
The authors wish to thank the reviewers for their valuable time and effort they have devoted to 
reading the manuscript and providing constructive feedback. The authors have made every 
possible effort to address the comments and improve the manuscript.  
Below, the authors’ responses are given in italics together with the comments of the reviewers.  

Reviewer #1 
Comment #1: Line 41: "Typically, operation and maintenance (O&M) of an offshore wind farm 
corresponds to 25% - 30% of the levelized cost of energy (LCoE) (Ambuhl and Sorensen, 2017; 
Kolios and Brennan, 2018; Maples et al., 2013; Röckmann et al., 2017)." 
Comment: Could you provide other references to confirm these values? 

Response #1: Thank you for pointing out the need to include further references to support 
the statement that “25% - 30% of the LCoE of an offshore wind farm can be attributed to 
the operation and maintenance activities”. Please find below two relatively recent 
references, which support this statement. 

• Stehly, T., Duffy, P., and Mulas, D.: 2022 Cost of Wind Energy Review, National 
Renewable Energy Laboratory, 2023 

• OPEX Benchmark – An insight into operational expenditures of European offshore 
wind farms: PEAK Wind - Renewable Services, 2022. https://peak-
wind.com/update-2022-opex-benchmark-an-insight-into-the-operational-
expenditures-of-european-offshore-wind-farms. 

In addition to providing these extra references to support the above statement, we would 
like to point out that we have restructured and substantially revised the introduction of the 
manuscript to improve the presentation of the motivation for our work.  
The revised introduction reads as follows (Section 1, line 32, page 2 - line 113, page 3): 
“The harsh offshore environment in combination with the rotor dynamics affect the 
condition and integrity of the wind turbine (WT) support structures in offshore wind farms. 
To improve the condition of deteriorated structural components and, consequently, to 
prevent failures of the WT support structures, wind farm operators perform condition-
based or possibly predictive maintenance. Maintenance is classified as condition-based 
when scheduled based on the current component or system condition which is inferred from 
inspection/monitoring outcomes, and predictive when carried out based on the predicted 
component or system condition where the model-based predictions are informed by the 
available inspection/monitoring outcomes and the previously performed maintenance 
actions (Straub 2018).  
Wind farm operators typically conduct separate inspection and maintenance (I&M) 
campaigns to first collect information on the condition of the deteriorating WT support 
structures and to subsequently improve it if necessary. Within this context, an inspection 
campaign is characterized by the campaign time and inspection method, the number of 
inspected WT support structures, and the number and location of the inspected components 
in a WT support structure. In case the wind farm is serviced by boats operating from a port 
base, an inspection campaign is additionally influenced by the distance from the port to 
the wind farm, the choice of vessel, the number of personnel, the required equipment, the 
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mobilization/demobilization activities, and the time to complete an inspection work 
package. Like inspection campaigns, a maintenance campaign is characterized by the 
campaign time and maintenance method. In addition, a maintenance campaign is 
influenced by the component location, the time to complete a maintenance intervention on 
site, the required equipment, preparations and materials, the distance between the port 
and the wind farm, the choice of vessel, the number of personnel, and the effort involved in 
engineering a maintenance intervention (i.e., designing and testing of a maintenance 
solution). 
Clearly, I&M of deteriorating WT support structures in an offshore wind farm is associated 
with costs and the total lifetime I&M costs depend on the adopted I&M strategy, which 
determines the time and scope of each I&M campaign based on the available system 
information. Condition-based and predictive maintenance strategies can be optimized at 
the beginning of and adapted during the planned and/or extended lifetime of an offshore 
wind farm using preposterior analysis from Bayesian decision theory (e.g., Sorensen, 
2009; Nielsen and Sorensen, 2011; Florian and Sorensen, 2017; Farhan, Schneider and 
Thöns, 2021; Bismut and Straub, 2021). In such an analysis, probabilistic models of (a) 
the governing deterioration processes including the effect of maintenance, (b) the 
structural performance, and (c) the inspection/monitoring performance are employed to 
predict: 

• the condition of the structural components, inspection/monitoring outcomes and 
maintenance actions, and  

• the structural component/system reliability conditional on the predicted component 
condition, inspection/monitoring outcomes, and maintenance actions. 

In addition, a cost model is utilized to quantify the costs of inspections/monitoring and 
maintenance as well as the monetarized consequences of structural failures. Based on these 
models, the expected lifetime I&M costs and the lifetime risk of structural failure can be 
estimated for a given I&M strategy. A cost and risk optimal I&M strategy then balances 
the expected lifetime I&M costs with the lifetime risk of structural failure. 
In the existing literature, normalized cost ratios or deterministic cost models are utilized 
as a basis for optimizing I&M of deteriorating structural systems using decision-
theoretical approaches (e.g., Schneider, Rogge, Thöns et al., 2018; Bismut and Straub, 
2021; Morato, Andriotis, Papakonstantinou et al., 2023). Although deterministic cost 
models enable an optimization of I&M activities, they lack the ability to capture the effect 
of the I&M cost uncertainties in the decision analysis; especially in applications in which 
I&M costs are included in the underlying models on a non-linear basis. Importantly, 
probabilistic parametric cost modeling facilitates sensitivity analyses (beyond local 
derivative-based sensitivity analyses) to understand the effect of the various uncertain cost-
affecting factors on the total I&M costs. With regards to optimizing I&M of WT support 
structures in offshore wind farms, comprehensive and explicit consideration of 
probabilistic I&M costs in the decision analysis is – to the best of the authors’ knowledge 
– something which has not been explored previously. In addition, this issue is also relevant, 
since – from our experience – wind farm operators commonly highlight the need to 
consider the uncertainties in the I&M costs in the optimization of I&M strategies. 



Motivated by this, we develop a probabilistic parametric cost model of I&M of WT support 
structures in offshore wind farms. In particular, we focus on wind farms which are serviced 
and maintained using a workboat-based strategy, where the workboats operate from a port 
base. The cost model is derived based on interviews with a wind farm operator, engineering 
consultants, and operation and maintenance engineers, as well as on scientific literature. 
Subsequently, we employ the model to (a) quantify the uncertainties in the total I&M costs 
and (b) perform a variance-based sensitivity analysis to better understand the key cost 
drivers. The model can be applied to optimize I&M at the component, structural system, 
and wind farm level. To demonstrate a potential application, we apply the cost model in a 
cost and risk-informed decision value analysis to optimize I&M strategy for a steel frame 
subject to fatigue. 
The paper is organized as follows: Section 2 presents a generic decision-theoretical 
framework, which forms the basis for optimizing I&M of WT support structures in offshore 
wind farms. The presentation of the material follows our previous work (Farhan, Schneider 
and Thöns, 2021). However, compared to our previous work, our current contribution 
explicitly considers the uncertainties in the I&M costs in the decision analysis. In Section 
3, different types of I&M methods for support structures in offshore wind farms are 
discussed. Subsequently, different uncertain parameters are identified that influence the 
overall costs of an I&M strategy. Furthermore, different ranges of these parameters are 
also presented, as estimated based on the expert knowledge. To quantify the overall cost 
of the considered I&M activities, a deterministic cost model is first formulated in Section 
4. Subsequently, in Section 4, a probabilistic I&M model is constructed by combining the 
deterministic cost model with a probabilistic model of its uncertain parameters. In Section 
5, presents the uncertainty quantification and sensitivity analysis. Section 6 presents the 
numerical example. A summary and concluding remarks are provided at the end of the 
paper in Section 7.” 

Comment #2: Line 43: "One option to reduce the LCoE, is to optimize the inspection and 
maintenance (I&M) regime for the turbine support structures." 
Comment: Can you briefly comment on the other options? And how do they compare? Why 
specifically look at support structures? Is it just because it is a possible way? I think here, it is 
missing a more well-defined motivation.  

Response #2: We agree that an optimization of I&M of the turbine support structures in 
offshore wind farms is not the only option to reduce the LCoE of an offshore wind farm. 
There are certainly other options. As an example, with regards to the wind turbines, actions 
aiming to increase the annual energy production (AEP) such as repowering can lead to a 
reduction in the LCoE of an offshore wind farm. Another efficient option for reducing the 
LCoE of an offshore wind farm is to extend its lifetime (see also Kinne, Farhan et al. 2022). 
To enable such a lifetime extension, the requirements regarding the reliability of the 
turbine support structures need to be fulfilled. This is typically only possible by applying 
suitable (monitoring-informed) I&M regimes for detecting and repairing deteriorated 
structural components. Such regimes can be optimized and adapted using decision-
theoretical approaches as also outlined in our current contribution. 



As highlighted in our response to Comment #1, we have decided to substantially revise the 
introduction to help the reader to better understand the motivation of our work. The revised 
introduction has already been reproduced in our reply to Comment #1. 

Comment #3: Figure 1. there is a mistake in the figure: some written content overlapping. 
Response #3: Thank you for pointing out the mistake in Figure 1. We have revised the 
figure accordingly. 

Comment #4: Comment on section 2: Can't you put some of the theory equations in an appendix, 
and translate all the math into a nice history? Readers can go to the appendix for more details 
if/when needed. In the way currently written, the whole history loses a bit of the flow due to the 
heavy math. 

Response #4: Thank you for your valuable advice on improving the readability of the 
manuscript. Following your advice, we have revised the presentation of the theory in 
Section 2 as well as in the numerical example in Section 6.2. In the revised draft, we have 
moved most of the demanding mathematics to Appendices A and B. As you suggested, the 
interested reader can now go to these appendices for more details on the computation of 
the expected utilities and costs required in the decision-theoretical optimization of I&M 
regimes. 

Comment #5: Section 7: 
5.1: In my view, Equations 21-37 are all out of place. These should have been written in the 
methods section. 

Response #5.1: We very much appreciate your comment and have moved the equations to 
Appendix B (see also our response to Comment #4). 

5.2: The results are superficially discussed in Figures 12 and 13. Similar problems were identified 
for Tables 7 and 8, and the other figures in the section. 

Response #5.2: We thank the reviewer for his valuable advice and included a more 
elaborate discussion on the results contained in those figures and tables. Note that in the 
revised manuscript, Figure 12 is now Figure 10 and Figure 13 is now Figure 11.  
The revised discussion on the results shown in Figure 10 is as follows (page 21, lines 602 
- 613): 

“Figure 10 shows the decomposed expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in function of the 
heuristic parameters 𝜽𝜽 = [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑇𝑇. This 
cost is composed of the expected values of the failure cost, inspection campaign cost, 
inspection operation cost, repair campaign cost, repair operation cost, and engineering 
cost for repairs. As the inspection effort increases (i.e., more hotspots are inspected during 
each inspection campaign), the expected value of the system failure cost (i.e., the risk of 
structural failure) decreases, and – as expected – the expected values of the inspection and 
repair costs increase. This nicely illustrates the impact of the risk mitigation measures on 
the structural risk of failure. Note that the engineering cost for repairs is constant in this 
case study since it is here incurred only once at the beginning of the operational phase as 
repair solutions are engineered proactively before the frame is commissioned. 
Consequently, they could be neglected in the current optimization, as they only shift the 
expected total lifetime costs upwards by a fixed value.” 



The revised discussion on the results shown in Figure 11 is as follows (page 22, lines 617 
- 627): 
“To support the decision on whether one should implement a I&M strategy, the predicted 
value of information and actions is computed by the difference between the expected total 
lifetime cost 𝔼𝔼[𝐶𝐶0] and the expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽]. By normalizing this 
difference with respect to 𝔼𝔼[𝐶𝐶0], the relative 𝑉𝑉�𝑆𝑆𝑆𝑆−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐷𝐷𝐷𝐷(𝜽𝜽) is obtained (Farhan, Schneider 
and Thöns, 2021): 

𝑉𝑉�𝑆𝑆𝑆𝑆−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐷𝐷𝐷𝐷(𝜽𝜽) =
𝔼𝔼[𝐶𝐶0] − 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽]

𝔼𝔼[𝐶𝐶0]  (1) 

Figure 11 shows the 𝑉𝑉𝑉𝑉𝑉𝑉�����𝑆𝑆𝑆𝑆−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐷𝐷𝐷𝐷 in function of the parameters 𝜽𝜽 = [∆𝑡𝑡 = 8, 𝑝𝑝𝑡𝑡ℎ = 1 ∙
10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑇𝑇, where ∆𝑡𝑡 = 8  and  𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3 are the optimal 
inspection interval and reliability threshold. The dashed blue line corresponds to the 
expected total lifetime cost 𝔼𝔼[𝐶𝐶0] determined by the SS-A. The dashed-dotted blue line 
corresponds to the expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽]. Notably, 𝑉𝑉𝑉𝑉𝑉𝑉�����𝑆𝑆𝑆𝑆−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐷𝐷𝐷𝐷 is positive 
for 𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22. This result indicates that it is a rational decision to inspect and 
maintain the frame. As expected, the highest 𝑉𝑉𝑉𝑉𝑉𝑉�����𝑆𝑆𝑆𝑆−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐷𝐷𝐷𝐷 is obtained when implementing 
the optimal strategy 𝒮𝒮𝜽𝜽∗ with an optimal number of inspected hotspots in each inspection 
campaign 𝑛𝑛𝐼𝐼,𝐶𝐶 = 6.” 

The revised discussion on the results summarized in Table 7 and 8 reads as follows (page 
24, lines 649 - 655): 

“Aligning with existing works, we utilize the probabilistic I&M cost model to derive 
deterministic normalized cost models. In the literature, such a normalization is typically 
performed with respect to the failure cost or campaign cost due to their significant 
contribution to the overall lifetime costs. Applying the same methodology, we obtain the 
normalized cost models summarized in Table 7 and Table 8. These models can 
subsequently be used to optimize I&M of offshore wind turbine support structures if the 
costs are included in the underlying models on a linear basis.” 

5.3: In general, this section lacks a more objective and comprehensive discussion of the numerical 
results for the example.  

Response #5.3: We thank for the reviewer for his valuable advice and improved the 
discussion on the results of the numerical example. In addition to the discussion of the 
results in Figures 10 and 11 as well as Tables 7 and 8 (see our reply to Comment #5.2), 
we included the following discussion on the results in Figure 9 (page 21, lines 589 – 598): 

“[…] The estimated expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in function of 𝜽𝜽 is shown in 
Figure 9. 

All strategies with 𝑛𝑛𝐼𝐼,𝐶𝐶 = {3,4,5,6} result in a similar expected total lifetime cost. This 
provides some flexibility to the decision-maker to choose a strategy based on their specific 
requirements regarding the inspection interval and structural reliability. Notably, both 
strategies with ∆𝑡𝑡 =  4 years, exhibit similar expected costs for 𝑛𝑛𝐼𝐼,𝐶𝐶 > 7 regardless of the 



reliability threshold. When considering strategies with ∆𝑡𝑡 =  8, the reliability threshold 
has an impact on the expected total lifetime cost: a lower threshold results in more 
unscheduled inspections between regular inspections. In our current example the optimal 
strategy 𝒮𝒮𝜽𝜽∗ is characterized by 𝜽𝜽∗= [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 6, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑇𝑇.” 

The revised discussion on the results in Figure 12 is as follows (page 23, lines 640 - 646): 

“[…] The estimated expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] considering expected I&M costs 
are shown in Figure 12. 
It can be seen that the current analysis provides the same results as the analysis 
considering the probabilistic I&M costs (cf. also Figure 9) and thus the same optimal 
strategy 𝒮𝒮𝜽𝜽∗ with 𝜽𝜽∗= [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 6, 𝜂𝜂 = 1, 𝑎𝑎𝑅𝑅 = 1]𝑇𝑇. Consequently, 
the current analysis illustrates that the I&M costs can be considered deterministically as 
expected values in the decision and VoI analysis if they are included in the optimization on 
a linear basis.” 

Comment #6: Your work assumed a lognormal distribution for the majority of your statistical fits. 
I am missing some sort of discussion on the implications of these assumptions. Why not another 
distribution? Could your results be changed otherwise? 

Response #6: We very much appreciate your comment and acknowledge that a more 
detailed discussion on our choice of the probabilistic models of the parameters of the cost 
model would help the reader to understand our reasoning behind this choice. Therefore, 
we have revised the corresponding discussion as follows (page 10, lines 335 - 363): 

“Given the lack of empirical data on the uncertain parameters of the cost models 𝑾𝑾, their 
probabilistic models are – in a Bayesian sense – chosen based on the available expert 
knowledge. It should be emphasized upfront, however, that these probabilistic models can 
be updated using Bayesian methods if data on the parameters 𝑾𝑾 become available. 

As a first step in the probabilistic model building, the parameters in 𝑾𝑾 are assumed to be 
independent and their marginal distributions are assumed to follow the lognormal 
distribution. The first assumption is made as no information on the correlation of the 
different parameters is available. The second assumption is supported by the following 
reasons. First, each parameter of the cost models only takes non-negative values, and their 
statistical distribution is typically unimodal, i.e., one range of values in the distribution 
occurs more frequently than other ranges of values. The lognormal distribution is 
commonly chosen to probabilistically model such quantities as it is bounded by zero, has 
no upper limit, and is unimodal. Second, the lognormal distribution is skewed to the right 
with a long tail capturing rare extreme values of the cost model parameters. Third, the 
assumption that the parameters are lognormal distributed can be partially explained by 
the central limit theorem. Assuming that each parameter of the cost model itself derives 
from a multiplicative process, the sum of the logarithms of the factors in the underlying 
process approaches a normal distribution and their product approaches a lognormal 
distribution as the number of factors becomes large. For these reasons, the lognormal 
distribution is a plausible probabilistic model for the different cost model parameters (see 
also Moy, Chen and Kao. 2015). 
As a second step in the model building, the statistics of the different lognormal distributions 
are determined based on the lower and upper bounds of each cost model parameter 



specified in Section 3.2. These bounds represent the available expert knowledge on the 
ranges of the parameter values. Based on additional expert judgement, the lower and upper 
bound are assumed to characterize the 1% and 95%-quantile of the parameter values. 
Using this information, the different lognormal distributions are fitted as illustrated in 
Figure 2. The resulting mean and coefficient of variation (CoV) of each probabilistic 
parameter of the cost models is summarized Table 5.” 

Comment #7: The model is not completely reproducible, as some of the assumptions are based on 
interviews with project owners and stakeholders. There is little information about it in the article. 
Therefore, I would like to see further details on the assumptions as much as possible. What would 
be the implications of not having these pieces of information? Could you have done your work 
without it? How would it be affected? I am missing a discussion here. 

Response #7: We thank the reviewer for his valuable comment. However, we would like to 
point out that the probabilistic model of the cost model parameters can be reproduced with 
the information provided in Sections 3 and 4. First, based on the interviews, we established 
the parameters influencing the I&M costs as described in Section 3.2. In the same section, 
we documented the ranges of the parameter values, which we also established based on 
the interviews. Subsequently, in Section 4.2, we outline the deterministic model for 
estimating the total I&M costs. These models capture the level of detail and the operational 
constraints, which we were able to establish based on the interviews. Finally, in 
Section 4.2, we discuss the process of building the probabilistic model of the parameters 
of the cost model. In the revised manuscript, we provide a detailed discussion on how we 
derived the marginal distributions of the model parameters based on the parameter bounds 
provided by the interviewed experts (see also our reply to Comment #6). The same 
methodology can be applied to establish I&M cost models for other types of wind farms 
with different operational and logistical constraints provided that the required level of 
expert knowledge is available. Ideally, detailed documentation of the operational 
constraints and logistical procedures as well as empirical data on the parameters 
governing the I&M activities and costs can be provided as a basis of the model building. 

Reviewer #2 
Comment #1: The second sentence of the Introduction "The integrity management..." is awkward 
and I don't understand what it is trying to say.  There are a handful of other sentences and phrases 
in the manuscript like this to. Perhaps a professional editor could help. 

Response #1: We very much appreciate your comment. As a result, we have revised a 
significant portion of the manuscript to improve the presentation of the material. All 
changes to the manuscript are highlighted in green color. Note that we have restructured 
and substantially revised the introduction of the manuscript to improve the presentation of 
the motivation for our contribution. Please refer to Section 1, line 32 on pages 2 to line 
113 on page 3 in the revised manuscript. 

Comment #2: The fourth paragraph of the Introduction (around line 60 on page 2) throws 15 
citations at the reader in one shot.  I think the authors could go a bit further to describe this previous 
work and similarities or distinctions between them. 



Response #2: Thank you for your comment. As described in our reply to Comment #1, we 
have revised the introduction to discuss our work in relation to existing works. The relevant 
part of the introduction reads as follows (line 55 on page 2 to line 88 on page 3): 
“Clearly, I&M of deteriorating WT support structures in an offshore wind farm is 
associated with costs and the total lifetime I&M costs depend on the adopted I&M strategy, 
which determines the time and scope of each I&M campaign based on the available system 
information. Condition-based and predictive maintenance strategies can be optimized at 
the beginning of and adapted during the planned and/or extended lifetime of an offshore 
wind farm using preposterior analysis from Bayesian decision theory (e.g., Sorensen, 
2009; Nielsen and Sorensen, 2011; Florian and Sorensen, 2017; Farhan, Schneider and 
Thöns, 2021; Bismut and Straub, 2021). In such an analysis, probabilistic models of (a) 
the governing deterioration processes including the effect of maintenance, (b) the 
structural performance, and (c) the inspection/monitoring performance are employed to 
predict: 

• the condition of the structural components, inspection/monitoring outcomes and 
maintenance actions, and  

• the structural component/system reliability conditional on the predicted component 
condition, inspection/monitoring outcomes, and maintenance actions. 

In addition, a cost model is utilized to quantify the costs of inspections/monitoring and 
maintenance as well as the monetarized consequences of structural failures. Based on these 
models, the expected lifetime I&M costs and the lifetime risk of structural failure can be 
estimated for a given I&M strategy. A cost and risk optimal I&M strategy then balances 
the expected lifetime I&M costs with the lifetime risk of structural failure. 
In the existing literature, normalized cost ratios or deterministic cost models are utilized 
as a basis for optimizing I&M of deteriorating structural systems using decision-
theoretical approaches (e.g., Schneider, Rogge, Thöns et al., 2018; Bismut and Straub, 
2021; Morato, Andriotis, Papakonstantinou et al., 2023). Although deterministic cost 
models enable an optimization of I&M activities, they lack the ability to capture the effect 
of the I&M cost uncertainties in the decision analysis; especially in applications in which 
I&M costs are included in the underlying models on a non-linear basis. Importantly, 
probabilistic parametric cost modeling facilitates sensitivity analyses (beyond local 
derivative-based sensitivity analyses) to understand the effect of the various uncertain cost-
affecting factors on the total I&M costs. With regards to optimizing I&M of WT support 
structures in offshore wind farms, comprehensive and explicit consideration of 
probabilistic I&M costs in the decision analysis is – to the best of the authors’ knowledge 
– something which has not been explored previously. In addition, this issue is also relevant, 
since – from our experience – wind farm operators commonly highlight the need to 
consider the uncertainties in the I&M costs in the optimization of I&M strategies.” 

Comment #3: - Introduction line 75, "In the numerical example, we demonstrate that the I&M 
costs can be considered deterministically as expected values in the analysis since they are included 
in the model on a linear basis."  This statement and conclusion do carry through the paper from 
beginning to end, but it also undercuts the approach and leaves me unsure of its contributions.  The 
authors note previous research where deterministic models were used probabilistically, so what is 



the meaningful difference?  The authors should be clearer about what is new and novel in this work 
here.  More thoughts on this theme in later comments as well. 

Response #3: We really appreciate your comment and have removed this conclusion from 
the abstract and introduction to better focus on what is new and novel in our work. 
Nevertheless, as demonstrated in the numerical example, if the I&M costs enter the models 
underlying the optimization on a linear basis, it is possible to simplify the cost model by 
considering the expected value of the cost model parameters. However, as you rightly 
highlight, one of the main advantages of the I&M cost using a probabilistic parametric 
cost model is that it allows us to perform a sensitivity analysis to identifying the main cost 
drivers and their impact on I&M decisions. 

Comment #4: Figure 1: There is overlapping text in the PDF in the top bar header of the figure. 

Response # 1: We thank the reviewer for pointing out the mistake in Figure 1. We have 
corrected it accordingly.  

Comment #5: Tables 1, 2, 3, 4: Where are these input values coming from?  Data?  Interviews?  
Modeled processes?  Data for operations and maintenance is the hardest to come by, so the authors 
need to be precise when reporting their inputs to their model.  I suggest citations in the caption. 

Response #5: We very much appreciate your comment and agree that it is a challenge to 
establish data and information the cost of I&M of support structures in offshore wind 
farms. As a basis of our work, we performed interviews with our project partners, which 
are not publicly available for citation. Instead, we have documented the methodology, 
which we applied to derive the models presented in our contributions. This methodology 
can be summarized as follows: The basic logistical procedures applied by our project 
partners (utilization of workboats operating from a port base to conduct separate 
inspection and repair campaigns) formed the very basis for deriving the parametric I&M 
cost model. We conducted interviews with a wind farm operator, engineering consultants, 
and O&M engineers. These experts provided information, which allowed us to identify the 
main parameters influencing the total I&M costs in addition to estimates of the bounds on 
the parameter values. Given the level of detail that could be established from the 
interviews, we first established the parametric model for describing the total I&M costs. 
Subsequently, we derived a probabilistic model of the cost model parameters based on the 
parameter bounds provide by the experts (see also our reply to Comment #6). 

Comment #6: - Page 10, "Due to the lack of data on the parameters ... their marginal probability 
distributions are assumed to be lognormal."  Where does this assumption come from.  With just a 
min and a max and a lack of data, seems like a uniform distribution, or maybe even a triangular 
distribution with a "most likely value" would be better approximations in a sparse data context.  
Why lognormal?  Why not normal or any other distribution?  This seems to be a critical assumption 
because the output distributions are also lognormal, so they track the input assumptions closely. 

Response #6: We very much appreciate your comment and acknowledge that a more 
detailed discussion on our choice of the probabilistic models of the parameters of the cost 
model would help the reader to follow the material presented in our manuscript. Therefore, 
we have revised the corresponding discussion as follows (page 10, lines 335 - 363): 

“Given the lack of empirical data on the uncertain parameters of the cost models 𝑾𝑾, their 
probabilistic models are – in a Bayesian sense –chosen based on the available expert 



knowledge. It should be emphasized upfront, however, that these probabilistic models can 
be updated using Bayesian methods if data on the parameters 𝑾𝑾 become available. 

As a first step in the probabilistic model building, the parameters in 𝑾𝑾 are assumed to be 
independent and their marginal distributions are assumed to follow the lognormal 
distribution. The first assumption is made as no information on the correlation of the 
different parameters is available. The second assumption is supported by the following 
reasons. First, each parameter of the cost models only takes non-negative values, and their 
statistical distribution is typically unimodal, i.e., one value in the distribution occurs more 
frequently than other values. The lognormal distribution is commonly chosen to 
probabilistically model such quantities as it is bounded by zero, has no upper limit, and 
unimodal. Second, the lognormal distribution is skewed to the right with a long tail 
capturing rare extreme values of the cost model parameters. Third, the assumption that the 
parameters are lognormal distributed can be partially explained by the central limit 
theorem. Assuming that each parameter of the cost model itself derives from a 
multiplicative process, the sum of the logarithms of the factors in the underlying process 
approaches a normal distribution and their product approaches a lognormal distribution 
as the number of factors becomes large. For these reasons, the lognormal distribution is a 
plausible probabilistic model for the different cost model parameters (see also Moy, Chen 
and Kao, 2015). 
As a second step in the model building, the statistics of the different lognormal distributions 
are determined based on the lower and upper bounds of each cost model parameter 
specified in Section 3.2. These bounds represent the available expert knowledge on the 
ranges of the parameter values. Based on additional expert judgement, the lower and upper 
bound are assumed to characterize the 1% and 95%-quantile of the parameter values. 
Using this information, the different lognormal distributions are fitted as illustrated in 
Figure 2. The resulting mean and coefficient of variation (CoV) of each probabilistic 
parameter of the cost models is summarized Table 5.” 

Comment #7: - Table 5: I am confused by this table. I understood how Tables 1-4 are converted 
to be lognormal based on min & max values, but where do these distributions come from?  Are 
these inputs or outputs?  If inputs, then sources and citations must be included.  Also, how would 
a parameter such as "Campaign cost" be an input when Section 4 described the elements that 
comprise a "campaign" 

Response #7: Table 5 summarizes the probabilistic models of the input parameters of the 
parametric cost model defined in Eq. (11) and (12). These models are established as 
described in our replies to Comment #5 and #6. To summarize, lognormal distributions 
were chosen based on the discussion described in our reply to Comment #6. The 
parameters of the lognormal distributions were determined based on the parameter bounds 
provided in Tables 1 to 4, which we established through expert interviews. Based on the 
additional expert judgment that 1% of the parameter values are smaller than lower bound 
and 5% of the parameter are larger than upper bound, we determined the statistics of the 
lognormal distributions as documented in Table 5. 

Furthermore, as explained in the revised manuscript (page, lines 295 - 298, the campaign 
cost corresponds to the fixed one-time cost of initiating the I&M activities, which includes 
the cost of commuting to the wind farm and back, the cost of the equipment required for 



the planned activities, fuel costs, and project management costs. These cost components 
are included in the mobilization and demobilization cost of the vessels).  

The campaign costs are one component of the total I&M costs. The information we 
retrieved from the interviews did not allow us to explicitly model the factors influencing 
the campaign cost in more detail. Instead, we have summarized this cost component in a 
single cost model parameter. We were, however, able to establish bounds on this cost 
component, which are expressed as mobilization and demobilization cost in Table 1. The 
proposed model thus reflects the level of detail we were able to gather from the interviews 
and expert opinion.  

Note that this is not a limitation, as the proposed cost model can be extended to account 
for a more refined model for describing the campaign cost if additional details on this cost 
component can be established.  

Comment #8: - Figures 3-5: The outputs are clearly lognormal to match the input distributions, 
which asks the question of what is "probabilistic" about this model if all of the operations are linear 
enough to maintain the input distribution properties.  Phrased another way- what is gained by using 
probabilistic inputs vs deterministic inputs here.  Alternatively, if the authors had assumed uniform 
input distributions, would their conclusions be any different? 

Response #8: Thank you for your valuable comment. To better clarify the value of using a 
probabilistic approach to modelling I&M costs, we revised the discussion of the results 
presented in Figures 3 to 5 as follows (page 15, lines 411 – 421): 
“From Figure 3 to Figure 5, it can be seen that propagating the uncertainties in the cost 
model parameters through the cost models defined in Eq. (11) and (12) provides a 
probabilistic description of the total I&M costs. In each considered scenario, the total I&M 
costs exhibit an approximate lognormal distribution. The statistics of the total I&M costs 
shown Figure 3 to Figure 5 are summarized in Table 6. Note that the coefficients of 
variation (CoV) of the total I&M costs indicate that in each scenario certain parameters 
dominate the uncertainty in the total I&M costs. As an example, in Figure 3a (wind farm 
level analysis considering EM inspection), the CoV of the total I&M costs is similar to the 
CoV of the vessel cost per shift. This finding is further substantiated by the variance-based 
sensitivity analysis in Section 5.2.1, where in Figure 6 we observe that the vessel cost per 
shift has a sensitivity index close to one for the same inspection scenario.” 
One of the main advantages of utilizing probabilistic parametrized cost models to describe 
the total I&M costs is that such an approach enables sensitivity analyses to establish the 
main cost drivers. We highlighted this advantage in the introduction of the revised 
manuscript as follows (page 3, lines 81 - 83): 
“[…] Importantly, probabilistic parametric cost modeling facilitates sensitivity analyses 
(beyond local derivative-based sensitivity analyses) to understand the effect of the various 
uncertain cost-affecting factors on the total I&M costs.” 
It is important to highlight that it is possible to optimize I&M activities using deterministic 
cost models. However, as highlighted in the introduction of the revised manuscript (page 
2, line 77 to page 3, line 80), it is also important to understand that “[…] although 
deterministic cost models enable an optimization of I&M activities, they lack the ability to 



fully capture the effect of the uncertainties in the I&M costs in the decision analysis 
especially in applications in which I&M costs are included in the underlying models on a 
non-linear basis. […]”. 
To the best of our knowledge, our contribution for the first time considers consistently and 
explicitly uncertainties in the I&M costs in the decision-theoretical optimization of I&M 
regimes through the application of probabilistic parametric I&M cost models. As 
highlighted in the revised introduction (page 3, lines 86 – 88), “[…] this issue is also 
relevant, since – from our experience – wind farm operators commonly highlight the need 
to consider the uncertainties in the I&M costs in the optimization of I&M strategies.”  
Finally, we discussed in more detail in our revised manuscript (page 10, lines 335 - 363) 
why the lognormal distribution is a plausible probabilistic model for the different cost 
model parameters (see also our reply to Comment #6). 

Comment #9: Section 6 Sensitivity Analysis: I applaud the authors for including a sensitivity 
analysis, as that is typically where probabilistic analysis gives the greatest insight.  However, I am 
struggling with the communication of results in Figures 6-9.  It seems like the authors are trying 
to show too many dimensions of variation all at once and the important comparisons are spread 
out across the figures.  Additionally, the figures are small and tough to read or see.  Also, in the 
end, only three variables are compared at one time in the different color lines.  The impact of the 
sensitivity analysis is to compare the relative impact of many variables all at once.  Why not 
combine Figures 6-9 and all of the above/below water differences, show more comparisons, 
perhaps with a bar chart, and then show some perturbations, such as a bar chart with 1 or 5 
inspected components.  The way the sensitivity analysis is presented now, I have little meaningful 
takeaways or insights into the problem. 

Response #9: We appreciate the reviewer’s insightful comments and valuable advice on 
improving this section. As a result, we have reduced the number of figures in Section 5 
(previously Section 6) and revised the content of the remaining figures to reduce the 
information presented in each figure. These adjustments enhance the readability and 
facilitate a clearer interpretation of the results, while still supporting our discussion and 
conclusions. 

Comment #10: Figure 10: I don't fully understand the physics that are driving the failure model 
of the jacket.  Is there is a time-series load signal from a turbine that is propagated to the jacket?  
Something more prescribed or analytical?  Are all of the 22-stress concentration hot spots at the 
welded joints considered independent random variables?  If so, how realistic is that?  It seems as 
though the later analysis on the optimal number of inspections is highly dependent on this 
assumption, because of the tendency to inspect all of them as soon as one crack is found.  
Furthermore, there is a greater likelihood to continue to inspect all of them after a crack is found 
and repaired. 

Response # 10: Thank you for your valuable comment. We appreciate that a more detailed 
description of the physics governing the behavior of frame and the probabilistic models 
describing the stochastic dependencies among fatigue behavior of the hotspots improves 
the manuscript. To this end, we revised the description of the frame as follows (page 17, 
line 484 to page 18, line 512) 



“[…] The steel frame is made of welded tubular sections. Its planned lifetime is 25 years, 
which is divided into 𝑗𝑗 = 1, … ,𝑚𝑚 intervals of one year length. During the operational 
phase, the frame is exposed to a time-dependent lateral force representing a storm load. 
This load is modeled by its annual maximum 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗. In addition to storm loads, the frame 
– like a jacket support structure of an offshore wind turbine – is subject to fatigue due to 
dynamic excitations. In the current analysis, the welded connections of the frame contain 
22 critical fatigue hotspots, which are indicated as red dots in Figure 8. The hotspot fatigue 
demand is quantified by the corresponding distributions of the fatigue stress ranges. 
Typically, these distributions are derived from an overall dynamic response analysis. In 
the current example, they are – as described in Straub (2004) – determined based on the 
available design information (i.e. the hotspot fatigue lives and the applied SN curves). 
Fatigue deterioration of the hotspots is described by probabilistic Paris-Erdogan fatigue 
crack growth models. The statistical dependence among the fatigue behavior of different 
hotspots is captured by introducing correlations among the uncertain parameters of the 
hotspot fatigue models. This correlation influences the system reliability and has an impact 
on the (optimal) I&M regime. 
The hotspots are inspected with MPI via a CTV and repaired by welding if required. The 
applied repair model is documented in detail in (Farhan, Schneider et al. 2021). It is 
assumed that hotspots 1 to 8 are located above water, while hotspots 9 to 22 are located 
below water. The location of the of the hotspots (above or below water) influences the cost 
of inspections and repairs.  
The time-dependent failure probability is computed by coupling the probabilistic fatigue 
deterioration models with a probabilistic structural performance model utilized to evaluate 
the system failure probability conditional on the hotspot condition. Inspection information 
is included in the estimation of the system failure probability through Bayesian updating 
of the probabilistic fatigue models. Further information regarding the applied fatigue, 
structural performance, and inspection models as well as the methods employed to compute 
the (updated) time-variant failure probability of the frame is documented in (Schneider, 
Thöns et al. 2017, Schneider 2020, Eichner, Schneider et al. 2023). […]” 
In addition, we added the following discussion (page 20, lines 543 - 566) on the impact of 

• the rules guiding the decisions on inspection and repair, and  
• the stochastic dependence among the fatigue behavior of the hotspots 

on the inspection and repair effort. 
“[…] In the current application, the parameterized rules are defined as follows (see also 
Bismut, Luque et al. 2017, Schneider 2019, Eichner, Schneider et al. 2023): 

1. Inspection campaigns are performed at fixed intervals ∆𝑡𝑡. 

2. 𝑛𝑛𝐼𝐼,𝐶𝐶 hotspots are inspected during each inspection campaign. 

3. Hotspots are prioritized for inspection according to a metric proposed by Bismut, 
Luque et al. (2017), which is a function of a parameter 𝜂𝜂 as well as the structural 
importance and fatigue reliability of each hotspot. 



4. An additional inspection campaign is launched if the predicted annual system 
failure probability exceeds a threshold 𝑝𝑝𝑡𝑡ℎ. 

5. A maintenance campaign is launched if fatigue cracks are indicated and measured 
to be deeper than 𝑎𝑎𝑅𝑅. 

Note that rules 4 and 5 have the following implication: Inspection information obtained at 
one hotspot contains indirect information on the fatigue state of the remaining hotspots as 
their fatigue behavior is correlated due to common influencing factors (see Straub and 
Faber 2004 for a detailed discussion). Consider now the case in which a fatigue crack is 
unexpectedly indicated at one hotspot and measured to be deeper than 𝑎𝑎𝑅𝑅. Conditional on 
this inspection information, the probability that fatigue deterioration of the remaining 
hotspots has progressed faster than expected increases. Consequently, the system failure 
probability also increases. If it exceeds the threshold 𝑝𝑝𝑡𝑡ℎ, additional inspections and 
possibly repairs are performed as prescribed by rules 4 and 5. Because of these two rules 
and the explicit modeling of the dependence among the fatigue behavior of different 
hotspots, the current optimization of I&M of the frame captures scenarios in which the 
inspection and repair effort has to be increased due to accelerated fatigue deterioration. 
[…]” 

Comment #11: Section 7.2: The math on the first couple of pages here is probably best moved to 
an Appendix.  Once the Appendix is created though, the authors should consider shunting other 
equations there as well to improve the paper's readability for the wind-focused audience of the 
journal. 

Response # 11: We very much appreciate your advice on improving the readability of the 
manuscript. As a result, we have revised the presentation of the theory in Section 2 as well 
as in the numerical example in Section 6.2. In the revised draft, we have moved most of the 
demanding mathematics to Appendices A and B. 

Comment #12: Section 7.3: I don't follow what is different about this section and the results.  
Figure 14 looks the same as Figure 11. 

Response # 12: Thank you for your comment. In Section 6.3 (previously Section 7.3), we 
explore the potential for replacing the probabilistic cost model with a deterministic one, 
which utilizes the expected values of the cost model parameters. In addition, we discuss in 
what situations such a simplification is appropriate. This is the case if the costs enter the 
model on a linear basis. To better highlight our intention, we have revised the discussion 
on the results in Section 6.3 as follows (page 23, lines 640 - 646): 

“The estimated expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] considering expected I&M costs are 
shown in Figure 12. 

It can be seen that the current analysis provides the same results as the analysis 
considering the probabilistic I&M costs (cf. also Figure 9) and thus the same optimal 
strategy 𝒮𝒮𝜽𝜽∗ with 𝜽𝜽∗= [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 6, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑇𝑇. Consequently, the 
current analysis illustrates that the I&M costs can be considered deterministically as 
expected values in the decision and VoI analysis if they are included in the optimization on 
a linear basis.” 


	Reviewer #1
	Comment #1: Line 41: "Typically, operation and maintenance (O&M) of an offshore wind farm corresponds to 25% - 30% of the levelized cost of energy (LCoE) (Ambuhl and Sorensen, 2017; Kolios and Brennan, 2018; Maples et al., 2013; Röckmann et al., 2017)."
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