
 

Reviewer 1 

This paper highlights the potential nonlinearities that can be observed in a 

tensegrity structure of a rotary airborne wind energy system. In particular, the 

hysteresis of the torsional stiffness and the discrepancy in the numerical vs 

experimental resonance frequencies are valuable additions to the literature and 

could be useful for further studies.  

I only have two minor comments: 

I understand the justification for only considering aerodynamic drag in equation 

14. However, it would be useful to briefly comment on whether the lift generated 

by the spinning rotor is significant. I assume it’s not. 

Equation 14 is our model for the aerodynamic force acting on the helix (and not in the 

rotor). Only the aerodynamic drag is considered, as such a force component may dominate 

the lift. The spinning helix is made of rigid bars and tethers and its function is not to 

generate any lift but to transmit the torque from the rotor to the ground station.  

The lift generated by the rotor is indeed important, but the rotor is not part of our model, 

which is focussed on the helix.  

 

2. The hysteresis observed in fig. 5 is interesting. As the authors have noted in 

section 5.3, this could be a contributing factor to the resonance observed in 

experiments that were not predicted by numerical simulations. I think that the un-

modelled hysteresis is the main reason for this discrepancy, so some discussion on 

how this can be studied further can be useful. There are some ODE-based methods 

that can model hysteresis in a dynamical system (e.g, the Goman-Khabrov model. 

This is more for unsteady aerodynamics, but the ODE-based approach can be 

extended to other applications). The authors can consider adding a brief discussion 

on how this hysteresis can be modelled in a future study. 

We thank the Reviewer for providing this input. We added a few sentences about this 

important point. 

 

Lastly, I have a few suggestions regarding grammar/spelling in the attached pdf. 

We really thank the Reviewer for providing this revision. Most of his/her suggestions 

were incorporated to the manuscript.  

 

 

 



Reviewer 2 

This paper presents a model of a rotary AWE system. The structure model is 

‘decoupled’ from the airborne rotor with the setting up of boundary conditions. 

Interesting new insights are obtained from the combined numerical and 

experimental studies. The investigation of the three scenarios following an increased 

complexity makes very good sense.  The work includes clear novel contributions. 

The conclusion section is well written. The following minor comments are for the 

authors’ reference. 

We are glad to know that the Reviewer found that our work provides interesting insights 

and has novel contributions. We thank him/her for providing the minor comments that 

we address in the lines below.  

In Figure 5, the initial point and the ending point are not identical for each tension 

applied. What causes this difference? Should it be a closed loop (in theory)? Also, 

when the tension is 233N (green colour), the pattern seems to be quite different from 

the rest. Is there a reason for this isolation? 

In our opinion, the results of Fig. 5 are a consequence of the structure of the helix, which 

is made of bars under compression connected by tethers and knots. As the torsional torque 

Mt increases, in steps to give a torsional angle of 10º, the tension Te also increases and 

exhibiting hysteresis. Clearly, the behaviour of the structure depends on the history. We 

think that it is because the exact position of the knots and the contact points between bars 

are not fixed but certain sliding occur and also friction plays a role. The exact positions 

of such a contacts points depend on the internal tension imposed for zero torsion (for this 

reason the curve for Te0 = 233N is so different) and also on the history. Due to the presence 

of knots and the sliding of the bars, each time the helix passes from being relaxed to be 

tensioned it acquire a slightly different configuration that translate into different 

mechanical properties.    

In Section 5.3, it is said the frequency $f_1$ was verified. Is this forcing frequency 

of the eccentric arm introduced in the experimental study only, not covered in the 

modelling somewhere? 

We are not sure to fully understand the question. In the experiments, frequency f1 was 

imposed by the eccentric arm and it was measured and controlled.  

In our model of the helix, frequency f1 appears as a boundary condition in Eq. (76). In our 

numerical analysis such a frequency was varied to mimic the conditions of the 

experiment.  

If yes to the previous comment, what is the model used for bifurcation analysis 

(Figure 8)? 

The model of the helix used in the bifurcation analysis of Fig. 8 is the model explained in 

Sec. 2 together with the boundary condition of Eq. (76). In the bifurcation analysis, we 

fixed a value of the frequency f1 and integrated the equations of motion numerically by 

using the initial condition explained in Sec. 5.1. The integration was long enough to let 



the system converge to a solution, which is periodic. We then computed the maximum 

value of the tension for a given oscillations.  

The use of mathematical notations is confusing in places. Better give a table to list 

key variables, parameters, reference frames, operators, etc. It would be helpful to 

specify the use of bold letters and plain letters especially when the same letters are 

recycled, e.g., the two $v_A$ terms in Equation (14), the time t and the bold letter of 

t. If possible, keep a consistency in partial derivative representations in PDEs and 

derivatives in ODEs. 

We revised all the equations carefully and we did not find any error. However, we agree 

that some key aspects can be highlighted to help the reader to understand the notation. 

We added several sentences in the revised manuscript to help its readability and clarity. 

We thank the Reviewer for this comment. 

In several places, the term ‘dynamic’ should be ‘dynamics’ for dynamic systems. 

We made a search to the word “dynamic” and corrected it. 

In Line 71, it should be ‘r(L_0,t)’ not ‘r(L,t)’, isn’t it? 

Yes, the typo was corrected. 

In Lines 266-267, ‘Fig. 1’ should be ‘Fig. 2.’ 

The Reviewer is right. We corrected it. 

What is the $i_E$ used in the boundary conditions (72) and (76)? It was introduced 

after Equation (14) but not explained there. 

Vectors iE, jE  and KE  are the unit vectors of frame SE. We added a sentence in Sec 2.1 

and another in Sec. 5.1 to remind their meaning to the readers.  

In Figure 6, add the text to the y axis of the bottom figure. 

We cannot add a text to the y axis because Fig. 6 presents two different quantities, which 

are explained in the legend.  

Some materials in Section 3 can perhaps be moved to appendix to keep a smooth 

reading. 

We agree that such idea improves the readability of the manuscript. Part of the material 

of Sec. 3 was moved to a new Appendix.    

There are some typos and gramma mistakes in writing which can be easily removed. 

We revised the manuscript a fix some typos.  

 



Reviewer 3 

Reviewer 3. The manuscript under review describes a numerical model of a rotary 

airborne wind energy convertor developed following the. approach of Cosserat 

theory, laboratory tests to determine mechanical properties and its dynamics under 

forced motions, and a comparison between the two models. The rotary airborne 

wind energy convertor seems to consist of a helical rotary system to transmit the 

torque from the airborne rotor to the ground station, but unfortunately no detailed 

drawings or information about the design is given.  

We agree that the information provided in the original manuscript was not enough to fully 

understand the structure of the helix. We added a sentence in the first paragraph of Sec. 

4 to make clear that the manuscript studies the rotor of SomeAWE Lab and a new citation 

where the reader can find data, drawing and videos of the helix.   

Reviewer 3. The numerical approach is based on modelling the full helix (with 

complex internal structure) as a one-dimensional flexible, nonlinear Cosserat rod. 

The equation of motion is developed using vector analysis and discretized using a -

Galerkin method. Unfortunately, even after trying to match the material properties 

with laboratory tests, the results show large discrepancies between the numerical 

model and the experimental tests. The authors’ argue that the numerical model can 

qualitatively reproduce the experimentally observed resonance (leading to 

destruction of the model in the laboratory), but it remains unclear what features of 

the actual system the model can actually reproduce and what its limitations are. 

This comment of the Reviewer is based on the mismatch between the resonance frequency 

predicted by our model (about 14 Hz) and the break-up frequency in the experiment (5 

Hz). Both frequencies can be different because the collapse of the structure can happen 

before the resonance frequency is reached. We would like to emphasize that such a result 

is only one of the many contributions of our work (see our reply to the next comment).  

Nevertheless, there are two aspects that should be emphasized and reinforce the 

usefulness of the new numerical tool presented in the manuscript. Firstly, the helix 

collapsed in the experiment at a frequency of 5 Hz, which corresponds to the frequency 

of the first lateral and torsional mode predicted by our numerical tool (a period of 0.2 s in 

Table 3). This is an example of why having access to numerical tools is helpful. The code 

provides the characteristic frequencies and, as it is well-known, external excitation of 

structures with frequencies equal or close to the natural frequencies of the structure should 

be avoided. Secondly, the fact that the structure collapsed at 5 Hz in the experiment does 

not mean that the maximum tension versus the forcing frequency occurs at 5 Hz in the 

experiment. Such a result just indicates that the helix was not able to sustain loads in the 

range of 170 N – 200 N under such a periodic driving condition. In other words, it may 

happen that Fig. 8 is mainly correct, but slightly shifted in frequency, and in the 

experiment we only observed the initial rise of the force with the frequency because the 

helix collapsed at a low load level.     

Following this comment of the reviewer, we added more text in Sec. 5.3 and Sec. 6 to 

explain better the results and how they should be interpreted.  



Reviewer 3. The manuscript is- mostly well written, but is difficult-to read since 

there is little motivation given for the presented developments.  

Several sentences were added to the third paragraph of the Introduction to motivate better 

the work and highlight two important contributions: (i) a new physical model and 

numerical code capturing longitudinal, lateral and torsional dynamics and (ii) 

experimental test to characterize the axial, bending and torsional stiffness.   

Reviewer 3. It is also surprising that the authors did not spend more time trying to 

match the experimental results. See below for more detailed comments on this. All 

in all, it seems that this paper is somewhat premature and I recommend that the 

authors test and investigate the numerical model more. 

This manuscript is a summary of the work that we did in the three-year project GreenKite-

2, which is now expired. We disagree with characterizing our work as “premature” and 

suggesting that insufficient time or effort was dedicated to preparing the best possible 

manuscript. Since RAWE machines are practically an unspoiled field of research (there 

is only a handful number of papers on the topic), we had to innovate extraordinarily in 

both the theoretical and experimental sides. For convenience, we summarize below the 

main contribution of the work.   

A novel model for the helix of RAWE machines was developed from scratch by using 

Cosserat theory. It is the first time that such a theory is used in AWE. The model, which 

captures longitudinal, lateral and torsional waves and considers gravitational and 

aerodynamic forces, presents clear advantages as compared with previous dynamic 

models of RAWE machines. In particular, it is the first time that a dynamic model 

capturing the three effects is presented. The proposed numerical approach, i.e. finite 

elements, is also adequate because it yields a robust and efficient simulator. The correct 

implementation of the code was verified by conducting different tests. The simulator was 

used to investigate stationary solutions and their linear stability. The natural frequencies 

of the longitudinal, lateral, and torsion modes were determined and compared with basic 

results from beam theory. Afterwards, the simulator was used to study the nominal 

operation of a RAWE machine and analyse the performance of a new proposed controller. 

Tension level, angular velocities, response times and torques are aligned with the 

experience of SomeAWE Lab. Finally, the behaviour of the helix when the upper end is 

forced at a driving frequency was studied and an interesting resonance was found. The 

simulator was prepared to be published in open-source and it now belongs the LAKSA.  

In our view, the set of result described in the above paragraph is adequate for a good 

theoretical paper. Nonetheless, we decided to expand the scope of the work, conduct 

experimental activities, and benchmark theoretical models with experimental data. The 

axial, bending and torsional stiffness of a RAWE helix were characterized by conducting 

tests in the laboratory. To the best of our knowledge, such activity was never performed 

for RAWE machines. They require to prepare and develop specific experimental and 

sensor setups for each of the tests. Interestingly, it was found that the torsional stiffness 

depends on the axial force and a novel hysteric behaviour for RAWE helix was found. 

Finally, a new experimental setup was prepared to mimic the upper-end forcing scenario 

studied with the simulator. It required to develop dedicated equipment with several 

motors and a controller as well as sensors to measure the relevant variables. Interestingly, 

it was found that the structure collapsed when the frequency matched the natural lateral 



and torsional frequencies predicted by the simulator (5 Hz) and the collapse occurred at 

a lower frequency than the one that produces the largest force in the simulator (about 14 

Hz).  

As pointed out by the Reviewer, our work does not provide answers to all the questions 

that it raised. However, in our view, it contributes to the field. Moreover, since we made 

the simulator open-source, other researchers will be able to use it for filling the gaps that 

any work, like ours, inevitably leaves.    

Detailed comments by Reviewer 3. 

1. Cosserat theory is mentioned, among others in the abstract, as the basis for 

developing the numerical model, but in the section on modelling no reference is 

made to it. I suggest the authors explain first, to the benefit of readers unfamiliar 

with this approach, what Cosserat theory actually is why it is needed here, and 

where the authors make use of it. In particular,  it should be mentioned that the helix 

is modelled as a 1D Cosserat rod. 

We agree. Some sentences were included in the first paragraph of Sec. 2.1.  

2. The rotary wind energy machine for which this model is developed is never 

really shown or explained. Please include more details about it. 

A new sentence and a new citation, where reader can find all the details about the design 

and the manufacturing of the helix, was added in the first paragraph of Sec. 4.   

3. What is the motivation for modelling the complex internal structure of the 

helical transmission system with a 1D elastic rod, instead of a higher fidelity model? 

Why do the authors think that such a simple model is good enough to reproduce the 

important features (what are they?)-of the system? 

To understand our decision, it is necessary to explain first previous work. The two 

alternatives found in the literature are the simple spring-disc model and the multi-

spring/multi punctual mass model by Tulloch (see citations in the Introduction). The 

spring-disc model does not include axial and bending dynamics (just torsion) and the 

multi-spring/multi punctual mass model does not include bending. Therefore, one of our 

goal was to propose a higher fidelity model that would include the three relevant 

dynamics (axial, bending and torsion). Moreover, the Cosserat theory offers a more 

compact and understandable model (two coupled partial differential equations), where the 

characteristic wave velocities are evident. Additionally, the Cosserat theory naturally 

involve the axial, bending, and torsional stiffness that can be determined experimentally.  

We would not characterize our model as “simple” or low-fidelity, because it already 

captured the three relevant motions of the helix. Increasing the fidelity of the simulator 

of our work irremediably needs to model the internal dynamics of every cross-section of 

the helix, which is assumed to be unshearable in this manuscript. In our view, such a 

modelling is not essential to simulate the nominal operation of RAWE machines. 

However, if one would like to predict the collapse of the helix in the experiment, then it 

would be indispensable to increase the fidelity of the simulator and consider shearable 

cross-sections.  



Following this interesting comment by the Reviewer, additional explanations were added 

in the third paragraph of Sec. 5.3.    

4. Why did the authors not use a standard flexible multi-body approach where 

individual elements of the helical structure are modelled directly, and in much more 

detail than with their approach? Or, why not use Cosserat rods for each member in 

the helix, instead of the full helix? 

The approach proposed by the Reviewer is feasible, but the computational cost would be 

much higher. In this work we looked for a model with higher fidelity to the existing 

models for RAWE machines, but keeping moderate the computational cost.    

5. It should be mentioned where the slenderness assumption is used (e.g. Eq. 

16?) 

We added some clarifications in the first paragraph of Sec. 2.1.  

6. line 124- Why is it natural to make this assumption?  

For a RAWE, the angular velocity of the Frenet frame with respect to the inertial frame 

is small as compared with the angular velocity of the helix (local frame) with respect to 

the inertial frame (or the angular velocity of the Frenet frame with respect to the local 

frame).    

7. For the benefit of the reader, when citing books, such as Villaggio and Press 

et al, please indicate which chapter of the book is relevant here. 

We added the pages of the relevant chapter. 

8. Eq. 49: Is it correct that alpha_2,..., alpha_N-2 (mapped by the C_alpha 

matrix) are all supposed to be zero? 

The typo was corrected. We thank the Reviewer for detecting it.  

9. Figure 2: What is N for the experimental system shown in Panel d? 

We are not sure to understand the comment. We do not find any N in panel (d) of Fig. 2.  

10. line 313: If eigenvalues are pure imaginary, the system is not asymptotically 

stable and can exhibit bounded oscillations. Is this physically realistic?  

The eigenvalues with zero real part correspond to free rotation of the helix as a rigid body. 

In a real RAWE machine there are always dissipative forces, like for instance friction at 

the attachment of the lower end, that damps the oscillations.   

11. What assumptions were made about the damping in the numerical model? 

The aerodynamic drag included in the model introduces some damping. As explained in 

the last paragraph of Sec. 5, internal friction also produces damping but it is smaller and 

it was ignored in this manuscript.  



12. line 344: Why is the coupling with the rotor avoided? Why not couple the 

numerical model with a simple blade element momentum model for the rotor? The 

work of Wacker et al (https://doi.org/ 10.1088/1742-6596/2626/1/012011) suggests 

that this is feasible. In fact, this work also shows an analysis of a helical system by 

someAWE that the authors might want to consider and comment on. 

We thank the Reviewer for letting us know about the interesting and recent work by 

Wacker et al. We added a sentence and a citation in the Introduction.  

It is perfectly possible to couple our dynamic model of the helix with an aerodynamic 

model for the rotor. However, it was clear for us from the beginning of our project that 

such a coupling should not be done in this work. In our experience, the best practice to 

tackle difficult dynamic problems is to divide them in simpler pieces and analyse first 

each part separately. The scope of the manuscript is to understand the dynamic behaviour 

of the helix and prepare a simulator and experimental data to tackle more challenging 

problems. Since the code is open-source, we think that such a coupling will be 

implemented soon.  

13. Figure 7: Please include a similar time domain plot for the numerical model, 

to allow comparison.  

Trying to perfectly match the experimental results of Fig. 7 with the simulator is a fruitless 

exercise. Our simulator is a model that does not capture all the complexity of the 

experimental setup. Figure 7 is the result of a specific history for the driving frequency 

and, for the large oscillations before the collapse, the nonlinear response of the helix 

induces irregular (chaotic) oscillations. In case we would feed the simulator with the 

history of the driving frequency, we would observe a different signal for the tension that 

would corresponds to the transient behaviour from one forcing frequency to the other.  

14.  line 380: Why is Fig. 8 showing a bifurcation (and not simply a resonance)? This 

is mathematical concept with, a very precise meaning, are you sure that this what is 

happening here? Why?  

In line 380 we said that Fig. 8 is a bifurcation diagram because we were plotting a 

parameter in the horizontal axis (the driving frequency) versus the maximum of a 

variables related to the state vector (the tension). It is a bifurcation diagram but we did 

not claim about the existence of any bifurcation point.  

Nonetheless, we take the opportunity to comment an interesting point of Fig. 8, which is 

how the lower and upper branches of the resonance curve are connected. They could be 

connected by a stable branch not plotted in the figure because it is almost vertical, or they 

could be connected by an unstable branch involving bifurcation points. The study of such 

a potential bifurcation requires dedicated analysis and numerical tools that is clearly 

beyond the scope of this work.    

15. Please discuss the possibilities to better match the numerical model with the 

experimental tests. Which parameters-are still available, or is the numerical model 

fully specified? 



As explained in Sec. 5.3, the simulator relies on a set of simplifying hypotheses and also 

needs to be fed with inputs about the stiffness of the helix that has uncertainty. The model 

could be improved by using a torsional stiffness that depends on the instantaneous value 

of the tension. However, it is not evident how to do it because the torsional stiffness 

exhibit hysteresis.   

In a future work, and if abundant experimental data is collected, it would be possible to 

tune the parameters of the simulator by using machine learning techniques and improve 

its predictive capabilities. 

16 Figure 8: Please also show the standard deviations and the phases of the 

simulations for the different forcing frequencies. 

We are not sure to understand the comment. For each forcing frequency, there is only one 

simulation, and it was carried out as explained in the paragraph below Fig. 7. After fixing 

the forcing frequency, we integrated the equations of motion forward in time, and plotted 

the maximum values of the tension in the long term (after the transient dies out). For the 

next value of the forcing frequency, we used as initial condition the final value of the state 

vector in the previous integration. For the full forcing frequency range studied in the 

analysis, the tension exhibited regular oscillations as shown in the inset of Fig. 8. 

Therefore, it is not possible to show any standard deviation or phase because the solution 

is unique.  

A relevant question is whether, for each forcing frequency, it exists several 

attractors/stable solutions. Such a problem can be studied by using different initial 

conditions and integrating the equations forward in time for each forcing frequency. To 

explore it, and for some specific values of the forcing frequency, we used as initial 

condition the steady state that it exist for a steady upper end. We found the same solution 

shown in Fig. 8, which corresponds to initial conditions equal to the states of the helix for 

the previous values of the forcing frequency.   

 17 The manuscript needs a proper conclusion that sums up not only what has been 

done, but also what readers can learn from this work. 

Following the suggestion. we expanded the Conclusions in the revised manuscript.  

18 Reference Beaupoil (2017) is only an abstract. This is-discouraged and should not 

be done according to the uniform requirements for scientific manuscripts. Please 

reconsider. 

The reference is a citation to the Book of Abstract of AWE Conference 2017. 

Unfortunately, there is not a paper or a conference proceeding. Since the literature on 

RAWE machines is scarce, we prefer to keep it because we think that it enriches the 

Introduction. Nonetheless, if the policy of the journal does not allow it, there is no 

problem on eliminate it.  

We would like to thank the Reviewer of his/her careful revision of the manuscript and the 

provided comments. The changes implemented in the manuscript to address them 

certainly improve the quality of our work.  



 


