-open angles between two LIDAR beams, while the x-axial shows different measurement distances. As

a comparison reference, the black line represents the effective frequency of the Sonic-Rotor transfer function.320

From Figure 10, the LIDAR estimation quality of v component declines as the measurement distance increases or the half-

open angle drops until 60◦. The optimal v component estimation happens with 10m measurement distance and 75◦ half-open

angle, full of frequency analysis is shown in Figure 11. At this condition, the wind direction is well estimated by LIDAR for

an optimal v component performance. While the wind speed estimation should not as perfect as the ideal sonic because of the

lower effective frequency of the u component.325

Based on the analysis, it can be concluded that there is no scanning pattern that ensures both u and v components have

larger effective frequencies than the ideal sonic anemometer. Even though the LIDAR estimation has fewer errors when the

measurement distance is small, such as 10m. This scanning pattern will be not applied to industries since it loses the prediction

characteristics of LIDAR.

5.2.2 4-Beam LIDAR verification330

To design a 4-beam LIDAR scanning pattern, except for the measurement distance (x) and horizontal half-open angle (HOA),

the vertical half-open angle (VOA) should be considered. Similar to the analysis of the 2-beam LIDAR, the comparison result of

the 4-beam LIDAR is shown in Figure 12. The optimal effective frequency of the v component is recorded by 20m measurement

distance, 60◦ HOA and 30◦ VOA. However, the LIDAR estimation quality of the u component is far from the ideal sonic.
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The increasing measurement distance (x) takes the main factor for the decline in v component estimation quality. Similar to335

the trend observed in 2-beam LIDAR, the optimal HOA is around 50◦ 60◦, and optimal VOA is approximately 20◦ 30◦. How-

ever, both short measurement distance and large VOA result in the lack of remote sensing capability. Since local optimization

only considers the performance of the v component, there is no practical solution for the LIDAR scanning pattern that ignores

the performance of the u component.

In a global optimisation that considers both u and v components, two LIDAR scanning pattern solutions have larger fre-340

quencies at 0.5 gain (MCB) points than ideal sonic, shown in Figure 13. However, their v components demonstrate a sharp

drop during the low-frequency range. The LIDAR estimation should have less low-frequency uncertainty than the ideal sonic,

especially on wind direction estimation. Compared to Figure 11, the 4-beam LIDAR shows more potential for manipulation on

yaw misalignment elimination than the 2-beam LIDAR, even though it fails in comparison to the ideal sonic.

6 Conclusion and outlook345

In this study, the static yaw misalignment model is proposed to investigate the relationship between yaw misalignment and

horizontal wind shear, which is built using a 2D homogeneous flow model based on 2-beam LIDAR estimation. This model

indicates that the wind speed estimation does not affect by the horizontal shear, while the wind direction estimation shows a

nonlinear change.

To evaluate the impact of turbulent wind environments on LIDAR estimation misalignment, we developed the Misalignment350

Uncertainty Model, which is derived from the horizontal wind shear determined by the Kaimal spectrum turbulence model.

After averaging over different time windows, results show that the error reduces as the averaging time window size increases.

However, misalignment is still significant which makes it challenging to supervise the yaw control of turbines from LIDAR

measurement.
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Figure 12. Scanning patterns comparison of 4-beam LIDAR

We verified the proposed analytic Misalignment Uncertainty Model through simulations using various turbulence models,355

including the Kaimal model, Mann model, and LES. The comparison results show consistency, indicating a similar trend in

misalignment across turbulence models in different fidelity.

Furthermore, we applied coherence analysis between LIDAR estimation and rotor-averaged wind to mitigate estimation

uncertainty, particularly in wind direction. We optimized the LIDAR scanning pattern parameters, including horizontal half

open-angle, measurement distance in a 2-beam LIDAR, and additional vertical half open-angle in a 4-beam LIDAR. The360

optimal solution of the 4-beam LIDAR scanning pattern improved estimation robustness compared to the 2-beam LIDAR.

However, the estimated uncertainty of the LIDAR measurements remained larger than that of the ideal sonic anemometer,

which challenges current LIDAR research expectations.

In conclusion, our study demonstrates that the 2D homogeneous flow assumption-based wind reconstruction does not achieve

superior accuracy in LIDAR measurements compared to ideal sonic anemometers in simulations, primarily due to the influ-365
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Figure 13. Transfer functions of 4-beam LIDAR with two optimal scanning patterns

ence of horizontal shear. Nonetheless, this paper successfully detects and analyzes significant yaw misalignment in LIDAR

estimation, providing crucial insights for LIDAR simulation and turbine yaw control studies. Future research should focus on

addressing the impact of horizontal shear on wind direction estimation by employing advanced dynamic wind flow models and

realistic cup anemometer simulations.
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