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Abstract. This paper presents a validation study of the popular aeroservoelastic code suite OpenFAST leveraging weeks of

measurements obtained during normal operation of a 2.8 MW land-based wind turbine. Measured wind conditions were used to

generate one-to-one turbulent flow fields (i.e., comparing simulation to measurement in 10-minute increments, or bins) through

unconstrained and constrained assimilation methods using the kinematic turbulence generators TurbSim and PyConTurb. A

total of 253 10-minute bins of normal turbine operation were selected for analysis, and a statistical comparison in terms of5

performance and loads is presented. We show that successful validation of the model is not strongly dependent on the type

of inflow assimilation method used for mean quantities of interest, which have modeling errors generally within 5–10 % of

the measurement. The type of inflow assimilation method does have a larger effect on the fatigue predictions for blade-root

flapwise and tower-base fore-aft quantities, which surprisingly see larger errors from the assumed higher-fidelity assimilation

methods. Further work including improvements to the induction modeling in OpenFAST during high shear, as well as other10

possible improvements to the aerodynamic, blade, and controller modeling, may offer insight on the origin of the ∼5-40 %

overprediction of fatigue for these quantities.

1 Introduction

Aeroservoelastic turbine models based on blade element momentum theory (BEMT) and equivalent beam models remain at the15

center of design and certification processes for wind turbines thanks to the balance they strike between accuracy and compu-

tational efficiency (Van Kuik et al., 2016). The multiphysics tool, OpenFAST (Jonkman and Sprague, 2021), which is actively

developed at the National Renewable Energy Laboratory, is one of these models. Over the years, OpenFAST has been subject

to several rounds of verification against other aeroservoelastic solvers (Rinker et al., 2020) and validation against measure-

ment (Guntur et al., 2017; Schepers et al., 2021; Asmuth et al., 2022; Boorsma et al., 2023), but changes in modern wind20

turbines, namely, the increased rotor size and concomitant changes in blade flexibility, blade aerodynamics, and atmospheric
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forcing, suggest an ongoing need to validate OpenFAST at scales relevant to industry. Importantly, this validation should be

accomplished with suitable assimilation of measured inflow into the simulation environment to obtain a synthetic wind field

that matches as closely as possible the inflow experienced by the turbine.

So far, validation of OpenFAST relative to full-scale measurements has adopted either (1) non-turbulent and uniform inflow25

(Schepers et al., 2021; Boorsma et al., 2023), (2) purely stochastic turbulent inflow (i.e., based on the spectral magnitudes of a

reference flow but with random phases) that matches time-averaged statistics of hub-height wind speed, hub-height turbulence

intensity, and shear profile (Schepers et al., 2021), (3) time-resolved inflow at a single point in the domain (i.e., with more dis-

tant points reverting to random phases) that matches time-averaged statistics of hub-height wind speed, hub-height turbulence

intensity, and shear profile (Guntur et al., 2017), or (4) time-resolved inflow at multiple points in the domain (Asmuth et al.,30

2022). The strategy of combining one or more time series with a stochastic turbulence generation method as in (3) and (4) rep-

resents a compromise between the simpler approach of (2) that constrains the generated inflow only in terms of time-averaged

statistics and emerging higher-fidelity approaches that combine large-eddy simulations with machine learning (Rybchuk et al.,

2023). This paper adopts the second through fourth approaches, allowing comparison of the code predictions across different

levels of inflow assimilation methods.35

Recent efforts on other code suites have also compared across different levels of inflow assimilation methods. The data as-

similation techniques considered by Pedersen et al. (2019) leveraged data from an upstream meteorological tower and included

both unconstrained and constrained turbulence assimilation approaches. Surprisingly, the constrained turbulence approach in-

creased the mean simulation errors by several percentage points for all damage equivalent loads (DELs) considered, and they

attributed this to possibly unmet assumptions about frozen turbulence and about the measured flow field passing completely40

through the rotor disk. However, the constrained approach did outperform the unconstrained approach when considering inflow

data measured from a Pitot probe mounted on one of the blades. Nybø et al. (2021) used data from a meteorological tower

as the input to a simulation study on the differences of tower-bottom fore-aft and blade-root flapwise DELs between uncon-

strained and constrained approaches. They found that the unconstrained approach produced 27 % and 12 % underprediction

of the tower-bottom fore-aft and blade-root flapwise DELs, respectively, compared to the constrained approach. Rather than45

using a meteorological tower or an on-blade sensor, Rinker (2022) constrained the turbulence fields to data generated from a

turbine-mounted virtual lidar that sampled a simulated flow field. The constraining process produced a clear improvement of

mean absolute errors for several quantities of interest (QoIs) versus unconstrained results. DEL predictions for the tower-base

fore-aft bending moment improved when the constraint points from the lidar extended to at least 40 % of the rotor span from

the axis of rotation.50

Similar to the above three studies but considering instead the OpenFAST code suite, the objective of this effort is to assess

the value of existing inflow assimilation tools of different levels of fidelity (i.e., including both unconstrained and constrained

turbulence assimilation methods) for validation of simulations of Megawatt-scale wind turbine performance and loads. In

addition to performing such a comparison across three levels of fidelity for the first time with OpenFAST, we here consider

other validation quantities (i.e., damage equivalent loads) not included in the previous, recent studies involving OpenFAST that55

employed one of the four inflow assimilation approaches listed previously (Guntur et al., 2017; Schepers et al., 2021; Asmuth
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et al., 2022; Boorsma et al., 2023). In our work, quantitative comparison between measured and simulated turbine signals is

calculated for 10-minute statistics of these QoIs:

– Rotor speed

– Blade pitch60

– Electrical power

– Flapwise and edgewise blade-root bending moments

– Fore-aft tower-base bending moment

The approach is an “end-to-end” validation, meaning that the accuracy of the inflow modeling, turbine aeroelastic model-

ing, and controller modeling are collectively evaluated according to the final turbine QoIs above. For the inflow modeling,65

we evaluate the relative merits of the several inflow assimilation methods with varying levels of simplifying assumptions as

described above. For the turbine aeroelastic and controller modeling, a significant amount of attention was devoted to matching

the behavior of the field turbine by inserting proprietary turbine and controller information into the sub-modules of OpenFAST.

The rest of the paper is organized as follows: The development of the turbine aeroservoelastic model is described in Sect. 2.

Sect. 3 gives an overview of the methods for assimilation and modeling of the measured inflow data. Sect. 4 shows the results70

and is followed by suggestions for future experiments in Sect. 5. Conclusions are drawn in Sect. 6.

The study is part of the Rotor Aerodynamics, Aeroelastics, and Wake (RAAW) experiment, which is a collaboration between

the National Renewable Energy Laboratory, Sandia National Laboratories, and the wind turbine manufacturer GE Vernova. The

validation of the OpenFAST model presented here is based on measurements collected prior to the RAAW field campaign. The

inflow and wind turbine measurements are therefore limited to instrumentation already present at the site before RAAW.75

2 Turbine model development

The wind turbine used within the RAAW experiment is a highly-instrumented 2.8 MW prototype wind turbine that mounts

a rotor of 127 m diameter at a hub height of 120 m. The turbine is located in Lubbock, Texas, in a region characterized by

flat terrain. The first step of this study consisted of building the OpenFAST model of the turbine. This step was performed by

combining different data sets shared by GE describing the aerodynamic and elastic properties of the rotor, the elastic properties80

of the rest of the turbine system, and high-level information about the controller. Additionally, the GE team shared experi-

mental results from the structural testing of the blade and numerical results from its in-house solvers. All this information was

used to develop an accurate OpenFAST model. GE’s proprietary controller was replaced by the publicly available Reference

OpenSource Controller (ROSCO) (Abbas et al., 2022), which was tuned to the reference information and turbine sensor data.

The next sections elaborate on the process used to develop this model and on the verification and validation steps that were85

performed.
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2.1 Aerodynamics

OpenFAST can simulate rotor aerodynamics at different levels of fidelity with models implemented in the module AeroDyn15.

This study models rotor aerodynamics using BEMT. The blade aerodynamic shape and performance was discretized into 78

sections equally spaced along the blade span. A set of two-dimensional (2D) airfoil data blending clean and rough polars90

from wind tunnel measurements with a weighted average was shared by GE. The 2D polars were first interpolated adopting a

piecewise cubic hermite interpolating polynomial scheme to match the spanwise distribution of thickness-to-chord ratio. Next,

the polars of airfoils with thickness-to-chord ratios smaller than 0.7 were corrected to account for rotational effects adopting the

Du–Selig model (Du and Selig, 1998). Note that the Du–Selig model relies on the successful identification of a linear regime

of the lift curve, which is not obvious for airfoils located close to the blade root. This led to some arbitrary decisions about the95

range of angles of attack over which to apply the correction and to the decision of limiting the corrections to airfoils up to 0.7

of thickness-to-chord ratio. The airfoil unsteady behavior was modeled using an extension of the Beddoes–Leishman model

developed by Minnema/Pierce (Damiani and Hayman, 2019). The parameters required by the unsteady airfoil aerodynamic

model at each blade spanwise station were provided to OpenFAST as precomputed inputs.

A dynamic BEMT model that implements a continuous-time state-space form of Oye’s dynamic model was used (Branlard100

et al., 2022). Also, the Glauert skewed wake correction model was used with flow expansion function of 15/32π (Pitt and Peters,

1980). Other corrections to the BEMT model included the Prandtl hub- and tip-loss models, wake swirl (tangential induction),

and the influence of drag on the induction factors. Lastly, the effect of the tower on the incoming wind was accounted for using

a potential flow model unless otherwise noted, and the tower aerodynamic loading was also included unless otherwise noted.

The environmental conditions were tuned on a bin-by-bin basis using the data from the met tower (see Sect. 3).105

2.2 Structural dynamics

The elastic response of the turbine was modeled by combining the reduced-order ElastoDyn beam model for the tower and the

higher-fidelity BeamDyn model, which implements the geometrically exact beam theory (Jelenić and Crisfield, 1999; Wang

et al., 2017) for the blades. The elastic properties for all turbine components were precomputed and shared by GE. The next

subsections elaborate on the verification and validation steps that were performed to ensure the accuracy of the elastic model.110

2.2.1 Elastic response of the blades

GE shared detailed elastic properties of the blades. An initial verification step was then performed to confirm that the data were

converted to the BeamDyn coordinate system correctly. Figure 1 shows the static deflections and rotations for a single blade

clamped at the root and subjected to gravitational loads in flapwise and edgewise directions. This verification step returned

maximum offsets of 0.02 m in deflections and 0.5◦ in rotations and was considered satisfactory.115

Next, a verification and validation step was performed by comparing numerical and experimental values of natural frequen-

cies and values of structural damping for a single blade. The experimental values were generated during testing of the blade

in a structural laboratory. Table 1 presents the percentage error of the blade natural frequencies and damping between the
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Figure 1. Deflection (top) and rotation (bottom) profiles of the blade loaded under gravity in the flapwise (left) and edgewise (right) directions.

The dashed lines were generated by GE, and the solid lines were generated with BeamDyn, the beam model of OpenFAST implementing the

geometrically exact beam theory. Results are expressed in the BeamDyn coordinate system, and rotations are expressed in terms of Wiener-

Milenkovic parameters relative to the undeflected beam orientation.

laboratory test and the numerical predictions generated at GE and in OpenFAST. The match was again satisfactory, although

some important discrepancies emerged, as described next.120

The verification comparing the natural frequencies predicted by the two numerical models shows that the frequencies up

to fourth flap, second edge, and first torsional modes match within 3 %, with negligible differences for the first flap, edge,

and torsional modes. The validation step also shows a good match between the experimental results and the predictions of

OpenFAST, with the exception of the first flap mode. Here, both models underpredict the natural frequency by 5.1 %. The

research team could not explain the offset, which could have various origins, such as the impact of clamping of the blade root125

during laboratory testing.

The comparisons of structural damping show larger relative errors. Damping is an input to aeroelastic solvers and it is

modeled differently across frameworks. BeamDyn models damping as a set of six stiffness-proportional values accounting for

three rotations and three translations. This allows the user to set the desired damping for a mode of interest, usually the first or

the second. In this study, three values of flapwise, edgewise, and torsional damping were initially set based on the experimental130

data from GE to match the first modes. These values achieved offsets of -5.9 % for the first flap mode and 1.3 % for the first

edge mode. Because of the stiffness-proportional formulation, damping in the second modes was greatly overpredicted by

OpenFAST compared to the results obtained in the laboratory. Despite this overprediction, the turbine in OpenFAST suffered

from edgewise instabilities, which were resolved by artificially increasing the values of edgewise damping. The higher damping
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Table 1. Comparison of blade natural frequencies and structural damping ratios between OpenFAST and reference data including experi-

mental and numerical values shared by GE. The values provided are in terms of percent difference relative to the experimental (“Exp”) and

numerical (“Num”) reference. Positive values represent higher frequencies and damping in OpenFAST relative to the values shared by GE.

Natural Frequency Damping Ratio

Exp (%) Num (%) Exp (%) Num (%)

1st flap –5.1 0.0 –5.9 –5.3

1st edge –1.1 –0.1 1.3 16.2

2nd flap 0.1 0.5 416.4 0.3

2nd edge –1.2 3.0 192.7 29.0

3rd flap 2.3 2.7

4th flap 2.3 –57.1

3rd edge 11.3 341.6

5th flap 12.7 –7.9

1st torsion 2.5 –0.6 –69.1

value is believed to account for additional sources of damping which may be present in the real turbine and currently lacking135

in OpenFAST, such as damping in the pitch system, main bearing, drivetrain, and yaw system.

2.2.2 Elastic response of tower and drivetrain

While the elastic response of blades was modeled at relatively high fidelity, the tower of the turbine was modeled in ElastoDyn,

which implements a reduced-order beam model using the first two tower fore-aft and side-side modes. The fore-aft and side-

side stiffness distributions and unit mass distribution were specified according to values provided by GE. The verification step140

consisted of verifying numerically the tower mass, which matched exactly, and then the natural frequencies with and without

the rotor nacelle assembly. The results for the first four tower modes, namely first and second side-side and fore-aft, are reported

in Table 2.

Table 2. Comparison of tower natural frequencies with and without rotor nacelle assembly (RNA) between OpenFAST and the numerical

values shared by GE. The values provided are in terms of percent difference for the first four modes, namely first and second side-side and

fore-aft tower modes. Positive values represent higher frequencies in OpenFAST relative to the numerical values shared by GE.

Tower mode No RNA (%) RNA (%)

1st side-side -1.0 +0.2

1st fore-aft -1.0 -1.1

2nd side-side -4.0 +1.0

2nd fore-aft -4.0 +2.5
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The comparison returned small discrepancies between natural frequencies by OpenFAST and by the numerical solver at GE.

The discrepancies were attributed to the different model fidelity and to different discretization of the tower properties along the145

its height. In terms of damping, the values for the tower structure were assigned to the individual modes. Finally, the stiffness

and damping of the drivetrain system were populated thanks to data shared by GE.

2.3 Aeroelastic response of the turbine system

Next, the aeroelastic modeling of the full turbine was verified and validated during turbine operation.

2.3.1 Experimental modal analysis150

The experimental natural frequencies were obtained by calculating the power spectral density (PSD) for signals from strain

gauges installed at the blade root and tower base. In signal processing, there are several ways of converting a signal from the

time domain to the frequency domain. Choosing the correct method depends on the data or signals in question. In this scenario,

Welch’s averaged, modified periodogram method with a Hanning window was used to convert time series data to the frequency

domain. This method was preferred, as its approach to periodogram estimations helps reduce noise in the power spectra.155

The analysis of the experimental data used for modal analysis was split into two sections: emergency stop and normal

operation. Data from emergency stops were helpful for finding component natural frequencies without the influence of wind

speed. The normal operation data were binned by rotor speed between cut-in and rated.

Conducting the experimental modal analysis with the existing set of installed sensors came with several challenges. A critical

limitation was that the only measurement location along the blade span was the strain gauges close to the root. Therefore, it160

was not possible to extract any information regarding modal shapes. Fundamentally, the gauge measurements only allowed us

to derive the PSDs of the blade root strain.

When analyzing the PSD, it was found to be difficult to isolate and find the component frequencies. Consequently, the peaks

were saturated and extremely difficult to identify experimentally, especially when we chose to run a blind comparison to the

numerical model. It was particularly difficult to find the first and second blade-root flap frequencies during normal operation.165

We were only able to extract the first flap frequency from emergency stop data. Additionally, there was high uncertainty related

to the second blade root edge frequency because the peaks varied between data files and there were instances where there was

no energy in the expected region. We tried to apply a method known as time synchronous averaging, which can help remove

the rotor passing frequencies; however, this would have required a much higher data sampling frequency to be successful.

2.3.2 Validation of modal analysis170

The relative difference between experimental frequencies extracted using the strain gauge data and the numerical frequencies

estimated using OpenFAST is shown in Fig. 2 across a range of rotor speeds. For the first flapwise modes, we observe a good

agreement at lower rotor speeds and growing discrepancies at higher speeds. Note that this trend is opposite to the one reported

in Table 1, where OpenFAST underpredicts the natural frequency of the first flapwise structural mode. The different trend is
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attributed to limitations of the linearized unsteady aerodynamic model and to the uncertainty in the experimental measurements175

caused by the high aerodynamic damping, which makes experimental frequencies hard to identify. The numerical and experi-

mental first and second edgewise modes match better, with differences within 8 %. The better match is explained by the small

impact that rotor aerodynamics have on edgewise modes and by a more precise determination of the experimental frequencies

of the system. Note that edgewise modes are more important than flapwise modes because they are usually affected by low

damping and are prone to aeroelastic instabilities (Volk et al., 2020). Lastly, tower modes match within 2 % at low rotor speeds,180

growing to ±15 % toward rated rotor speed. Again, the impact of aerodynamics is thought to be responsible for the growing

offset.
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Figure 2. Relative differences between numerical (OpenFAST) and experimental (from blade-root strain gauges) natural frequencies for first

tower modes (top left), first rotor flap modes (top right), first rotor edge modes (bottom left), and second rotor edge modes (bottom right). For

the tower, fore-aft (FA) and side-side (SS) modes are reported. For the rotor, backward whirling (BW), collective (C), and forward whirling

(FW) modes are reported. Positive values represent higher frequencies in OpenFAST relative to experimental values.
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2.4 Controls

While the ideal validation process would incorporate the actual turbine controller in the turbine model, such as in Zierath

et al. (2016), this was not possible due to concerns around intellectual property. The solution to this problem was to adopt the185

ROSCO controller (Abbas et al., 2022), which was coupled to OpenFAST to match the steady-state and transient behavior of

the field controller observed through historical SCADA data. The ROSCO generator speed set points were used to match those

of the field controller. The peak shaving, or thrust limiting, parameter of ROSCO was used to reproduce the mean and peak

blade and tower loading near rated power; this also resulted in similar near-rated power production. Step wind simulations were

used to tune the transient response of the torque and pitch controller bandwidths to match the GE controller’s response to the190

same wind input. Because of the long run times for OpenFAST simulations with BeamDyn, we ran 72 step wind simulations

in parallel with uniformly distributed ROSCO tuning inputs (pitch and torque control bandwidths). We then evaluated the

difference in the generator speed and rotor thrust response between the GE reference and our controlled OpenFAST model.

The simulation parameters with the lowest error were used to prescribe the parameters for another set of 72 simulations in a

smaller design space. From these simulations, the best combination of low generator speed and rotor thrust error were used to195

select the set of ROSCO tuning parameters. Since both the generator speed and rotor thrust error could not be simultaneously

optimized, some judgment was used to give slightly more weight to the generator speed response error as it is a more direct

measure of the controller’s desired behavior.

Although available in ROSCO, individual pitch control (IPC) and tower damping control features were not enabled because

the controller logic used to activate these features in the proprietary field controller was unknown. Even so, a generally good200

agreement between the field controller and ROSCO was realized, as will be demonstrated in Sect. 4.1.

SCADA data shows more sophisticated system monitoring and control mode switching in the GE controller, compared to

ROSCO. These differences in the transient behavior in low- and near-rated wind speeds could lead to small discrepancies in

fatigue load results.

3 Inflow assimilation methods205

This section describes how field data were used to generate one-to-one inflow bins for the numerical simulations.

3.1 Experimental campaign

The validation of the OpenFAST model presented here is based on measurements collected prior to the RAAW field campaign.

The inflow and turbine measurements are therefore limited to instrumentation already present at the site before RAAW.

In terms of inflow, we focused on assimilating data from the meteorological tower, which is shown in planform view in210

Fig. 3 along with the turbine. The meteorological tower was instrumented with various wind sensors, including three RM

Young 81000 ultrasonic anemometers, five Thies Clima First Class cup anemometers, three MetOne 020WD wind vanes, and

a ground-sitting WindCube lidar, the latter of which provided only 10-minute statistics during the period considered here.
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Figure 3. Planform view of the test site, including inset showing the cup and sonic anemometers in relation to the wake of the tower lattice

for the wind sector retained in this study.

In this study we preferred to use data from the ultrasonic anemometers rather than data from the cup anemometers with co-

elevated wind vanes because of the inclusion of the w-component of velocity in the ultrasonic measurement and because215

of a malfunction in the top-tip wind vane during the campaign. The 10-minute WindCube data were used to remove static

wind direction offsets in the ultrasonic data that ranged between -9◦ and 14◦ between the various anemometers, likely due

to misalignment during installation of the ultrasonics with the cardinal directions. The three ultrasonic anemometers spanned

nearly the full height of the rotor, mounted onto booms at 52.6 m, 110.5 m, and 179.5 m. The historical data analyzed herein

were output at a frequency of 1 Hz (note, this value was later raised to 20 Hz for the continuation of the data collection220

happening within the RAAW experiment).

Inline with the objectives presented in Sect. 1, the wind turbine channels of interest for this study included the rotor speed,

blade pitch, electrical power, and the blade-root and tower-base bending moments, the latter two of which were sensed with

strain gauges located near the blade roots and tower base, respectively. Re-calibrations of the strain gauges were performed

such that the calibrations were never out of date by more than 90 days. Even so, we estimate an uncertainty of up to 150 kN-m225

in these measurements based on changes in some of the calibrations over such intervals.

The validation data in this article were collected between 22 September 2021 and 14 May 2022, and data are organized into

10-minute bins during this period. For each bin, several preprocessing steps were applied to the ultrasonic data to render the

data appropriate for model validation. First, following Kelley and Ennis (2016), who processed 2.5 years of meteorological

tower ultrasonic data from the nearby 200 m tower run by Texas Tech University, several quality control filters were applied to230

the u, v, and w signals:

– remove all values above an absolute magnitude of 30 m s–1
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– remove all values that are identically zero

– remove all remaining values that are deemed spikes, or statistical outliers in the time series data, as identified using a

median absolute deviation filter with a time window of 300 s and a threshold of 5×1.4826 = 7.4130235

An additional filter used in Kelley and Ennis (2016) to remove values based on a hold detection criterion was omitted from the

current work since this filter appeared to be eliminating valid data in some cases.

Next, bins that had less than 95 % remaining data availability or had time spans of removed data longer than 5 s were

also rejected. For the accepted bins, any instances of scattered data removal were filled in with a cubic hermite interpolation.

Summary statistics were then calculated over 10-minute bins. Finally, the horizontal components of the velocity series at each240

ultrasonic height were rotated into the reference frame of the 10-minute-mean reading of the hub-height wind vane, which was

the appropriate form for input into the inflow assimilation methods.

In addition to the preprocessing steps above, the wind and turbine data of each 10-minute bin also underwent several filtering

processes to be deemed valid and useful for the validation analyses. These filters included bounds to eliminate bins that in-

cluded malfunctioning sensors, bins with an idling turbine, bins including turbine start-up/shutdown events, bins with absolute245

mean yaw misalignment greater than 10◦, bins with yaw standard deviation greater than 4◦, bins with absolute mean shear

exponent greater than 1, bins with absolute mean veer (as linearly fit from measurements taken from 52.6 m to 179.5 m above

ground level) greater than 50◦, and lastly bins where the wind direction deviated more than 15◦ from the 185◦ heading of

the meteorological tower relative to the turbine. This last condition not only prevented the ultrasonic sensors from ever being

waked by the mounting boom arms, the meteorological tower structure, or the wind turbine, but it also meant that specific250

turbulence structures passing through the rotor disk were more likely to be the same as those sensed by the meteorological

tower, assuming a frozen turbulence hypothesis.

The above filtering reduced the data set to 253 10-minute bins, or 1.8 days, for validation analysis. Figure 4 displays 10-

minute inflow statistics from these bins, which demonstrate a diversity of inflow conditions and thus imply a relatively broad

range of turbine operating conditions. The lack of cases with turbulence intensity above 0.15 in Fig. 4(a) is a consequence of255

the filtering on yaw standard deviation as described above, which was required because of limitations in the modeling setup.

It is also noted that the existence of some relatively high shear exponents in Fig. 4(b) is a known characteristic of the site,

and cases with these conditions were retained in the data set though some validation error should be expected for such cases

since IPC was not included in our turbine model and was active in the field turbine in these cases. We elected not to filter such

cases from the data set because many 10-minute bins had some IPC activity but few bins had persistent IPC activity. Data260

for rotor-height veer from the wind vanes is omitted from Fig. 4(c) because of non-physical wind direction shifts that were

observed in the readings of the wind vane near the top-tip position. However, the wind vane near hub height, which was used

to rotate the ultrasonic data into the appropriate reference frame as described previously, was reliable.
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(a) (b) (c)

Figure 4. Mean inflow conditions for the 253 10-minute bins selected for model validation: (a) horizontal turbulence intensity near hub

height, (b) shear exponent calculated from a power-law fit over the rotor span, and (c) veer calculated from a linear fit over the rotor span.

The data are plotted versus horizontal wind speed as measured by the ultrasonic anemometer near hub height (at 110.5 m).

3.2 Computational environment265

The inflow simulations were performed in three different ways by using two different sets of inputs to TurbSim (Jonkman, 2014)

as well as an implementation of PyConTurb (Rinker, 2018). These kinematic turbulence generators begin with information on

the spectra and spatial coherence of velocity components, which are then translated to the time domain via an inverse Fourier

transform. Each generator can produce Gaussian turbulence fields according to a spectral model, which is herein taken as the

Kaimal spectrum with exponential coherence as defined in the International Electrotechnical Commission’s (2005) 61400-1270

standard.

The differences among the three approaches, which are described in Table 3, center around how the measured data are as-

similated. The turbulent fluctuations in the baseline TurbSim approach, termed here TurbSim simple, are stochastic and based

on the turbulence intensity measured by the ultrasonic anemometer at the near-hub-height location. The Fourier magnitudes

are determined from the spectral model, which is scaled so that the turbulence intensity matches that which was specified.275

Random phases are applied to the Fourier terms, and the phases of the streamwise component of velocity are correlated based

on the spatial coherence model. The two higher-fidelity approaches of generating inflow are TurbSim with the TIMESR option

and PyConTurb. These two approaches constrain the turbulent time series to match time-resolved measurements by linearly

interpolating Fourier magnitudes from the measured time series to the computational grid and constraining the Fourier phases

to match the wind series provided at one or more measurement locations. In TurbSim TIMESR, only one point in the domain280

can be constrained. PyConTurb, in contrast, is able to apply the same constraints to an arbitrary number of points. For the sim-

ulations performed here, TurbSim TIMESR is constrained based on the near-hub-height ultrasonic anemometer measurements.

In PyConTurb, all three ultrasonic anemometer measurement locations are used. For each turbulence assimilation method and

each 10-minute bin, six turbulence seeds were generated to improve statistical convergence over the non-constrained data
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of the turbulence grids. As a result, 4554 turbulent inflows were produced (253 10-minute bins, 6 random seeds, 3 different285

approaches).

Other differences between the three methods are related to how the mean wind speed and direction are assimilated from the

measurement. As shown in Table 3, TurbSim simple has the most restrictive assumptions in this regard, as it only generates

power-law wind profiles without veer. The two other methods are more flexible, though the linear interpolation of wind data

for these methods is likely to result in wind speed and direction profiles that do not exactly match the observed conditions,290

especially in stably-stratified conditions.

For all three methods, the turbulence plane was a lateral-vertical grid of 33 by 33 points that was 10 % wider than the rotor

diameter both laterally and vertically (see Fig. 5). The TurbSim methods include tower nodes to simulate wind loading on the

entire tower (Jonkman, 2014), whereas PyConTurb does not have this feature. Tower aerodynamics were therefore disabled for

the PyConTurb cases.295

Table 3. Comparison of inflow assimilation methods. Single-point constraints are enforced from the ultrasonic anemometer near hub height

(i.e., z = 110.5 m), and three-point constraints are enforced from all three ultrasonic anemometers.

TurbSim Simple TurbSim TIMESR PyConTurb

Turbulence Method Unconstrained Kaimal (Turb-

Model=IECKAI)

Constrained Kaimal at single

point with exponential coher-

ence (TurbModel=TIMESR)

Constrained Kaimal at three

points with exponential co-

herence

Turbulence Magnitudes Uniform (derived from single

point1)

Linear interpolation from

three-point input

Linear interpolation from

three-point input

Spatial Coherence IEC in u-component, none

currently enforced in v and w

GENERAL2 in u-component,

none currently enforced in v

and w

IEC in u-component, none

currently enforced in v and w

Wind Speed Profile Power-law interpolation from

three-point input

Linear interpolation from

three-point input

Linear interpolation from

three-point input

Wind Direction Profile None enforced Linear interpolation from

three-point input

Linear interpolation from

three-point input

Figures 6, 7, and 8 show an example of the simulated inflow versus the measurement for a sample 10-minute bin captured

on 16 March 2022. The data here illustrate that TurbSim simple generally matches only the 10-minute statistics while the

constrained turbulence assimilation methods (i.e., TurbSim TIMESR and PyConTurb) additionally match the time-varying

values at one or more measured heights. The small differences in the data of TurbSim TIMESR and PyConTurb compared to

the measurement at the constraint points are due to non-alignment of the simulation grid with the measurement location, and300

PyConTurb notably has two more constraint points than TurbSim TIMESR, as illustrated by matching of the measurement data
1The near-hub-height velocity time series is linearly detrended before calculating turbulence intensity as per Larsen and Hansen (2014), and ScaleIEC is

set to 1 to enforce the exact value specified near hub height given the desired sample rate
2See Jonkman (2014) for description of the coherence model
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Figure 5. Image of the 2.8-MW GE wind turbine in Lubbock, Texas, U.S.A. with turbulence grid overlaid.

by PyConTurb at the top-tip and bottom-tip data in each figure. Note that the detrending process for TurbSim simple described

in the footnotes of Table 3 results in significantly lower turbulence levels for TurbSim simple in this (and some other) example

bins because of the time-gradient in wind speed during this interval. The corresponding difference in turbulent energy does not

manifest in the spectral plots of Fig. 7 because the data have been binned on 60-second intervals, thus eliminating the long-pass305

time scale that is affected by the detrending process.

For reference, the 10-minute statistics of another sample bin are given in Fig. 9. This bin demonstrates a non-monotonic

shear profile (i.e., jet) that is sometimes observed at the site. TurbSim simple is not able to capture the shape of the shear

profile, whereas the two higher-fidelity approaches can roughly capture the shape within the limitations of linear interpolation.

A note is appropriate about the frequency of the wind field input to OpenFAST, which is unaltered from the 1 Hz sampling310

frequency of the meteorological tower described previously. For calculations involving DEL, neglecting frequency content

in the wind higher than 1 Hz will lead to slight underprediction of DELs. For a turbine of similar size and rated rpm, Sim

et al. (2012) demonstrate an underprediction of 5 % and 2 % for the blade-root flapwise DEL and tower-base fore-aft DEL,

respectively, by using a 1 Hz inflow and a coarse turbulence grid compared to an inflow with higher temporal and spatial

resolution. In this study, we make no attempt to populate the higher-frequency content of the measured inflow but note that the315

measured 1 Hz corresponds to more than 4 times the rotor revolution frequency (>4P) at rated rpm, which allows excitation of

the 3P frequency. Frequencies of 6P and 9P, which might especially affect the tower, are not present in the simulation at rated

rotor speed.

It also should be considered that no temporal offset was applied to the meteorological tower readings to account for the

advection time of the flow between the meteorological tower and the rotor, and this time is on the order of 20–100 s depending320
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Figure 6. Comparison of time series of simulated inflow to measured inflow for a sample 10-minute bin for the sonic anemometers near (a)

top tip, (b) hub height, and (c) bottom tip. The simulated data have been interpolated from the computational grid to the exact measurement

locations, which were 179.5 m, 110.5 m, and 52.6 m, respectively. Only one of six turbulence seeds is shown.

on the wind speed. In the comparison of a large number (i.e., 253) of 10-minute bins drawn from all times of day, we expect

this time offset to add noise but not bias to the comparisons.

3.3 Postprocessing

Outputs from the field turbine and simulated turbine were processed identically. The first minute of each 10-minute bin was

discarded to remove transients in the simulated results. Bending moment data from the simulations were interpolated to the325

position of the strain gauges at the blade roots and tower base. Bin averages were calculated, and DELs were calculated as in

the OpenFAST Python toolbox (Branlard et al., 2023) at a frequency of 50 Hz, which was the rate of the measurement and

simulation output.

4 Results

This section describes the results of the one-to-one validation beginning with analysis of the basic operability (i.e., mean rotor330

speed and blade pitch) and proceeding to power, blade loading, and tower loading.
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Figure 7. Comparison of turbulence spectra of simulated inflow to measured inflow for a sample 10-minute bin for the sonic anemometers

near (a) top tip, (b) hub height, and (c) bottom tip. Before calculating the spectra, the simulated data have been interpolated from the

computational grid to the exact measurement locations, which are 179.5 m, 110.5 m, and 52.6 m, respectively. Spectra are calculated using

60 s bins and a Hanning window. Only one of six turbulence seeds is shown.

Figure 8. Comparison of vertical profiles of simulated inflow to measured inflow for a sample 10-minute bin for (a) horizontal wind speed

and (b) direction, and (c) the three components of turbulence intensity, which are calculated as the standard deviation of the given component

divided by the mean of the u component. Only one of six turbulence seeds is shown.
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Figure 9. Analog to Fig. 8 except for a sample 10-minute bin that includes a non-monotonic shear profile.

Figure 10. Histogram of the number of 10-minute bins within each of the wind speed intervals used for binning throughout Sect. 4

In the following subsections, the individual 10-minute bins have been sorted into wind speed intervals of 1.5 m s–1 based

on the mean horizontal wind speed of the ultrasonic anemometer near hub height. A histogram of the bin counts at each wind

speed is shown in Figure 10.

4.1 Basic operability335

First we considered the basic operability of the turbine models in terms of the controller set points for rotor speed and blade

pitch. Figure 11 shows statistics of the model errors over the 253 10-minute bins compared to the measurements for rotor

speed and blade pitch. For the rotor speed, the median errors within each bin are less than 0.5 rpm, or within 4 %. This error

is not very sensitive to the inflow assimilation method, though the spread of error (i.e., the interquartile range) is smaller for

the higher-fidelity assimilation methods. For the blade pitch, all the inflow assimilation methods underpredict pitch above340

rated, especially TurbSim simple, which again has a significantly larger spread than the other two methods. The cause for the

underpredicted pitch by all three models in Region III (as well as the underpredicted rotor speed in Region II) could be related

to aerodynamic modeling errors that produce an underestimation of the aerodynamic torque.

Figure 12 is analogous to Fig. 11 except it shows errors in the standard deviation rather than the mean. The median error

in the standard deviation of rotor speed is less than 0.3 rpm, or 2 % of the nominal rotor speed at rated. The maximum error345

in the standard deviation of blade pitch is around 0.5◦. Note that the underprediction of the standard deviation of blade pitch
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(a) Rotor Speed (b) Blade Pitch, Blade 2

Figure 11. Comparison of (a) mean rotor speed and (b) mean blade pitch between models and measurement. The plots consist of statistics

of each wind speed bin including the median (solid lines) and interquartile range (shaded areas). The median value reported in the legend is

the overall median error across all bins.

(a) Rotor Speed (b) Blade Pitch, Blade 2

Figure 12. Comparison of (a) standard deviation of rotor speed and (b) standard deviation of blade pitch between models and measurement.

See Fig. 11 for explanation of the lines, shading and legend.

at wind speeds ≥14 m s−1 appears to be a result of the omission of an IPC model in the controller, but the relatively small

overall magnitude of the errors in this quantity corroborates the previous statement that few bins had persistent IPC activity in

this data set.

4.2 Power350

Figure 13 shows the comparison of simulated to measured power. The scatterplot in panel (a) indicates generally good perfor-

mance of the models with some scatter between 6 and 12 m s−1 that could be related to, for instance, spanwise inhomogeneity

in the inflow that cannot be captured by the vertically aligned met tower sensors, or by the aforementioned temporal offset

caused by the advection time of the flow between the meteorological tower and the rotor. In addition to the scatter, panel (b)
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(a)

(b)

Figure 13. Comparison of (a) mean electrical power and (b) mean electrical power error between models and measurement. Each dot in (a)

represents a 10-minute time series. See Fig. 11 for explanation of the lines, shading and legend in panel (b).

reveals a negative bias in the median modeling error in Region II that is up to 8.5 % for the higher-fidelity inflow assimilation355

methods and 12.5 % for the simpler method, and the shape of the error plots understandably bear some resemblance to those

of the rotor speed errors in Fig. 11(a). The source of the bias is not presently known but could plausibly be related to errors in

modeling of the controller, blade twist, airfoil performance, or rotor aerodynamics. Related to the latter, Madsen et al. (2012)

noted an underprediction of power from BEMT formulations due to the lack of ground effect. We note also that the underpre-

diction of the models at the knee of the power curve may be a result of exaggerated modeling of the peak-shaving strategy of360

the proprietary field controller.

4.3 Blade loading

Figure 14(a) shows the near-root flapwise moment mean at blade 1. The comparison shows that median modeling errors in

each wind-speed bin are within 10 %, and the underprediction in Region II somewhat follows the underprediction of rotor

speed and power in this region. The mean near-root edgewise moment is close to zero and is not reported.365

The comparisons of the unsteady blade loading are shown in Fig. 14(b) and (c). The edgewise comparisons in panel (c) show

little sensitivity to the inflow assimilation method, which is congruous with Rezaeiha et al. (2017), whose study demonstrated

that aerodynamics (i.e., turbulence, wind shear, and yaw) account for <20 % of lifetime equivalent fatigue loads in the edgewise

direction. Rather, it is rotor imbalances and gravity that dominate the edgewise fatigue budget. Thus, the <5 % simulation error

for edgewise DEL suggests that the blade model development in Sect. 2.2 was successful in terms of edgewise characteristics.370

On the other hand, the flapwise fatigue comparison shown in Fig. 14(b) shows significant errors on the order of 5–18 % for the

overall medians.
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The authors believe that a significant amount of the overprediction of flapwise DELs stems from the computation of induction

in OpenFAST. The last 10 years have seen awareness of overprediction of some unsteady QoIs from BEMT models versus

higher-fidelity approaches, especially in sheared conditions (Madsen et al., 2012; Boorsma et al., 2016; Perez-Becker et al.,375

2020; Madsen et al., 2020). Although this overprediction seems to be improved by computing induction locally around the

azimuth rather than using an annulus-averaged approach (Madsen et al., 2012, 2020), Perez-Becker et al. (2020) suggest

that such locally-computed induction fields as found in OpenFAST, which include induced velocities from bound and wake

vorticity, are still not accurate. They observed the 1P fluctuations of local angle of attack in OpenFAST to be overpredicted and

found OpenFAST to consequently predict 9 % higher lifetime DELs for the out-of-plane blade root and the tower-base fore–aft380

bending moments compared to a lifting-line free-vortex method.

Possible evidence of this effect in our results is shown in Fig. 15, which re-plots the modeling error for flapwise DEL

observed in Fig. 14(b) but this time as a function of turbulence intensity and wind shear exponent. The flapwise DEL errors

show a positive correlation with wind shear exponent in Fig. 15(b), as expected from the above discussion. It is important to

note that the omission of modeling of the field turbine’s IPC actions could also produce this trend, but investigation by the385

authors on this data set suggests that IPC is not strongly active in most bins and does not account for most of the error observed

in Fig. 14(b). The flapwise DEL error also has a weak negative correlation with turbulence intensity, as shown in Fig. 15(a),

which could be related to the general decrease in the magnitude of wind shear, as well as the general decrease in relative

significance of wind shear in the flapwise fatigue budget according to Rezaeiha et al. (2017), as turbulence increases.

Irrespective of the correlation between flapwise DEL error and wind shear in Fig. 15(b), there still exists significant sensi-390

tivity to the inflow assimilation method. The results from Rezaeiha et al. (2017) for a turbulence intensity similar to the mean

of our study (i.e., ∼8 %), show that around half of the contribution to flapwise lifetime equivalent fatigue loads was from

turbulence, and more than 8 % was from wind shear. Thus, the spread between inflow assimilation methods in flapwise DEL

shown in Fig. 15 is not surprising since turbulence and wind shear are handled uniquely in each method.

Extrapolating the error trends in Fig. 15(b) to the point of zero wind shear suggests that the simplest inflow assimilation395

method (i.e., TurbSim simple) is validating better than the higher-fidelity methods in terms of flapwise DELs, and the apparent

reason for the lower flapwise DEL predictions of TurbSim simple is the notably lower turbulence intensity of this approach

stemming from the detrending process (see panel (c) of Figs. 8 and 9 and the first footnote of Table 3). Pedersen et al. (2019)

found a similarly surprisingly result when comparing unsteady QoIs between simulations with unconstrained and constrained

turbulence from a meteorological tower, and they concluded that measurements taken at large distances from the turbine400

should not be used to constrain turbulence because of possibly invalid assumptions related to frozen turbulence between the

inflow measurement and turbine and those related to the measured flow field passing completely through the rotor disk. In

our dataset, the results from Region II in Fig. 12(a) and Region III in Fig. 12(b) (before 14 m s-1 when IPC actions in the

field turbine increase) indicate an overprediction of unsteadiness in the turbine set points, despite the fact that the field turbine

controller regulates the rotor speed more tightly than the modeled controller in low-wind-speed conditions. A hypothesis is that405

the flapwise DEL error could therefore be related to the BEMT formulation, which, in contrast to how it modifies the mean

velocity with a rotor induction model, does not account for changes to the relative magnitude of the fluctuating component of
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(a) Near-Root Flapwise Moment Mean, Blade 1 (b) Near-Root Flapwise Moment DEL, Blade 1

(c) Near-Root Edgewise Moment DEL, Blade 1

Figure 14. Comparison of (a)-(b) flapwise and (c) edgewise bending moment QoIs for blade 1 at 1.25 m from the root. See Fig. 11 for

explanation of the lines, shading and legend.

the velocity (i.e., stretching of turbulence structures) due to the induction field of the rotor (see Mann et al. (2018) for relevant

discussion).

Another modeling error that may contribute to the existence of the overprediction of flapwise DELs for the higher-fidelity410

inflow assimilation methods even at zero wind shear is the higher aeroelastic flapwise frequency of the blades as modeled than

as measured as in Fig. 2. Higher aeroelastic frequency should increase fatigue damage similarly to how higher blade stiffness

increases fatigue damage as noted in the early study by Noda and Flay (1999).

The combination of modeling errors discussed in the last two paragraphs could be responsible for the ∼12 % residual

median error in the flapwise DELs at zero wind shear for the higher-fidelity inflow assimilation methods. Applying a similar415

offset to the error of the TurbSim simple results would then drop this method’s flapwise DEL error to more than 12 % below

zero, implying the existence of compensating errors in this method. Such errors could be related to TurbSim simple’s inability

to replicate non-monotonic shear profiles (see panel (a) of Fig. 9) and linear veer profiles (see panel (b) of Fig. 9) that would

increase unsteady flapwise loading at the 2P frequency. Also, TurbSim simple’s pre-defined spectral model leaves open the

possibility that the energy content at the lowest frequencies of the spectra is too low compared to a spectra derived from420

time-resolved measurements (see the comparison of the unconstrained Mann model to TIMESR in Nybø et al. (2021)).
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(a) Near-Root Flapwise Moment DEL, Blade 1 (Vs. Turb. Intensity) (b) Near-Root Flapwise Moment DEL, Blade 1 (Vs. Wind Shear Exp.)

Figure 15. Comparison of the flapwise bending moment DEL from Fig. 14(b) except plotted versus (a) near-hub-height turbulence intensity

and (b) rotor-height wind shear exponent. See Fig. 11 for explanation of the lines and shading.

4.4 Tower loading

Figure 16 shows the comparison of tower-base bending moments. The median errors of the model in panel (a) are generally

less than ±10 % and indicate that the steady loading on the rotor and tower are well modeled, granted the underprediction of

steady tower loading in Region II that is related to the underprediction of rotor speed, power, and flapwise mean loading in this425

region as noted above. Note that the more negative mean error for the PyConTurb cases compared to the TurbSim ones is a

result of the absence of tower nodes and aerodynamics in PyConTurb as described previously, and this effect grows with wind

speed. The DEL errors of the model in panel (b) have a significant positive bias similar to that of the flapwise DEL errors. As

before, the two higher-fidelity models show higher bias than TurbSim simple.

Similar hypotheses can be made for the overprediction of tower fore-aft DEL as for the overprediction of flapwise DELs430

in Sect. 4.3. The median errors for the fore-aft DELs in some wind-speed bins are even larger than those for the flapwise

DEL, which could be related to exaggeration of the unsteadiness of the inflow by the BEMT model as suggested previously,

especially since the tower-base fore-aft DELs are known to be highly sensitive to the accuracy of the wind spectrum (Nybø

et al., 2021). Additionally, the aeroelastic fore-aft frequency in Fig. 2 is consistently overpredicted versus experimental values,

and this overprediction likely contributes to the overpredicted fore-aft DELs. The peak in DEL error at the rated power of the435

turbine could be a consequence of the absence of a tower damper model in the simulations.

5 Suggestions for a future experiment

Below are recorded lessons learned from the preceding analysis that may aid the design of future experiments.

5.1 Inflow measurements

This study leveraged meteorological tower data to define turbulence grids. Shortcomings of this approach include low spatial440

resolution and negligence of the effects of the rotor induction on the characteristics of the inflow fluctuations. An improved
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(a) Tower-Base Fore-Aft Moment Mean (b) Tower-Base Fore-Aft Moment DEL

Figure 16. Comparison of fore-aft bending moment QoIs for the tower at 8.6 m from the base. See Fig. 11 for explanation of the lines,

shading and legend.

experiment might include on-blade pressure probes as in Pedersen et al. (2019) to validate the induction physics predicted by

the model. Taking a series of measurements as the flow moves toward the rotor such as with a nacelle- or hub-mounted lidar

could additionally allow for step-by-step tracking of the inflow spectrum, shear, and veer, as well as comparison thereof with

the same quantities predicted by BEMT models.445

Further, on-blade surface pressure measurements would be useful to quantify errors related to airfoil polars and three-

dimensional effects. Tracking of the level of soiling on the turbine blades during the measurement period might also lead to

more informed selection of the roughness condition of airfoil polars to be used in models. Better information about the local

blade aerodynamic behavior will lead to improved estimates of aerodynamic frequencies and damping.

5.2 Experimental modal analysis450

From the initial modal analysis discussed in Sect. 2.3.1, areas for improvement were identified. As mentioned, time-synchronous

averaging was unsuccessfully used to isolate the blade damped natural frequencies from the rotational dynamics, which tend to

dominate the spectral content. In the future, this method can be improved by increasing the data acquisition sampling rate for

intervals of interest. Using an increased sampling rate will also allow for other time-domain methods to be leveraged. Another

method for future use will be order-domain analysis where the resulting time-series data can be analyzed on a per-revolution455

basis, which is directly related to the rotational speed of the rotor, allowing for separation of rotor speed harmonics from rotor

structural frequencies. A final method for future consideration is operational modal analysis. This method can be used not only

to understand the spectral content for structural frequencies but also to estimate the forced input into the rotor. A more detailed

understanding of the modes can be gleaned where frequency, damping, and mode shape (where spatial resolution is adequate)

are estimated.460

To develop a full-turbine modal estimate, the instrumentation effort should be focused on utilizing accelerometers. Postpro-

cessing data from accelerometers installed along the blade span can be challenging, but their addition will allow for a modal

map of acceptable spatial resolution to resolve mode shapes. Adding accelerometers to the hub, bed plate, and tower top will
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also provide insight into the stiffness and damping of the coupled components. Accelerometers should also be installed before

and after the bearings, such as yaw and pitch, to quantify the impact of those degrees of freedom.465

The installation of accelerometers is also not trivial. The blade, for example, provides limited entry, which makes it difficult

to install sensors beyond 18 m for the turbine in consideration. Exterior installation allows for instrumenting the full span of

the rotor but comes with installation, maintenance, and safety challenges for an operating turbine.

An improved method to understanding the full turbine system and component-damped natural frequencies is through an

in situ modal test. This test would be designed to excite the entire turbine with a known input force. Testing of this type470

creates a true frequency response function of the system where damping can more easily be approximated using common

modal parameter estimation techniques. Also, modal shapes can be extracted, and modal scaling can be more accurately

approximated.

Lastly, to achieve a full turbine excitation, a snap-back test method can be used where a reaction mass applies tension to

the turbine bedplate with a load cell in line with the tension. A quick-release device is used to release the mass and excite the475

turbine. In this way, an impulsive excitation of known force is applied to the turbine, and frequency response functions can be

determined.

5.3 Controller modeling

The model controller used above was an open-source controller that was tuned to match the proprietary field controller. The

complexity of the proprietary controller is significant and resulted in simplifications and omissions in the model controller.480

Future work might benefit from using the DLL controller file from the field turbine, if permitted.

6 Conclusions

This study was designed to answer two questions: what is the value of one-to-one time-series-matched inflow for aeroser-

voelastic simulation, and what are the residual errors in turbine QoIs when modeling a 2.8 MW land-based wind turbine in

OpenFAST? The work included ingestion of 253 10-minute bins of operational data from a prototype wind turbine manufac-485

tured and operated by GE Vernova, as well as development of corresponding full-field turbulence grids from three levels of

fidelity of inflow assimilation. The flow fields were input to an OpenFAST model that was developed to mimic as closely as

possible the behavior of the field turbine. Subsequent bin-by-bin validation revealed that the median errors of steady QoIs for

power, blade loading, and tower loading were generally within 5–10 %. The unsteady loading QoIs showed mixed results.

Simulated edgewise blade-root DELs were consistently predicted with less than 5 % error. However, the simulated flapwise490

blade-root DELs and tower-base fore-aft DELs showed a significant bias of 5–40 % overprediction, which the authors speculate

could be a result of inaccurate aerodynamic modeling in sheared conditions (note this shortcoming is being addressed currently

by NREL in ongoing development of OpenFAST), combined with possible errors in the simulated inflow wind fluctuations

and aeroelastic flapwise and fore-aft frequencies. Interestingly, the lower-fidelity inflow assimilation technique produced the

lowest errors for the above two unsteady QoIs, which is similar to Pedersen et al. (2019). Since the higher-fidelity approaches495
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intuitively allow for more faithful representation of inflow featuring prominent coherent structures and/or non-stationarity, the

possibility of the existence of compensating errors in the lower-fidelity approach should be considered. New approaches are

under development to further investigate the origin of the errors in the unsteady loading QoIs and to determine the level of

fidelity required by inflow models to accurately predict specific QoIs. Targeted measurements of inflow and blade quantities

during the RAAW campaign are designed to narrow these modeling gaps. The result of this ongoing work will be a more500

physical approach to the aeroelastic simulations that are at the center of design and certification processes for wind turbines.

Code and data availability. The simulation codes used in this work are open-source and can be found at https://github.com/OpenFAST/openfast

and https://github.com/NREL/ROSCO. OpenFAST v3.4.1 and ROSCO v2.7.0 were used in this study. The specific turbine model used is

proprietary. The data generated in the field are also not publicly available.

Author contributions. KB processed the experimental results, analyzed the validation comparisons, and led the writing of the manuscript.505

PB, EB, and MC led the development of the OpenFAST model, conducted the verification and validation steps presented in Sect. 2, and

helped write the manuscript. SD and CI led the experimental modal analysis. NdV ran the simulations and helped with the model validation.

PD and NH lead the RAAW experimental campaign. JJ leads the development of OpenFAST. CK co-leads RAAW and supervised this

validation study. DZ led the tuning of the ROSCO controller and helped with the model validation. All authors were a critical element of the

research team and all contributed to the manuscript.510

Competing interests. At least one of the (co-)authors is a member of the editorial board of Wind Energy Science.

Acknowledgements. This research was supported by the Wind Energy Technologies Office of the U.S. Department of Energy Office of

Energy Efficiency and Renewable Energy. Sandia National Laboratories is a multimission laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department

of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The views expressed in the article do not necessarily515

represent the views of the U.S. Department of Energy or the United States Government.

A portion of the research was performed using computational resources sponsored by the Department of Energy’s Office of Energy

Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory. This work was authored in part by the National

Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract

No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind520

Energy Technologies Office.

The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government

retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up,

25

https://doi.org/10.5194/wes-2023-166
Preprint. Discussion started: 16 January 2024
c© Author(s) 2024. CC BY 4.0 License.



irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government

purposes. The technical and financial support of GE Vernova is gratefully acknowledged.525

26

https://doi.org/10.5194/wes-2023-166
Preprint. Discussion started: 16 January 2024
c© Author(s) 2024. CC BY 4.0 License.



References

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind

Energy Science, 7, 53–73, 2022.

Asmuth, H., Navarro Diaz, G. P., Madsen, H. A., Branlard, E., Meyer Forsting, A. R., Nilsson, K., Jonkman, J., and Ivanell, S.:

Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements, Renewable Energy, 191, 868–887,530

https://doi.org/https://doi.org/10.1016/j.renene.2022.04.047, 2022.

Boorsma, K., Hartvelt, M., and Orsi, L.: Application of the lifting line vortex wake method to dynamic load case simulations, in: Journal of

Physics: Conference Series, vol. 753, p. 022030, IOP Publishing, 2016.

Boorsma, K., Schepers, G., Aagard Madsen, H., Pirrung, G., Sørensen, N., Bangga, G., Imiela, M., Grinderslev, C., Meyer Forsting, A.,

Shen, W. Z., Croce, A., Cacciola, S., Schaffarczyk, A. P., Lobo, B., Blondel, F., Gilbert, P., Boisard, R., Höning, L., Greco, L., Testa,535

C., Branlard, E., Jonkman, J., and Vijayakumar, G.: Progress in the validation of rotor aerodynamic codes using field data, Wind Energy

Science, 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, 2023.

Branlard, E., Jonkman, B., Pirrung, G. R., Dixon, K., and Jonkman, J.: Dynamic inflow and unsteady aerodynamics models for modal and

stability analyses in OpenFAST, Journal of Physics: Conference Series, pp. 1–12, 2022.

Branlard, E., Mudafort, R., Bortolotti, P., Hammond, R., Zalkind, D., Stanislawski, B., and Thedin, R.: pyFAST - OpenFAST tools,540

https://doi.org/10.5281/zenodo.8122172, 2023.

Commission, I. E. et al.: IEC 61400-1 Ed. 3: Wind Turbines-Part 1: Design Requirements, 2005.

Damiani, R. R. and Hayman, G.: The Unsteady Aerodynamics Module For FAST8, https://doi.org/10.2172/1576488, 2019.

Du, Z. and Selig, M.: A 3-D stall-delay model for horizontal axis wind turbine performance prediction, https://doi.org/10.2514/6.1998-21,

1998.545

Guntur, S., Jonkman, J., Sievers, R., Sprague, M. A., Schreck, S., and Wang, Q.: A validation and code-to-code verification of FAST for a

megawatt-scale wind turbine with aeroelastically tailored blades, Wind Energy Science, 2, 443–468, 2017.

Jelenić, G. and Crisfield, M.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and

dynamics, Computer Methods in Applied Mechanics and Engineering, 171, 141–171, https://doi.org/https://doi.org/10.1016/S0045-

7825(98)00249-7, 1999.550

Jonkman, B.: TurbSim user’s guide v2. 00.00, Natl. Renew. Energy Lab, 2014.

Jonkman, J. and Sprague, M.: OpenFAST Documentation Release v3. 0.0, National Renewable Energy Laboratory: Golden, CO, USA, 2021.

Kelley, C. L. and Ennis, B. L.: SWiFT site atmospheric characterization, Tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM

(United States), 2016.

Larsen, G. C. and Hansen, K. S.: De-trending of wind speed variance based on first-order and second-order statistical moments only, Wind555

Energy, 17, 1905–1924, 2014.

Madsen, H. A., Riziotis, V., Zahle, F., Hansen, M. O. L., Snel, H., Grasso, F., Larsen, T. J., Politis, E., and Rasmussen, F.: Blade element

momentum modeling of inflow with shear in comparison with advanced model results, Wind Energy, 15, 63–81, 2012.

Madsen, H. A., Larsen, T. J., Pirrung, G. R., Li, A., and Zahle, F.: Implementation of the blade element momentum model on a polar grid

and its aeroelastic load impact, Wind Energy Science, 5, 1–27, 2020.560

Mann, J., Peña, A., Troldborg, N., and Andersen, S. J.: How does turbulence change approaching a rotor?, Wind Energy Science, 3, 293–300,

2018.

27

https://doi.org/10.5194/wes-2023-166
Preprint. Discussion started: 16 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Noda, M. and Flay, R.: A simulation model for wind turbine blade fatigue loads, Journal of Wind Engineering and Industrial Aerodynamics,

83, 527–540, 1999.

Nybø, A., Nielsen, F. G., and Godvik, M.: Analysis of turbulence models fitted to site, and their impact on the response of a bottom-fixed565

wind turbine, in: Journal of Physics: Conference Series, vol. 2018, p. 012028, IOP Publishing, 2021.

Pedersen, M. M., Larsen, T. J., Madsen, H. A., and Larsen, G. C.: More accurate aeroelastic wind-turbine load simulations using detailed

inflow information, Wind Energy Science, 4, 303–323, 2019.

Perez-Becker, S., Papi, F., Saverin, J., Marten, D., Bianchini, A., and Paschereit, C. O.: Is the Blade Element Momentum theory overestimat-

ing wind turbine loads?–An aeroelastic comparison between OpenFAST’s AeroDyn and QBlade’s Lifting-Line Free Vortex Wake method,570

Wind Energy Science, 5, 721–743, 2020.

Pitt, D. M. and Peters, D. A.: Theoretical prediction of dynamic inflow derivatives, 1980.

Rezaeiha, A., Pereira, R., and Kotsonis, M.: Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large

horizontal axis wind turbine, Renewable Energy, 114, 904–916, 2017.
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