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Abstract. Modal properties and especially damping of operational wind turbines can vary over short time periods as a conse-

quence of environmental and operational variability. This study seeks to experimentally test and validate a recently proposed

method for short-term damping and natural frequency estimation of structures under
:::
the influence of varying environmental

and operational conditions from measured vibration responses. The method is based on Gaussian Process Time-dependent

Auto-Regressive Moving average (GP-TARMA) modelling , and is tested via two applications: a laboratory three-storey shear5

frame structure with controllable, time-varying damping , and a flutter test of a full-scale 7 MW wind turbine prototype, in

which two edgewise modes become unstable. Damping estimates for the shear frame compare well with estimates obtained

with Stochastic Subspace Identification (SSI) and standard impact hammer tests. The efficacy of the GP-TARMA approach

for short-term damping estimation is illustrated through comparison to short-term SSI estimates. For the full-scale flutter test
:
,

GP-TARMA model residuals imply that the model cannot be expected to be entirely accurate, but .
::::::::
However,

:
the damping esti-10

mates are physically meaningful , and compare well with a previous study. The study shows that the GP-TARMA approach is

an effective method for short-term damping estimation from vibration response measurements, provided
:::::
given enough training

data and a representative model structure.

1 Introduction

A novel Operational Modal Analysis (OMA) method (Ebbehøj et al., 2023) for short-term modal damping estimation for struc-15

tures under
:::
the influence of varying Environmental and Operational Conditions (EOCs), such as wind turbines in operation, is

tested with a controlled laboratory experiment and a wind turbine flutter test.

The dynamic properties of wind turbines (i.e., natural frequencies, damping ratios, and mode shapes) can be sensitive to

changing EOCs (Avendaño-Valencia et al., 2017; Bogoevska et al., 2017). Aeroelasticity, active control, material properties,

and nonlinear damping mechanisms (e.g., friction) are examples of phenomena and factors which can cause EOC variability20

(Hansen et al., 2006b; Wang et al., 2022; Chen and Duffour, 2018). EOC variability can act on both short and long time

scales relative to the fundamental frequency of the given structure. For example, changing temperatures of wind turbine towers

affecting their natural frequencies works on the order of hours and days (Hu et al., 2015), which in this context are considered
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long-term effects. By contrast, complex aero–servo–elastic interactions of multi-megawatt wind turbines can cause short-term

variability of especially damping over a few minutes , due to dependencies on, e.g., rotor speed, blade pitch angle, and wind25

speed (Hansen et al., 2006b, a).

Estimating aeroelastic (or operational) damping accurately is important
:::::::
essential for the improving design of multi-megawatt

wind turbines, as it is key
:
a
::::::
crucial design parameter for modelling fatigue and aeroelastic instabilities, i.e., Stall-Induced Vibra-

tions (SIV) and Vortex-Induced Vibrations (VIV) (Veers et al., 2023). Improved aeroelastic damping estimation may therefore

enable designs associated with less risk or less material usage. However, “a precise evaluation of aeroelastic damping remains30

an elusive goal in some operating conditions” as stated in Grand Challenges in the Design, Manufacture, and Operation of Fu-

ture Wind Turbine Systems (Veers et al., 2023, p. 1090). The combination of nonstationary EOCs and EOC-sensitive damping

complicates the task of obtaining precise aeroelastic damping estimates for wind turbines.

OMA covers a broad class of output-only system identification methods used for estimating modal parameters for structures

in operating conditions , where the input (i.e., forcing or excitation) is not measured. Standard OMA techniques, for instance
:
,35

the covariance-driven Stochastic Subspace Identification (COV-SSI) (Peeters and Roeck, 2001; Brincker and Ventura, 2015),

typically assumes
::::::
assume

:
the system is Linear and Time Invariant (LTI) with input resembling stationary white noise , and

requires
:::
and

:::::::
require long-time measurements. Brincker and Ventura (2015) suggest a minimum measurement time of 10

fζ ,

where fζ is the lowest natural frequency–damping ratio multiple of a given structure. This translates to a measurement time

requirement of approximately 28 minutes for a mode with
:
a natural frequency of 0.2 Hz and 3 % damping ratio, which is in40

the range of a multi-megawatt wind turbine mode. The capabilities in tracking
::::::::
Therefore,

:::
the

::::::::::
capabilities

::
to

:::::
track short-term

variations in damping for these methods are therefore limited.

When identifying modal damping from output-only measurements, the effect of input on the measured output must be

accounted for , since both input and damping govern the near-resonant vibration amplitudes. This can be done by either

eliminating the effect (i.e., averaging it out) or by modelling it (Au, 2017). Standard OMA methods rely on the former approach.45

For instance, in COV-SSI covariance Toeplitz matrices of the output measurements are computed and used as equivalent free

response approximates of an assumed LTI system (Peeters and Roeck, 2001). However, a considerable amount of data is

required (minimum measurement time of 10
fζ ) for the covariance Toeplitz matrices to be adequately estimated. Consequently,

this approach involves a trade-off between temporal resolution and estimate accuracy, which
:::
can

:::
be

:
a
:::::::
limiting

:::::
factor

:
in the

context of short-term variabilitycan be a limiting factor.50

Nonstationary Auto-Regressive Moving Average (ARMA) time series models offer an avenue for accounting for nonsta-

tionary input and time-varying system characteristics
:
, including modal parameters. ARMA models closely resembles

:::::::
resemble

the mathematical structure of discrete-time equations of motion, where the Auto-Regressive (AR) part plays the role of the

left-hand (homogeneous) side and the AR model coefficients carry information of the modal parameters. Similarly, the Moving

Average (MA) part resembles the input, thus filtering out the effect of the excitation from the modal parameters. In Time-55

dependent Auto-Regressive Moving Average (TARMA) models, the model coefficients and consequently the corresponding

modal parameters , are allowed to
:::
can vary in time. One type is the Smoothness Priors TARMA (SP-TARMA) model, where

the model coefficients are modelled as autocorrelated stochastic (random) variables, for which evolution in time is constrained
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by smoothness priors (Poulimenos and Fassois, 2006; Spiridonakos et al., 2010; Kitagawa and Gersch, 1996). The model co-

efficients of
:::
the SP-TARMA model are estimated locally in time, e.g., with a Kalman filter. The SP-TARMA models may be60

capable of tracking general nonstationary signals but has
::::
have

:
limited capabilities in tracking abrupt or short-term changes

(Poulimenos and Fassois, 2006). Functional Series TARMA (FS-TARMA) models constitute TARMA type
:::::::::::
TARMA-type

models whose model coefficients are represented by predefined basis functions, allowing AR- and MA-coefficients
:::
AR

::::
and

:::
MA

::::::::::
coefficients to evolve deterministically in time. FS-TARMA models are fitted to data by estimating global projection co-

efficients for each basis function, which minimize
:::::::::
minimizes the model prediction errors. If the basis functions can capture65

the time-varying nature of the system, FS-TARMA models are able to
:::
can track abrupt and short-term changes of the system.

However, modal parameter trajectories in time for complex systems under EOC variability might not lend themselves to be

represented by a reasonable number of time-dependent basis functions, resulting in an intractable number of parameters to be

estimated.

One approach to capture the effects of changing EOCs on vibrating structures is to embed measured Environmental and70

Operational Variables (EOVs) into the model. Various approaches have been proposed for this. Multi-megawatt wind turbines

pose a particular challenge , due to the intricate aero–servo–elastic interactions. Bogoevska et al. (2017) expands SP-TARMA

model residuals with a Polynomial Chaos Expansion (PCE) to account for long-term EOC variability, to improve accuracy of

structural health monitoring (SHM) of wind turbines. Avendaño-Valencia et al. (2017) introduces a Linear Parameter Varying

AR (LPV-AR) model to capture the short-term dynamics, and Gaussian Process (GP) regression is used to account for long-75

term variability associated with changing wind speed in terms of 10-minute averages, which is extended from single-output

(univariate) to a multiple-output (multivariate) model by Avendaño-Valencia et al. (2020); Avendaño-Valencia and Chatzi

(2020), which, e.g., enables mode shape identification.

The present work concerns short-term damping (and natural frequency) estimation based on output-only measurements for

structures influenced by short-term varying EOCs, where short-term is in the order of seconds. The aforementioned methods80

:::::::
methods

:::::::::
mentioned

:::::
above are based on models which are conditioned on (e.g., 10 minute) statistics, which limits their ability

in tracking
::
to

:::::
track short-term changes. The nonstationary and EOV-dependent GP-TARMA model (introduced in Ebbehøj

et al. (2023)) is therefore conditioned on EOV time series. The GP-TARMA model combines a FS-TARMA model where the

basis functions may depend on multiple EOV time series with Gaussian Processes , by modelling the projection coefficients

for the basis functions as Gaussian rather than deterministic variables , to allow for better representation of unaccounted85

disturbances. The capabilities of the GP-TARMA model to track EOC variability is
::
are

:
limited by the extent of how well the

basis functions capture the nonstationary
:::::::::::::
nonstationarities

:
of the response (e.g., slow or fast variations) , and fundamentally by

the measurement sampling rate.
:::::
While

:::
the

::::::::::
GP-TARMA

::::::
model

::::
may

::
be

::::::::
nonlinear

::::
with

::::::
respect

::
to
::::::
EOVs,

::
it

::
is

:::::
linear

::::
with

::::::
respect

::
to

:::
the

:::::::
response

::
it

:
is
::::::::::
modelling,

:::
i.e.,

::::::::::
representing

:::
an

:::::::
equation

::
of

:::::::
motion

:::
that

::
is

:::::
linear

::
in

:::
the

:::::::::
dependent

::::::::
variables.

::::::::::::
Consequently,

::
the

::::::
model

::::::
cannot

:::::::
capture

:::::::
strongly

::::::::
nonlinear

:::::::
system

:::::::::
properties.

::::::::
However,

:::::::
weakly

::::::::
nonlinear

::::::
effects

:::
on

:::
the

:::::::
effective

:::::::
natural90

:::::::::
frequencies

::::
and

:::::::
damping

:::::
ratios

::::
may

::
be

::::::::::::
approximated

:
if
:::::
these

::::::::
nonlinear

::::::
effects

:::::::
correlate

::::
with

::::::::::
operational

:::::
states

:::::::::
represented

:::
by

::
the

::::::::::::::
EOV-dependent

::::
basis

:::::::::
functions.
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Verification and validation are integral parts in
:
of

:
establishing any new method or model in structural dynamics, and it is

especially important
:::::::
essential for output-only damping estimation methods , due to the latent and elusive nature of damping.

This work contributesin particular ,
::
in

:::::::::
particular,

::::
with

:
experimental validation of the GP-TARMA approach for short-term95

damping estimation, suitable for application to wind turbines. The method is validated using vibration measurements from two

distinctly different experimental setups: a laboratory shear frame with abruptly changing damping realized with electromag-

netic dampers , and a full-scale 7 MW wind turbine prototype deliberately driven to flutter-like instabilities (measurements

published by Volk et al. (2020)).

The paper is structured as follows: Section 2 summarizes the details necessary for using the GP-TARMA model for short-100

term modal parameter estimation from Ebbehøj et al. (2023), including the GP-TARMA model definition and estimation, a

model structure identification scheme, a model validation procedure, and downstream analysis of an estimated GP-TARMA

model. Section 3 presents the laboratory shear frame test setup, experimental procedures, and related analysis, results, and

discussion. In sect. 4, analysis of the full-scale multi-megawatt wind turbine instability measurements is performed, and the

results are presented and discussed.105

2 Methods

This section provides a summary of
::::::::::
summarises

:
the procedures for estimating short-term damping ratios (and natural fre-

quencies) from output-only measurements using a GP-TARMA model, which is introduced and presented in detail in Ebbehøj

et al. (2023). Necessary details for using the method are given, including the GP-TARMA model definition, procedures for

estimation of
:::::::::
estimating model parameters, selecting an appropriate model structure, and extracting modal parameters, and110

their uncertainties. The entire procedure is summarized in Table 2.

2.1 The GP-TARMA model

The GP-TARMA model introduced in Ebbehøj et al. (2023) can be used to model a nonstationary, discrete-time (displace-

ment/velocity/acceleration) response yt∈ R influenced by EOCs, which can be described using m EOVs ξt∈ R1×m, where

subscript t denotes the time index, and yt and ξt are defined for t= 1, . . . ,N . The GP-TARMA model is closely related115

to an FS-TARMA model (Poulimenos and Fassois, 2006; Spiridonakos and Fassois, 2014), for which the ARMA coefficients

evolves
::::::
evolve in time as trajectories spanned by EOV-dependent basis functions. The GP-TARMA model extends FS-TARMA
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by modelling the basis function coefficients as Gaussian variables:

yt +

na∑
i=1

ai(ξt)yt−i︸ ︷︷ ︸
AR-part

= et +

nc∑
i=1

ci(ξt)et−i︸ ︷︷ ︸
MA-part

, et ∼N
(
0,σ2

e,t

)
, (1)

ai(ξt) =

pa∑
j=1

uai,j
gj(ξt), uai,j

∼N
(
µai,j

,σ2
ai,j

)
, (2)120

ci(ξt) =

pc∑
j=1

uci,jhj(ξt), uci,j ∼N
(
µci,j ,σ

2
ci,j

)
, (3)

where et is a Normally and Independently Distributed (NID) zero-mean innovations process with variance σ2
e,t which may

be time-varying, ai(ξt) and ci(ξt) are the ith EOV-dependent AR and MA coefficients, and na (nc) denotes the AR (MA)

model order. The AR and MA coefficients ai(ξt) and ci(ξt) are linear combinations of basis functions gj(ξt) and hj(ξt) and

the associated Gaussian projection coefficients uai,j
and uci,j . The complete set of AR (MA) basis functions for the full time125

series t= 1, . . . ,N , constitute a functional subspace defined as:

FAR = {g1(ξ), g2(ξ), g3(ξ), . . . ,gpa
(ξ)}, (4a)

FMA = {h1(ξ), h2(ξ), h3(ξ), . . . ,hpc
(ξ)}, (4b)

where gj(ξ) = [gj(ξ1), . . . ,gj(ξN )]T∈ RN×1 and hj(ξ) = [hj(ξ1), . . . ,hj(ξN )]T∈ RN×1 are the jth basis functions for time

indices t= 1, . . . ,N , and ξ∈ RN×m contains the EOVs at the corresponding time indices. The basis functions gj and hj may130

be members of different orthogonal function families (e.g., Legendre polynomials or trigonometric functions), and depend on

different EOVs (e.g., rotor speed, wind speed, and pitch angle). A basis function type consists of a function family and an EOV.

The functional subspace FAR (FMA) may consist of ka (kc) basis function types, each with a basis order pak
(pck ).

For example, FAR could consist of a constant-valued bias vector g1, first and second order
:::
first-

::::
and

:::::::::::
second-order Legendre

polynomials in wind speed v, g2(v) and g3(v), and a first order
::::::::
first-order Legendre polynomial in rotor speed Ω, g4(Ω).135

This would correspond to ka = 2 basis function types (neglecting the trivial constant-valued bias type) with basis orders of

pa1
= 2 and pa2

= 1 for the Legendre polynomials in wind speed and rotor speed, respectively. The orthogonality among

basis functions in the functional subspaces should be ensured, using, e.g., modified Gram-Schmidt orthogonalization (Stewart,

2013). In cases where EOVs contain high-frequency (i.e., much higher than the frequency of highest mode) scatter, it can be

beneficial to zero-phase low-pass filter (e.g., using MATLAB’s filtfilt function) the EOVs to prevent the high-frequency140

scatter from propagating to the modal parameters (Ebbehøj et al., 2023).

ARMA models are closely linked with discrete-time Equations Of Motion (EOM). The AR-part resemble
:::
AR

:::
part

:::::::::
resembles

the left-hand side of discrete-time EOMs, which means the AR coefficients carries
::::
carry the physical characteristics of the

system it models, i.e., natural frequencies and damping ratiosin this case. The MA-part
:
.
:::
The

::::
MA

::::
part resembles the right-hand

side of discrete-time EOMs , in the sense that
::
as it can capture the effect of stochastic excitation on the measured response145

yt. Consequently, FAR should be composed such that it can represent the time-varying nature of the natural frequencies and
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damping ratios, and FMA should be selected to account for nonstationary stochastic excitation; examples of this are given in

sects. 3.2 and 4.1.

Equations (1)–(3) can be expressed in the more compact regression form:

yt =



−g1(ξt)yt−1

−g2(ξt)yt−1

...

−gpa(ξt)yt−1

−g1(ξt)yt−2

−g2(ξt)yt−2

...

−gpa
(ξt)yt−na

h1(ξt)et−1

h2(ξt)et−1

...

hpc(ξt)et−1

h1(ξt)et−2

h2(ξt)et−2

...

hpc
(ξt)et−nc



T

︸ ︷︷ ︸
ΦT

t



ua1,1

ua1,2

...

ua1,pa

ua2,1

ua2,2

...

uana,pa

uc1,1

uc1,2
...

uc1,pc

uc2,1

uc2,2
...

ucnc,pc


︸ ︷︷ ︸

θ

+et =ΦT
t θ+ et, et ∼N

(
0,σ2

e,t

)
, (5)150

where the regression vector Φt =Φt(ξt)∈ R(napa+ncpc)×1 contains regressed response measurements yt−i and innovations

et−i multiplied with appropriate basis function values, and the Gaussian projection coefficients are collected in θ∈ R(napa+ncpc)×1.

The GP-TARMA model for the full time series can be written in regression form, by employing stacked response and innova-

tions vectors y = [y1+nm
, . . . ,yN ]

T ∈ R(N−nm)×1 and e= [e1+nm
, . . . ,eN ]

T ∈ R(N−nm)×1:

y =ΦT θ+ e, (6)155

where nm =max([na,nc]) denotes the maximum model order, and Φ∈ R(napa+ncpc)×(N−nm) is the regression matrix.

For a given dataset D = {y, ξ}, the GP-TARMA model is fully characterised
:::::::::::
characterized by M= {S,P}, where S =

{FAR,FMA,na,nc} contains the model structure and P = {µθ,Σθ,Σe} contains the time-varying innovations variance Σe =

diag([σ2
e,1+nm

, . . . ,σ2
e,N ])∈ R(N−nm)×(N−nm), and the hyper-parameters for the Gaussian projection coefficients, i.e., the

means µθ∈ R(napa+ncpc)×1 and covariance Σθ∈ R(napa+ncpc)×(napa+ncpc).160
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2.2 Model parameter estimation

A procedure for Maximum Likelihood (ML) estimation of the hyper-parameters and innovations variance in P (via the Expec-

tation Maximization algorithm) presented in Ebbehøj et al. (2023) (see also Avendaño-Valencia et al. (2017)) is summarized

in this section.

With the model parameters θ and response y in Eq. (6) modelled as random variables, the Probability Density Function165

(PDF) of their joint distribution governs the probability of the two (model parameters and response) occurring simultaneously:

p(y, θ|Φ,P) = p(θ|y,Φ,P)p(y|Φ,P), (7)

where p(θ|y,Φ,P) denotes the posterior distribution of the model parameters, and p(y|Φ,P) the marginal likelihood of the

response. For the GP-TARMA model in Eq. (6), these distributions are Gaussian, and can be specified as (Ebbehøj et al., 2023)

(see also Murphy (2023), Ch. 2, and Avendaño-Valencia et al. (2017)):170

p(θ|y,Φ,P) =N
(
θ̂,P̂θ

)
, (8)

p(y|Φ,P) =N
(
ΦT µθ,Σε

)
, (9)

where

θ̂= E [θ|y,Φ,P] = µθ+K
(
y−ΦT µθ

)
, (10a)

P̂θ = E
[
(θ− θ̂)(θ− θ̂)T |y,Φ,P

]
=Σθ−KΦTΣθ, (10b)175

K=ΣθΦΣ−1
ε , (10c)

Σε=Σe +ΦTΣθΦ, (10d)

where E [X] is the expected value of X , Σε∈ R(N−nm)×(N−nm) is the covariance matrix of the prior (i.e., before observing

the actual response) one-step-ahead prediction errors, and the innovations variance for each time index is collected in Σe =

diag
(
σ2
1+nm, . . . ,σ

2
N

)
∈ R(N−nm)×(N−nm). The mean and covariance of the posterior parameter distribution, θ̂∈ R(napa+ncpc)×1180

and P̂θ∈ R(napa+ncpc)×(napa+ncpc), are also referred to as the Maximum A Posteriori (MAP) estimates of µθ and Σθ, respec-

tively.

The marginal likelihood of the response Eq. (9) also serves as the marginal likelihood of the hyper-parameters L(P|y,Φ),

meaning that the hyper-parameters in P can be estimated, by maximizing the marginal hyper-parameter likelihood. This forms a

ML optimization problem, which can be formulated in terms of the log-likelihood as (Avendaño-Valencia et al., 2017; Murphy,185

2023; Rasmussen and Williams, 2006):

P̂ = argmax
P

lnL(P|y,Φ) , (11a)

where lnL(P|y,Φ) =−N
2
ln2π− 1

2

(
ln |Σε|+ εTΣ−1

ε ε
)
, (11b)
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where the vector ε= [ε1+nm, . . . ,εN ]
T ∈ R(N−nm)×1 contains the prior one-step-ahead prediction errors computed at time

index t as:190

εt = yt −ΦT
t µθ. (12)

Solutions to the ML optimization can be approximated using the general-purpose Expectation Maximization (EM) algorithm,

which constitutes an expectation step (E-step) and a Maximization step (M-step), which are iterated until convergence. During

the E-step, the posterior (expected) mean and covariance of the model parameters, θ̂ and P̂θ, are evaluated using Eqs. (10a)–

(10d) based on the hyper-parameters from previous EM-iteration. In the M-step, the hyper-parameters are updated using the195

model parameter posterior mean and covariance from the E-step by the explicit update equations (Avendaño-Valencia et al.,

2017):

µθ
(i) = θ̂

(i−1)
, (13a)

Σ
(i)
θ = δδT + P̂θ

(i−1)
, (13b)

δ= θ̂
(i−1)

− θ(i−1), (13c)200

Σ̂(i)
e = diag([σ̂2

e,1, . . . , σ̂
2
e,N ]), (13d)

where (i) denotes the designated variable is from the ith EM-iteration. The time-varying innovations variance

Σ̂e∈ R(N−nm)×(N−nm) can be estimated using a 2K +1 sample moving window:

σ̂2
e,t =

1

2K

t+K∑
τ=t−K

(eτ − µ̂e,t)
2
, µ̂e,t =

1

2K +1

t+K∑
τ=t−K

eτ , (14)

where eτ = yτ −
(
Φ(i−1)

)T

θ̂
(i−1)

, and µ̂e,t is the innovations mean for the window with time index t. Although the latter205

is assumed to be zero, it is included in Eq. (14) , because it has been observed to improve
::
the

:
accuracy of damping ratio

estimates in cases where the response measurements are influenced by stochastic excitation with time-varying mean value. The

time-invariant innovations variance can likewise be estimated using Eq. (14) with K =N/2.

The EM-algorithm
:::
EM

::::::::
algorithm

:
has been shown to converge to a local likelihood maximum, not necessarily global (e.g.,

Bishop (2006)). Consequently, accurate initial values of the hyper-parameters P(0) are required. This can be obtained by esti-210

mating the model parameters for the corresponding FS-TARMA model, where uai,j
and uci,j are scalars rather than Gaussian

variables, and using these parameter estimates as initial hyper-parameter values P(0). The corresponding FS-TARMA model

parameters can be estimated using, e.g., the two-stage least squares (2SLS) or the two-stage weighted least squares (2SWLS)

method (Spiridonakos and Fassois, 2014; Poulimenos and Fassois, 2006). Convergence of the EM-algorithm is implied by

consistent and small changes in lnL(P|y,Φ), and in the hyper-parameters P over EM-iterations.215

2.3 Model validation

Once a GP-TARMA model is estimated, it is important to validate that model
:
it
:
adequately represents the observations (Pouli-

menos and Fassois, 2006; Spiridonakos and Fassois, 2014; Madsen, 2007). Model validation in this present work (as in Ebbehøj
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et al. (2023)) consists of residual analysis and cross validation
:::::::::::::
cross-validation. Residual analysis tests whether the model resid-

uals et (i.e., the innovations) satisfies
:::::
satisfy the NID assumption, i.e., whether they resemble white noise. A standard whiteness220

test is to check
:::::
checks

:
whether the Auto-Correlation Function (ACF) of the residuals resembles that of white noise, i.e., sig-

nificantly uncorrelated at time lags τ > 0. However, this is not generally applicable to the case of nonstationary residuals, as

these would be correlated through the time-varying innovations variance. An approach to partially circumvent this issue is to

normalize the residuals with
:::::::::
standardize

:::
the

::::::::
residuals

:::::
using the estimated time-varying innovations variance σ̂2

e,t (Fouskitakis

and Fassois, 2002):225

zt =
et
σ̂2
e,t

, t= 1+nm, . . . ,N. (15)

For nonstationary residuals, the ACF test is
:::::
Given

:::
that

:::
et :

is
::

a
:::::::::
zero-mean

:::::
white

:::::
noise

::::::::
sequence

::::
with

::
a

::::::::::
time-varying

::::::::
variance

:::
that

::
is

:::::::::
adequately

:::::::::::
approximated

:::
by

::::
σ̂2
e,t,:::

the
::::::::::
standardized

::::::::
residuals

::
zt:::

are
:::::::::
stationary.

:::::
Using

:::
the

::::::::::
standardized

::::::::
residuals

::
zt:::

for
:::
the

::::
ACF

:::
test

:::::::
renders

:::
the

:::
test

:
sensitive to the accuracy of the time-varying innovations variance estimate, and .

::
It
:
should thus be

supplemented by a test insensitive to the innovations variance
:::
such

:::
an estimate.230

An alternative whiteness test, fully applicable to the nonstationary case, is a simple sign test. Sign changes of a zero mean

white noise sequence are expected to occur (on average) every other time step , and
:::
and

:::
are governed by the binomial distribu-

tion, which is approximated by the Gaussian distribution for large Nseq (Madsen, 2007):

Number of changes in sign ∈ B
(
Nseq − 1,

1

2

)
≈N

(
µwn,σ

2
wn

)
, (16)

where Nseq is the number of samples in the residual sequence, and the mean and variance are given by µwn = (Nseq − 1)/2235

and σ2
wn = (Nseq − 1)/4, respectively. Whether a residual sequence {et : t= 1+nm, . . . ,N} resembles white noise can thus

be tested by checking whether the number of sign changes adheres to Eq. (16) under some significance level.

Cross validation
::::::::::::::
Cross-validation is performed by splitting a dataset of a single recording in a training and a test set contain-

ing 75% and 25% of the data points, respectively. The model is solely estimated using the training set , and is subsequently

tested in terms of residual tests and whether the orders of magnitude of prediction errors are the same for the training and test240

set. If the prediction errors from
:
of

:
the training set are much smaller than from

::::
those

::
of

:
the test set, it suggests the model is

over-fitted, i.e., the model excessively represents the measured realization of the stochastic response , rather than the underlying

system. However, for the nonstationary case, it is only applicable
::
for

:::
the

:::::::::::
nonstationary

::::
case

:
if the two sets have comparable

characteristics.

2.4 Model structure identification245

In this section a procedure for identifying a suitable model structure, i.e., S = {FAR,FMA,na,nc}, is summarized (see Ebbe-

høj et al. (2023) for details). A suitable model structure is sufficiently complex to capture the underlying system producing the

response measurements , while avoiding over-fitting. For identifying
::
To

:::::::
identify a suitable model structure, a range of candi-

date models with different model structures are estimated , and compared in terms of predictive performance and capability of

capturing the vibration modes of interest.250
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Table 1. Model structure identification procedure (adapted from Ebbehøj et al. (2023)); high order or dimensionality denoted by ∗

1) Propose candidate functional subspaces F∗
AR and F∗

MA

2) For n∗
c , F∗

AR, and F∗
MA: Find optimal AR model order n̂a ∈ {1,2, . . . ,n∗

a}

3) For n̂a, F∗
AR, and F∗

MA: Find optimal MA model order n̂c ∈ {1,2, . . . ,n∗
c}

4) For n̂a, n̂a, and F∗
MA: Find optimal basis order p̂ak for the kth AR basis function type. Repeat for all AR basis

function types k = 1, . . . ,ka to obtain F̂AR

5) For n̂a, n̂c, and F̂AR: Find optimal basis order p̂ck for the kth MA basis function type. Repeat for all MA basis

function types k = 1, . . . ,kc to obtain F̂MA

Steps 1) – 5) may be repeated for other combinations of basis function types, i.e., testing other EOVs and/or family function

types

To compare the predictive performance (i.e., the prior one-step-ahead prediction errors) of the candidate models, the residual

sum of squares normalized by the series sum of squares (RSS/SSS) and the Bayesian Information Criteria (BIC) are used. The

RSS/SSS is given by:

RSS/SSS =

N∑
t=1+nm

εt
2

/
N∑

t=1+nm

y2t , (17)

where ε is the prior prediction error defined in Eq. (12). The BIC is given by:255

BIC =− lnL(P|y,Φ)+
lnN

2
d, (18)

where d is the number of independently adjusted parameters. RSS/SSS and BIC both measure the prediction errors, but BIC also

penalises
:::::::
penalizes

:
model complexity, i.e., the number of model parameters. The required model complexity for capturing the

vibration modes of interest are
:
is identified using frequency stabilization diagrams, as

:
is
:
commonly used for time domain OMA

methods (Brincker and Ventura, 2015; Peeters and Roeck, 2001; Avendaño-Valencia et al., 2017). Typically, the predictive260

performance converges at lower model orders compared to
:::
than

:
the model orders required to capture the modes of interest,

i.e., the latter is typically the driving selection criteria
:
.
::::
This

:::::
means

:::
the

:::::::::::
convergence

::
of

:::
the

:::::::::
predictive

::::::::::
performance

::
is
::::::::
typically

:
a
::::::::
necessary

:::
but

::::::::::
insufficient

::::::::
condition.

A simple backward regression scheme is employed to identify a suitable model structure, i.e., starting with high model

orders n∗a and n∗c , and functional subspaces of high dimensionality
:::::::::::::
dimensionalities F∗

AR and F∗
MA, ensuring sufficient model265

complexity to capture the nonstationary response. The complexity of the initial model is then reduced in four stages: First

models with lower AR orders are estimated, and the most suitable AR order is identified. Then the optimal MA order (given

the optimal AR order) is identified in similar fashion. The optimal basis orders for each AR and MA basis function type are

identified in the same way
:::::::
similarly. These stages are repeated for different combinations of AR and MA basis function types.

The procedure is summarized in Table 1.270
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2.5 Estimating modal parameters and their uncertainties

In this section the necessary results for estimating “frozen” modal parameters (excluding mode shapes) from an estimated GP-

TARMA model, and approximating the corresponding uncertainties are summarized. The frozen properties of a time-varying

system represent the LTI properties at “frozen-time” t′, i.e., the time-varying system is represented by an infinite sequence

of LTI systems (Poulimenos and Fassois, 2006). See Ebbehøj et al. (2023) for more details, and also Poulimenos and Fassois275

(2006); Avendaño-Valencia and Fassois (2014); Spiridonakos et al. (2010); Avendaño-Valencia et al. (2017) and Yang and Lam

(2019) on
:::
the computation of frozen modal parameters and their uncertainty, respectively.

The frozen modal parameters can be computed from the time-varying AR coefficients , since an equivalent discrete-time

state-space model with system matrix Lt′ can be formulated from the AR coefficients {ai(ξt′) : i= 1, . . . ,na} at each time-

step t′. First
:::
The

::::
first step is to compute the discrete-time eigenvalues of the eigenvalue problem:280

Lt′vi = ρivi, i= 1,2, . . . ,na, (19)

where t′ is the “frozen-time” time index, and vi = vi,t′ , and ρi = ρi,t′ are the ith right eigenvector and eigenvalue of Lt′ :

Lt′ =


0

0

−ana
(ξt′) · · · −a2(ξt′) −a1(ξt′)

I(na−1)×(na−1)


na×na

, (20)

where I is the identity matrix with dimensions as indicated by the subscript.

The ith natural frequency fi,t′ (in Hz) and damping ratio ζi,t′ for frozen time index t′ can be computed by (Yang and Lam,285

2019; Poulimenos and Fassois, 2006; Spiridonakos et al., 2010; Avendaño-Valencia et al., 2017):

fi,t′ =
|ηi,t′ |
2π

and ζi,t′ =−Re(ηi,t′)

|ηi,t′ |
, (21a)

where ηi,t′ = fs ln(ρi,t′) (21b)

is the equivalent ith continuous-time eigenvalue.

The uncertainty of the modal parameter estimates can be approximated by propagating the estimated AR coefficient uncer-290

tainty (quantified by P̂θ) through the steps required to compute modal parameters from AR coefficients. These steps constitute

obtaining discrete-time eigenvalues in Eq. (19), transforming the discrete-time eigenvalues to continuous-time eigenvalues in

Eq. (21b) and computing the modal parameters from the continuous-time eigenvalues in Eq. (21a). The uncertainty propagation

can be achieved through
::
by

:
either Monte Carlo simulation, or analytically using the first-order delta method. The former is

straightforward to implement but is computationally costly, whereas the latter offers a much smaller computational burden at295

the price of a more elaborate implementation.

The analytic uncertainty propagation method is only valid for Gaussian PDFs with small variances. The necessary results

are stated below; see Ebbehøj et al. (2023) for a brief introduction and Yang and Lam (2019) for derivations and further details.
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The uncertainty of the ith set of natural frequencies and damping ratios can be quantified by the variance:

Σfi,ζi =
∂F3,i

∂ηi

∂F2,i

∂ρi

∂F1,i

∂vec(Lt′)
vec(PLt′ )

(
∂F1,i

∂vec(Lt′)

)T (
∂F2,i

∂ρi

)T (
∂F3,i

∂ηi

)T

, (22)300

where Σfi,ζi∈ R2×2, vec(·) is the vectorization operator transforming aM×N matrix A= [a1,a2, . . . ,aN ] to a column vector

vec(A) =
[
aT1 ,a

T
2 , . . . ,a

T
N

]T ∈ RMN×1, and the vectorized posterior variance matrix vec(PLt′ ) corresponding to Lt′ is:

vec(PLt′ ) = diag(vec(PLt′ )), PLt′ =


σ2
ana

(ξt′) · · · σ2
a2
(ξt′) σ2

a1
(ξt′)

0(na−1)×(na)


na×na

, (23)

where σ2
ai
(ξt′) =

∑pa

j=1σ
2
ai,j

gj(ξt′)
2. Note that σ2

ai
(ξt′) is not necessarily Gaussian, as the individual terms of the sum can be

dependent. The outputs of the three functions are:305

ρ= F1 (vec(Lt′)) , (24a)

η= F2(ρ), (24b)

β= F3(η), (24c)

where ρ= [ρ1,ρ2, . . . ,ρna ]
T , η= [η1,η2, . . . ,ηna ]

T , and β= {[fi,t′ , ζi,t′ ]T : i= 1, . . . ,na}. The partial derivative of F1,i with

respect to vec(Lt′) is:310

∂F1,i

∂vec(Lt′)
=

Re
(

∂ρi

∂vec(Lt′ )

)
Im

(
∂ρi

∂vec(Lt′ )

)

n2
a×1

, where
∂ρi

∂vec(Lt′)
=

vi
T ⊗w⊤

i

w⊤
i vi

, (25)

where a⊤ denotes the complex conjugate transpose of a, ⊗ denotes Kronecker’s product, and wi is the ith left-eigenvectors of

Lt′ satisfying

wi
⊤Lt′ = ρiwi

⊤, (26)

where wi is a column vector. The partial derivatives of functions F2,i and F3,i are315

∂F2,i

∂ρi
=

1

Ts|ρ̂i|2

 Re(ρ̂i) Im(ρ̂i)

−Im(ρ̂i) Re(ρ̂i)


2×2

and
∂F3,i

∂ηi
=

1

|η̂i|


Re(η̂i)

2π

Im(η̂i)

2π

− Im(η̂i)
2

|η̂i|2
Re(η̂i)Im(η̂i)

|η̂i|2


2×2

, (27)

where hats denote estimated values.

The procedure for computing natural frequencies and damping ratios, and their uncertainties from AR-coefficients is sum-

marized in Table 2.
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Table 2. Procedure for short-term modal parameter estimation using GP-TARMA model (adapted from Ebbehøj et al. (2023))

Required data:

– Dynamic response yt and influencing EOVs ξt for t= 1, . . . ,N

– Define maximum number of EM iterations Niter

Model structure identification:

– Use procedure summarized in Table 1
Model estimation, initialization:

– Compute set of initial hyper-parameters P(0) =
{
µθ

(0),Σ
(0)
θ ,Σ̂

(0)
e

}
using 2SLS estimates of corresponding FS-

TARMA model

Model estimation, EM iterations:

– For i= 1, . . . ,Niter

• Expectation step: Compute posterior model parameter mean θ̂ and covariance P̂θ based on hyper-parameters

P(i−1) using Eqs. (10a)–(10d)

• Maximization step: Compute updated hyper-parameters

P(i) =
{
µθ

(i),Σ
(i)
θ ,Σ̂

(i)
e

}
using Eqs. (13a)–(13d)

• Check convergence: If either change in hyper-parameters or marginal log-likelihood over iteration is

smaller than a specified tolerance, stop iterating, i.e., if |P(i) −P(i−1)|< ϵP or | lnL
(
P(i)|y,Φ(i)

)
−

lnL
(
P(i−1)|y,Φ(i−1)

)
|< ϵL

Model validation

• Use procedure outlined in sect. 2.3 related to Eqs. (15) and (16), proceed to downstream analysis only if residuals

are adequately white
Modal parameter estimation:

– For t′ = 1+na, . . . N :

• Compute “frozen-time” natural frequencies fi,t′ and damping ratios ζi,t′ from AR-coefficients ai(ξt) for

i= 1, . . . ,na using Eqs. (19), (20), (21a) and (21b)

• Compute modal parameter uncertainty {Σfi,ζi i= 1, . . . ,na} analytically using Eqs. (22)–(27) or by Monte

Carlo simulation

2.6 Considerations for practical implementation320

In this section some considerations which
:::
that

:
may be useful for

::
the

:
practical application of the GP-TARMA approach are

listed. These are based on using the GP-TARMA model for various applications including wind turbine blade response of an

operational wind turbine during an extreme coherent wind gust (BHawC simulation, see Ebbehøj et al. (2023)), field measure-

ments from Siemens Gamesa’s fleet, and the applications in the present paper:

• Reduce bandwidth of response (output): Low-pass filter and subsequently down-sample response prior to GP-TARMA325

modelling, such that the reduced bandwidth only contains the modes of interest, i.e., unimportant response components
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at higher frequencies are filtered out. Effects: Reduces computational cost of estimating model; may help reduce risk of

over-fitting in cases with low amount of training data

• Filter out high-frequency content of EOV signals by low-pass filtering. Effects: May allow for a better fit, as modal

properties usually do not vary at high frequencies (many times per second); preventing high-frequency noise propagating330

from AR-coefficients to modal parameters

• Use zero-phase filtering for low-pass filtering of response and EOV signals. Effect: Response and EOV signals are not

phase shifted
:::::::::::
phase-shifted by filtering.

• Add
:
a small amount of artificial zero-mean NID noise to (low-pass filtered) response signal prior to GP-TARMA mod-

elling. Adequate RMS levels of noise
::::
noise

:::::
levels

:
relative to the signal are typically between 1 and 5 %. Effect: This is an335

example of jittering and data augmentation in general. It can have a regularizing effect, i.e., reduce risk of over-fitting,

and commonly used in the fields of, e.g., image analysis and for machine learning methods (Iwana and Uchida, 2021;

Bishop, 1995; Ding et al., 2015; Erenler and Serinagaoglu Dogrusoz, 2019). According to Bishop (1995)
:
,
:
adding noise

to training data is equivalent to Tikhonov regularization.

3 Laboratory test: Shear frame structure with time-varying damping340

This section presents an experimental setup of a shear frame (SF) structure with controlled time-varying damping , and the

experimental procedures used to generate response measurements for testing and validating the GP-TARMA approach. In

Ebbehøj et al. (2023), the method is verified using responses from two simulated cases: a simple two-mode model response ,

and an edgewise blade response during normal operation obtained with BHawC (Siemens Gamesa’s in-house aeroelastic code).

This section provides an experimental validation , based on measurements of a simple structure conducted in a controlled345

setting.

3.1 Experimental setup and procedures

An experimental test rig with a three-storey SF structure was used for testing
:
to

::::
test modal parameter estimation methods for

structures with time-varying damping. The structure is equipped with
::
has

:
a pair of voltage-controlled electromagnetic dampers

(EMDs) at each floor. Two types of tests were conducted: a base-excitation test, where the SF structure was excited with a350

shaker table, and a hammer test, where the structure is
:::
was

:
excited with a (measured) hammer impact. Figure 1 illustrates the

experimental setup and instrumentation, and Fig. 2 shows the SF structure. The floors are quadratic (110× 110× 10) mm,

constructed from aluminium with 2 mm thick copper plate inlays at the top and bottom to increase the effect of eddy current

damping through EMDs ((A) in Figs. 1 and 2). The beams separating the floors are (150× 18× 0.5) mm, and are realized by

four steel rulers (C),
:
which are fixed to each floor.355

As can be seen in Fig. 1b,
::
the

:
shaker table (used for base-excitation tests) is driven by an amplified, digital signal using a

National Instruments (NI) relay module (NI 9481) and LabView as
::
an

:
interface with the computer. The EMDs are powered
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Figure 1. Experimental setup. (a): Diagram of SF structure where vibrations primarily occur in the y-direction. Each floor has pairs of EMDs

(A), and displacement sensors (B). Floors are separated by steel rulers (C). The entire structure is mounted on a shaker table (D). During

impact hammer tests only, an accelerometer (E) is attached on the first floor. (b): Instrumentation showing model name for each component

by a 24 V signal, which is controlled in an on/off manner using the NI relay module, which is controlled using FlexLogger

software. The displacement response at each floor is measured by laser displacement sensors, and sampled by a NI data

acquisition (DAQ) module (NI 9215) via FlexLogger, along with relevant control signals, e.g., control signals for the EMDs360

and amplifier.

The input signal for the shaker table used for the base-excitation test , is a stochastic normally distributed broadband signal

(i.e., low-pass filtered white noise) , to achieve stochastic excitation of the first three modes of the SF structure. The test is run

for 60 minutes, all signals are collected using a sampling frequency of 50 Hz, and all EMDs are turned on and off during the

test with periods of constant voltage ranging from 240 to 540 s.365

For the base-excitation test, the displacement response at the third floor is used and referred to as y(t) in sect. 3, and the

measured voltage over the EMDs v(t) is used as EOV to predict changes in damping caused by the EMDs. Figure 3 shows the

displacement response y(t), the corresponding spectrogram and spectrum, along with voltage over the EMDs v(t), indicating

when the EMDs are on (24 V) and off (0 V). From the spectrum, it can be seen that the first three modes have frequencies of

about (1.8, 5.3, 7.8) Hz. The measurements sampled at 50 Hz are low-pass filtered (stop band frequency of 8.05 Hz) to prevent370

aliasing , and subsequently down-sampled to 16.67 Hz to facilitate faster estimation of the GP-TARMA model, without loosing

:::::
losing relevant information about the first three modes. In addition, artificial zero-mean NID noise with

::
an RMS level of 1 %

is added to the down-sampled signal.

To validate modal estimates obtained from the output-only base-excitation tests, the modal parameters are also estimated by

standard impact hammer tests (e.g., Ewins (2000); Halvorsen and Brown (1977)). The instrumentation for the impact hammer375

tests consists of an accelerometer (E) placed on the first floor, an impact hammer with a force transducer, and a B&K 3160 front-
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Figure 2. Laboratory shear frame test setup (cf. Fig. 1, with same annotations)

end for data acquisition. The test is conducted by impacting each floor multiple times and measuring the resulting acceleration

response. The accelerometer and force transducer signals are sampled by the B&K front-end and analysed
:::::::
analyzed

:
using B&K

Pulse and ME’scope software to estimate modal properties via local FRF curve-fitting. The accelerometer is only mounted on

the first floor during impact hammer tests, thus dismounted prior to base-excitation tests. During hammer tests, the shaker table380

is fixed. Hammer tests are conducted both with all EMDs on and off, and each test is conducted three times.

3.2 Model structure identification

A suitable model structure for modal analysis based on the third-floor response y(t) is identified using the procedure summa-

rized in Table 1. In this controlled experimental setting, the excitation can be considered stationary since the shaker table is

driven by a stationary NID signal. The functional subspace FMA representing the effect of the excitation therefore only consist385

of a constant-value bias vector, and the innovations variance is assumed constant (corresponding to K =N/2 in Eq. (14)). To

capture the step-like damping variations caused by the EMDs turning on and off, a first order
::::::::
first-order

:
Legendre polynomial

in the voltage supplied to magnetic dampers (i.e., the EOV) is included in the functional subspace FAR, along with a constant-

valued bias vector to account for the naturally occurring damping. If the voltage v(t) had changed gradually (i.e., not binary)
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Figure 3. Measured response
::::::::
comprising

::::::
training

:::
data

:::
for

::::::::::
t ∈ [0;2700] s

:::
and

:::
test

::::
data

::
for

:::::::::::::
t ∈]2700;3600] s. (a): Displacement of third floor

y(t) ( ) used as response for analysis, overlaid by measured voltage over electromagnetic dampers v(t) ( ) used as EOV; (b): PSD; (c):

spectrogram of y(t)

from 0 to 24 V, FAR would likely need to include higher order Legendre polynomials to model the voltage–damping relation.390

The functional subspaces for the AR- and MA-part are populated as:

FAR = {A0, g2(v)}, (28a)

FMA = {C0}, (28b)

where A0∈ RN×1 and C0∈ RN×1 are constant-valued bias vectors, v∈ RN×1 contains measurements of the voltage over the

EMDs for times t= 1, . . . ,N , and g2(v) is a first order
::::::::
first-order

:
Legendre polynomial in v. The voltage signal is filtered395

with a centered moving average filter (better suited for step-signals than regular low-pass filters) with a window width of one

second to prevent measurement noise from propagating to the modal parameters (cf. sect. 2.1).

The AR and MA model orders na and nc are selected such that the predictive capabilities of the model in terms of the

RSS/SSS and BIC (cf. sect. 2.4) are converged, and the model captures modes of interest. In Fig. 4 RSS/SSS and BIC are seen

to converge at about na = 7 and nc = 2, suggesting
:::::::::
constituting

:::::
lower

::::::::::
boundaries

::
for

:
the AR and MA model ordersshould be400

7 and 2 or higher. .
::::
The

::::
next

:::
step

::
is
::
to

::::::
assess

:::
the

:::::
model

::::::
orders

:::::::
required

::
to

::::::
capture

:::
the

::::::
modes

::
of

:::::::
interest.

Inspecting the frequency stabilisation
::::::::::
stabilization diagram in Fig. 5, the three stable poles corresponding to the three natural

frequencies of the SF , can be seen to stabilise
::
be

::::::::
stabilized

:
at model orders na = 11 and nc = 8, which are selected as the

model orders used in downstream analysis. Thus, the
:::
For

:::
the

:::
MA

::::::
model

:::::
order,

:::
the

:::::
poles

:::::::
arguably

::::::::
converge

::::::
already

::
at
:::::::
nc = 4,

:::
but

:::
the

::::::::
frequency

::
of

::::
the

::::
third

:::::
mode

:::::::
changes

:::::::
slightly

::::
until

::::
fully

:::::::::
stabilizing

::
at
:::::::
nc = 8.

::::
This

:::::
minor

::::::::::::
consideration

:::
can

:::
be

:::::
taken405

::::::
because

:::
the

:::::::
amount

::
of

:::::::
training

::::
data

::
is

::::
large

:::::::
relative

::
to

:::
the

:::::
model

::::::::::
complexity,

::::
i.e.,

:::
the

:::
risk

::
of

::::::::::
over-fitting

::
is

:::::
small.

::
In

::::
this

::::
case
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Figure 4. Model order selection measures for training/test set (◦/×) for varying AR and MA model orders; (a) and (c): normalized residual

sum of squares; (b) and (d): Bayesian Information Criteria. Selected model orders marked by ( )

Figure 5. Frequency stabilization diagrams showing the time-averaged mean estimates of eigen-frequencies for increasing model orders,

overlaid by PSD ( ) of response y. (a)/(b): AR/MA-order
:::
MA

::::
order

:
na/nc. Selected model orders indicated by ( )

::
the

:
driving model selection criteria

:::::::
criterion

:
is the ability to capture the modes of interest, as is typically the case .

:::
(cf.

:::::::
sect. 2.4

:
).
:

3.3 Model validation

In this section the model structure identified in sect. 3.2 is validated using the procedure presented in sect. 2.3, based on410

the model residuals et . The standardised residuals
:::::::::::::::::
(t= 1+nm, . . . ,N).

::::
The

::::::::::
standardized

:::::::
residuals

::
zt:and the sample ACF

can be seen in Fig. 6. Judging by the time series plot, the standardised residuals appear stationary stochastic, and similar for
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Figure 6. Residual analysis from training/test ( / ) set. (a): standardised
:::::::::
standardized

:
residuals z(t)

:
zt; (b): ACF of z(t)

:
zt, where the

95 % confidence interval of white noise ( ) is approximated by ±2
√

1/N . ACF is by definition unity at lag zero, but not visible in plot

::::::::::
standardized

::::::::
residuals

:::
for

::::
both the training and test set

:::::
appear

:::::::::
stationary

::::::::
stochastic. This observation is supported by the ACF,

for which significant correlations only exceed the 95 % confidence limits for white noise at 3 %/4 % of the time lags (i.e.,

less than 5 %) for the training/test dataset. Furthermore, the sign test shows that the number of sign changes in the residual415

sequence are well within the 95 % confidence interval of sign changes for a sequence of Gaussian white noise of same length.

The above whiteness tests, based on both standardised
::::::::::
standardized

:
residuals and sign changes, suggests

::::::
suggest

:
that the

present GP-TARMA model is valid and well-suited for downstream analysis.

3.4 Results: Modal parameter estimates

In this section
:::
This

:::::::
section

:::::::
presents modal parameter estimates computed from the validated GP-TARMA model of the third-420

floor displacement response y(t), along with modal parameter estimates based on hammer testare presented. The GP-TARMA

model is estimated using 2700 s of data, corresponding to 44820 samples (at sampling frequency of 16.67 Hz), and about

4860, 14310, and 21060 oscillations of first to third mode. Figure 7 shows predicted response against measured, GP-TARMA

estimates of natural frequencies and damping ratios with 95 % confidence intervals , and SSI estimates for comparison. The

SSI algorithm used is correlation-driven (Peeters and De Roeck, 1999; Brincker and Ventura, 2015), and the stable poles425

corresponding to the three modes are selected manually from frequency stabilization diagrams. The SSI estimates are also

based on the displacement response of the third floor y , and computed in windows of constant voltage over the electromagnetic

dampers (eight windows seen in
:::
the plot). In addition, SSI estimates based on measurements in 30 second

::::::::
30-second

:
windows

are shown for the sixth and seventh window
:::::::
windows (2043 to 2523 s).

The predicted response in Fig. 7 is observed to model the measured response very well. The voltage over the electromagnetic430

dampers v(t) is overlaid
::
in the plot, and zero volt means no added damping from the electromagnetic dampers. A slight

difference in response levels can be seen by comparing sections of the response with and without the electromagnetic dampers

activated.

Good agreement for natural frequency estimates between GP-TARMA and SSI is observed. The modal parameters estimates

are also summarized in Table 3. Furthermore, the widest confidence intervals for the GP-TARMA natural frequency estimates435
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Figure 7. GP-TARMA estimates compared to SSI estimates. (a): measured/predicted ( / ) response y overlaid by voltage v over EMDs

( ); (b)–(e): GP-TARMA modal parameter estimates for first/second/third ( / / ) mode, where mean estimates shown by solid lines,

shaded area indicate estimated 95 % confidence intervals. SSI estimates for constant-voltage windows ( ) , and for 30-second estimates

( ). (b): natural frequencies fi; (c)–(e): damping ratios ζi of first to third mode

are ±(0.11, 0.03, 0.02) Hz for
:::
the first, second, and third mode

:::::
modes

:
seem representative for the spread of the SSI estimates,

as seen in Table 3.

The figure (and table) shows a good agreement between SSI and GP-TARMA damping estimates, where the best agreement

is observed for the second mode. The recommended minimum measurement time (Brincker and Ventura, 2015) is dictated by

the third mode (with EMDs off) and is about Tmin = 10
f3ζ3

= 214 s (based on the hammer test estimates in Table 3), i.e., the eight440

constant-voltage windows of minimum 240 s should be sufficiently long for adequate SSI estimates. The GP-TARMA damping

ratio estimates in Fig. 7 illustrates
:::::::
illustrate the idea of letting the AR coefficients, and consequently the modal parameters, be

represented by EOV-dependent basis functions. In this case, the voltage over the EMDs dictates the instantaneous changes in the

damping estimates. In comparison, the 30-second SSI estimates (2043 to 2523 s) are seen to be inconsistent, and many deviate

considerably from the other estimates. This illustrates the need for dedicated methods for short-term damping estimation, such445

as the GP-TARMA approach. Using the GP-TARMA approach comes with the cost of specifying basis functions capable of
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Table 3. Natural frequency fi and damping ratio ζi estimates of first to third mode (i= 1,2,3) for conditions with electromagnetic dampers

turned off/on (0/+) estimated with three different methods: GP-TARMA (showing mean estimates and 95 % confidence intervals), SSI

estimates averaged for all eight windows (excluding the 30-second estimates), and three repetitions of the hammer test

f1 (Hz) ζ1 (%) f2 (Hz) ζ2 (%) f3 (Hz) ζ3 (%)

Estimate 0 + 0 + 0 + 0 + 0 + 0 +

GP-TARMA, mean 1.81 1.82 5.9 10.6 5.29 5.29 1.0 2.7 7.76 7.79 0.6 2.1

GP-TARMA, 95% CI 0.09 0.11 5.9 6.7 0.02 0.03 0.4 0.5 0.02 0.02 0.2 0.4

SSI (averaged values) 1.81 1.81 4.6 10.5 5.30 5.28 1.2 2.1 7.73 7.76 0.4 1.1

Hammer test, test 1 1.81 1.81 6.4 10.8 5.32 5.33 1.5 3.2 7.80 7.81 0.7 1.9

Hammer test, test 2 1.82 1.82 6.5 10.5 5.32 5.33 1.5 3.1 7.80 7.81 0.6 1.8

Hammer test, test 3 1.82 1.81 6.1 10.9 5.32 5.32 1.5 3.4 7.79 7.79 0.7 2.1

Figure 8. Convergence of damping estimates with respect to training data. (a): Mean estimates; (b): 95 % confidence interval. Modes

indicated by color (first/second/third), estimates for electromagnetic dampers off/on (◦/△)

representing (i.e., correlating with) the underlying causes of nonstationarity in the response, for which prior knowledge of the

system is helpful. That is not needed for standard OMA methods such as SSI, although the validity of the LTI assumptions

must be examined.

The widest damping estimate confidence intervals for first to third mode are ±(6.7, 0.5, 0.4) %, i.e., the damping estimate450

for the first mode is associated with the highest uncertainty of the three modes, as for the natural frequencies. This might reflect

::
the

::::
fact

:
that the training data contains more oscillation periods of the higher modes. To help elucidate this hypothesis, Fig. 8

shows the convergence of mean damping ratio estimates and corresponding confidence intervals for all three modes in terms

of oscillation periods. The results seen in Fig. 7 correspond to the estimates based on the largest set of training data
::::::
training

:::
data

:::
set

:
in Fig. 8. The figure indicates that only the third mode might have converged in terms of the confidence intervals,455
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and especially the first mode would seem to benefit from being estimated from more data. However, the mean estimates do

not change much with the increase in training data. This suggests that the mean estimates might be representative , despite the

corresponding confidence intervalsare wide
:::::
despite

:::
the

:::::
wide

:::::::::
confidence

:::::::
intervals.

Table 3 shows , that the GP-TARMA and SSI natural frequency estimates agree well with the estimates from the three

hammer tests. As for the damping ratios, the three hammer test estimates compare well to the GP-TARMA and SSI estimates460

, in the sense that the
::::
they are well within the same order of magnitude. The hammer test estimates cannot be expected to

agree completely
::::::
entirely

:
with GP-TARMA or SSI estimates , because the estimates are based on data from two fundamentally

different experimental tests in terms of
:
,
::::
e.g., excitation (impulse vs. stochastic), amount of energy input, temporal and spatial

distribution of energy input, etc.

The SF test results presented in this section experimentally validates
::::::
validate the efficacy of the GP-TARMA method for465

providing representative short-term damping estimates , and illustrates
:::
and

::::::::
illustrate

:
its efficacy in the short-term case in

comparison
::::::::
compared to a traditional OMA method.

4 Full-scale wind turbine test: Instability experiment

In this section the GP-TARMA approach is applied to edgewise blade response measurements of a 7 MW wind turbine with a

rotor diameter of 154 m. Specifically, the method is used to estimate short-term, linear equivalent modal damping of edgewise470

rotor modes, which are deliberately driven to flutter-like instabilities , corresponding to negative damping values.

The experiments were conducted with an SWT-7.0-154 prototype wind turbine located at the DTU Wind Test Centre in

Østerild, Denmark. The measurements collected in December 2018 were published by Volk et al. (2020), following up an

instability field validation study (Kallesøe and Kragh, 2016). The edgewise blade modes were driven to flutter-like instabilities

by momentarily allowing the rotor to run 10 % above the expected stability limit , by changing the wind turbine controller475

parameters. As in Volk et al. (2020), the response used for the analysis is an edgewise blade bending response, obtained

using fiber
::::
fibre Bragg optical strain sensor positioned 72 m outboard on the blade (i.e., close to the blade tip), measuring the

bending response in the rotating frame of reference and is in sect. 4 referred to as y(t). All frequencies are normalized by the

first edgewise blade frequency, and rotor speeds are normalized by the critical rotor speed of the first edgewise mode as in Volk

et al. (2020).480

Figure 9 shows the time series, spectrum, and spectrogram of the measured edgewise blade response y(t) along with normal-

ized rotor speed. The figure shows a clear relation between high rotor speeds and
::
the

:
occurrence of “unstable” (high response

levels) modes, which appear at normalized frequencies of 1.0 and 2.5. Strong response of these modes is especially prevalent

at 150–230 s and 340–420 s.

The amount of available training data from this test is quite small relative to the model complexity (i.e.,
:::
the number of485

parameters to be estimated) needed for the GP-TARMA model to represent the complex response and underlying system. The

bandwidth of y(t) has therefore been reduced compared to the measurement data, and artificial zero-mean NID noise with a
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Figure 9.
:::::::
Measured

:::::::
response

:::::::::
comprising

::::::
training

:::
data

:::
for

::::::::::
t ∈ [0;665] s

:::
and

:::
test

:::
data

:::
for

::::::::::::
t ∈]665;884] s.

::
(a)

:
:
:::::::
Edgewise

::::::
bending

:::::::
response

::
y

:
(

:
),

::::::
overlaid

::
by

:::::::::
normalized

::::
rotor

::::
speed

::
Ω̄

:
(

:
);
:::
(b):

:::::
PSD;

::
(c):

::::::::::
spectrogram

::
of

:::::::
edgewise

::::::
bending

:::::::
response

:::
y(t)

5% RMS of y(t) is added to the response y(t). These steps
::::
have been taken to use the limited measurements as efficiently as

possible , and to avoid over-fitting (cf. sect. 2.6).

Measured response. (a): Edgewise bending response y (), overlaid by normalized rotor speed Ω̄ (); (b): PSD; (c): spectrogram490

of edgewise bending response y(t)

4.1 Model structure identification

The model structure is identified following the procedure in Table 1. The functional subspace FAR used to represent the

AR-coefficients consist of a first order
:::
AR

:::::::::
coefficients

:::::::
consists

:::
of

:
a
:::::::::
first-order Legendre polynomial in the rotor speed Ω(t)

along with a constant-valued bias vector. This allows the model to capture the effect of the varying rotor speed on the modal495

damping , and the presumably time-invariant contribution from the structural damping. The MA-coefficients
:::
MA

::::::::::
coefficients

are represented by harmonic functions of the azimuth angle ψ(t) , to account for the nonstationary 1P effect from the changing

direction of gravity in the rotating frame. Thus, the functional subspaces for the AR- and MA-part
::
AR

::::
and

:::
MA

:::::
parts are defined

as:

FAR = {A0, g2(Ω)}, (29a)500

FMA = {C0, h2(ψ), h3(ψ)}, (29b)

where A0∈ RN×1 and C0∈ RN×1 are real-valued bias vectors, Ω∈ RN×1 and ψ∈ RN×1
:::::::::
ψ∈ RN×1 contains rotor speed and

azimuth angle measurements for t= 1, . . . ,N , g2(Ω) is a first order
::::::::
first-order Legendre polynomial in the rotor speed Ω,

and h2(ψ) = sin(ψ) and h3(ψ) = cos(ψ)
::::::::::::::
h2(ψ) = sin(ψ)

:::
and

::::::::::::::
h3(ψ) = cos(ψ)

:
are the harmonic functions in the azimuth

angle ψ
:
ψ. Thus, the EOVs used in the model are the rotor speed and azimuth angle, ξ= [Ω,ψ]∈ RN×2

:::::::::::::::
ξ= [Ω,ψ]∈ RN×2.505

23



Figure 10. Frequency stabilization diagrams showing the time-averaged mean estimates of eigen-frequencies for increasing model orders,

overlaid by PSD ( ) of response y. (a)/(b): AR/MA-order
:::
MA

::::
order

:
na/nc. Selected model orders marked by ( )

Both EOVs are zero-phase low-pass filtered with a cut-off frequency of 0.3 Hz (cf. sect. 2.6), and the innovations variance

is estimated using Eq. (14) with a window length of 3.33 s, i.e., the GP-TARMA model can estimate damping (and natural

frequency) variations down to 3.33 seconds.

The AR (MA) model orders na (nc) are selected based on the predictive capability (minimizing BIC and RSS/SSS) and

ability to capture the modes of interest (cf. sect. 2.4), which in this case have normalized frequencies of about 1 and 2.5. As in510

sect. 3.2, the model structure is dictated by the ability to capture the modes of interest, i.e., the predictive capability converges

at a lower model complexity. Figure 10 shows stabilization diagrams with respect to AR and MA orders. The selected model

orders are na = 17 and nc = 5, as these are the lowest model orders at which the poles can be considered stable. RSS/SSS and

BIC converge at na = 5 and nc = 4 (plots not included).

4.2 Model validation515

The model structure identified in sect. 4.1 is validated in this section, based on analysing the model innovations
::::::::
analyzing

:::
the

:::::
model

::::::::
residuals et ::::::::::::::::

(t= 1+nm, . . . ,N)
:
as presented in sect. 2.3. Figure 11 shows the time series, estimated ACF and spectrum

of the standardised residuals
:::::::::::
standardized

:::::::
residuals

:::
zt of the estimated GP-TARMA model with model structure identified in

sect. 4.1. The time series of the standardised residuals
::::::::::
standardized

::::::::
residuals

:::
for

:::
the

::::::
training

::::
data

:
does not appear as stationary

white noise , since the amplitude (i.e., variance) exhibits time-varying behaviour,
:
especially at 200 s and 400 s. This is because520

the estimated innovations variance σ̂2
e,t is larger at those instances, which are the times of the measured instabilities. The ACF

also indicates that the standardised
:::::::::
Comparing

:::
the

:::::::::::
standardized

::::::::
residuals

:::
for

:::
the

::::
test

::::
data

::
to

:::::
those

::
of

:::
the

:::::::
training

:::::
data,

:::
the

::::::::::
time-varying

:::::::::
behaviour

::
is

:::::
much

:::
less

:::::::
distinct

::
for

:::
the

::::
test

::::
data.

::::
This

:::
can

:::
be

::::::::
explained

:::
by

::
all

::::::::::
instabilities

:::::
being

::::::::
contained

:::
by

:::
the

::::::
training

::::
set.

:::
The

::::::
ACFs

:::
also

:::::::
indicate

::::
that

:::
the

:::::::::::
standardized residuals do not resemble white noise, as the ACF

:::::
ACFs for both
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Figure 11. Residual analysis from training/test ( / ) set. (a): standardised
:::::::::
standardized residuals z(t)

::
zt; (b): ACF of z(t)

::
zt, where the

95 % confidence interval of white noise ( ) is approximated by ±2
√

1/N . ACF is by definition unity at lag zero, but not visible in
::

the

plot; (c): spectrum of z(t)
:
zt

the training and test data exceeds
:::::
exceed

:
the 95 % confidence level for white noise at 13 % of the time lags. The spectrum525

shows a distinct peak at normalized frequency of 0.72, which coincides with three times the (average) rotor speed, indicating

that the model does not adequately capture the 3P effect. However, the 3P frequency is well separated from the frequencies of

the modes of interest, so it is not likely to affect modal parameter estimates.
:::
The

::::::
spectra

::
of
:::

the
:::::::::::

standardized
::::::::
residuals

:::
for

:::
the

::::::
training

::::
and

:::
test

:::::::
datasets

:::
can

:::
be

::::
seen

::
to

:::::
differ,

:::
as

:::
for

:::
the

::::
time

:::::
series.

::::::::
Because

:::
the

:::::::::
instabilities

:::
are

::::
only

:::::::
present

::
in

:::
the

:::::::
training

::::
data,

:::
the

:::::::
response

::::::::::::
characteristics

:::
of

:::
the

:::
two

::::
sets

:::
are

:::::::
different,

::::::
which

:::::
limits

:::
the

:::::::
validity

::
of

::::::::::::::
cross-validation. In unison with the530

other whiteness measures, the number of sign changes in the residual sequence is
::::::::
sequences

:::
for

:::
the

:::::::
training

:::
and

::::
test

:::::::
datasets

::
are

:
not within the 95 % confidence intervals of the number of sign changes for an

:::
the

::::::::::::
corresponding ideal white noise sequence,

supporting
:::::::::
sequences.

::::
This

:::::::
supports

:::
the

:::::::::::
interpretation

:
that the model residuals do not resemble white noise.

The residual analysis implies that the NID assumption of the innovations is violated, i.e., the model does not completely

represent the statistical structure of the response. However, the frequencies at which the residuals have the largest magnitudes535

do not coincide with the frequencies of the two modes of interest. Thus, the modal parameters computed from the GP-TARMA

based on the present dataset is
:::
are not expected to be entirely accurate but may still offer some insight. More available mea-

surement data (ideally including more instability measurements) for model training could improve the model accuracy by

enabling more robust and accurate model parameter estimates. In addition, a single-output model (as the actual GP-TARMA
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Figure 12. GP-TARMA model estimates as function
:::::::
functions

:
of time. (a): measured/predicted ( / ) edgewise blade response y; (b) and

(c): Modal parameter estimates for first/second ( / ) backward whirling modes, solid lines depict mean estimates and shaded area indicate

95 % confidence intervals. (b): normalized natural frequencies f̄i; (c): damping (logdec) δi

model) cannot account for the whirling effect , since the frequencies of the forward and backward whirling modes coincide in540

a response measured in the rotating frame. Such model-form error might cause correlated model residuals.

4.3 Results: Modal parameter estimates

Figure 12 shows the predicted response of the GP-TARMA model , and the corresponding modal parameter estimates with

uncertainties. For direct comparison to Volk et al. (2020), the damping estimates are reported in terms of logarithmic decre-

ment (logdec) δ, which (for small damping) is related to damping ratio ζ by δ = 2πζ. The estimated
:::::::::
normalized

:
frequencies545

correspond well with peaks in magnitude seen in the spectrum and spectrogram of response y in Fig. 9, and the average 95 %

confidence intervals for the first and second mode are ±(0.01,0.02) Hz
:::::::::::
±(0.01,0.02). Both edgewise modes can be seen to

become “unstable” (i.e., negatively damped), and most noticeable between 128–187 s and 341–405 s. The time instants of the

mean damping estimates crossing zero damping coincides
:::::::
coincide well with the amplitude enveloped changing from expo-

nentially increasing or decreasing or vice versa, i.e., the mean damping estimates are qualitatively meaningful. The average550

95 % confidence intervals of the damping estimates for the first and second more are ±(5.2,4.8) % logdec, corresponding to

about ±(0.8,0.8) % in terms of critical damping.

The uncertainty associated with damping estimates may seem considerable, as the confidence intervals cover both positive

and negative damping values during the flutter-like instabilities. The uncertainty might be reduced by addressing the two

limiting factors alluded to in sect. 4.2, namely the sparse training data , and the inability of the single-output GP-TARMA555

model to represent the whirling effect.
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Figure 13. Modal damping of first and second backward whirling mode in terms of logarithmic decrement δi as function
:::::::
functions of

normalized rotor speed Ω̄. First/second backward whirling mode: GP-TARMA (experiment) ( / ), HAWCStab2 blade-only (Volk et al.,

2020) ( / ), exponential fits (experiment) (Volk et al., 2020) (•/×)

Table 4. Comparison of stability limit estimates of first and second edgewise backward whirling mode in terms of normalized rotor speed Ω̄

Mode Experiment: Experiment: HAWCStab2

GP-TARMA Exponential fits (Volk et al., 2020) blade-only (Volk et al., 2020)

First edgewise backward whirl 1.03 1.00 0.98

Second edgewise backward whirl 1.02 1.01 1.00

Figure 13 shows the damping estimates in Fig. 12 as function
::::::::
functions

:
of normalized rotor speed rather than time, which

enables assessment of stability limits for the identified modes. The GP-TARMA estimates are plotted against two sets of damp-

ing estimates from Volk et al. (2020), consisting of experimental estimates (based on the same response data) and predictions

computed using HAWCStab2 (Hansen et al., 2018) based on a numerical model of the tested wind turbine. The experimental560

damping estimates are obtained using logarithmic decrement fits (i.e., exponential fits of response envelope) of bandpass fil-

tered (near each resonance frequency) response signals. The exponential fits are performed on four sections of the data; two

sections with exponentially increasing (negative damping) amplitude and two with exponentially decreasing (positive damping)

amplitude (see Volk et al. (2020) for details).

The figure shows that the GP-TARMA estimates agree quite well with the exponential fit estimates, and especially near565

the critical rotor speeds, but the GP-TARMA damping estimates tend to be higher than the exponential fit estimates. Table 4

shows the critical rotor speed estimated by each of the three approaches. In terms of the critical rotor speed, the HAWCStab2
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predictions are slightly more conservative in comparison to
::::
than the two experimental results. However, comparing the δi(Ω̄)

curve slopes in Fig. 13, the HAWCStab2 results predict less rotor speed sensitivity, i.e., are less conservative with respect to how

quickly the instabilities occur. But these discrepancies are small relative to the GP-TARMA damping estimate uncertainties,570

and the unquantified (but inevitable) uncertainties of the exponential fit estimates.

5 Conclusions

A recently proposed approach based on a Gaussian Process Time-dependent Auto-Regressive Moving Average (GP-TARMA)

model for short-term damping (and natural frequency) estimation from output-only vibration response measurements for vi-

brating structures influenced by environmental and operational variability has been experimentally tested and validated with575

two distinctly different experimental setups: a laboratory shear frame structure with time-varying damping properties achieved

with electromagnetic dampers, and a full-scale 7 MW wind turbine prototype which was deliberately driven to flutter-like

instabilities. The primary idea of the GP-TARMA approach is to condition the model parameters on measured time series

of environmental and operational variables, which may enable short-term tracking of system parameters like time-varying

damping and natural frequencies.580

An experimental setup consisting of a shear frame structure equipped with electromagnetic dampers was presented and

shown to effectively realize a system with abruptly changing damping. Short-term natural frequencies and damping ratios

were estimated using the GP-TARMA model and shown to compare well to SSI and hammer test estimates in cases where

the system was time-invariant. Uncertainties were observed to be larger for
:::
the first mode compared to

::
the

:
second and third,

but this could be explained by the first mode being trained on effectively less training data. GP-TARMA damping estimates585

was
::::
were compared to short-term SSI estimates based on windows of 30 s measurements. The short-term SSI estimates were

observed to be inconsistent and deviating from the remaining estimates, which illustrated the effectiveness of the GP-TARMA

method for short-term damping estimation relative to traditional OMA methods. The laboratory test validated the efficacy of

the GP-TARMA approach for short-term damping (and natural frequency) estimation, given a sufficient amount of training

data and representative model structure.590

The GP-TARMA model was also tested using edgewise blade deflection measurements from a full-scale 7 MW wind turbine

prototype during a flutter test. First
:::
The

::::
first and second edgewise backward whirling mode

::::::
modes were found to exhibit flutter-

like instabilities, in agreement with a previous study. The mean damping estimates were considered qualitatively meaningful,

as the GP-TARMA model predicted negative damping for two modes coinciding in time and frequency with exponentially

increasing vibration amplitude. The mean damping estimates also compared quite well with estimates from a previous study595

obtained from the same data. The estimated stability limits, i.e., the rotor speeds at which the damping becomes zero, showed

quite good agreement with a previous study. However, the model validation implied that the model residuals did not resemble

white noise, meaning that the GP-TARMA model trained on the available data cannot be expected to be entirely accurate. The

correlated model residuals and uncertainties of the damping estimates could potentially be reduced by training the GP-TARMA

model on more data and extending the GP-TARMA model to a multiple-output model to better represent whirling modes
::::
better.600
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The GP-TARMA approach appears
:
to

:::
be an effective way of estimating short-term damping based on output-only measure-

ments, provided
:::::
given enough training data and a representative model structure. The use of GP-TARMA models for analysis

of
::::::::
analyzing

:
transient instabilities has been showcased. SSI and other standard OMA methods are easier to implement and

apply than the GP-TARMA approach since it does not require much prior knowledge of the system, i.e., these should be used

for applications where the LTI assumptions are valid but may be inadequate for applications with considerable short-term EOC605

variability.
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