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Abstract. Wake steering is a technique that optimizes the energy production of a wind farm by employing yaw control to

misalign upstream turbines with the incoming wind direction. This work highlights the important dependence between wind

direction variations and wake steering optimization. The problem is formalized over time as the succession of multiple steady-

state yaw control problems interconnected by the rotational constraints of the turbines and the evolution of the wind. Then,

this work proposes a reformulation of the yaw optimization problem of each time step by augmenting the objective function5

by a new heuristic based on a wind prediction. The heuristic acts as a penalization for the optimization, encouraging solutions

that will guarantee future energy production. Finally, a synthetic sensitivity analysis of the wind direction variations and

wake steering optimization is conducted. Because of the rotational constraints of the turbines, as the magnitude of the wind

direction fluctuations increases, the importance of considering wind prediction in a steady-state optimization is empirically

demonstrated. The heuristic proposed in this work greatly improves the performance of controllers and significantly reduces10

the complexity of the original sequential decision problem by decreasing the number of decision variables.

Nomenclature

αi
t Yaw angle

βi
t Absolute orientation

∆t Time step duration15
ϵK,t Wind direction noise
ϵV,t Wind speed noise
νit Local wind speed
Φ Theoretical power output function
π Control policy20
fcontrol Absolute orientation update function
fobj Controller objective function
fpower Power output function

fsimulation Local velocities computation function
fyaw Yaw angle computation function25
H Horizon length
Kt Wind direction
K′

t Observed wind direction
N Number of wind turbines
P i
t Turbine power output30

st Controller state
ut All turbine yaw settings
ui
t Yaw setting

Vt Wind speed
V ′
t Observed wind speed35

1 Introduction

As global energy consumption increases, there is a strong willingness and necessity to decarbonize electricity production.

Hence, renewable energies are becoming increasingly important (Chu and Majumdar, 2012). Wind energy, particularly, is

the focus of considerable research and development, with turbines becoming larger and more numerous within wind farms.

Assuring efficient control as wind turbines operate is necessary to maximize the benefits of wind energy.40
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In the context of global warming, designing more efficient wind farms is essential. Wake steering is the subject of growing

interest within the community to optimize the energy production of wind farms. However, most of research regarding wind farm

control technologies disregards the relevance of the wind direction variation. This work is motivated by a central question: from

what magnitude of wind direction fluctuations is it necessary to consider the wind evolution into a wake steering optimization?

To answer this question, this work proposes a new controller based on wind predictions and conducts a synthetic sensitivity45

analysis of wake steering and wind evolution, using steady-state models and artificial wind data.

In wind farm optimization, the use of low-fidelity models (usually based on steady-state models) is favored over higher

fidelity models (usually based on computational fluid dynamics and real-time wake interaction) due to the complexity and

computational load associated with solving dynamic equations for every turbines in the farm. Some recent works such as

Janssens and Meyers (2024) explore real-time optimal control of wind farms using large-eddy simulations (LES). However,50

this research area is still in the early stages and for large-scale wind farm optimization, steady-state models are still widely

used.

In wind farm flow control (WFFC), developing effective closed-loop controllers is essential for scaling to larger wind farms

and dealing with unpredictable wind conditions. These controllers dynamically adapt their strategies in real-time, using con-

tinuous sensor feedback to guide their decisions. Model-based, closed-loop controllers, in particular, rely on simulators of the55

environment to conduct continuous optimization while the farm is in operation. Fast and computationally efficient simulation

is crucial for these controllers to quickly react to wind and turbines changes. This work focuses on the optimization process

itself, adhering to community standards by using widely accepted, open-source, low-fidelity simulators.

1.1 Wake effect

A single wind turbine reaches its maximum power output when fully aligned with the wind. When the wind direction changes,60

a turbine uses its yaw to rotate its nacelle on a horizontal plane. By using active yaw control, a wind turbine can keep track of

the changes in the wind direction changes and ensure maximum energy production over time by minimizing its misalignment

with the wind. It corresponds to greedy control, where a wind turbine solely tries to maximize its power output (Yang et al.,

2021).

In the space immediately behind a turbine, the wind speed is slower and more turbulent. Such a phenomenon is called the65

"wake effect" and is the natural consequence of wind power extraction by the machine. When a wind turbine is located in

the wake of another, its power output is reduced (because of a slower wind speed) and its fatigue increased (because of the

turbulence). Within a wind farm, depending on the wind direction and the farm layout, most of the turbines can be affected by

the wake of others.

Because of wake effects, greedy control can be suboptimal within a farm. Therefore, instead of keeping every turbine70

aligned with the wind, yaw control can also be used to voluntary misalign some turbines in relation to the direction of the

wind (Boersma et al., 2017). When a turbine is misaligned with the wind, its wake effect is steered. By intelligently yawing the

turbines and steering the wake effects, the wind flow across the turbines can be optimized. Such a method is known as WFFC

(Meyers et al., 2022). A simple example on a two-turbine wind farm is given in Figure 1.
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Figure 1. Example of WFFC on a two-turbine wind farm with the wind coming from the west. The first (upstream) turbine is misaligned

and its wake effect is steered away from the second (downstream) turbine. By letting the wind flow more freely to the second turbine, the

misalignment of the first turbine increases the total power output of the farm.

Current implemented wake steering strategies usually involve lookup tables (LUTs) (Fleming et al., 2017; Siemens Gamesa Re-75

newable Energy, 2019). Wake steering strategies are computed for a finite set of different wind conditions prior to the farm

operation. The yaw angles of each turbine are computed with steady-state models, regardless of the wind and turbines dynam-

ics. Because a wake steering strategy creates misalignment with the wind, it is highly dependent on variations in the direction

of the wind. The wind direction can change over time, and yaw control is constrained by the limited rotational speed of the

nacelles. If the wind varies in directions and frequencies that the yaw actuators cannot easily track, computing adequate wake80

steering strategies over time can be a challenging task.

1.2 Wind direction dynamics

The study of wind direction dynamics is gaining interest within the research community. Wind direction dynamics can be

broken down into large-scale drifts and small-scale fluctuations (van Doorn et al., 2000) and can be observed on different

scales: the synoptic scale describes long distances and extended time periods, the mesoscale depicts the farm level and time85

periods from days to weeks, and the microscale corresponds to the turbine level and variations from seconds to minutes. The

wind direction is fundamentally non-stationary, and there is an incomplete knowledge regarding the physical and statistical

characteristics of wind direction fluctuations across specific length and time scales that are essential for effective WFFC (Dallas

et al., 2023).

As the farm operates, the wind direction varies both in time (at the farm level) and space (at the turbine level). The authors90

von Brandis et al. (2023) found that spatial wind direction changes relevant to the operation of wind farm clusters in the German

Bight exceed 11 degrees in 50 % of cases. In this present work, numerical simulations are run with steady-state wake models.

Therefore, only variations in the wind at the farm level are studied. When the direction varies over time, this work considers

that it affects the whole wind farm.

WFFC is most beneficial at low wind speeds because this is where small changes of the wind speeds can lead to important95

power output variations. The same wake steering strategy will lead to higher power gains at low speeds compared to higher
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wind speed. Because the wind direction variability is higher for low wind speeds (von Brandis et al., 2023; van Doorn et al.,

2000; Dallas et al., 2023), the study of dependence between wind direction variations and yaw control is important. Also,

because the impact of climate change on wind dynamics is unknown, designing robust controllers is necessary for long-term

operation.100

1.3 Related works

As tracking wind direction is essential for wind turbines, the literature is rich in studies seeking better wind direction tracking

mechanisms. Song et al. (2018) developed a model predictive control (MPC)-based controller on a finite control set to track

the wind directions. Hure et al. (2015) designed a yaw controller based on very short-term wind predictions. But performing

WFFC and wake steering is a more complex optimization problem.105

LUTs can be adapted for dynamic control with different methods. Usually, a low-pass filter is used to apply control only for

high variations of the direction. A sampling method can be used to adjust the yaw control frequency and hysteresis mechanisms

avoid unnecessary yaw control and restrict the yaw actuators (Kanev, 2020a). Simley et al. (2021) improved a traditional LUT

by anticipating the wind direction changes ahead of upstream turbines. Kanev (2020b) performed WFFC with receding horizon

using gradient-based optimization and run tests in large-eddy simulations under realistic variations in wind direction and speed.110

But the wake steering strategies of an LUT fundamentally do not consider the wind dynamics, only their implementation does.

Regarding machine learning (ML) methods, and more particularly reinforcement learning (RL), which is becoming a source

of great interest to the scientific community, wind direction variations are often overlooked. The importance of the wind

direction dynamics is clearly pointed out by Saenz-Aguirre et al. (2019) and Saenz-Aguirre et al. (2020) but most of the studies

carried out later only consider static or quasi-static wind directions. Some recent works have started to consider time-varying115

wind directions into WFFC optimization (Kadoche et al., 2023).

1.4 Contributions

The remainder of this paper is structured to mirror the three main contributions. Each contribution forms the basis of an

individual Section and Section 5 concludes. The contributions, and their corresponding Sections, are as follows.

– This work proposes a discretized formalization of the WFFC problem over time as the succession of multiple steady-120

state optimization problems interconnected by the rotational constraints of the turbines and the evolution of the wind.

Due to the discretization hypothesis and the yaw actuation constraints, the important hypotheses regarding the transition

between one steady-state to the next are formulated. This formalization is conducted in Section 2.

– To develop a prediction-based controller, this work presents a reformulation of the instantaneous, steady-state, original

sequential decision problem over a future time window. The default objective function is augmented by a new heuris-125

tic, computed on a prediction of the wind. The proposed heuristic acts as a penalization for the optimization without

increasing its dimension and encourages solutions that will guarantee future energy production. The heuristic and the

other studied controllers are detailed in Section 3.
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– This work conducts a sensitivity analysis of the wind direction variations and wake steering optimization. It empirically

demonstrates the importance of a wind prediction-based control when the magnitude of the wind direction fluctuations130

become large. The new proposed heuristic greatly improves the performance of a traditional steady-state wake steering

optimization when the variations of the wind direction are important. Numerical simulations using synthetic wind data

are conducted in Section 4.

2 Problem formalization

The environment is composed of a wind farm, and some exogenous variables related to the wind direction and the wind speed.135

The wind farm consists in N interconnected wind turbines. Over time, each turbine is controlled via its yaw. An episode

consists of a succession of H time steps during which the turbines are controlled, with H the horizon length. The transition

from a time step t to a time step t+1 corresponds to a specific time window of constant length of ∆t minutes. The environment

evolves from one time step t to the next time step t+1 in ∆t minutes, with t ∈ {0,1, . . . ,H − 1}.

2.1 Wind data140

At a time step t, the exogenous variables are a global incoming wind direction Kt ∈ [0,360] [degrees] and a global incoming

wind speed Vt ∈ [νmin,νmax] [m/s]. The wind data can be measured or predicted. Then, a controller does not have access to Kt

and Vt directly but to K ′
t [degrees] and V ′

t [m/s], with K ′
t a noisy wind direction defined as K ′

t =Kt + ϵK,t and V ′
t is a noisy

wind speed defined as V ′
t = Vt + ϵV,t. The random noises ϵK,t and ϵV,t can come from either measurement imprecisions or

prediction errors.145

Because the turbines alter the wind flow inside the farm, the wind in front of a turbine can be different from the global

incoming wind. Then, at a time step t, in front of a turbine i, the local wind direction is noted κi
t [degrees] and the local wind

speed is noted νit [m/s]. The computation of the local velocities is based on complex fluid mechanics and is subject to numerous

uncertainties. This work conducts numerical experiments where such computations are done using a low-fidelity, steady-state

simulator FLOw Redirection and Induction in Steady State (FLORIS) NREL (2021). The local wind directions stay equal to150

the global wind direction for any time steps, i.e., κi
t =Kt ∀ i ∈ {0,1, . . . ,N −1}, as it is common for low-fidelity, steady-state

simulation.

2.2 Turbines

At a time step t, a turbine i is characterized by its absolute angular position βi
t ∈ [0,360] [degrees] and its relative orientation

or yaw (often used to compute the power output) αi
t = fyaw(Kt,β

i
t) ∈ [−180,180] [degrees], such that155

fyaw(Kt,β
i
t) = (Kt −βi

t +180) mod 360− 180. (1)

Adding and subtracting by 180 ensures that the yaw stays in the range [−180,180]. As illustrated in Figure 2, the yaw cor-

responds to the rotational movement going from the absolute angular position βi
t to the wind direction Kt, such that βi

t +αi
t
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mod 360 =Kt. Positive values of the yaw indicate that the turbine is rotated anti-clockwise from the wind direction and

negative values of the yaw indicate that the turbine is rotated clockwise from the wind direction.160

At a time step t, the yaw setting ui
t ∈ [umin,umax] [degrees] of a turbine i corresponds to the rotational movement of the

turbine between time steps t and t+1. Because of mechanical constraints related to the yaw actuator of the nacelle, the yaw

setting is bounded between two consecutive time steps. As illustrated in Figure 2, the setting is used to update the orientation

of the turbine βi
t+1 = fcontrol(β

i
t ,u

i
t) such that

fcontrol(β
i
t ,u

i
t) = (βi

t +ui
t) mod 360. (2)165

Figure 2. Example of a wind turbine i seen from above at a time step t. The variables are the wind direction Kt, the absolute angular position

βi
t of the turbine, and the yaw αi

t of the turbine. The wind direction indicates from where the wind is coming, e.g., a wind direction of 270

degrees indicates a wind coming from the west. Here, the nacelle is misaligned with the incoming wind direction: the turbine is rotated

clockwise from the wind, so αi
t < 0. The yaw setting ui

t gives the next orientation of the turbine at time step t+1.
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2.3 Power

The power curve Φ of a turbine gives the theoretical power output [megawatts (MW)] (y-axis) of the machine as a function of

the wind speed ν [m/s] (x-axis), considering no yaw misalignment, such that

Φ(ν) =
1

2
· ρ ·A · ν3 ·CP (ν), (3)170

with ρ [kg/m3] the air density, A [m2] the rotor blade area and CP the power coefficient of the turbine. The theoretical power

output is strictly positive if the wind speed is within certain bounds [νcut-in,νcut-out] [m/s].

At a time step t, the power output of a turbine i considering yaw misalignment P i
t = fpower(ν

i
t ,α

i
t) [MW] is computed from

the power curve and the yaw angle, such that

fpower(ν
i
t ,α

i
t) = Φ(νit) · cosp(αi

t) ·1{αcut-in⩽αi
t⩽αcut-out}, (4)175

with p a parameter accounting for power losses due to misalignment and [αcut-in,αcut-out] [degrees] a safety bound for the yaw

took into account by the indicator function. Because too much misalignment with the wind can damage the machine, if the yaw

is too great, the turbine is shut down and its power output is null.

2.4 Policy

A policy π is a function returning the yaw settings (u0
t ,u

1
t , . . . ,u

N−1
t ) of all the turbines at a time step t given a state st. Each180

wind farm controller is associated with a specific policy. In this work, the state st may be composed of:

– the current orientations of the turbines {βi
t}i∈{0,1,...,N−1};

– an observation of the current wind (K ′
t,V

′
t );

– a prediction of the wind at time step t+1, (K ′
t+1,V

′
t+1);

– a prediction of the wind at time step t+2, (K ′
t+2,V

′
t+2);185

– until time step t+L, with L the prediction horizon.

Therefore, the general form of a state is st = {K ′
t,V

′
t ,K

′
t+1,V

′
t+1, . . . ,K

′
t+L,V

′
t+L,{βi

t}i∈{0,1,...,N−1}}. States can be cat-

egorized based on two distinct properties: with perfect or imperfect information and with or without foresight knowledge.

Depending on the possible combinations, there are four classes of states, listed in Table 1.

foresight no foresight

perfect information ϵK,t+k = 0 and ϵV,t+k = 0,L > 0 ϵK,t+k = 0 and ϵV,t+k = 0,L= 0

imperfect information ϵK,t+k ̸= 0 or ϵV,t+k ̸= 0,L > 0 ϵK,t+k ̸= 0 or ϵV,t+k ̸= 0,L= 0

Table 1. Four different classes of states based on two distinct properties, with t ∈ {0,1, . . . ,H − 1} and k ∈ {0,1, . . . ,L}. With perfect

information, the state comprises exact wind data (no noise). Without foresight, the state only comprises the current wind data (no predictions).
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2.5 System evolution190

An episode is defined by H time steps during which turbines are controlled via their yaw. An episode is characterized by time

series for the wind directions and the wind speeds and initial positions for the nacelles. During an episode, it is assumed that

all the states belong to the same class (defined in Table 1) and the policy is presumed to be stationary (it does not change over

time).

The full evolution of an episode is described in Algorithm 1. At each time step, the policy returns the yaw settings based on195

the current state, the system is updated and the power output of the farm is computed. The yaw setting of a turbine i at the end

of time step t is indexed t+1 (because it has been updated) and it is the one used for the power computation of time step t.

At a time step t, to compute the power output of each turbine, local wind velocities are needed. Such computations rely

on complex fluid mechanics, depending on the incoming wind and the updated yaw angles of each turbine. For optimiza-

tion, performing such complex computations is computationally expensive. Therefore, in this work, these computations are200

carried out by a steady-state simulator νit = f i
simulation(Kt,Vt,{αj

t+1}j∈{0,1,...,N−1}), which is used as a substitute for real-life

measurements.

The simulation is said to be steady-state because it only depends on the current global wind data and the updated yaw

angles. It does not consider previous wind data, previous yaw angles or time delays in the wake propagation. The evolution of

an episode over time is constrained by the rotational bounds of the turbines and the variations of the wind.205

Algorithm 1 Full episode evolution over time

Input: {Kk,Vk}k∈{0,1,...,H+L−1} true wind data time series

{βi
0}i∈{0,1,...,N−1} initial orientations

π yaw control policy

for t= {0,1, . . . ,H − 1} do

st = {K ′
t,V

′
t ,K

′
t+1,V

′
t+1, . . . ,K

′
t+L,V

′
t+L,{βi

t}i∈{0,1,...,N−1}} ▷ state

(u0
t ,u

1
t , . . . ,u

N−1
t ) = π(st) ▷ control policy

βi
t+1 = fcontrol(β

i
t ,u

i
t), ∀ i ∈ {0, . . . ,N − 1} ▷ angular positions update

αi
t+1 = fyaw(Kt,β

i
t+1), ∀ i ∈ {0, . . . ,N − 1} ▷ yaw angles computation

νit = f i
simulation(Kt,Vt,{αj

t+1}j∈{0,1,...,N−1}), ∀ i ∈ {0, . . . ,N − 1} ▷ local velocities computation

P i
t = fpower(ν

i
t ,α

i
t+1), ∀ i ∈ {0, . . . ,N − 1} ▷ power outputs computation

end for

Output:
∑H−1

t=0

∑N−1
i=0 P i

t farm power output

At each time step, during the "control policy" operation, a controller knows the evolution mechanisms of the system, i.e.,

it can conduct any computations with the fcontrol,fyaw,f
i
simulation and fpower functions but based on the wind data provided by

the state. Because such data can be noisy, all the computed values can be inexact. For example, at a time step t, if a controller

computes the yaw of a turbine i based on its updated orientation βi
t+1, it would be equal to αi

t+1
′
= fyaw(K

′
t,β

i
t+1). Because
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the observed wind direction K ′
t can be different from the true wind direction Kt, the yaw αi

t+1
′ estimated by a controller can210

be different from its true value αi
t+1.

2.6 Transition regime

At a time step t, for a turbine i, and due to the steady-state nature of the simulation, the WFFC problem thus formalized

considers a single power output P i
t . In reality, during a time step, the wind is time varying and a turbine takes time to rotate

because of mechanical constraints. Therefore, the discretization of the continuous control problem results in the loss of some215

information and possibly less inaccurate power outputs. To ensure that the discretized power outputs are good approximations,

from one time step to another, a turbine is supposed to rotate immediately and the wind is supposed to be quasi-constant.

The duration of a time step is always considered constant during an episode. At a time step t, when a setting ui
t is applied

to a turbine i, the rotational time Tr [minutes] for the turbine to go from its current orientation βi
t to its next orientation βi

t+1

is always considered largely inferior to the duration of the time step, i.e., Tr ≪∆t for all ui
t ∈ [umin,umax]. A turbine always220

reaches rapidly its target position, before the end of the time step duration. But during a time step, no other control will be

applied to the turbine. For this reason, the rotational constraints [umin,umax] need to be consistent with the duration of a time

step ∆t.

The coherence time Tc [minutes] of a wind variable (either the direction or the speed) is the maximum duration during

which the variable is quasi-constant. If the coherence time of the wind direction is strictly smaller than the time step duration,225

a discretized value Kt would stretch too far away from its corresponding continuous signal. The same goes for the speed.

Therefore, in this work, the coherence time is always equal to the time step duration, i.e., Tc =∆t, for both the direction and

the speed.

3 Controllers

At a time step t, the yaw settings (u0
t ,u

1
t , . . . ,u

N−1
t ) are noted ut. A controller is defined by its policy π(st) with the state230

st described in Subsection 2.4. This work compares a naive control where each turbine is aligned as much as possible with

the wind and three optimized wake steering control strategies. In an episode, at each time step t, during the "control policy"

operation of Algorithm 1, each controller computes the yaw settings such that ut = π(st), by maximizing a specific objective

function fobj(st,ut) with regard to the turbine rotational constraints, as defined below.

π(st) ∈ argmax
ut

fobj(st,ut), (5)235

subject to umin ⩽ ui
t ⩽ umax, ∀ t ∈ {0,1, . . . ,H − 1}, ∀ i ∈ {0,1, . . . ,N − 1}. (6)
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3.1 Naive controller

The naive controller always tries to keep turbines aligned with the current wind direction as much as possible. It is a weak

baseline as it does not conduct any wake steering optimization. It runs with no foresight (i.e., L= 0), as it is only concerned240

with the current observed wind direction K ′
t. Therefore, the state st is reduced to {K ′

t,{βi
t}i∈{0,1,...,N−1}}. It consists of a

greedy control (no wake steering) where the objective function at a time step t is minimizing the amplitude of the yaws, i.e.,

fobj(st,ut) =−
N−1∑
i=0

|αi
t+1

′|, (7)

with αi
t+1

′
= fyaw(K

′
t,β

i
t+1), (8)

βi
t+1 = fcontrol(β

i
t ,u

i
t). (9)245

At a time step t, the rotational movement required for a turbine i to stay aligned with the observed wind direction is equal to

fyaw(K
′
t,β

i
t). Because of the rotational constraints, this movement is clipped, such that it is always an acceptable setting with

regards to the yaw actuator, giving a closed-form expression for the solution, defined as

πnaive = (u0
t ,u

1
t , . . . ,u

N−1
t ), (10)

such that ui
t = clip(fyaw(K

′
t,β

i
t),umin,umax), ∀ i ∈ {0,1, . . . ,N − 1}. (11)250

3.2 Wake steering

Compared to naive control, wake steering is used to optimize the power output of the farm. In this work, two distinct wake

steering strategies are used. One is based only on the instantaneous wind data, and one is based on instantaneous and predicted

wind data. The instantaneous controller searches for the yaw settings maximizing the instantaneous power output of the farm.

The prediction-based controller maximizes the instantaneous and future power outputs. At each time step t, the same Gauss-255

Seidel (GS) method is used for both controllers, but with different objective functions. In this work, optimization is conducted

with a GS method (described in Algorithm A1 of Appendix A). A similar approach was first proposed by Fleming et al. (2022)

with a serial-refine algorithm.

The GS method works as follow. A first solution is initialized from the naive controller, where each initial yaw setting

keeps its turbine aligned as much as possible with the wind. Then, the GS method iterates over each turbine, from upstream to260

downstream ones. At each iteration, it solves the optimization problem for the current turbine, considering the yaw settings of all

others fixed, by conducting a grid-search over a discretized solution space S = {umin+l· umax−umin
ny−1 }, for all l ∈ {0,1, . . . ,ny−1}

with ny being a precision parameter. Once optimized, the setting of the current turbine is updated, and it goes to the next one.

3.2.1 Instantaneous controller

The instantaneous controller searches for the yaw settings maximizing the immediate power output of the farm. It always runs265

under no foresight (i.e., L= 0), as it performs wake steering for the current, observed wind data only. Therefore, the state st
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is reduced to {K ′
t,V

′
t ,{βi

t}i∈{0,1,...,N−1}}. It is a steady-state optimization performed on one time step where the objective

function at a time step t is the immediate normalized power output, i.e.,

fobj(st,ut) =
1

N
·
N−1∑
i=0

fpower(ν
i
t

′
,αi

t+1

′
), (12)

with νit
′
= f i

simulation(K
′
t,V

′
t ,{α

j
t+1

′
}j∈{0,1,...,N−1}), (13)270

αi
t+1

′
= fyaw(K

′
t,β

i
t+1), (14)

βi
t+1 = fcontrol(β

i
t ,u

i
t). (15)

3.2.2 Prediction-based controller

A traditional prediction-based controller searches for the yaw settings of time steps t, t+1, . . . , t+L that maximize the power

output over that horizon. It always runs with foresight (i.e., L⩾ 1). The corresponding sequential decision problem over a275

future time window can be stated under a form usually exploited by the MPC community, defined as

max
ut,ut+1,...,ut+L

1

N
·

L∑
k=0

N−1∑
i=0

fpower(ν
i
t+k

′
,αi

t+k+1

′
), (16)

subject to umin ⩽ ui
t+k ⩽ umax, ∀ t ∈ {0,1, . . . ,H − 1}, ∀ k ∈ {0,1, . . . ,L}, ∀ i ∈ {0,1, . . . ,N − 1}, (17)

with νit+k

′
= f i

simulation(K
′
t+k,V

′
t+k,{α

j
t+k+1

′
}j∈{0,1,...,N−1}), (18)

αi
t+k+1

′
= fyaw(K

′
t+k,β

i
t+k+1), (19)280

βi
t+k+1 = fcontrol(β

i
t+k,u

i
t+k). (20)

The optimization problem thus described multiplies the number of decision variables by L+1. Also, the computation of

the local velocities at a given time step depends on all the previous yaw settings. Therefore, the prediction-based decision

problem significantly increases the complexity, and because there is no simple solution, this work proposes a reformulation.

The objective function given by Equation (16) can be split between the current time step t and the next ones, from t+1 to285

t+L, such that

1

N
·

L∑
k=0

N−1∑
i=0

fpower(ν
i
t+k

′
,αi

t+k+1

′
) =

1

N
· fpower(ν

i
t

′
,αi

t+1

′
)︸ ︷︷ ︸

first term

+
1

N
·

L∑
k=1

N−1∑
i=0

fpower(ν
i
t+k

′
,αi

t+k+1

′
)︸ ︷︷ ︸

second term

. (21)

The first term of Equation (21) is the normalized power output of the farm for the current time step. It corresponds to the

objective function of the instantaneous controller defined in Subsubsection 3.2.1. It only depends on the current yaw settings

ut. Now, focusing on the second term, the closed-form expression of the fpower is written, giving290

1

N
·

L∑
k=1

N−1∑
i=0

fpower(ν
i
t+k

′
,αi

t+k+1

′
) =

1

N
·

L∑
k=1

N−1∑
i=0

Φ(νit+k

′
) · cosp(αi

t+k+1

′
) ·1{αcut-in⩽αi

t+k+1
′⩽αcut-out}. (22)

11



The complexity brought by the prediction-based controller comes from the fact that Equation (22) depends on the local

velocities νit+k
′ and the updated yaw angles αi

t+k+1
′ corresponding to the optimized yaw settings of each future time step. To

decrease the complexity, this work proposes to modify Equation (22) in the following way.

– Each local velocity νit+k
′ is replaced by the corresponding, predicted, global wind speed V ′

t+k. It reduces the complexity295

coming from the steady-state simulation by removing the dependence with the updated yaw angles. While this sim-

plification removes future local wind data, it retains some information regarding potential future energy production by

relying on the predicted global wind data only.

– Each updated yaw angle αi
t+k+1

′ depending on the optimized yaw setting ui
t+k is replaced by the expected yaw angle

α̂i
t+k+1

′ if a naive controller was used instead. It reduces the complexity coming from the optimization, as there is a300

closed-from expression for the naive controller, as provided by Equation (10). Replacing the wake steering optimization

performed in the future by a naive wind tracking solution reduces the number of optimization variables of the original

problem while keeping good solutions. Indeed, proper yaw settings are known to be close to the wind in average.

– The cosine function at power p of each yaw angle is replaced with a simpler penalization for yaw misalignment. The

penalization chosen corresponds to one minus the normalized, absolute value of that yaw angle. It provides linearity and305

better interpretability.

– The indicator function is removed so that there is no discontinuity. Even if a yaw is too great, it can be of some interest

for the optimization to know about the potential power output. The more a turbine is misaligned, the less likely it will be

to produce energy and the more it will be penalized.

– For each time step, the overall expression is multiplied by a discounted factor γ ∈ [0,1]. It gives more importance to310

immediate time steps. It is common practice for model-predictive based optimization.

The only variables specific to each turbine are the yaw angles updated from a naive controller, which are already normalized.

Therefore, it becomes unnecessary to normalize the overall expression by N . With such modifications, Equation (22) becomes

a new heuristic Ht defined as

Ht(st,ut) =

L∑
k=1

γk−1 ·Φ(V ′
t+k) ·

(
1− 1

N
· 1

180
·
N−1∑
i=0

|α̂i
t+k+1

′|

)
, (23)315

with α̂i
t+k+1

′ = fyaw(K
′
t+k, β̂

i
t+k+1), (24)

β̂i
t+k+1 = fcontrol(β̂

i
t+k, û

i
t+k), û

i
t+k computed with a naive controller defined by Equation (10), (25)

β̂i
t+1 = fcontrol(β

i
t ,u

i
t), u

i
t computed from a wake steering optimization. (26)

Because this new proposed heuristic does depend on neither the future optimized yaw settings (naive control), nor the future

local velocities (no simulation), it does not increase the number of optimization variables. The heuristic is a scalar acting as a320
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penalization for the optimization. The final objective function of the prediction-based controller can finally be written as

fobj(st,ut) =
1

N
·
N−1∑
i=0

fpower(ν
i
t

′
,αi

t+1

′
)+Ht(st,ut), (27)

with νit
′
= f i

simulation(K
′
t,V

′
t ,{α

j
t+1

′
}j∈{0,1,...,N−1}), (28)

αi
t+1

′
= fyaw(K

′
t,β

i
t+1), (29)

βi
t+1 = fcontrol(β

i
t ,u

i
t), (30)325

Ht(st,ut) defined by Equation (23). (31)

The heuristic is the discounted, weighted sum of the future theoretical power outputs. By choosing certain optimized yaw

settings ut for the current time step, the heuristic uses a naive controller over a future time horizon of L time steps to evaluate

how well the turbines will manage to stay aligned with the predicted wind directions. The higher the potential future energy

production, the more critical it becomes for the current yaw settings to not rotate the turbines too far away from the predicted330

wind direction.

For example, if the future expected power outputs are high, the heuristic will encourage yaw settings that will put the turbines

in good orientations for the future. The heuristic will penalize the objective function for yaw settings that will prevent turbines

from keeping track of the wind. An illustration of the heuristic is given in Figure 3, describing the first term (wake steering

optimization) and the second term (heuristic based on a wind tracking control) of Equation (27).335

3.3 Upper bound

To have an upper bound in terms of performance (power output) of a wake steering strategy, the rotational constraints are

relaxed. It means that in Equation (6), the variables umin and umax are equal to -180 and 180 degrees, respectively. Between two

consecutive time steps, each turbine is assumed to be capable of reaching any orientation.

From a different point of view, the upper bound corresponds to the wake steering, instantaneous controller, but for a complete340

steady-state version of the system evolution presented in Algorithm 1. All time steps are entirely independent from each other,

as there are no longer any rotational constraints for the turbines.

The same objective function of the instantaneous controller, presented in Subsubsection 3.2.1 is used. It always runs un-

der no foresight (i.e., L= 0), as it performs wake steering for the current wind data only. Therefore, the state st is reduced

to {K ′
t,V

′
t ,{βi

t}i∈{0,1,...,N−1}}. The yaw settings computed by the upper bound would not be admissible in reality if the345

corresponding targeted orientations are too far away from the current ones.

4 Simulations

In Subsection 4.1 the process used to generate wind data is described and in Subsection 4.2 the experiment setting is given.

Finally, the results and the empirical conclusions that can be drawn are explained in Subsection 4.3.
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Figure 3. Illustration of the heuristic for a turbine i at time step t for two different cases. The horizon is L= 2 and the wind data is the

same for cases A and B. The rotation zone represents the range of possible orientations a turbine can take at a given time step after being

controlled. First, wake steering optimization is performed to find the setting ui
t, which yields a power output of PA MW for case A and PB

MW for case B at time step t. By considering PA > PB , the case A would be preferred. But then the heuristic computes the future expected

yaw angles, if a naive wind tracking solution is used. From these expected yaw angles, the heuristic computes the expected power outputs

based on the predicted wind speeds. Here, while the yaw setting of case A gives a better immediate solution than the one given by case B, it

keeps the turbine further away (i.e., giving greater yaw angles) from the future wind. The solution of case B would then be preferable. The

heuristic encourages the choice of yaw settings that may not be the best at the current time step but that ensure future power output.
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4.1 Wind data scenario350

The wind data time series are artificially generated with custom Wiener processes. The wind directions {Kt}t∈{0,1,...,H+L−1}

are computed with Algorithm 2. The wind speeds {Vt}t∈{0,1,...,H+L−1} are computed with Algorithm 3. To generate the time

series, an initial value is cumulatively incremented at each time step by variable mt. Each increment mt is independently

sampled from a Normal distribution of mean 0 and standard deviation σt, such that

σt = τ ×
√
δXt , ∀ t ∈ {0,1, . . . ,H +L− 1} (32)355

with τ a normalization variable with regard to the number and range of the generated values and δXt a variation parameter for

the wind variable X (either the direction or the speed).

Algorithm 2 Wind directions generator
Input: H +L number of points

Kinit initial wind direction

δKmin, δ
K
max bounds for the variation variable

τ = 360/(H +L)

for t= {0,1, . . . ,H +L− 1} do

δKt ∼ U(δKmin, δ
K
max)

σt = τ ×
√

δKt

mt ∼N(0,σt)

Kt = (Kinit +
∑t

i=0mi) mod 360

end for

Output: {Kt}t∈{0,1,...,H+L−1} wind directions time series

Algorithm 3 Wind speeds generator
Input: H +L number of points

Vinit initial wind speed

νmin,νmax bounds for the wind speed

δVmin, δ
V
max bounds for the variation variable

τ = (νmax − νmin)/(H +L)

for t= {0,1, . . . ,H +L− 1} do

δVt ∼ U(δVmin, δ
V
max)

σt = τ ×
√

δVt

mt ∼N(0,σt)

Vt = mirrored(Ninit +
∑t

i=0mi)

end for

Output: {Vt}t∈{0,1,...,H+L−1} wind speeds time series
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To maintain the wind directions in the range of valid values, i.e., [0,360] [degrees], the modulo operation is sufficient. To

maintain the wind speeds in the range of valid values, i.e., [νmin,νmax] [m/s], a mirrored function as explained in Figure 4 is

proposed. The generated values inside the wind speed bounds are not modified. The generated values outside the bounds are360

recursively mirrored inside the bounds.

Figure 4. Toy example of the mirrored function used to keep the generated wind speeds inside specific bounds. Raw data is generated thanks

to a process described by Algorithm 3. Raw data points inside the wind speed bounds are not modified: the black and red curves overlap.

Data points outside the wind speed bounds are recursively mirrored inside the bounds.

The variable δXt defines the level of variation of the wind variable X time series (either the direction or the speed). When

equal to 0, the signal is constant. As δXt increases, the absolute value of the increments increases in average. At each time

step, δXt is sampled from a uniform distribution defined between δXmin and δXmax. When δXmin and δXmax are equal, all increments

{mt}t∈{0,1,...,H+L−1} are independently sampled from the same distribution: the generated time series is stationary with365

regard to the increments. When δXmin < δXmax, increments are independently sampled from different distributions: the generated

time series is non-stationary with regard to the increments. In Figure 5 the impact of the δKt variable is shown for the wind

direction.
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(a) Sine and cosine values for δKt = 1. (b) Sine and cosine values for δKt = 4. (c) Sine and cosine values for δKt = 9.

Figure 5. Example of different wind direction signals generated with different δKt values, considering that δKt = δKmin = δKmax for all t ∈

{0,1, . . . ,49} and Kinit = 7 degrees. If δKt = 0, all the generated points are equal to Kinit. The sine and cosine values are plotted for illustration

convenience (it avoids the discontinuity issue of degrees). Note that the behavior shown in this example is the same for the wind speed, but

values are in the range [νmin,νmax].

4.2 Experimental setting

The function f i
simulation(Kt,Vt,{αj

t+1}j∈{0,1,...,N−1}) computes the local wind speed in front of a turbine i at a time step t given370

wind data Kt,Vt and the yaw of each turbine {αj
t+1}j∈{0,1,...,N−1}. This function, introduced in Subsection 2.5, is assured by

the low-fidelity, steady-state simulator FLORIS (NREL, 2021). FLORIS is used with a Gauss Curl hybrid wake model. The

Gaussian velocity model is implemented based on Bastankhah and Porté-Agel (2016) and Niayifar and Porté-Agel (2016). To

compute the deflection of the wakes depending on the yaws, the models described by Bastankhah and Porté-Agel (2016) and

King et al. (2021) are used. The turbulence model described by Crespo and Herna´ndez (1996) is used. The optional wake375

modelling options "secondary steering", "yaw added recovery" and "transverse velocities", provided by FLORIS and giving

additional features to the f i
simulation function, are enabled.

A wind farm of 34 International Energy Agency (IEA) identical 15 MW (Gaertner et al., 2020) wind turbines is used. It

has cut-in and cut-out speeds of νcut-in = 3 m/s and νcut-out = 25 m/s, respectively. Each wind turbine has a rotor diameter of

242.24 m, i.e., a rotor area of 46087 m2. The air density is ρ= 1.225 kg/m3 and the tunable parameter accounting for the power380

losses due to misalignment is p= 1.88. WFFC strategies are sensible to the distances between turbines. To make the numerical

simulations more robust to the distances between turbines, a diamond shape is used for the layout. With a diamond shape, there

is an identical distance between each machine and its surrounding turbines. 34 machines create a sufficiently large wind farm

for wake steering to be impactful, and is sufficiently small for optimization to converge quickly. A FLORIS illustration of the

layout used is given in Figure 6.385
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Figure 6. Layout in the form of a diamond shape. The farm comprises 34 identical IEA 15 MW wind turbines. There is an identical space

equivalent to the diameter of four turbines between a machine and its adjacent turbines. A distance of four turbine diameters is sufficiently

small to create detrimental wake effects for the farm and therefore, the optimization pertinent; and sufficient large for the design to be realistic.

Here the direction is 287.4 degrees, the wind speed is 8.4 m/s and yaws are computed with the instantaneous wake steering controller.

The limits for the wind speed are νmin = 4 m/s and νmax = 10 m/s. The interval [4,10] m/s corresponds, approximately, to

the ascending part of the power curve, where wake steering is the most beneficial for the farm. For wind speeds of between

[10,25] m/s, the power output is constant; if the wind speed is reduced because of wake effects, there will be no power deficit.

Because this work conducts a sensitivity analysis of yaw control, the wind speed is kept in the range of [4,10] m/s.

The horizon size is H = 144 and the length of the foresight for the prediction-based controller is L= 10. The initial wind390

values are Kinit = 270 degrees and Vinit = 8 m/s. The discount factor used for the heuristic Ht is γ = 0.99. The precision

parameter for the GS methods is ny = 120, giving the grid-search method good precision.

More technical details regarding the simulations and numerical instabilities are given in Appendix B. The time step duration

∆t is intentionally undefined, as it will be explained in Subsubsection 4.3.1. Depending on the time step duration value,

different interpretations of the same results will be made. For example, if ∆t corresponds to 5 minutes, then the horizon395

L= 10 means that the prediction-based controller has access to a prediction of the wind of 50 minutes. In Table 2, a summary

of the experimental setting used in this work is given.
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name variable value

number of turbines N 34

rotor area A 46087 m2

low-fidelity simulator f i
simulation FLORIS

air density ρ 1.225 [kg/m3]

cosine loss exponent yaw p 1.88

cut-in wind speed νcut-in 3 m/s

cut-out wind speed νcut-out 25 m/s

wind speed limits [νmin,νmax] [4, 10] m/s

horizon H 144

foresight length L 10

initial global wind direction Kinit 270 degrees

initial global wind speed Vinit 8 m/s

discount factor γ 0.99

precision parameter ny 120

Table 2. Detail of the variables and their values used across the simulations. This configuration is shared by all the numerical simulations.

The foresight length is equal to 10 only for the prediction-based controller. Otherwise, it is equal to 0. The yaw rotational constraints will

vary across the simulations, but αcut-in and αcut-out are always equal to umin and umax, respectively.

4.3 Results

To empirically demonstrate the importance of optimizing yaw control over a long-term time horizon, numerical simulations

are performed with perfect and imperfect (noisy) wind predictions. In the graphs, for each curve, the centerline corresponds to400

the mean and the colored (shaded) area corresponds to the standard deviation of the results obtained through 11 Monte-Carlo

trials.

For one episode, the total farm power output of a controller C given by the Algorithm 1 is denoted PC =
∑H−1

t=0

∑N−1
i=0 P i

t .

The metric to benchmark a controller C is the power gain [%] between the total farm power output of C and the total farm

power output of the naive controller. The power gain is equal to 100 · (PC−Pnaive)
Pnaive

.405

4.3.1 Perfect predictions

The first set of simulations explores the performance of each controller over increasing variations of wind directions, using

perfect predictions. Each state comprises perfect information, i.e., ϵK,t = 0 and ϵV,t = 0 for all t ∈ {0,1, . . . ,153}. The perfor-

mance of each controller presented in Section 3 is tested for increasing values of δKt .

Numerical simulations are run on 21 different values of δKt , with δKt ∈ {0,1,2, . . . ,20}. The wind speed is always generated410

with δVt = 1. Because this work explores the impact of wind direction on wake steering, the magnitude of the wind speed

fluctuations are kept small. The wind direction and wind speed increments are stationary, δKt = δKmin = δKmax and δVt = δVmin =

δVmax for all t ∈ {0,1, . . . ,153}.
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The objective here is to study the impact of the wind direction variations on yaw control. The greater the δKt value, the

stronger the variations. Because the nacelles have a limited rotational speed, the study of the wind direction fluctuations is cru-415

cial for yaw control. The standard deviations of the wind direction time series are related to the δKt parameter in Equation (32).

To better illustrate the wind direction evolution, the time series ∆K defined as

∆K = {|fyaw(Kt+1,Kt)|}t∈{0,1,...,153}, (33)

is used. Each value of ∆K lies between [0,180] [degrees]. To study the magnitude of the variations, the absolute values are

taken. Some illustrations of the ∆K time series for different values of δKt are given in Figure 7.420

(a) For each δKt , mean values with their standard

deviation of the time series ∆K.

(b) Example of time series ∆K for different values of δKt ∈ {0,4,8,12,16,20}. Again, as the δKt

parameter increases, the magnitude of the variations of the wind direction increases.

Figure 7. Illustration of the influence of δKt on the magnitude of wind direction variations ∆K. In Subfigure 7a, the mean value of wind

direction variations is given as a function of δKt . In Subfigure 7b, some examples are provided of the time series ∆K for different values of

δKt . For example, for δKt = 5, the mean absolute variations of the wind direction is around 6.11 degrees.

In Figure 8, the power gains of each controller compared to a naive controller are plotted. In Subfigure 8a, the yaw limits are

umin = αcut-in =−15 degrees and umax = αcut-out = 15 degrees. And in Subfigure 8b, the yaw limits are umin = αcut-in =−30

degrees and umax = αcut-out = 30 degrees. These yaw constraints offer enough liberty for a wind turbine to rotate between two

consecutive time steps and are small enough to limit the induced fatigue. The detailed results are given in Appendix C, in

Tables C1 and C2.425

As the variations of the wind direction increase, the performance of each controller diverges from each other. For small

variations of the wind direction, both the instantaneous controller and the prediction-based controller give similar results. When

the variations of the wind direction become large, the instantaneous controller struggles to maintain good performance. The

heuristic of the prediction-based controller manages to find better yaw control strategies. The gap between the performance of

the upper bound with the other controllers shows how strong wind direction variations, in relation with the rotational constraints430

of each machine, impact yaw control.
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(a) Yaw limits are umin = αcut-in =−15 degrees and umax = αcut-out = 15

degrees. At δKt = 6, the prediction-based controller increases the power

output of a naive approach by 6.23 %. It corresponds to absolute variations

of the wind direction of 7.34 degrees as displayed in Figure 7a.

(b) Yaw limits are umin = αcut-in =−30 degrees and umax = αcut-out = 30

degrees. At δKt = 10, the prediction-based controller increases the power

output of a naive approach by 8.93 %. It corresponds to absolute variations

of the wind direction of 12.23 degrees as displayed in Figure 7a.

Figure 8. Considering future wind data in a steady-state yaw control optimization becomes mandatory when δkt ⩾ 6 for yaw constraints

[−15,15] degrees and δkt ⩾ 10 for yaw constraints [−30,30]. From these points, the heuristic Ht provided by the prediction-based controller

greatly improves the performance of a classic instantaneous steady-state optimization.

Based on the results given in Figure 8, several general statements can be drawn. As previously said, the time step duration is

intentionally imprecise. The reason is that different values of ∆t will lead to different interpretations. The following statement

is true for any values of ∆t, with respect to the hypotheses of the transition regime, described in Subsection 2.6.

– For wind turbines that can rotate from -15 to 15 degrees every ∆t minutes, if the wind direction changes by more than435

7.34 degrees every ∆t minutes, it is important to consider future wind data in a steady-state yaw control optimization.

– For wind turbines that can rotated from -30 to 30 degrees every ∆t minutes, if the wind direction changes by more than

12.23 degrees every ∆t minutes, it is important to consider future wind data in a steady-state yaw control optimization.

4.3.2 Noisy predictions

In the second set of simulations, the robustness to noisy predictions of each controller is tested. The yaw limits are umin =440

αcut-in =−15 degrees and umax = αcut-out = 15 degrees. The {Kt}t∈{0,1,...,153} time series are computed with δKmin = 0 and

δKmax = 20. The time series {Vt}t∈{0,1,...,153} are always computed with δVt = δVmin = δVmax = 1. Because δKmin ̸= δKmax, the incre-

ments are non-stationary for the wind direction. The corresponding ∆K time series is plotted in Figure 9.
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Figure 9. Plot of the time series ∆K for the 11 different seeds. Wind directions are generated with δKmin = 0 and δKmax = 20. The mean is

12.53 degrees and the standard deviation is 1.12. Here, the increments vary from one time step to another because they are non-stationary.

In Figure 10a, the noise for the wind direction is increasing, i.e., ϵK,t ∼ U(−zK ,zK) with zK ∈ {0,1, . . . ,15}, for each t ∈
{0,1, . . . ,153}. The noise for the wind speed is always sampled from the same distribution, i.e., ϵV,t ∼ U(−1,1). In Figure 10b,445

the noise for the wind speed is increasing, i.e., ϵV,t ∼ u(−zV ,zV ) with zV ∈ {0,1, . . . ,7}, for each t ∈ {0,1, . . . ,153}. The

noise for the wind direction is always sampled from the same distribution, i.e., ϵK,t ∼ U(−1,1).

Only the noise applied to the wind directions strongly impacts the different policies. The prediction-based controller results

in a poorer performance than a naive controller from a noise of 8 degrees. The wind speed noise insignificantly affects the

performance of the algorithms. This corroborates the fact that yaw control mainly depends on the wind directions.450

(a) The noises for the wind directions are ϵK,t ∼ U(−zK ,zK) with

zK ∈ {0,1, . . . ,15}, for each t ∈ {0,1, . . . ,153}. The noise for the wind

speeds are always sampled from a Uniform distribution U(−1,1).

(b) The noises for the wind speeds are ϵV,t ∼ U(−zV ,zV ) with

zV ∈ {0,1, . . . ,7}, for each t ∈ {0,1, . . . ,153}. The noise for the wind

directions are always sampled from a Uniform distribution U(−1,1).

Figure 10. Only the noise applied to the wind direction strongly impacts the performance of the algorithms. This corroborates the important

dependence between yaw control and the variations of the wind direction. Because the prediction-based controller uses more wind data

points, it is more robust than the instantaneous controller.
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5 Conclusions

As WFFC becomes more important to increase the energy production of wind farms, this work studies wake steering as

a steady-state optimization problem over time. The yaw control problem is formalized as successive multiple steady-state

optimization problems interconnected by the rotational constraints of the turbines and the evolution of the wind. Because the

function computing the power outputs is steady-state, only the dynamics of an homogeneous, global wind and the rotational455

constraints of the machines are captured. Low-fidelity, steady-state simulators are used because they are not time consuming

and they are suitable for optimization. But future works should perform the same studies with continuous and higher-fidelity

simulators such as HAWC2Farm (Liew et al., 2023), better capturing the dynamics of the wake effects, from one time step to

another. This becomes especially important when the variations of the wind direction become important.

Traditionally, yaw control is optimized in a steady-state manner. Yaw settings are computed so that they maximize the460

instantaneous power output of the farm. To optimize wake steering over a long-term time horizon, an MPC method is usually

used. Such an approach increases the complexity of the optimization problem, making it harder to solve. To overcome such

complexity, a reformulation of the steady-state optimization problem is proposed in this work to consider future wind data.

The traditional objective function is augmented by a new heuristic estimating the future, expected, theoretical power outputs

of the farm, weighted by how far the turbines will be from the wind if they are controlled by a naive approach. The new465

prediction-based controller proposed in this paper has the same number of decision variables as an instantaneous optimization.

Lastly, this work conducts a sensitivity analysis of yaw control and the variations of the wind direction. It demonstrates

the importance of optimizing yaw control over future wind data when the variations of the wind directions become large. For

strong wind variations, the new prediction-based controller greatly improves the performance without increasing complexity.

This work shows for example that if deploying wind turbines that can rotate from -15 to 15 degrees every ∆t minutes, and470

if the wind direction changes by more than 7.34 degrees every ∆t minutes, it is important to consider future wind data in

a steady-state yaw control optimization. Experiments empirically show the effectiveness of the simplifications proposed in

this work in a specific experimental setting, but future research could better justify and quantify their impact on the original,

prediction-based, decision problem.

This study is conducted on synthetic wind data so future works should explore the same question of dependence between475

the wind variations and yaw control over real wind data. Because the hypotheses regarding the transition regime may be far

from reality, the proposed heuristic could be combined with low-pass filters and hysteresis mechanisms for more realistic

implementations. Future works should incorporate the fatigue in the optimization process, as WFFC can have a major impact

on the lifetime of each turbine. For example, the objective function of the prediction-based controller could be augmented by

a heuristic taking into account the magnitude of the yaw actuations. However, the results provided by this work also suggest480

that with wake steering strategies more robust to wind direction variations, it would be possible to reach the same level of

performance with fewer yaw actuations.
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Appendix A: Gauss-Seidel method

The GS method iterates over each turbine in the direction of the wind, one by one, from upstream turbines to downstream ones.

The turbines’ default coordinates {cxi, cyi}i∈{0,1,...,N−1} [m] are rotated such that the wind is coming from the west. The485

initial yaw settings are computed with a naive controller. By doing so, the initial solution is already a good enough solution

that keeps turbines as aligned with the wind as possible. At each iteration, it solves the optimization problem by varying the

yaw setting of the current turbine, considering all the others fixed. To solve each optimization problem on one variable, a grid-

search approach over a discretized solution space S is used. Once solved, the setting for turbine k is fixed and optimization is

conducted again on turbine k+1. Such approach gives good results because it exploits the sequential nature of the low-fidelity490

simulation.

Algorithm A1 GS method

Input: st input state

cxi
t, cy

i
t = (cxi, cyi) ·

( cos(270−K′
t) −sin(270−K′

t)

sin(270−K′
t) cos(270−K′

t)

)
▷ rotate turbines

R= {i0, i1, . . . , iN−1 | cxi0
t ⩽ cxi1

t ⩽ . . .⩽ cx
iN−1

t } ▷ order turbines

(ui0
t,0,u

i1
t,0, . . . ,u

iN−1

t,0 ) = πnaive(st) ▷ initialize yaw settings

for i ∈R do

S = {umin + l · umax−umin
ny−1 }, ∀ l ∈ {0,1, . . . ,ny − 1} ▷ discretized solution space

U = (ui0
t,1,u

i1
t,1, . . . ,u

i, . . . ,u
iN−2

t,0 ,u
iN−1

t,0 ) ▷ fix all other settings

ui
t,1 ∈ argmax

ui∈S

fobj(st,U) ▷ grid-search optimization

end for

Output: (ui0
t,1,u

i1
t,1, . . . ,u

iN−1

t,1 ) yaw settings

Appendix B: Numerical instabilities

First, some modifications have been made to FLORIS in order to shut down those turbines too much misaligned with the wind

during a simulation. At a time step t, for a given turbine i, all the possible yaw settings can give a similar power output. In

such cases, the best yaw setting is the one staying the closest to the wind direction, in order to prevent future misalignment.495

To incorporate such behavior in the optimization process and to make the controllers robust to numerical instabilities, the

following steps are taken.

– Round out the power output computed by the simulator.

– Take the yaw setting ui
t maximizing the objective function.

– Find all the yaw settings giving a performance close to the maximum.500

– Among these selected settings, keep the one closest to the setting corresponding to the naive controller.
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To compute the solutions of the upper-bound controller described in Subsection 3.3, a trick is used. Relaxing the rotational

constraints of the turbines, i.e., making umin and umax equal to -180 and 180 degrees, respectively, increases the solution space.

With the same precision parameter ny , it reduces the precision of the grid-search method. To keep the solution space between

umin and umax, and therefore, to not alter the precision of the grid-search method, the evolution of the system described in505

Algorithm 1 are slightly modified. At the beginning of each time step, every turbine is realigned with the wind direction. Such

trick does not alter the solutions given by the upper-bound controller because good yaw settings are the one keeping turbines

close to the wind direction.

Appendix C: Detailed results

δKt 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

naive 1.14 1.89 2.04 2.05 2.06 2.05 2.05 2.04 2.02 1.95 1.87 1.81 1.75 1.64 1.58 1.49 1.37 1.29 1.19 1.10 1.03

instantaneous 1.49 2.12 2.20 2.20 2.21 2.18 2.17 2.14 2.10 2.00 1.89 1.85 1.78 1.67 1.60 1.49 1.40 1.32 1.25 1.16 1.08

prediction_based 1.49 2.12 2.20 2.20 2.20 2.18 2.18 2.17 2.15 2.09 2.03 1.98 1.92 1.82 1.77 1.68 1.61 1.52 1.43 1.35 1.27

upper_bound 1.50 2.13 2.22 2.23 2.24 2.23 2.24 2.24 2.24 2.23 2.22 2.23 2.24 2.23 2.25 2.23 2.23 2.25 2.24 2.25 2.23

Table C1. Detailed results of the simulations conducted on perfect predictions in Subsubsection 4.3.1. Yaw limits are umin = αcut-in =−15

degrees and umax = αcut-out = 15 degrees. For each δKt are given the total power output of the farm in 104 MW for each controller.

δKt 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

naive 1.14 1.89 2.04 2.05 2.06 2.05 2.06 2.06 2.07 2.05 2.04 2.04 2.06 2.04 2.05 2.01 1.99 2.00 1.97 1.94 1.87

instantaneous 1.65 2.18 2.25 2.25 2.26 2.25 2.25 2.25 2.25 2.24 2.22 2.21 2.21 2.19 2.20 2.15 2.11 2.10 2.07 2.04 1.96

prediction_based 1.65 2.18 2.25 2.25 2.26 2.25 2.25 2.25 2.25 2.24 2.22 2.22 2.22 2.20 2.22 2.18 2.17 2.16 2.13 2.12 2.07

upper_bound 1.65 2.19 2.26 2.27 2.27 2.26 2.27 2.27 2.28 2.27 2.26 2.26 2.27 2.27 2.28 2.27 2.27 2.28 2.28 2.28 2.27

Table C2. Detailed results of the simulations conducted on perfect predictions in Subsubsection 4.3.1. Yaw limits are umin = αcut-in =−30

degrees and umax = αcut-out = 30 degrees. For each δKt are given the total power output of the farm in 104 MW for each controller.
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Acronyms515

FLORIS FLOw Redirection and Induction in Steady State. 5, 17, 19, 24

GS Gauss-Seidel. 10, 18, 24

IEA International Energy Agency. 17, 18

LES large-eddy simulations. 2

LUT lookup table. 3, 4520

ML machine learning. 4

MPC model predictive control. 4, 11, 23

MW megawatts. 6, 7, 14, 17, 18, 25

RL reinforcement learning. 4

WFFC wind farm flow control. 2–4, 9, 17, 23525
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