
Reviewer 1 response
The authors thank the reviewer for their thorough and thoughtful comments
and questions, which have inspired changes to the manuscript that significantly
improve its quality. Please see below for responses to specific questions and
requests.

The main area where the paper can be improved is showing how
well the wake models predict the change in power or energy from
wake steering. The results focus on the ability of the different
model variations to predict the power ratios of different sets of
turbines relative to unwaked turbines, which is useful for general
wake model validation. But since the goal of the models is to
optimize yaw offsets for wake steering to increase power capture,
the ability of the models to predict the change in power with wake
steering compared to normal operation should be investigated in
more detail. For example, Figs. 12 and 13 show the power ratios
as a function of wind direction for two waked turbines with and
without wake steering, but the expected change in power from
wake steering is probably small for these turbines and it is hard
to determine how accurately the models capture this change from
the separate plots. Plots showing the measured and predicted
difference between the power ratios for wake steering and normal
operation cases would be more effective at showing how well
the model captures the change in energy from wake steering.
Further, similar power ratio plots for upstream turbines (where
we’d expect a power loss from wake steering), combined upstream
and downstream turbines, and larger clusters of turbines (e.g.,
turbines 9-12 and 19-24) could help validate the models in a
wider variety of scenarios capturing both power losses and gains
at different turbines from wake steering. Aggregate metrics such
as the total power or energy gain over a range of wind directions
could be helpful too.

This is a valid point. It is true that the ability of the model to predict wake
steering changes is not tested thoroughly in this study, i.e., the ability to predict
change is implied from the ability to predict both conditions in the absolute.
We have one time series in figure 17 to show that the model can predict power
and power ratio well in steering cases, but have not shown its effectiveness at
predicting the change due to steering, nor have we shown the ability to predict
the sum of upstream and downstream turbines to analyze the overall gain from
wake steering. This particular dataset unfortunately does not have enough
steering operation to answer that questions rigorously, but is the focus of ongoing
work as the system has accumulated more time in operation. Text has been
added to the manuscript to explain the need to test this in future work.
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1. Pg. 1, ln. 18: Another reference to consider citing for the
magnitude of predicted wake losses is Lee and Fields (2021):
https://doi.org/10.5194/wes-6-311-2021, which shows typi-
cal losses between 5% and 20%.

This reference has been added to the paper.

2. Pg. 2, ln. 29: “non-waked inflow”: Or more accurately, the
downstream turbine will experience less wake overlap or a
reduction in wake velocity deficits.

Thank you for this clarification. The manuscript has been updated accordingly.

3. Pg. 3, ln. 59: “the timescales on which wind characteristics
change.”: Can you elaborate on this? For example, the wind
characteristics change too quickly for the extremum seeking
controller to converge?

Essentially yes. There are more constraints that make extremum-seeking control
challenging for the present case, and these have been added to the manuscript,
along with the clarification regarding wind direction variability.

4. Pg. 3, ln. 70: “helps the system account for spatial variation
in wind characteristics.”: It is hard to tell what helps the
system account for spatial variation in wind characteristics.
Can you clarify what part of the discussion above you are
referring to?

This has been clarified in the text. We were trying to describe the problem
associated with control decisions being made with only local wind information.
Since wind direction in particular can vary in space and time, it is not necessarily
correct to assume the wind direction at an upstream turbine is equal to that of
a downstream turbine, and this assumption could lead to suboptimal control,
especially with the large row spacing studied here.

5. Pg. 5, ln. 100: “The farm layout presents a challenge for
wake steering control”: Another challenge worth mentioning
here is that because of the long distance between turbines
in the predominant wind direction, wake losses are expected
to be relatively low (if that is the case), so there is probably
not much room for wake steering to increase power.
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As we see in figure 11, there is an approximate 17% wake loss for second row
turbines, and there is wind direction dependence, which indicates there is room
for improvement from wake steering. However, improvements will likely be
limited to 5–10%, judging by the difference between the peaks and troughs in
the power ratio. Comments along these lines have been added to the paper.

6. Section 2.4.1: When estimating the Cp and Ct curves us-
ing nacelle wind speed measurements, do you account for
potential biases (that are also potentially turbine-specific)
between the nacelle wind speed measurements and the true
freestream wind speed (i.e., by determining and then ap-
plying a nacelle transfer function)? Can you discuss how
these biases could affect your estimation of the Cp and Ct
parameters?

If biases between the nacelle wind speed measurements and the true freestream
wind speed are not turbine-specific, our fitting procedure for CP will automati-
cally account for them. This is because we are using the nacelle anemometer
readings themselves to determine both CP and to estimate the ambient wind
speed. This was part of our motivation for deriving the CP curve from data
rather than using that provided by the manufacturer.

If biases are turbine-specific, this approach could run into issues. However, as
noted in the paper, fitting at an individual turbine level was generally impractical
due to limited data for fitting at each turbine. Since all turbines were of the
same model, it is less likely to pose a significant issue.

We have no independent way to verify the CT curves, and thus we are assuming
that the wind speeds in the thrust coefficient tables match those from the nacelle
anemometers.

We have added additional content to the paper to briefly discuss these points.

7. Eq. 3: The power loss is more accurately modeled in
FLORIS by scaling the effective wind speed experienced by
the turbine by cosine(gamma)ˆ(p/3). This way power is
inherently kept at rated power above the rated wind speed
when the turbine yaws.

We thank the reviewer for the explanation, which we have adapted and added in
the latest revision.

3



8. Pg. 9, ln. 187 “These can be excluded by filtering any
turbine wind speeds. . . ”: Could you clarify whether you
apply this filtering in your wind speed estimator?

We have added text to clarify that this filtering was not applied in the current
study.

9. Pg. 10, ln. 230: “we also have access to the wind direction
reported by GNSS”: A GNSS measures the nacelle orien-
tation, but how do you determine the wind direction from
the GNSS?

We have updated the text to clarify that we use the GNSS nacelle orientation
combined with the measured yaw error to compute the wind direction.

10. Pg. 11, ln. 237: “The wind direction obtained through
this approach, however, may differ from that needed in
the model. . . ”: If you are using GNSS wind direction mea-
surements, which should already provide accurate nacelle
orientation measurements relative to true north, why would
further calibration be needed?

There are a few reasons why using GNSS wind direction measurements may not
completely eliminate the need to further calibration: 1. There may be biases
in the yaw misalignment values. For example, even if we have an accurate
measurement of the nacelle direction, we may not have an accurate measurement
of the yaw misalignment angles, causing our wind direction measurement to
be incorrect. 2. There may be issues in the GNSS compass orientations; e.g.,
the compasses may be installed a few degrees offset from the nacelle direction.
3. Features (e.g., mountains) or physical processes (e.g., Coriolis effects) not
present in the model may cause the wakes to deflect as they move downstream.
One way to handle this is to modify the wind direction in the model so that the
wakes arrive at the desired location downstream in the model.

Also, is the “manual” calibration of SCADA signals mentioned
in the previous paragraph the same process as described in the
rest of this section?

We’ve added text to clarify how this “manual” calibration was completed.
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11. Pg. 11, ln. 239 and pg. 12, ln. 271: “waking directions”:
How is “waking direction” different from “wind direction”
as used here? If there is no difference, consider using “wind
direction” to avoid confusion.

The meaning of “waking direction” is a bit different between the two examples
noted and is indeed unclear. We have updated the text so that in the first
instance, we have “the wind direction to best capture waking”, and in the second
instance, we have used “waking wind directions.”

12. Equation 9: What temporal averaging period do you use
when calculating the power ratios?

We use five-minute temporal averaging period and have now added text to clarify
this.

13. Pg. 12, ln. 255: “we filter for yaw errors below 5 degrees”:
Do you require all of the reference turbines to have yaw
errors less than 5 degrees as well, or only the target turbine?

We require both the target and reference turbines to meet all the specified
filtering criteria (including having yaw errors below 5 degrees). We have added
text to clarify this.

14. Section 2.5: To confirm, how exactly is the combined
EWM/output corrector model intended to be used for opti-
mization? Are the input features measured at the current
1-minute time step k used to find the optimal yaw offsets
to be implemented during 1-minute period k+1?

That is the intention. Our current set up uses a 30 minute data buffer to estimate
the features from the model at time k, at which point our optimization should
take less than a minute to run. The optimal set point is determined roughly 60
seconds after the data is collected, and held constant over the next minute of
operation.

15. Pg. 16, ln. 345: “we have mTk possible features”: What
does “T” represent?

“T” represents the number of time lags considered in the feature space. This
variable definition was not included in the original manuscript, and it has been
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added.

16. Pg. 17: Why aren’t any EWM inputs used as features in
the models? Were they not helpful in improving estimation
accuracy?

This is an excellent question, and certainly a topic that can be explored much
more deeply than was done in this paper.Much of the feature space exploration
was limited by the computational expense of training and testing such a large
number of models on large datasets. There are a very large number (infinite?)
of potential features we could use here, and we limited the selection based on
the following logic:

The EWM inputs are smoothed to allow EWM to have an acceptable input.
Too much spatial heterogeneity in the wind speed or wind direction inputs
appear to cause EWMs flow fields to deteriorate due to numerical issues. If the
heterogeneity is physically meaningful, but not representable with an EWM,
then the goal of the output corrector is to learn this behavior and correct for the
over simplified boundary conditions used in the EWM. We do, however, include
the EWM’s power prediction at each turbine, which is strongly correlated with
the EWM’s inputs.

17. Pg. 17, ln. 389: “1 minute rolling average of SCADA power”
is listed twice.

Thank you for catching this. We’ve amended the list to be consistent with the
feature set listed in our code.

18. Pg. 17, ln. 392: “but with the target turbine’s wind speed
and power measurements omitted”. Are the 1-minute lagged
power measurements at the target turbine omitted as well,
or are they still used as features?

The 1-minute lagged power measurements at the target turbine are still used as
features. The goal here is to capture any rotor inertia effects that are missed in
the steady state approach. However, as you can guess, there is some risk that
the model simply uses the previous power measurement as the next prediction!
This does become an important model features, but we do see evidence that the
model is not simply time shifting the signal.

19. Pg. 18, ln. 405: “was reduced by a factor of 8 from the IEC
value”: Why did you choose to make the waked sectors so
narrow? This seems too narrow to capture the true width
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of the wakes during higher turbulence intensities.

This is a challenging parameter to select. If it is much higher, then the waked
sectors start to overlap too strongly and they are merged together into larger
partitions. At a certain point, the partitioning deteriorates to a single bin. Using
small bins results in a more targeted model and less features available for training.
But, it increases our dataset size, because if we have a large number of features,
then we need to discard any rows that have missing values. The more features,
the more likely we are to have a missing value! So, decreasing the bin width
helps in this regard.

Ultimately, the deciding factor needs to be the suitability of the model for control.
We found that models trained with a large number of correlated features tended
to struggle to find which upstream turbine was responsible for the waking. This
was evident when we adjusted the yaw error signal of a turbine that should (in
a given wind sector) have no effect on a particular down stream turbine, but
the model predicted a power change anyway. By switching to smaller sectors,
we were able to eliminate this effect, as far as we could tell with the testing
performed.

A future concept could be to allow for over lapping bins (no longer partitions),
and then use a weighted ensemble of model predictions to determine what the
most likely candidate is. As for the effect at higher turbulence intensities, we do
not anticipate much benefit for tuning a model for accuracy at higher TIs.

20. Pg. 18, ln. 416: “Any column that was missing more than
60% of the data. . . ”: Can you clarify what columns and
rows correspond to in the feature matrix? Does this mean
that features are removed if they are missing for more than
60% of the turbines, and then turbines are removed if any
of their features are missing?

Thanks for catching this. We often use columns/features interchangeably due to
our data format, and that is not clear. Columns in this context refer to features,
and rows refer to individual timestamps of data. We’ve updated the language to
reflect this in the paper. Features are removed if they are missing for more than
60% of the timestamps, which will happen for every model that considers that
feature in its training.

That filtering is done on a per-model basis, but since each model uses the same
dataset, it will apply to any turbine which considers using that feature.

21. Pg. 18, ln. 416: Additionally, can you discuss how the
output predictor model deals with missing input features
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during the training and prediction stages? As stated earlier,
a maximum of 404 features can be used to predict waked
turbines’ power. It seems likely that some of this data
would be missing a significant amount of the time. Can the
model still be used to predict power if it uses a different
combination of available input features than were used for
training? And can the training stage be performed using
different combinations of available input features for each
1-minute sample?

We’ve added additional text to clarify this point, and discussed how our dimen-
sionality reduction algorithm helps address the issues caused by a high frequency
of missing data occurring. In short, we do no imputation, and all features used
during training must be available, otherwise we revert that model back to the
EWM. Our dimensionality reduction algorithm creates a large number of models
which depend on relatively few features, which reduces the likelihood that any
specific model will encounter a missing feature. This is in contrast to a model
like LightGBM, which automatically imputes missing data during prediction,
which we deemed too risky for control applications of physical systems.

22. Pg. 18, ln. 430: “the model should accurately capture
the mean power loss due to waking as a function of wind
direction, wind speed, and TI.”: In addition to wind di-
rection, wind speed, and TI, the model should be able to
predict power as a function of yaw misalignment. How is
this validated?

Standard techniques in machine learning can be used to validate the model
predictions in an aggregate sense and on individual predictions (e.g., residual
analysis). In addition we can take any given data point and synthetically modify
the yaw error of a particular turbine to study the effect of that feature on the
model predictions. However, performance cannot be guaranteed outside of the
region covered by the training dataset. Figure 18 in the original manuscript
shows how the model predictions change with yaw misalignment, and it shows
the discontinuity caused by the reversion back to FLORIS (at a turbine where
no high yaw error data is available). Handling this discontinuity can be achieved
through additional data collection (e.g., a design of experiments potentially).

23. Pg. 22, ln. 489: “The correlation coefficient of the power
ratio is also strongly affected by modeling errors across
the entire plant because incorrect power predictions at the
reference turbines will affect the power ratio predicted at
all turbines”: Wouldn’t some errors in power prediction

8



tend to cancel out across the farm when using the power
ratio metric? For example if power is underpredicted at all
turbines in the farm (both unwaked and waked), then the
errors would tend to cancel out when calculating the power
ratio.

In our experience, it depends on the particular type of error. Some simple model
biases are likely to cancel out (e.g., all power curves are biased the same for each
turbine and the bias is constant across wind speeds). But, a counter example is
when a turbine’s power curve is only biased in the knee of the power curve. If
one turbine is firmly in region two and another is in the knee of the power curve,
then one turbine’s prediction is unbiased and the other turbine’s prediction is
biased, and they will not cancel out.

When operating on large scale plants, we’ve seen evidence that significant noise
is introduced into the power ratio signal due to advection times, large scale
spatial heterogeneity, measurement errors, and model biases.

24. Table 2: Why does the correlation coefficient for turbines
8-13 decrease between models 1 and 2? The only change
in the model appears to be adding a 5-degree offset to the
wind direction, and these turbines are unwaked anyway.

While these turbines are unwaked, it’s likely that adding a 5-degree offset changes
the reference turbines used when computing the power ratios, which is responsible
for the slight change in the power ratio correlation coefficient metrics.

25. Pg. 27, ln. 550: “While the reason for the time lag is
unclear. . . ” and pg. 29, ln. 571: “Model 4 has an apparent
1 minute time lag. . . ”: The model features include the
target turbine’s 1-minute rolling average of SCADA power
lagged by one minute for freestream turbines (and maybe
for waked turbines? (see comment 18)). It seems likely that
this lagged power feature is one of the best predictors of
power during the next 1-minute period, so the model heavily
relies on this measurement, explaining the time lag in the
prediction time series. Can you discuss this possibility in
the paper? Additionally, for waked turbines, the current
1-minute averaged power of freestream turbines are used as
features. Since the wind speeds at the freestream turbines
could tend to travel downstream at the mean wind speed
and interact with the waked turbines after some time delay,
could this behavior also contribute to the visible prediction
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time lag?

These are all excellent points, and we’ve added a more detailed discussion
on this point to the paper. In short, hypothesizing about how a model is
making predictions (e.g., importance of the time lagged power) is different than
hypothesizing about why the model converged to that result in the first place.
The latter is what we’re attempting to highlight here: we gave the model multiple
time lagged features to allow the model to combine that information to obtain a
non-lagged prediction. But, the model sometimes converges to a lagged solution
anyway, and it’s unclear why.

26. Fig. 18: Please discuss this plot further. Is model 4 only
trained with yaw angle magnitudes > ~8 degrees, so the
model reverts to the EWM model for smaller yaw angles?
Why is the predicted power gain so much higher for model
4 than model 3? The gain above 1 appears to be an order
of magnitude higher with model 4 than model 3.

There is a lot going on behind the scenes in this plot–thank you for pointing out
the lack of clarity. We’ve updated the discussion to add additional details.

Reviewer 2 response
The authors thank the reviewer for their thorough and thoughtful comments
and questions, which have inspired changes to the manuscript that significantly
improve its quality. Please see below for responses to specific questions and
requests.

The authors rely on a novel approach, that does not need pre-
generated LUTs for the control strategy. Has the performance
of this approach be compared to a „conventional“ LUT-based
control? The question arises because field-tests and experiments
have shown that also the conventional yaw schedules, albeit not
capturing all possible input conditions combinations, are able to
produce power gains. Is the performance of the novel method
better?

This is a great question. The EWM could be replaced with a LUT, but to achieve
the level of versatility in this model, it would need to have many dimensions: -
Wind speed (one dimension per turbine if heterogeneous) - Wind direction (one
dimension per turbine if heterogeneous) - TI - One dimension for every turbine’s
power limit - One dimension every turbine’s online state Further, most LUTs
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are implemented at the turbine level, so the dimensions that involve more global
information could not exist.

Implementing heterogeneous wind speed and direction would produce even more
dimensions. As we’ve seen, these greatly impact model accuracy.

If we assume 10 steps in wind speed, 360 in wind direction, 10 in TI, and 10
turbines, a heterogeneous wind input LUT would have 360 million rows.

For a full farm implementation, where multiple rows of turbines can potentially
interact with each other, the LUT would grow to 400 billion rows.

Regarding which approach will produce the best optimization, keeping input
estimation the same, a many-dimensional LUT should do the same as an EWM.
Further, the output corrector could be employed to improve the lookup table
to improve optimization performance in a similar way. However, this would
increase deployment time, since every time the output corrector is retrained, the
entire LUT must be repopulated.

Comparing the achieved energy gain between a simple LUT and more complex
model-based controller has been studied in Howland et al. (2022), and this has
been noted in the manuscript.

Line 230: It would be good to clarify here that the GPS signal
of the edge devices signal follows he yaw position of the turbines
and not the wind vane signal (I am assuming), which is not
exactly the same thing.

The text has been updated to clarify this point.

Section 2.5 While it is very useful that the authors are transparent
with the design, the bullet lists in this section get a bit extensive.
Maybe the bullet points would be better allocated in a table.

The features have been condensed into a comma-separated list for compactness.

Section 2.4.5 Did the authors access the behaviour of TI for
different times of the day or under different stabilities? E.g.
binning for day/night regimes could be a way to understand the
variability in this variable.

We examined the turbulence intensity and found that it tended to be lower at
night and higher during the day, though there was variability between different
days and nights. We have not included that discussion here, however, since this
focuses on fitting the turbulence intensity in the model rather than observations
of the turbulence intensity in the field.
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The authors chose a quite short time scale of 1 min for many
environmental variables. It seems not entirely clear to me what
role time delays play in this study. Are they accounted for in
the model or model input? At 8 m/s the flow needs 160s to
propagate 13 rotor diameters. Does e.g the power of upstream
and downstream turbines show higher correlation after a time
delay? Could this be also a reason of the discrepancy mentioned
in line 550?

Time delays have not been studied in great detail here. We are making a quasi-
steady assumption, seeking a model that can accurately describe the power
production of the plant at the current time, and therefore optimize yaw angles
for that present time. Using longer lags or lagging other features could provide
better accuracy, but we feel that this is good grounds for future work.

It is likely that the ideal controller can optimize forward into the future over a
finite time horizon, taking into account yaw motion and convective delays, but
we also chose to defer this complexity for future work. Since it takes on the
order of a minute for a turbine to yaw to actuate wake steering, this at least
provides the lower limit for how fast a controller should update.

Line 498 „to to“

We have corrected this typo and thank the reviewer for bringing it to our
attention.
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