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We are grateful to the reviewers for dedicating their time to reading the document
and providing their insightful remarks. It helped us take a step back and enhance
the paper. In the revised paper, the red and green text correspond to the
differences between the original (first) and the revised (last) version of the paper.
In this document, the colored text in blue and in italic refers to comments of
the reviewers. We address each comment individually below.

Reviewer 1 - The prediction based controller is according to the authors a too
difficult optimization problem and simplifications are proposed (top page 12).
What is the effect of these simplifications on the original problem statement? Is
it possible to quantify these? It feels now like, the original problem is simplified
and we will solve the simplified problem. However, we have no idea how far the
simplified problem is from the original problem.

Reviewer 2 - The most critical suggestion is to motivate and/or justify the simpli-
fications proposed in section 3.2.2. Is it reasonable to ignore locally varying wind
speeds and can you quantify the impact? Does assuming a naive controller for
the forward-in-time yaw angles have an impact on the current time optimization
result (if not, explain)? What is the impact of a cosine vs linear yaw loss model?

We do agree that the simplifications of the original sequential decision problem
made in Section 3.2.2 lack some justifications and quantifications. Because
of these simplifications, the solutions are suboptimal. We especially thank
the reviewers for their comments regarding this part. As it is one of the key
contribution of the paper, we do agree that these justifications need to be
addressed in more details.

Unfortunately, these simplifications come from the fact that finding good results
for the original decision problem is extremely difficult. We tried different opti-
mization approaches (a massively parallelized genetic algorithm and a double



Gauss-Seidel method) to solve the original decision problem, but without suc-
cess. We believe that solving such optimization problem is out of reach of our
computers.

To quantify the simplifications we propose in Section 3.2.2, we would need to
have already obtained good results for the original problem, which we do not
have. It is therefore complex to strictly quantify the simplifications, since they
are necessary to find a solution in an acceptable computational time. Our
proposed simplifications are motivated by some intuitions and by the numerical
experiments, that empirically demonstrate their effectiveness. In the paper we
identify such study in future work (added to the conclusion) and we give more
details regarding the motivations behind each simplification.

Local wind speeds By replacing local wind speeds by the global wind speed,
we lose specific spatial information but we keep an overall idea of the potential
energy the farm can produce in the future, based on the prediction. And we
assume that it is enough to guide future optimization towards good solutions.

Future yaw angles By replacing the wake steering optimization performed in
the future by a naive wind tracking solution, we can keep an overall idea of the
future orientations of each turbine. A wind tracking solution can be computed
easily and will give good enough solutions in average. Because we know that
good solutions will be close to the wind.

Cosinus The heuristic is Hy(s¢, us) = Zk AT (V) - h(E) ), with
&y 141" the future expected yaw angle in degrees (between -180 and 180 degrees).
The function h returns a penalization term for the yaw: it is 1 if the yaws are
equal to 0 degrees (perfect alignment) and it is 0 if the yaws are equal to -180 or
180 degrees (most extreme misalignment).

e By keeping the original decision problem (no simplification), we would

o [
haVe h(aé_’_k_,'_ll) = N Z =0 C p(% ’ m)' .
e In the paper we decide to change the function such that h(&;, . ,") =

(1 TN 180 Zz 0 |é‘i+k+1/|)'

We run some experiments with both versions. The linear penalization (ours) gives
slightly better results (2 % more power in average) than the cosine penalization
(original). Our intuition is that the linear approximation gives equal penalization
for every yaw values (see plot for one turbine below).
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Figure 1: Penalization functions for one turbine, with p = 1.88.

Indicator function The indicator function is removed so that even with
important yaws, we have some idea of how far away from the wind each machine
is.

Discount factor And a discount factor is added to give move importance to
immediate time steps. It is common practice for model predictive control based
optimization.

1 Anonymous Referee #1

This paper describes the application of different controllers that mazximize the
power output of a wind farm by optimizing the turbines yaw angles under time-
varying wind directions. Different control strategies are tested and the results
are compared. I have the following remarks/comments:

- The authors realize that a wind farm is a dynamical system (mainly due
to wake delays). However, the authors try to push a steady-state model in
a dynamical control framework. Isaac Newton went through great lengths to
introduce differential equations, why not use these in this application? Why not
model the windfarm using differential equations? In fact, in algorithm 1, at
each time step, the state s; is evaluated and new control signals are computed
accordingly. However, the wind farm will never reach the computed state s; since
this is a steady-state of the farm and control signals are set at each time step
and the wind velocity is changed at each time step. So what is actually optimized
here?

We especially thank the reviewer for this comment as it was not clearly explained
in the first version of the paper (we added more details in the revised version).
There is a distinction between the simulation (steady-state) and the overall



system dynamics (not steady-state). The overall system dynamics is not steady-
state because of the rotational constraints of the machines and the evolution of
the wind. But at each iteration, to compute the power output of the farm, a
steady-state simulation is performed.

In wind farm optimization, the use of steady-state models (known as low fi-
delity simulation) like FLORIS is favored over differential equations due to the
complexity and computational load associated with solving dynamic equations
for every turbine in the farm. Differential equations would require accounting
for fluid dynamics, turbulence, and wake interactions in real-time, making it
impractical for optimization purposes (but these models exist and are used for
other purposes, it is high fidelity simulation). Steady-state models like FLORIS
simplify these dynamics by approximating the wind flow within the farm under
steady conditions, allowing for efficient optimization algorithms to be applied
for control strategies.

- In the abstract, at the end, the authors write "it does not increase complexity”.
This seems to be a relative notion. What does complexity mean here and does it
become more complex for everyone?

We do agree that this a relative notion. By "complexity", we mean computational
time, which is also relative to the computational power of each person. But
overall, as there are more turbines, the computational complexity explodes for
every machines. The heuristic we propose in the paper is quasi-instantaneous, for
any number of turbines, making the overall reformulated optimization problem,
simpler to solve. The "complexity" also refers to the number of decision variables,
that the proposed heuristic also manages to reduce.

- It seems that the wind speed in front of turbine i is defined as vi which is later
defined as K. I would recommend to take out unnecessary variables to make the
document easier to follow.

The global wind direction is K; and the global wind speed is V;. The wind speed if
front of a turbine is defined as v{. But the wind direction in front of a turbine (!
for example) is never defined. Because the wind direction in front of the turbines
is always equal to the global wind direction, i.e., ki = K;Vi € {0,1,...,N — 1}.
It is clarified in the revised version.

- In Figure 2, is it possible to also indicate ul?
Absolutely, we added it to the figure.
- In (4), what does the one at the end of the equation mean?

The indicator function, denoted as 1 4(x), is a mathematical function that takes
the value 1 if its argument belongs to a specified set A, and 0 otherwise. Formally,



1 ifzed
it is defined as 1 4(x) = 1 . . It serves as a simple way to represent
0 ifagA

whether a certain condition or event occurs. In the paper, we use this notation
to check if the yaw of the machine belongs to the safety bounds.

- In (5), the notation is not clear. There is no function defined, but only ...
Please detail this.

We added more details regarding the state. It contains the cur-
rent wind (K, V;) and the future predicted wind on L time steps:

(K41, Vig1), (Kiq2, Viga), -+ (Ktyn—1, Vign—1), (Kevr, Vi L)

- The term MPC is used in the paper. However, the controller is clearly not an
MPC. I would suggest taking out the term to avoid confusion.

We thank the reviewer for this comment, the first version was unclear regarding
this subject. We clarified this by saying: "the corresponding original sequential
decision problem over a future time window can be stated under a form usually
exploited by the MPC community". And by replacing the occurrences of "MPC"
by "original decision problem" or "prediction-based, sequential decision problem".

- What is the relation between [ control, f yaw and 7w(sy). Is it possible to
simplify notation? It seems overcomplicated, but maybe it is really necessary like
this?

We put a lot of effort into the notation so that it is clear and precise enough.
The relation between the different functions are described in Algorithm 1. We
tried to simplify a little more the paper regarding the notation, but a certain
level of complexity is necessary.

- In (12), what does clip() mean?

The "clip()" function is a mathematical operation commonly used in program-
ming libraries. It takes three arguments: a value z, a lower bound a, and an
upper bound b, and returns a new value that is clipped to fall within the range
[a,b]. Mathematically, it can be expressed as clip(z, a,b) = min(max(z,a), b).
The "clip()" function ensures that the value = remains within the specified range,
preventing it from exceeding either the lower or upper bound.

- Around 235 the authors write "At each iteration, it solves the optimization
problem for the current turbine, considering the yaw angles of all others fized.
To do so, it uses a grid-search method..." What is now done in the end? A grid
search or is an optimization problem solved?

We do agree that this part was not clear. We improved the paper to better
explain the overall process.



- The prediction based controller is according to the authors a too difficult opti-
mization problem and simplifications are proposed (top page 12). What is the
effect of these simplifications on the original problem statement? Is it possible to
quantify these? It feels now like, the original problem is simplified and we will
solve the simplified problem. However, we have no idea how far the simplified
problem is from the original problem.

Unfortunately, we cannot quantify these simplifications, because we were not
able to get good solutions for the original decision problem. We addressed this
answer in the first page of the document.

- In Figure 4, please indicate better the meaning of all symbols/lines and the
wind direction.

The Figure 4 was indeed not very clear. We completely change it to improve
readability and to better illustrate our proposed heuristic.

- In line 337 I read that some option are enabled. What does this mean?

It corresponds to specific wake modelling options related to the FLORIS software,
that provide additional features to the low fidelity simulation. We specified them
in the revised paper for reproducibility purpose.

- Qwerall, please provide tables with settings that are used throughout the sim-
ulations. These are now everywhere placed in the text which makes it for me
impossible to follow.

Absolutely, we added tables with all the parameters used across the simulations.

- In line 350, L=11 is defined. What does this mean in the context of steady-state
models?

The variable L corresponds to length of the future time window a controller has
access to. We added the following sentence in the paper: "for example, if At
corresponds to 5 minutes, then the horizon L = 10 means that the prediction-
based controller has access to a prediction of the wind of 50 minutes."

- In figure 9, how is the upper bound computed? how are the shaded areas
computed?

The upper bound is computed with the rotational constraints relaxed. At each
time step, the solution should be quasi-optimal. The shaded ares correspond to
the standard deviation of the numerical experiments results. We added more
explanations regarding this in the revised paper.

- In line 411, the authors write "capture the dynamics of the system". I don’t
think that this is correct since a steady-state model is used.



The overall system dynamics is not steady state. Time steps are interconnected
by the evolution of the wind and the rotational constraints of the wind turbines.
So it captures the dynamics of: the global wind evolution between time steps
and the yaw rotational constraints between time steps.

Only the simulation function f%_ 1.0, 1S steady-state: at each time step, the
computation of the wake effects and the evolution of the wind across the machines
is based only on the current wind data only. We detailed this in the revised
version.

- Figure 8 seems to be not necessary? This is a well known figure, but what does
it contribute to the story?

Absolutely, it is not necessary as it only makes things heavier. We removed it in
the revised version.

The major question that I have is regarding the use of a steady-state model in a
dynamical control framework. It raises many questions and the meaning of the
results is mot clear to me. In other words, how can anybody judge the scientific
relevance of the work? I would also suggest the authors to also rewrite the paper
so that it becomes more readable/understandable. Define all variables clearly,

figures.

Steady-state models are necessary for optimization. Higher fidelity models,
taking into account the dynamics of the wind and the variations of the wake
effects between time steps, exist. But these models are too computationally
expensive to be used for optimization.

Then, we use a low-fidelity simulator, computing the wake effects in a steady-
state manner. This low-fidelity simulator is then incorporated to our full system
dynamics, which is not steady-state. Only the simulation, i.e., the function to
compute the power output is steady-state. The dynamics of the wind and the
yaw angles of each turbine are not steady-state.

We believe that with such framework, our work is scientific relevant and that our
work demonstrates an interesting reformulation of a well-known optimization
process. However, the amount of uncertainty regarding our results is important
because of the use of a steady-state simulation to compute the power outputs.
Empirical simulations give an order of magnitude of the added value of our
reformulation but need to be performed on higher fidelity models to better asses
the added performance.

I hope that the above remarks can help and I am looking forward to a revised
VETSION.



2 Anonymous Referee #2

General Comments. QOverall, the paper is nicely formulated and presented. The
problem statement is well defined, and the proposed solution is motivated, de-
scribed, and validated well. I appreciate the pace of developing the wind farm flow
control domain, the problem at hand (costly MPC-based optimization) and the
proposed improvement (heuristic-based optimization). In general, I am convinced
by the scientific method used, and I am interested to continue to understand the
proposed control algorithm.

The paper would generally benefit from an effort to improve the flow and readabil-
ity. Some statements are made without reference to their background or context.
Also, there is possibly an excess of mathematical notation in the narrative content.

We tried to simplify a little more the paper regarding the notation, but a certain
level of complexity is necessary. We simplified some terms, we improved the
figures, we gave more explanations regarding the steady-state characteristic of
the simulation, and we gave more details regarding the results.

The most critical suggestion is to motivate and/or justify the simplifications
proposed in section 3.2.2. Is it reasonable to ignore locally varying wind speeds
and can you quantify the impact? Does assuming a naive controller for the
forward-in-time yaw angles have an impact on the current time optimization
result (if not, explain)? What is the impact of a cosine vs linear yaw loss model?

We do agree that we should better motivate the justifications we propose in
Section 3.2.2. We added more details regarding our motivations in the revised
paper. Unfortunately, we cannot quantify these simplifications, because we were
not able to get good solutions for the original decision problem. We addressed
this answer in the first page of the document.

With that clarification and a few notes below, I think this paper will be a strong
study of an improved controls optimization algorithm.

Specific comments. See above for the questions on the motivation and justification
for the simplifications to the MPC-based method.

Section 3.2.2 presenting a common MPC method - is the formulation a common
or typical formulation? Suggest to reference.

We thank the reviewer for this comment, the first version was unclear regarding
this subject. We clarified this by saying: "the corresponding original sequential
decision problem over a future time window can be stated under a form usually
exploited by the MPC community". And by replacing the occurrences of "MPC"
by "original decision problem" or "prediction-based, sequential decision problem".



Figure 4 is difficult to understand. What are the symbols and how do I know
which (a or b) is better?

The Figure 4 was indeed not very clear. We completely change it to improve
readability and to better illustrate our proposed heuristic.

Line 392: These are important statements, but they seem to come suddenly and
the values aren’t traceable. It would help to derive these results or relate to Figure
9. Also, consider mentioning section 4.1 or making the "tau x delta-k" statement
into an equation that you can reference back to here.

Absolutely, we improved the readability of the results accordingly.

Technical corrections. Apologies if it is intentional, but it’s unclear if you intended
"sensibility analysis" or "sensitivity analysis”.

We thank the reviewer for this remark. We had some doubts about the right
term to use. But indeed, the right term is "sensitivity analysis". We updated
the paper accordingly.

Line 42: Suggest to replace "wind direction” with "wind direction variation” to
note that it’s the change in wind direction that you’re studying.

Absolutely.

Line 43: Suggest to motivate the use of steady-state models. You did this in the
conclusions, but it would be helpful in the intro.

Absolutely, we added more information regarding that subject in the introduction.
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Abstract. Wake steering is a technique that optimises the energy production of a wind farm by employing yaw control to
misalign upstream turbines with the incoming wind direction. This work highlights the important dependence between wind
direction variations and wake steering optimization. The problem is formalized over time as the succession of independent-and
steady-state yaw control problems
. Then, this work proposes a reformulation of each-steady-state-problem
by augmenting the objective function by a new heuristic based on a wind prediction. The heuristic acts as a penalization for
the optimization, encouraging solutions that will guarantee future energy production. Finally, a synthetic sensibility
analysis of the wind direction variations and wake steering optimization is conducted. Because of the rotational constraints of
the turbines, as the magnitude of the wind direction fluctuations increases, the importance of considering wind prediction in a

steady-state optimization is empirically demonstrated. The heuristic proposed in this work greatly improves the performance of

controllers and

Nomenclature 25 famulation Local velocities computation function
Syaw Yaw angle computation function

al Yaw angle H Horizon length

By Absolute orientation K Wind direction

At Time step duration K] Observed wind direction

€Kt Wind direction noise 30 N Number of wind turbines

€Vt Wind speed noise P} Turbine power output

vi Local wind speed St Controller state

P Theoretical power output function Ut All turbine yaw settings

s Control policy ug Yaw setting

feontrol  Absolute orientation update function 35 W Wind speed

Jobj Controller objective function %4 Observed wind speed

Spower Power output function

1 Introduction

As global energy consumption increases, there is a strong willingness and necessity to decarbonize electricity production.

Hence, renewable energies are becoming increasingly important (Chu and Majumdar, 2012). Wind energy, particularly, is
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the focus of considerable research and development, with turbines becoming larger and more numerous within wind farms.
Assuring efficient control as wind turbines operate is necessary to maximize the benefits of wind energy.

In the particular context of global warming, designing more efficient wind farms is essential. Wake steering is the subject of
growing interest within the community to optimize the energy production of wind farms. However, most of research regarding

wind farm control technologies disregards the relevance of the wind direction . This work is motivated by a central

question:

Ko-stoer ization?

To answer this question, this work proposes a new controller based on wind predictions

and conducts a synthetic sensibility analysis of wake steering and wind dynamics, using steady-state models and

artificial wind data.

Janssens and Meyers (2024)

1.1 Wake effect

A single wind turbine reaches its maximum power output when fully aligned with the wind. When the wind direction changes,
a turbine uses its yaw to rotate its nacelle on a horizontal plane. By using active yaw control, a wind turbine can keep track of
the changes in the wind direction changes and ensure maximum energy production over time by minimizing its misalignment
with the wind. It corresponds to greedy control, where a wind turbine solely tries to maximize its power output (Yang et al.,
2021).

In the space immediately behind a turbine, the wind speed is slower and more turbulent. Such a phenomenon is called the
"wake effect" and is the natural consequence of wind power extraction by the machine. When a wind turbine is located in
the wake of another, its power output is reduced (because of a slower wind speed) and its fatigue increased (because of the
turbulence). Within a wind farm, depending on the wind direction and the farm layout, most of the turbines can be affected by
the wake of others.

Because of wake effects, greedy control can be suboptimal within a farm. Therefore, instead of keeping every turbine
aligned with the wind, yaw control can also be used to voluntary misalign some turbines in relation to the direction of the
wind (Boersma et al., 2017). When a turbine is misaligned with the wind, its wake effect is steered. By intelligently yawing the
turbines and steering the wake effects, the wind flow across the turbines can be optimized. Such a method is known as wind

farm flow control (WFFC) (Meyers et al., 2022). A simple example on a two-turbine wind farm is given in Figure 1.
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Figure 1. Example of WFFC on a two-turbine wind farm with the wind coming from the west. The first (upstream) turbine is misaligned
and its wake effect is steered away from the second (downstream) turbine. By letting the wind flow more freely to the second turbine, the

misalignment of the first turbine increases the total power output of the farm.

Current implemented wake steering strategies usually involve lookup tables (LUTs) (Fleming et al., 2017; Siemens Gamesa Re-
newable Energy, 2019). Wake steering strategies are computed for a finite set of different wind conditions prior to the farm
operation. The yaw angles of each turbine are computed with steady-state models, regardless of the wind dynam-
ics. Because a wake steering strategy creates misalignment with the wind, it is highly dependent on variations in the direction
of the wind. The wind direction can change over time, and yaw control is constrained by the limited rotational speed of the
nacelles. If the wind varies in directions and frequencies that the yaw actuators can not easily track, computing adequate wake

steering strategies over time can be a challenging task.
1.2 Wind direction dynamics

The study of wind direction dynamics is gaining interest within the research community. Wind direction dynamics can be
broken down into large-scale drifts and small-scale fluctuations (van Doorn et al., 2000) and can be observed on different
scales: the synoptic scale describes long distances and extended time periods, the mesoscale depicts the farm level and time
periods from days to weeks, and the microscale corresponds to the turbine level and variations from seconds to minutes. The
wind direction is fundamentally non-stationary, and there is an incomplete knowledge regarding the physical and statistical
characteristics of wind direction fluctuations across specific length and time scales that are essential for effective WFFC (Dallas
et al., 2023).

As the farm operates, the wind direction varies both in time (at the farm level) and space (at the turbine level). The authors
von Brandis et al. (2023) found that spatial wind direction changes relevant to the operation of wind farm clusters in the German
Bight exceed 11 degrees in 50 % of cases. In this present work, numerical simulations are run with steady-state wake models.
Therefore, only variations in the wind at the farm level are studied. When the direction varies over time, this work considers
that it affects the whole wind farm.

WFEFC is most beneficial at low wind speeds because this is where small changes of the wind speeds can lead to important

power output variations. The same wake steering strategy will lead to higher power gains at low speeds compared to at a higher
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wind speed. Because the wind direction variability is higher for low wind speeds (von Brandis et al., 2023; van Doorn et al.,
2000; Dallas et al., 2023), the study of dependence between wind direction variations and yaw control is important. Also,
because the impact of climate change on wind dynamics is unknown, designing robust controllers is necessary for long-term

operation.
1.3 Related works

As tracking wind direction is essential for wind turbines, the literature is rich in studies seeking better wind direction tracking
mechanisms. Song et al. (2018) developed an MPC-based controller on a finite control set to track the wind directions. Hure
et al. (2015) designed a yaw controller based on very short-term wind predictions. But performing WFFC and wake steering is
a more complex optimization problem.

LUTs can be adapted for dynamic control with different methods. Usually, a low-pass filter is used to apply control only for
high variations of the direction. A sampling method can be used to adjust the yaw control frequency and hysteresis mechanisms
avoid unnecessary yaw control and restrict the yaw actuators (Kanev, 2020a). Simley et al. (2021) improved a traditional LUT
by anticipating the wind direction changes ahead of upstream turbines. Kanev (2020b) performed WFFC with receding horizon
using gradient-based optimization and run tests in large-eddy simulations under realistic variations in wind direction and speed.
But the wake steering strategies of an LUT fundamentally do not consider the wind dynamics, only their implementation does.

Regarding machine learning (ML) methods, and more particularly reinforcement learning (RL), which is becoming a source
of great interest to the scientific community, wind direction variations are often overlooked. The importance of the wind
direction dynamics is clearly pointed out by Saenz-Aguirre et al. (2019) and Saenz-Aguirre et al. (2020) but most of the studies
carried out later only consider static or quasi-static wind directions. Some recent works have started to consider dynamic wind

directions into WFFC optimization (Kadoche et al., 2023).
1.4 Contributions

The remainder of this paper is structured to mirror the three main contributions. Each contribution forms the basis of an

individual Section and Section 5 concludes. The contributions, and their corresponding Sections, are as follows.

— This work proposes a discretized formalization of the WFFC problem over time as the succession of multiple steady-state
optimization problems . Due
to-the rotational-constraints-of the turbines. the
important hypotheses regarding the transition between one steady-state to the next are formulated. This formalization is

conducted in Section 2.

- this work presents a reformulation of the-instantaneous;steady-state-optimization
problem- The default

objective function is augmented by a new heuristic, computed on a prediction of the wind. The proposed heuristic acts as
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a penalization for the optimization without increasing its dimension and encourages solutions that will guarantee future

energy production. The heuristic and the other studied controllers are detailed in Section 3.

— This work conducts a senstbility analysis of the wind direction variations and wake steering optimization. It
empirically demonstrates the importance of a wind prediction-based control when the magnitude of the wind direction
fluctuations become large. The new proposed heuristic greatly improves the performance of a traditional steady-state
wake steering optimization when the variations of the wind direction are important. Numerical simulations using syn-

thetic wind data are conducted in Section 4.

2 Problem formalization

The environment is composed of a wind farm, and some exogenous variables related to wind dynamics. The wind farm consists
in IV interconnected wind turbines. Over time, each turbine is controlled via its yaw. An episode consists of a succession of [
time steps during which the turbines are controlled, with H the horizon length. The transition from a time step ¢ to a time step
t + 1 corresponds to a specific time window of constant length of At minutes. The environment evolves from one time step ¢

to the next time step ¢ + 1 in A¢ minutes, with ¢ € {0,1,...,H — 1}.
2.1 Wind dynamics

At a time step ¢, the exogenous variables are a global incoming wind direction K; € [0,360] [degrees] and a global incoming
wind speed Vi € [Vimin, Vmax] [M/s]. The wind data can be measured or predicted. Then, a controller does not have access to K
and V; directly but to K, [degrees] and V;/ [m/s], with K a noisy wind direction defined as K| = K; + €k, and V/ is a noisy
wind speed defined as V; = V; + ey +. The random noises ¢ K.t and ey; can come from either measurement imprecisions or
prediction errors.

Because the turbines alter the wind flow inside the farm, ¢

The computation of the local velocities is based on complex fluid mechanics and is subject to numerous uncertainties. This
work conducts numerical experiments where such computations are done using a low-fidelity, steady-state simulator FLOw
Redirection and Induction in Steady State (FLORIS) NREL (2021). The local wind directions stay equal to #+

, as it is common for low-fidelity, steady-state simulation.
2.2 Turbines

At a time step t, a turbine 4 is characterized by its absolute angular position 3! € [0,360] [degrees] and its relative orientation

or yaw (often used to compute the power output) o} = fyaw (K3, 8;) € [—180,180] [degrees], such that

Fyaw (K4, B1) = (K¢ — B +180)  mod 360 — 180. (1)
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Adding and subtracting by 180 ensures that the yaw stays in the range [—180,180]. As illustrated in Figure 2, the yaw cor-
responds to the rotational movement going from the absolute angular position 3; to the wind direction K}, such that 3! + o
mod 360 = K. Positive values of the yaw indicate that the turbine is rotated anti-clockwise from the wind direction and
negative values of the yaw indicate that the turbine is rotated clockwise from the wind direction.

At a time step t, the yaw setting u% € [Umin, Umax] [degrees] of a turbine 4 corresponds to the rotational movement of the

turbine between time steps ¢ and t + 1. S5

the yaw setting is bounded between two consecutive time steps. The

setting is used to update the orientation of the turbine BZ 1= fcomro](ﬂf,ui) such that

fcomro](ﬂzaui) = (52 + Ui) mod 360. 2)

turbine;

North

turbine; u%

South

Figure 2. Example of a wind turbine ¢ seen from above at a time step ¢. The variables are the wind direction K, the absolute angular position
B¢ of the turbine, and the yaw ! of the turbine. The wind direction indicates from where the wind is coming, e.g., a wind direction of 270
degrees indicates a wind coming from the west. Here, the nacelle is misaligned with the incoming wind direction: the turbine is rotated

clockwise from the wind, so a! < 0.
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2.3 Power

given-by-the powercurve-P;sueh-that The power curve @ of a turbine gives the theoretical power output [MW] (y-axis) of the
machine as a function of the wind speed v [m/s] (x-axis), considering no yaw misalignment, such that

1 3
<I>(1/):§-p-A~V -Cp(v), 3)

with p [kg/m?] the air density, A [m?] the rotor blade area and Cp the power coefficient of the turbine. The theoretical power

output is strictly positive if the wind speed is within certain bounds [Veyt.in, Veutout] [M/s]. Ai-ittastrationisgivenin-Figure22-
At a time step ¢, the power output of a turbine ¢ considering yaw misalignment Pf = fpower(u,f, ai) [MW] is computed from

the power curve and the yaw angle, such that

fpower(yyaai) = (I)(VZ) : COSp(Oéi) ’ ]l{acm.anéafgﬂécun-out}’ @)

with p a parameter accounting for power losses due to misalignment and [y, Qeutout] [degrees] a safety bound for the yaw

took into account by the indicator function. Because too much misalignment with the wind can damage the machine, if the yaw

is too great, the turbine is shut down and its power output is null.

2.4 Policy

A policy 7 is a function returning the yaw settings (u?,u},. .. ,uiv *1) of all the turbines at a time step ¢ given a state s;. Each

wind farm controller is associated with a specific policy.

may be composed of:

— the current orientations of the turbines {5} }ici01. . N—11

— an observation of the current wind (K, V}/);

— a prediction of the wind at time step ¢ + 1, (K[ ., Vi 1);

— a prediction of the wind at time step t + 2, (K[ .5,V 5);

— until time step ¢ + L, with L the prediction horizon.

Fhe Therefore, the general form of a state is s, = { K/, V/ K] [ V) ..., K, VB o nvo1y | States can be

categorized based on two distinct properties: with perfect or imperfect information and with or without foresight knowledge.

Depending on the possible combinations, there are four classes of states, listed in Table 1.
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foresight no foresight

perfect information exi+k=0and ey, 4, =0,L >0 egtr=0andey4,=0,L=0

imperfect information | ey #0Oorey sy #0,L >0 ext+k #Z0oreyipr #0,L =0

Table 1. Four different classes of states based on two distinct properties, with ¢ € {0,1,...,H — 1} and k € {0,1,...,L}. With perfect

information, the state comprises exact wind data (no noise). Without foresight, the state only comprises the current wind data (no predictions).

2.5 System dynamics

An episode is defined by H time steps during which turbines are controlled via their yaw. An episode is characterized by time
series for the wind directions and the wind speeds and initial positions for the nacelles. During an episode, it is assumed that
all the states belong to the same class (defined in Table 1) and the policy is presumed to be stationary (it does not change over
time).

The full dynamics of an episode are described in Algorithm 1. At each time step, the policy returns the yaw settings based
on the current state, the system is updated and the power output of the farm is computed. The yaw setting of a turbine ¢ at the
end of time step ¢ is indexed ¢+ 1 (because it has been updated) and it is the one used for the power computation of time step .

At a time step ¢, to compute the power output of each turbine, local wind velocities are needed. Such computations rely

on complex fluid mechanics, depending on the incoming wind and the updated yaw angles of each turbine.

In this work, these computations are carried out by a
steady-state simulator v} = fi (K, V;,{a 41}7€{0.1,...,.N—1})» Which is used as a substitute for real-life measurements.
The simulation is said to be steady-state because it only depends on the current wind data and the updated yaw angles.
It does not consider time delays in the wake propagation.
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Algorithm 1 Full episode dynamics over time

Input: {K%, Vi }rego,1,...,H+L—1} true wind data time series
{58}z’e{0,1,...,N—1} initial orientations
7 yaw control policy

fort ={0,1,...,H—1}do

st ={ K, VY, £+17‘/t/+17"'vKt/+L7‘/1£,-|-L7{5§}i6{0,1,...,N—1}} >state

(w0, ul, ... uN ") =7(sy) > control policy

Bii1 = feonwol(Bi,ui), Vie{0,...,N—1} >angular positions update

oz%_H = fyaW(Kt,ﬂfH), vie{0,...,N—1} >yaw angles computation

Vi = fiaation (Kt Vi {ed 1 Hieqor, n—1y)s Vi€ {0,...,N — 1} >local velocities computation

P} = foower(Vf, 0t y1), Vi€ {0,...,N —1} > power outputs computation
end for

Output: >/ ' SNV pi farm power output

At each time step, during the "control policy" operation, a controller can conduct
any computations with the feontrol, fyaws foimutation @14 fpower functions but based on the wind data provided by the state. Because
such data can be noisy, all the computed values can be inexact. For example, at a time step ¢, if a controller computes the
yaw of a turbine i based on its updated orientation 57 ,, it would be equal to a}_ ;" = fyaw (K}, 5i, ). Because the observed
wind direction K can be different from the true wind direction K, the estimated yaw o} +1l can be

different from its true value o} ;.
2.6 Transition regime

At a time step t, for a turbine i, the WFFC problem thus formalized considers a single power output P;. In reality, during a time
step, the wind is time varying and a turbine takes time to rotate because of mechanical constraints. Therefore, the discretization
of the continuous control problem results in the loss of some information and possibly less inaccurate power outputs. To ensure
that the discretized power outputs are good approximations, from one time step to another, a turbine is supposed to rotate
immediately and the wind is supposed to be quasi-constant.

The duration of a time step is always considered constant during an episode. At a time step ¢, when a setting u! is applied
to a turbine ¢, the rotational time 7;. [minutes] for the turbine to go from its current orientation ,8}: to its next orientation 5,@ 11
is always considered largely inferior to the duration of the time step, i.e., T, < At for all ui € [Umin, Umax]- A turbine always
reaches rapidly its target position, before the end of the time step duration. But during a time step, no other control will be
applied to the turbine. For this reason, the rotational constraints [tmin, max] Need to be consistent with the duration of a time
step At.

The coherence time 7, [minutes] of a wind variable (either the direction or the speed) is the maximum duration during

which the variable is quasi-constant. If the coherence time of the wind direction is strictly smaller than the time step duration,
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a discretized value K; would stretch too far away from its corresponding continuous signal. The same goes for the speed.
Therefore, in this work, the coherence time is always equal to the time step duration, i.e., T, = At, for both the direction and

the speed.

3 Controllers

At a time step t, the yaw settings (u{,u},...,u> ') are noted u;. A controller is defined by its policy 7(s;) with the state

s¢ etven-by-Equation22): This work compares a naive control where each turbine is aligned as
much as possible with the wind and three optimized wake steering control strategies. In a episode, at each time step ¢, during
the "control policy" operation of Algorithm 1, each controller computes the yaw settings such that u; = 7(s;), by maximizing

a specific objective function fopi(s¢,us) with regard to the turbine rotational constraints, as defined below.

m(s¢) € argmax fopi(Se, ue), (5)

Ut

subject 0 Upin < U} < Umax, V1€ {0,1,...,H—1},Vic{0,1,...,N —1}. (6)

3.1 Naive controller

The naive controller always tries to keep turbines aligned with the current wind direction as much as possible. It is a weak
baseline as it does not conduct any wake steering optimization. It runs with no foresight (i.e., L = 0), as it is only concerned
with the current observed wind direction K. Therefore, the state s; is reduced to { K7, {ﬁ;’}ie{o,ly_” N—1} }- It consists of a

greedy control (no wake steering) where the objective function at a time step ¢ is minimizing the amplitude of the yaws, i.e.,

N-1
fobi(seur) == [t v
=0
Wlth ai—i—ll = fyaW(Kzgaﬂz—i-l)v (8)
ﬁerl = fcontrol(ﬁg>ui)' (9)

At a time step ¢, the rotational movement required for a turbine ¢ to stay aligned with the observed wind direction is
fyaw (K}, B}). Because of the rotational constraints, this movement is clipped,

giving a closed-form expression for the solution, defined as

Wnaive:(ug,utl,...,uy_l), (10)
such that  u} = clip( fyaw (K7, Bt), Umin, Umax), ¥ i € {0,1,...,N —1}. (11)

3.2 Wake steering

Compared to naive control, wake steering is used to optimize the power output of the farm. In this work, two distinct

steering strategies are used.

10
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wind data. The instantaneous controller ths[—&ﬁﬂs%&ﬂiﬂﬂe%ﬁ—epﬂﬂﬂ%dﬁeﬂ searches for the yaw settlngs maximizing the in-

stantaneous power output of the farm.

prediction-based controller maximizes the instantaneous and future power outputs. At each time step ¢, the same Gauss-Seidel

(GS) method is used for both controllers, but with different objective functions. The-objeetive-function—vartes-aeross-the-two
different-controllers: In this work, optimization is conducted with a GS method (described in Algorithm A1l of Appendix A).

A similar approach was first proposed by Fleming et al. (2022) with a serial-refine algorithm.

The GS method works as follow. A first solution is initialized from the naive controller, where each initial yaw setting

keeping keeps its turbine aligned as much as possible with the wind. Then, the GS method iterates over each turbine, from

upstream to downstream ones. At each iteration, it solves the optimization problem for the current turbine, considering the yaw

settings of all others fixed, Te-do-se-ituses-agrid-seareh-methed by conducting a grid-search over a discretized solution space

S = {umin +1 - #me—pin } forall [ € {0,1,...,n, — 1} with n,, being a precision parameter. Once optimized, the setting of the
Y

current turbine is updated, and it meves goes to the next one.

3.2.1 Instantaneous controller

The instantaneous controller searches for the yaw settings maximizing the immediate power output of the farm. It always runs
under no foresight (i.e., L = 0), as it performs wake steering for the current, observed wind data only. Therefore, the state s;
is reduced to {K/,V/,{Bi{}ic(o1,...n—1}}- It is a steady-state optimization performed on one time step where the objective

function at a time step ¢ is the immediate normalized power output, i.e.,

N—-1
1
fObj(Stvut Z fpower Vt ,Oét+1 ) (12)
with 1} = futaion (K7 tlv{ag+1 }ie{o,1,.. . N=1})s (13)
i ! i
Qe = fyaw(K£a6t+1)v (14)
ﬂti+1 = fcontro](ﬂéyuz)- (15)

3.2.2 Prediction-based controller

A traditional prediction-based controller searches for the yaw settings of time steps ¢,t +1,...,¢ + L that maximize the power

output over that horizon. It always runs with foresight (i.e., L > 1). Teﬂpﬂﬁnzeme—yawe&mg%veﬁaﬂme«heﬁzeﬂ—&a—k@G

ing: The corresponding sequential decision

problem over a future time window can be stated under a form usually exploited by the MPC community, defined as

L N—-1
1 /
ut,uti?f.l?iut+L ;0 ; fpower Vt+k ’at+k+1 ) (16)
subject t0  Umin < gy p, < Umax, V¢ €{0,1,..., H =1}, Vk€{0,1,...,L}, Vie {0,1,....,N —1}, (17)
. P . ) ’
with VZJrk = fszimulalion( £+k7 tﬁrk»{aﬂk“ }jE{O,l,...,N—l})7 (18)

11



i / i
Qpykt1 = fyaW( £+kvﬂt+k+1)a (19)
ﬁz—i-k-&-l - fcomml(ﬁz-i,-kaui-&-k)' (20)

285 The MPCE thus described multiplies the number of decision variables by £ Also, the computa-
tion of the local velocities at a given time step depends on all the previous yaw settings. Therefore, the MPE

significantly increases the complexity, and because there is no simple solution, this work proposes

a reformulation. The objective function given by Equation (16) can be split between the current time step ¢ and the next ones,

from ¢ + 1 to t + L, such that
L N-1 N—

1 S / 1 1 /
290 N Joower(Vigp s Qg1 ) = fpower<Vt vat+1 N Z Fpower( V“rk ’at“f“ )- h
k=0 i=0 k=1 1=0

,_.

The first term of Equation (21) is the normalized power output of the farm for the current time step. It corresponds to the
objective function of the instantaneous controller defined in Subsubsection 3.2.1. It only depends on the current yaw settings
u¢. Now, focusing on the second term, the closed-form expression of the fyower is Written, giving

L N-1 L N-1

1 oy , /
~ kz ZO fpower Vt+k 7at+k+1 ) N : k - (b(l/;Jrk ) : COSp(az+k+1 ) : 1{acut—in<ai+k+1/ga’cut—oul}. (22)
11 =1 i=
295 The complexity brought by the MPC comes from the fact that Equation (22) depends on the local

velocities v . k/ and the updated yaw angles o tk +1/ corresponding to the optimized yaw settings of each future time step. To

decrease the complexity, this work proposes to modify Equation (22) in the following way.

— Each local velocity v} + k/ is replaced by the corresponding, predicted, global wind speed V/, . It reduces the com-
plexity coming from the steady-state simulation by removing the dependence with the updated yaw angles.

300

- Each updated yaw angle o/ Tk +1/ depending on the optimized yaw setting u! 1 18 replaced by the expected yaw angle
al 4y if anaive controller was used instead. It reduces the complexity coming from the optimization, as there is a
closed-from expression for the naive controller, as provided by Equation (10).

305

— The cosine function at power p of each yaw angle is replaced with a simpler penalization for yaw misalignment. The
penalization chosen corresponds to one minus the normalized, absolute value of that yaw angle. It provides linearity and

better interpretability.

310 — The indicator function is removed so that there is no discontinuity. Even if a yaw is too great, it can be of some interest
for the optimization to know about the potential power output. The more a turbine is misaligned, the less likely it will be

to produce energy and the more it will be penalized.

12



315

320

325

330

335

— For each time step, the overall expression is multiplied by a discounted factor «y € [0, 1]. ¥-gives-more-importance—to

The only variables specific to each turbine are the yaw angles updated from a naive controller, which are already normalized.
Therefore, it becomes unnecessary to normalize the overall expression by N. With such modifications, Equation (22) becomes

a new heuristic H; defined as

I N-1
He(se,us) = ZVk_l “O(Viip) - (1 - % : % Z |5‘i+k+1/> ) 23)
Pt i=0
with @&, ., = fyaw(K£+kaB§+k+1)a @9
Bti+ i1 = Jeontrol Bg o il k) il 4« computed with a naive controller defined by Equation (10), (25)
Bii1 = foonwol(Bi,ul), ui computed from a wake steering optimization. (26)

Because this new proposed heuristic does depend on neither the future optimized yaw settings (naive control), nor the future
local velocities (no simulation), it does not increase eemplexity- The heuristic is a scalar

acting as a penalization for the optimization. The final objective function of the prediction-based controller can finally be

written as
;N L
Jobi(s:1u0) = 55+ D Frower(V7 50111 ) + Hals0,0), @7
i=0

with Vz/ = fémutation (K1, Vi {O‘z-&-l/}je{o,l,...,Nfl})v (28)
ai‘i‘l/ = foaw (K}, BL41), (29)
Bi1 = feommot (B, ut), (30)
H(s¢,ue) defined by Equation (23). (31)

The heuristic is the discounted, weighted sum of the future theoretical power outputs. By choosing certain optimized yaw
settings wu; for the current time step, the heuristic uses a naive controller over a future time horizon of L time steps to evaluate

how well the turbines will manage to stay aligned with the predicted wind directions.

For example, if the future expected power outputs are high, the heuristic will encourage yaw settings that will put the turbines
in good orientations for the future. The heuristic will penalize the objective function for yaw settings that will prevent turbines

from keeping track of the wind. An illustration of the heuristic is given in Figure 3.

13
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(wake steering)
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Figure 3.

[lustration of the heuristic for a turbine 7 at time step ¢ for two different cases. The horizon is L = 2 and the wind data is the same for cases

A and B. Wake steering optimization is performed to find the setting u, which yields a power output of P4 MW for case A and Pg MW for

case B at time step ¢. By considering P4 > Pp, the case A would be preferred. But the heuristic computes the future expected yaw angles,

if a naive wind tracking solution is used, to get an average idea of how far the turbine will be from the predicted wind direction. Here, while

the yaw setting of case A gives a better immediate solution than the one given by case B, it keeps the turbine further away from the future

wind. The solution of case B would then be preferable. The heuristic encourages the choice of yaw settings that may not be the best at the

current time step but that ensure future power output.

14
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3.3 Upper bound

To have an upper bound in terms of performance (power output) of a wake steering strategy, the rotational constraints are
relaxed. It means that in Equation (6), the variables wuy;, and uy.x are equal to -180 and 180 degrees, respectively. Between two

consecutive time steps, each turbine is assumed to be capable of reaching any orientation.

The same objective function of the instantaneous controller, presented in Subsubsection 3.2.1 is used. It always runs un-
der no foresight (i.e., L = 0), as it performs wake steering for the current wind data only. Therefore, the state s, is reduced
to {K7,V/.{B{}icqo,1,....n~1} }- The yaw settings computed by the upper bound would not be admissible in reality if the

corresponding targeted orientations are too far away from the current ones.

4 Simulations

In Subsection 4.1 the process used to generate wind data is described and in Subsection 4.2 the experiment setting is given.

Finally, the results and the empirical conclusions that can be drawn are explained in Subsection 4.3.
4.1 Wind data scenario

The wind data time series are artificially generated with custom Wiener processes. The wind directions { K’ t}te{o,l,..., HyL-1}
are computed with Algorithm 2. The wind speeds {Vt}te{o,L.,., H+1—1} are computed with Algorithm 3. To generate the time

series, an initial value is cumulatively incremented at each time step by variable m;. Each increment m; is independently

sampled from a Normal distribution of mean 0 and standard deviation o, The-standard-deviation-oateach-time-step-is-equat
o)X
i

(32)

with 7 a normalization variable with regard to the number and range of the generated values and §;¥ a variation parameter for

the wind variable X (either the direction or the speed).

15



Algorithm 2 Wind directions generator

Input: H + L number of points
Kinit initial wind direction
oK 5K bounds for the variation variable
7=360/(H+L)
fort={0,1,..., H+ L—1}do
8t ~ U (Oin; Omax)
ot =17 x /6K
me ~ N(0,0¢)
K= (Kt +>i_,m;) mod 360
end for

Output: {K:}icqo,1,...,m+1—1} wind directions time series

Algorithm 3 Wind speeds generator

Input: H + L number of points
Vinit initial wind speed
Vmin, Ymax bounds for the wind speed
8V .8V . bounds for the variation variable
7 = (Vmax — Vmin)/ (H + L)
fort={0,1,...., H+ L—1}do
8¢ ~ U (O3in; Oman)
oy =T X /6
me ~ N(0,0%¢)
Vi = mirrored( Ninic + ZE:O ™ms)
end for

Output: {V;}.cqo,1,..., m+L—1} Wind speeds time series

To maintain the wind directions in the range of valid values, i.e., [0,360] [degrees], the modulo operation is sufficient. To
maintain the wind speeds in the range of valid values, i.e., [Vmin, Ymax] [m/s], @ mirrored function as explained in Figure 4 is
365 proposed. The generated values inside the wind speed bounds are not modified. The generated values outside the bounds are

recursively mirrored inside the bounds.

16
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—— raw_data
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® mirrored (same direction)
40 f \
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A AN
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—20-
0 10 20 30 40 50
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Figure 4. Toy example of the mirrored function used to keep the generated wind speeds inside specific bounds. Raw data is generated thanks
to a process described by Algorithm 3. Raw data points inside the wind speed bounds are not modified: the black and red curves overlap.

Data points outside the wind speed bounds are recursively mirrored inside the bounds.

The variable 5tX defines the level of variation of the wind variable X time series (either the direction or the speed). When
equal to 0, the signal is constant. As §;% increases, the absolute value of the increments increases in average. At each time

When 6% and §X

step, 6;% is sampled from a uniform distribution defined between 6 and 6. X X

in ke are equal, all increments

{mt}te{o,l,..., H+1—1} are independently sampled from the same distribution: the generated time series is stationary with

regard to the increments. When 6% < §:X

min max?

increments are independently sampled from different distributions: the generated
time series is non-stationary with regard to the increments. In Figure 5 the impact of the 6 variable is shown for the wind

direction.
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(a) Sine and cosine values for 55 =1. (b) Sine and cosine values for 5,{{ =4. (c) Sine and cosine values for 6,{{ =9.

Figure 5. Example of different wind direction signals generated with different 5% values, considering that 67 = 65X = 6%, for all t €
{0,1,...,49} and Kini = 7 degrees. If 57 = 0, all the generated points are equal to Kyi.. The sine and cosine values are plotted for illustration
convenience (it avoids the discontinuity issue of degrees). Note that the behavior shown in this example is the same for the wind speed, but

values are in the range [Vmin, Vmax)-

4.2 Experimental setting

The function f& .. (K, V; {od +1}j€{0.1,...,N—1}) computes the local wind speed in front of a turbine 4 at a time step ¢
given wind data K;,V; and the yaw of each turbine {a{+1}j€{0,17__,,N,1}. This function, introduced in Subsection 2.5, is
assured by the low-fidelity, steady-state simulator FLORIS (NREL, 2021). FLORIS is used with a Gauss Curl hybrid wake
model. The Gaussian velocity model is implemented based on Bastankhah and Porté-Agel (2016) and Niayifar and Porté-Agel
(2016). To compute the deflection of the wakes depending on the yaws, the models described by Bastankhah and Porté-Agel

(2016) and King et al. (2021) are used. The turbulence model described by Crespo and Herna “ndez (1996) is used. The-eptions

" ] " " "

A wind farm of 34 International Energy Agency (IEA) identical 15 MW (Gaertner et al., 2020) wind turbines is used. It
has cut-in and cut-out speeds of veyrin = 3 m/s and Veyeour = 25 m/s, respectively. Each wind turbine has a rotor diameter of
242.24 m, i.e., a rotor area of 46087 m?. The air density is p = 1.225 kg/m? and the tunable parameter accounting for the power
losses due to misalignment is p = 1.88. WFFC strategies are sensible to the distances between turbines. To make the numerical
simulations more robust to the distances between turbines, a diamond shape is used for the layout. With a diamond shape, there
is an identical distance between each machine and its surrounding turbines. 34 machines create a sufficiently large wind farm
for wake steering to be impactful, and is sufficiently small for optimization to converge quickly. A FLORIS illustration of the

layout used is given in Figure 6.
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Figure 6. Layout in the form of a diamond shape. The farm comprises 34 identical IEA 15 MW wind turbines. There is an identical space
equivalent to the diameter of four turbines between a machine and its adjacent turbines. A distance of four turbine diameters is sufficiently
small to create detrimental wake effects for the farm and therefore, the optimization pertinent; and sufficient large for the design to be realistic.

Here the direction is 287.4 degrees, the wind speed is 8.4 m/s and yaws are computed with the instantaneous wake steering controller.

The limits for the wind speed are vy, =4 m/s and Viax = 10 m/s. The interval [4,10] m/s corresponds, approximately, to
the ascending part of the power curve, (Figure-22); where wake steering is the most beneficial for the farm. For wind speeds of
between [10,25] m/s, the power output is constant; if the wind speed is reduced down because of wake effects, there will be no
power deficit. Because this work conducts a sensibility sensitivity analysis of yaw control, the wind speed is kept in the range
of [4,10] m/s.

The horizon size is H = 144 and the length of the foresight for the prediction-based controller is L = 10. The initial wind
values are Ky = 270 degrees and Vi = 8 m/s. The discount factor used for the heuristic H; is v = 0.99. The precision
parameter for the GS methods is n, = 120, giving the grid-search method good precision.

More technical details regarding the simulations and numerical instabilities are given in Appendix B. The time step duration
At is intentionally undefined, as it will be explained in Subsubsection 4.3.1. Depending on the time step duration value,

different interpretations of the same results will be made. For example, if A corresponds to 5 minutes, then the horizon

L = 10 means that the prediction-based controller has access to a prediction of the wind of 50 minutes. In Table 2, a summary

of the experimental setting used in this work is given.
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name variable value

number of turbines N 34

rotor area A 46087 m?
low-fidelity simulator siimulali on FLORIS
air density p 1.225 [kg/m3]
cosine loss exponent yaw p 1.88

cut-in wind speed Veut-in 3 m/s
cut-out wind speed Veut-out 25 m/s
wind speed limits [Vmin, Vmax] | [4, 101 m/s
horizon H 144
foresight length L 10

initial global wind direction | Kjpi 270 degrees
initial global wind speed Vinit 8 m/s
discount factor o7 0.99
precision parameter Ny 120

. Detail of the variables and their values used across the simulations. This configuration is shared by all the numerical simulations.
Table 2. Detail of I bl 1 th | i th lat Tl figurat I 1 by all tl ] lat

The foresight length is equal to 10 only for the prediction-based controller. Otherwise, it is equal to 0. The yaw rotational constraints will

vary across the simulations, but cvyiin and Qeurou are always equal to Umin and Umax, respectively.

4.3 Results

To empirically demonstrate the importance of optimizing yaw control over a long-term time horizon, numerical simulations

are performed with perfect and imperfect (noisy) wind predictions. Fereach-curve-the-centerline-corresponds-to-the-mean-and

aviation-h abean ained-throuah Mente

Carle-trials: In the graphs, for each curve, the centerline corresponds to the mean and the colored (shaded) area corresponds to

the standard deviation of the results obtained through 11 Monte-Carlo trials.

For one episode, the total farm power output of a controller C' given by the Algorithm 1 is denoted P = f: Bl Zf:ol Py
The metric to benchmark a controller C' is the power gain [%] between the total farm power output of C' and the total farm
power output of the naive controller. The power gain is equal to 100 - (chip““‘“).

naive

4.3.1 Perfect predictions

The first set of simulations explores the performance of each controller over increasing variations of wind directions, using
perfect predictions. Each state comprises perfect information, i.e., ex,; =0 and ey, =0 for all t € {0,1,...,153}. The perfor-
mance of each controller presented in Section 3 is tested for increasing values of 5.

Numerical simulations are run on 21 different values of 6/, with 6/ € {0,1,2,...,20}. The wind speed is always generated

with 6 = 1. Because this work explores the impact of wind direction on wake steering, the magnitude of the wind speed
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fluctuations are kept small. The wind direction and wind speed increments are stationary, 6 = 6, min

Sy forall £ € {0,1,...,153}.

The objective here is to study the impact of the wind direction variations on yaw control. The greater the 6% value, the
stronger the variations. Because the nacelles have a limited rotational speed, the study of the wind direction fluctuations is cru-
cial for yaw control.

To better illustrate the wind direction dynamics, the time series A K defined as

AK = {| fyaw(Ke41, Kt) Hefo,1,... 153} 33)

is used. Each value of AK lies between [0, 180] [degrees]. To study the magnitude of the variations, the absolute values are

taken. Some illustrations of the AK time series for different values of 6/ are given in Figure 7.

! !
25 -~ =—+— means

vy

\

\

wind_variations [degrees]
1

/

\

Ak

(a) For each 61, mean values with their standard (b) Example of time series A K for different values of 65’( €{0,4,8,12,16,20}. Again, as the 65

00 25 50 75 100 125 150 175 20.0
oK

deviation of the time series AK. parameter increases, the magnitude of the variations of the wind direction increases.

Figure 7. Illustration of the influence of 6 on the magnitude of wind direction variations AK. In Subfigure 7a, the mean value of wind
direction variations is given as a function of 5. In Subfigure 7b, some examples are provided of the time series AK for different values of

5% . For example, for 57 = 5, the mean absolute variations of the wind direction is around 6.11 degrees.

In Figure 8, the power gains of each controller compared to a naive controller are plotted. In Subfigure 8a, the yaw limits are
Umin = Qeur-in = — 1D degrees and Upmax = Qepront = 15 degrees. And in Subfigure 8b, the yaw limits are upyin = ateyt-in = —30
degrees and Umax = Qcutout = 30 degrees. These yaw constraints offer enough liberty for a wind turbine to rotate between two
consecutive time steps and are small enough to limit the induced fatigue. The detailed results are given in Appendix C, in
Tables C1 and C2.

As the variations of the wind direction increase, the performance of each controller diverges from each other. For small
variations of the wind direction, both the instantaneous controller and the prediction-based controller give similar results. When
the variations of the wind direction become large, the instantaneous controller struggles to maintain good performance. The
heuristic of the prediction-based controller manages to find better yaw control strategies. The gap between the performance of
the upper bound with the other controllers shows how strong wind direction variations, in relation with the rotational constraints

of each machine, impact yaw control.
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(a) Yaw limits are tmin = Our.in = — 15 degrees and Umax = Qcut-out = 15 (b) Yaw limits are umin = Qep.in = —30 degrees and umax = Qcut-out = 30
degrees. At 5{" = 6, the prediction-based controller increases the power degrees. At 65 = 10, the prediction-based controller increases the power

output of a naive approach by 6.23 %. It corresponds to absolute variations output of a naive approach by 8.93 %. It corresponds to absolute variations

of the wind direction of 7.34 degrees as displayed in Figure 7a. of the wind direction of 12.23 degrees as displayed in Figure 7a.

Figure 8. Considering future wind data in a steady-state yaw control optimization becomes mandatory when 87 > 6 for yaw constraints
[—15,15] degrees and 8% > 10 for yaw constraints [—30,30]. From these points, the heuristic H, provided by the prediction-based controller

greatly improves the performance of a classic instantaneous steady-state optimization.

Based on the results given in Figure 8, several general statements can be drawn. As previously said, the time step duration is

intentionally imprecise. The reason is that different values of At will lead to different interpretations. The following statement

is true for any values of At, with respect to the hypotheses of the transition regime, described in Subsection 2.6.

— For wind turbines that can rotate form -15 to 15 degrees every At minutes, if the wind direction changes by more than

7.34 degrees every At minutes, it is important to consider future wind data in a steady-state yaw control optimization.

— For wind turbines that can rotate form -30 to 30 degrees every At minutes, if the wind direction changes by more than

12.23 degrees every At minutes, it is important to consider future wind data in a steady-state yaw control optimization.

4.3.2 Noisy predictions

In the second set of simulations, the robustness to noisy predictions of each controller is tested. The yaw limits are upyi, =

Qeutin = — 15 degrees and Umax = Qcutout = 15 degrees. The {Kt}te{(),l,m’lag} time series are computed with 5§fm =0 and
b = 20. The time series {V;}reqo,1,...,153} are always computed with 6, = 67, = 6. = 1. Because 6, # O, the incre-

ments are non-stationary for the wind direction. The corresponding A K time series is plotted in Figure 9.
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Figure 9. Plot of the time series AK for the 11 different seeds. Wind directions are generated with 655, = 0 and 6%, = 20. The mean is

12.53 degrees and the standard deviation is 1.12. Here, the increments vary from one time step to another because they are non-stationary.

In Figure 10a, the noise for the wind direction is increasing, i.e., ex+ ~ U(—zk, zx) with zx € {0,1,...,15}, for each t €
{0,1,...,153}. The noise for the wind speed is always sampled from the same distribution, i.e., ey,; ~ U(—1,1). In Figure 10b,
the noise for the wind speed is increasing, i.e., ey, ~ u(—zy,2v) with zy € {0,1,...,7}, for each ¢ € {0,1,...,153}. The

455 noise for the wind direction is always sampled from the same distribution, i.e., ex; ~ U(—1,1).

Only the noise applied to the wind directions strongly impacts the different policies. The prediction-based controller results

in a poorer performance than a naive controller from a noise of 8 degrees. The wind speed noise insignificantly affects the

performance of the algorithms. This corroborates the fact that yaw control mainly depends on the wind directions.

] ] ]
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(a) The noises for the wind directions are e ¢+ ~ U(—zx,zx) with (b) The noises for the wind speeds are ey ¢ ~ U(—zy, 2y ) with
zix €{0,1,...,15}, foreach t € {0,1,...,153}. The noise for the wind zy €{0,1,...,7}, foreach ¢t € {0,1,...,153}. The noise for the wind
speeds are always sampled from a Uniform distribution U (—1,1). directions are always sampled from a Uniform distribution U (—1,1).

Figure 10. Only the noise applied to the wind direction strongly impacts the performance of the algorithms. This corroborates the important
dependence between yaw control and the variations of the wind direction. Because the prediction-based controller uses more wind data

points, it is more robust than the instantaneous controller.
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5 Conclusions

As WFFC becomes more important to increase the energy production of wind farms, this work studies wake steering as

a steady-state optimization problem over time. The yaw control problem is formalized as successive multiple steady-state

optimization problems interconnected by the rotational constraints of the turbines and the evolution of the wind. Beeause-each

- Low-fidelity, steady-state simulators are

used because they are not time consuming and they are suitable for optimization. Futare But future works eeuld should perform

the same studies but with continuous and higher-fidelity simulators such as HAWC2Farm (Liew et al., 2023), better capturing

the dynamics of thepreblem- the wake effects, from one time step to another. This becomes especially important when the

variations of the wind direction become important.

Traditionally, yaw control is optimized in a steady-state manner. Yaw settings are computed so that they maximize the
instantaneous power output of the farm. To optimize wake steering over a long-term time horizon, an MPC method is usually
used. Such an approach increases the complexity of the optimization problem, making it harder to solve. To overcome such
complexity, a reformulation of the steady-state optimization problem is proposed in this work to consider future wind data.
The traditional objective function is augmented by a new heuristic estimating the future, expected, theoretical power outputs
of the farm, weighted by how far the turbines will be from the wind if they are controlled by a naive approach. The new

prediction-based controller proposed in this paper has the same number of decision variables as an instantaneous optimization.

Lastly, this work conducts a sensibility sensitivity analysis of yaw control and the variations of the wind direction. It demon-
strates the importance of optimizing yaw control over future wind data when the variations of the wind directions become large.

For strong wind variations, the new-propesed-heuristie new prediction-based controller greatly improves the performance ef-the

eontroHers without increasing complexity. This work shows for example that if deploying wind turbines that can rotate from

-15to 15 degrees every At minutes, and if the wind direction changes by more than 7.34 degrees every At minutes, it is impor-

tant to consider future wind data in a steady-state yaw control optimization. Experiments empirically show the effectiveness of

the simplifications proposed in this work in a specific experimental setting, but future research could better justify and quantify

their impact on the original, prediction-based, decision problem.

This study is conducted on synthetic wind data so future works should explore the same question of dependence between
the wind variations and yaw control over real wind data. Because the hypotheses regarding the transition regime may be far
from reality, the proposed heuristic could be combined with low-pass filters and hysteresis mechanisms for more realistic
implementations. Future works should incorporate the fatigue in the optimization process, as WFFC can have a major impact
on the lifetime of each turbine. For example, the objective function of the prediction-based controller could be augmented by

a heuristic taking into account the magnitude of the yaw actuations. However the results provided by this work also suggest
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that with wake steering strategies more robust to wind direction variations, it would be possible to reach the same level of

performance with fewer yaw actuations.

Appendix A: Gauss-Seidel method

The GS method iterates over each turbine in the direction of the wind, one by one, from upstream turbines to downstream ones.
The turbines’ default coordinates {cxi,cyi}ie{o}lw, ~N—1) [m] are rotated such that the wind is coming from the west. The
initial yaw settings are computed with a naive controller. By doing so, the initial solution is already a good enough solution
that keeps turbines as aligned with the wind as possible. At each iteration, it solves the optimization problem by varying the
yaw setting of the current turbine, considering all the others fixed. To solve each optimization problem on one variable, a grid-
search approach over a discretized solution space S is used. Once solved, the setting for turbine & is fixed and optimization
is conducted again on turbine k£ + 1. Such an approach gives good results because it exploits the sequential nature of the

low-fidelity simulation.

Algorithm A1 GS method

Input: s, input state

cos(270—K,) —sin(270—K) )

C‘xt7cyt - (CSC 7Cy ) (Bln(2707K£) COS(2707K£) > rotate turbines

R={ig,i1,...,in—1|cz}® <cxy' <...<caxN '} >order turbines
(1% Uyl - U0 ) = Tnaive (S¢) >initialize yaw settings
for i € Rdo
_ . Umax — Umi . . .
S = {umin+1- w}, vie{0,1,...,n, —1} >discretized solution space
U= (u,uyly,. . outy w7 u o) >fix all other settings
u;l cargmax  fopi(s¢,U) >grid-search optimization
ul€eS
end for
Output: (v, ujl,...,uy ") yaw settings

Appendix B: Numerical instabilities

First, some modifications have been made to FLORIS in order to shut down those turbines too much misaligned with the wind
during a simulation. At a time step ¢, for a given turbine ¢, all the possible yaw settings can give a similar power output. In
such cases, the best yaw setting is the one staying the closest to the wind direction, in order to prevent future misalignment.
To incorporate such behavior in the optimization process and to make the controllers robust to numerical instabilities, the

following steps are taken.
— Round out the power output computed by the simulator.

— Take the yaw setting u} maximizing the objective function.

25



— Find all the yaw settings giving a performance close to the maximum.
— Among these selected settings, keep the one closest to the setting corresponding to the naive controller.

To compute the solutions of the upper-bound controller described in Subsection 3.3, a trick is used. Relaxing the rotational
constraints of the turbines, i.e., making umi, and umax equal to -180 and 180 degrees, respectively, increases the solution space.

515 With the same precision parameter 7., it reduces the precision of the grid-search method. To keep the solution space between
Umin and um,y, and therefore, to not alter the precision of the grid-search method, the dynamics of the system described in
Algorithm 1 are slightly modified. At the beginning of each time step, every turbine is realigned with the wind direction. Such

a trick does not alter the solutions given by the upper-bound controller because good yaw settings are the one keeping turbines

close to the wind direction.

520 Appendix C: Detailed results

5{/( 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

naive 1.14 1.89 2.04 2.05 2.06 2.05 2.05 2.04 2.02 1.95 1.87 1.81 1.75 1.64 1.58 1.49 1.37 1.29 1.19 1.10 1.03

instantaneous 1.49 2.12 2.20 2.20 221 2.18 217 2.14 2.10 2.00 1.89 1.85 1.78 1.67 1.60 1.49 1.40 1.32 1.25 1.16 1.08

prediction_based 1.49 2.12 2.20 2.20 2.20 2.18 2.18 217 2.15 2.09 2.03 1.98 1.92 1.82 1.77 1.68 1.61 1.52 1.43 1.35 1.27

upper_bound 1.50 2.13 2.22 223 224 223 224 224 2.24 2.23 2.22 223 224 223 225 2.23 2.23 2.25 224 225 223
Table C1. Detailed results of the simulations conducted on perfect predictions in Subsubsection 4.3.1. Yaw limits are umin = Qcyt-in = —15

degrees and Umax = Ceut-owr = 15 degrees. For each 65 are given the total power output of the farm in 10* MW for each controller.

5{/( 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

naive 1.14 1.89 2.04 2.05 2.06 2.05 2.06 2.06 2.07 2.05 2.04 2.04 2.06 2.04 2.05 2.01 1.99 2.00 1.97 1.94 1.87

instantaneous 1.65 2.18 225 225 226 2.25 2.25 225 225 224 222 221 221 2.19 2.20 2.15 2.11 2.10 2.07 2.04 1.96

prediction_based 1.65 2.18 2.25 2.25 2.26 225 225 225 2.25 2.24 2.22 222 222 2.20 222 2.18 2.17 2.16 2.13 2.12 2.07

upper_bound 1.65 2.19 2.26 227 227 2.26 227 227 2.28 227 226 2226 227 227 2.28 2.27 227 228 228 228 227
Table C2. Detailed results of the simulations conducted on perfect predictions in Subsubsection 4.3.1. Yaw limits are tmin = ocuyt-in = —30

degrees and Umax = Ceut-onr = 30 degrees. For each 6K are given the total power output of the farm in 10* MW for each controller.
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