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Abstract 
The operational management of offshore wind farms includes inspection and maintenance 
(I&M) of the wind turbine support structures. These activities are complex and influenced by 
numerous uncertain factors that affect their costs. The uncertainty in the I&M costs should be 
considered in decision value analyses performed to optimize I&M strategies for the turbine 
support structures. In this paper, we formulate a probabilistic parametric model to describe I&M 
costs for the common case in which a wind farm is serviced and maintained using a workboat-
based strategy. The model is developed based on (a) interviews with a wind farm operator, 
engineering consultants, and operation and maintenance engineers, as well as (b) on scientific 
literature. Our methodology involves deriving the probabilistic models of the cost model 
parameters based on intervals representing the subjective expert opinion on the foreseeable 
ranges of the parameter values. The probabilistic cost model is applied to evaluate the total I&M 
costs, and a sensitivity analysis is conducted to identify the main cost drivers. The model can 
be utilized to optimize I&M strategies at the component, structural system, and wind farm level. 
To illustrate its potential use, we apply it in a numerical study in which we optimize I&M 
strategies at the structural system level and identify and demonstrate a simplified approach of 
capturing uncertain I&M costs in the optimization. The simplified approach is generalized and 
made available for maintenance cost optimization of offshore wind turbine structures. 
Keywords: offshore wind farms, turbine support structures, inspection and maintenance, 
probabilistic cost modeling, sensitivity analysis, decision value analysis 
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1 Introduction 
The harsh offshore environment in combination with the rotor dynamics affect the condition 
and integrity of the wind turbine (WT) support structures in offshore wind farms. To improve 
the condition of deteriorated structural components and, consequently, to prevent failures of the 
WT support structures, wind farm operators perform condition-based or possibly predictive 
maintenance. Maintenance is classified as condition-based when scheduled based on the current 
component or system condition which is inferred from inspection/monitoring outcomes, and 
predictive when carried out based on the predicted component or system condition where the 
model-based predictions are informed by the available inspection/monitoring outcomes and the 
previously performed maintenance actions.  
Wind farm operators typically conduct separate inspection and maintenance (I&M) campaigns 
to first collect information on the condition of the deteriorating WT support structures and to 
subsequently improve it if necessary. Within this context, an inspection campaign is 
characterized by the campaign time and inspection method, the number of inspected WT 
support structures, and the number and location of the inspected components in a WT support 
structure. In case the wind farm is serviced by boats operating from a port base, an inspection 
campaign is additionally influenced by the distance from the port to the wind farm, the choice 
of vessel, the number of personnel, the required equipment, the mobilization/demobilization 
activities, and the time to complete an inspection work package. Like inspection campaigns, a 
maintenance campaign is characterized by the campaign time and maintenance method. In 
addition, a maintenance campaign is influenced by the component location, the time to complete 
a maintenance intervention on site, the required equipment, preparations and materials, the 
distance between the port and the wind farm, the choice of vessel, the number of personnel, and 
the effort involved in engineering a maintenance intervention (i.e., designing and testing of a 
maintenance solution). 
Clearly, I&M of deteriorating WT support structures in an offshore wind farm is associated 
with costs and the total lifetime I&M costs depend on the adopted I&M strategy, which 
determines the time and scope of each I&M campaign based on the available system 
information. Condition-based and predictive maintenance strategies can be optimized at the 
beginning of and adapted during the planned and/or extended lifetime of an offshore wind farm 
using preposterior analysis from Bayesian decision theory (e.g., Sorensen, 2009; Nielsen and 
Sorensen, 2011; Florian and Sorensen, 2017; Farhan, Schneider and Thöns, 2021; Bismut and 
Straub, 2021). In such an analysis, probabilistic models of (a) the governing deterioration 
processes including the effect of maintenance, (b) the structural performance, and (c) the 
inspection/monitoring performance are employed to predict: 

• the condition of the structural components, inspection/monitoring outcomes and 
maintenance actions, and  

• the structural component/system reliability conditional on the predicted component 
condition, inspection/monitoring outcomes, and maintenance actions. 

In addition, a cost model is utilized to quantify the costs of inspections/monitoring and 
maintenance as well as the monetarized consequences of structural failures. Based on these 
models, the expected lifetime I&M costs and the lifetime risk of structural failure can be 
estimated for a given I&M strategy. A cost and risk optimal I&M strategy then balances the 
expected lifetime I&M costs with the lifetime risk of structural failure. 
In the existing literature, normalized cost ratios or deterministic cost models are utilized as a 
basis for optimizing I&M of deteriorating structural systems using decision-theoretical 
approaches (e.g., Schneider, Rogge, Thöns et al., 2018; Bismut and Straub, 2021; Morato, 
Andriotis, Papakonstantinou et al., 2023). Although deterministic cost models enable an 
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optimization of I&M activities, they lack the ability to capture the effect of the I&M cost 
uncertainties in the decision analysis; especially in applications in which I&M costs are 
included in the underlying models on a non-linear basis. Importantly, probabilistic parametric 
cost modeling facilitates sensitivity analyses (beyond local derivative-based sensitivity 
analyses) to understand the effect of the various uncertain cost-affecting factors on the total 
I&M costs. With regards to optimizing I&M of WT support structures in offshore wind farms, 
comprehensive and explicit consideration of probabilistic I&M costs in the decision analysis is 
– to the best of the authors’ knowledge – something which has not been explored previously. 
In addition, this issue is also relevant, since – from our experience – wind farm operators 
commonly highlight the need to consider the uncertainties in the I&M costs in the optimization 
of I&M strategies. 
Motivated by this, we develop a probabilistic parametric cost model of I&M of WT support 
structures in offshore wind farms. In particular, we focus on wind farms which are serviced and 
maintained using a workboat-based strategy, where the workboats operate from a port base. The 
cost model is derived based on interviews with a wind farm operator, engineering consultants, 
and operation and maintenance engineers, as well as on scientific literature. Subsequently, we 
employ the model to (a) quantify the uncertainties in the total I&M costs and (b) perform a 
variance-based sensitivity analysis to better understand the key cost drivers. The model can be 
applied to optimize I&M at the component, structural system, and wind farm level. To 
demonstrate a potential application, we apply the cost model in a cost and risk-informed 
decision value analysis to optimize I&M strategy for a steel frame subject to fatigue. 
The paper is organized as follows: Section 2 presents a generic decision-theoretical framework, 
which forms the basis for optimizing I&M of WT support structures in offshore wind farms. 
The presentation of the material follows our previous work (Farhan, Schneider and Thöns, 
2021). However, compared to our previous work, our current contribution explicitly considers 
the uncertainties in the I&M costs in the decision analysis. In Section 3, different types of I&M 
methods for support structures in offshore wind farms are discussed. Subsequently, different 
uncertain parameters are identified that influence the overall costs of an I&M strategy. 
Furthermore, ranges of these parameters are also presented, as estimated based on the expert 
knowledge. To quantify the overall cost of the considered I&M activities, a deterministic cost 
model is first formulated in Section 4.1. Subsequently, in Section 4.2 a probabilistic I&M model 
is constructed by combining the deterministic cost model with a probabilistic model of its 
uncertain parameters. Section 5 presents the uncertainty quantification and sensitivity analysis. 
Section 6 summarizes the numerical example. A summary and concluding remarks are provided 
at the end of the paper in Section 7.  

2 Utility-informed optimization of I&M of turbine support structures 
in offshore wind farms considering probabilistic I&M costs 

2.1 Decision analysis 

The identification of an optimal I&M strategy for turbine support structures in offshore wind 
farms is a decision problem under uncertainty and risk (Farhan, Schneider and Thöns, 2021). 
This type of problem can be solved based on Bayesian decision theory (Raiffa and Schlaifer, 
1961) and graphically represented by the generic decision tree shown in Figure 1. Each branch 
of the decision tree corresponds to a realization of decisions represented by square nodes and 
random events/random variables represented by circular nodes. As an example, the lower 
branch in the decision tree in Figure 1 corresponds to a realization of (a) a decision 𝑖𝑖 concerning 
the inspection/monitoring regime, (b) the corresponding probabilistic inspection/monitoring 
outcomes 𝐙𝐙𝑖𝑖, (c) the decisions 𝐚𝐚 concerning the maintenance actions, (d) the probabilistic 
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parameters 𝐘𝐘 influencing the effect of the maintenance actions 𝐚𝐚, (e) the probabilistic 
parameters𝐗𝐗 influencing the system state and (f) the probabilistic parameters 𝐖𝐖 influencing the 
utility. Each of these realizations is associated with a utility 𝑈𝑈 and an index representing the 
analysis type, depicted with the diamond shaped leaves of the decision tree. According to utility 
theory (Von Neumann and Morgenstern, 1947), the maximization of the expected value of the 
utility 𝑈𝑈 quantifies the optimality of decisions. From this it follows that the optimal decisions 
concerning inspection/monitoring and maintenance can be determined by maximizing the 
expected utility. 

 
Figure 1: Generic decision tree for modeling decisions on inspection/monitoring and maintenance of turbine support structures 
in offshore wind farms (adapted from Thöns, 2018; Farhan, Schneider and Thöns, 2021) The tree consists of square nodes 
representing decisions, circular nodes representing random events/random variables and diamond shaped nodes representing 
utility. 

The utility 𝑈𝑈0 associated with the upper branch of the decision tree can be described by the 
following generic utility function: 

𝑈𝑈0(𝐗𝐗,𝐖𝐖) =  𝐵𝐵(𝐗𝐗,𝐖𝐖) − 𝐶𝐶𝐹𝐹(𝐗𝐗,𝐖𝐖) (1) 

where 𝐵𝐵(𝐗𝐗,𝐖𝐖) and 𝐶𝐶𝐹𝐹(𝐗𝐗,𝐖𝐖) describe the lifetime economic benefits from operating the wind 
farm and lifetime costs of structural failures in function of 𝐗𝐗 and 𝐖𝐖. Based on the utility 
function 𝑈𝑈0(𝐗𝐗,𝐖𝐖) and the prior probability distributions of 𝐗𝐗 and 𝐖𝐖, the expected utility 𝔼𝔼[𝑈𝑈0] 
can be computed as described in Appendix A.1. This quantity is primarily required as a 
reference value in the decision value analysis presented below in Section 2.2. In the literature, 
the evaluation of 𝔼𝔼[𝑈𝑈0] is referred to as system state analysis (SS-A) (Thöns and Kapoor, 2019).  

Next, the utility 𝑈𝑈1 associated with the center branch of the decision tree can be generically 
expressed by the following utility function: 

𝑈𝑈1(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖)  =  𝐵𝐵(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) − 𝐶𝐶𝑀𝑀(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) − 𝐶𝐶𝐹𝐹(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) (2) 

where 𝐵𝐵(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖), 𝐶𝐶𝑀𝑀(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) and 𝐶𝐶𝐹𝐹(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) are the lifetime economic benefits, 
maintenance costs and failure costs in function of 𝐚𝐚, 𝐘𝐘, 𝐗𝐗 and 𝐖𝐖. The optimal maintenance 
actions 𝐚𝐚∗ are identified by maximizing the conditional expected utility 𝔼𝔼[𝑈𝑈1|𝐚𝐚], which is 
computed based on the utility function 𝑈𝑈1(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) and the prior probability distributions of 
𝐘𝐘, 𝐗𝐗 and 𝐖𝐖, as outlined in Appendix A.2. Identifying 𝐚𝐚∗ in this way (i.e., without considering 
inspection/monitoring to inform decisions on maintenance actions) is referred to as prior 
decision analysis (Raiffa and Schlaifer, 1961) or predicted action decision analysis (PA-DA) 
(see also Thöns and Kapoor, 2019). 
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Finally, the utility 𝑈𝑈2 associated with the lower branch of the decision tree can be generically 
written as (see also Sorensen, 2009): 

𝑈𝑈2(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖)
= 𝐵𝐵(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) − 𝐶𝐶𝑆𝑆𝑆𝑆𝑀𝑀(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) − 𝐶𝐶𝐼𝐼(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖)
− 𝐶𝐶𝑀𝑀(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) − 𝐶𝐶𝐹𝐹(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) 

(3) 

where 𝐵𝐵(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖), 𝐶𝐶𝑆𝑆𝑆𝑆𝑀𝑀(𝑖𝑖,𝐙𝐙𝑖𝑖, 𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖), 𝐶𝐶𝐼𝐼(𝑖𝑖,𝐙𝐙𝑖𝑖, 𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖), 𝐶𝐶𝑀𝑀(𝑖𝑖, 𝐙𝐙𝑖𝑖,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) and 
𝐶𝐶𝐹𝐹(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) are the lifetime economic benefits, monitoring costs, inspection costs, 
maintenance costs and failure costs in function of 𝑖𝑖, 𝐙𝐙𝑖𝑖, 𝐚𝐚, 𝐘𝐘, 𝐗𝐗 and 𝐖𝐖. The optimal information 
acquisition regime (or inspection/monitoring regime) 𝑖𝑖∗ is determined by maximizing the 
conditional expected utility 𝔼𝔼[𝑈𝑈2|𝑖𝑖], which is determined based on 𝑈𝑈2(𝑖𝑖,𝐙𝐙𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) and the 
probabilistic models of 𝐙𝐙𝑖𝑖, 𝐘𝐘, 𝐗𝐗 and 𝐖𝐖 as detailed in Appendix A.3. As discussed in 
Appendix A.3, this maximization jointly optimizes decisions on inspection/monitoring and 
maintenance actions based on (a) predicted information on the system condition and 
performance, (b) predicted maintenance actions and (c) corresponding benefits and costs. This 
analysis is referred to as preposterior decision analysis (Raiffa and Schlaifer, 1961) or predicted 
information and predicted action decision analysis (PIPA-DA) (see also Thöns and Kapoor, 
2019). 
From Eq. (2) and (3) it can be seen that a model for quantifying the inspection/monitoring and 
maintenance costs is a key component of the utility functions required to measure the optimality 
of decisions concerning I&M of WT support structures in offshore wind farms. Such a cost 
model should be formulated in function of the uncertain parameters influencing the I&M costs 
in order to capture the uncertainties in these costs in the decision-making. 

2.2 Decision value analysis 

The root node in the decision tree in Figure 1 represents the basic decision concerning the 
implementation of an integrity management strategy (Thöns, 2018). This decision can be 
informed by a decision value (DV) analysis. Following Thöns and Kapoor (2019), three 
different DV may be formulated based on the decision tree shown in Figure 1. The first DV, 
𝑉𝑉𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃, is defined as the difference between the maximum expected utility resulting from 
the PIPA-DA, 𝔼𝔼[𝑈𝑈2|𝑖𝑖∗], and the maximum expected utility resulting the PA-DA, 𝔼𝔼[𝑈𝑈1|𝐚𝐚∗], i.e.: 

𝑉𝑉𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 = 𝔼𝔼[𝑈𝑈2|𝑖𝑖∗] − 𝔼𝔼[𝑈𝑈1|𝐚𝐚∗] (4) 

where 𝔼𝔼[𝑈𝑈2|𝑖𝑖∗] and 𝔼𝔼[𝑈𝑈1|𝐚𝐚∗] are determined as described in Appendix A. 

The second DV, namely the predicted value of information and actions 𝑉𝑉𝑆𝑆𝑆𝑆-𝑃𝑃
PIPA-DA, is defined as 

the difference between the maximum expected utility resulting from the PIPA-DA, 𝔼𝔼[𝑈𝑈2|𝑖𝑖∗], 
and the expected utility resulting from the SS-A, 𝔼𝔼[𝑈𝑈0]: 

𝑉𝑉𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 = 𝔼𝔼[𝑈𝑈2|𝑖𝑖∗] − 𝔼𝔼[𝑈𝑈0] (5) 

The third DV, i.e., the predicted value of actions 𝑉𝑉𝑆𝑆𝑆𝑆-𝑃𝑃
PA-DA, is the difference between the maximum 

expected utility resulting from PA-DA and the expected utility provided by the SS-A given as: 

𝑉𝑉𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 = 𝔼𝔼[𝑈𝑈1|𝐚𝐚∗] − 𝔼𝔼[𝑈𝑈0] (6) 

Essentially, an integrity management strategy should be implemented if the value of 𝑉𝑉𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃, 
𝑉𝑉𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 or 𝑉𝑉𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 is positive. 
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3 I&M of turbine support structures in offshore wind farms 

3.1 I&M methods 

Inspections are performed to obtain information on the condition of structural components. 
Concerning offshore wind turbine support structures, they look for (indicators of) deterioration 
(e.g., corrosion and/or fatigue cracks) which has an effect on the integrity of the structural 
systems. In this contribution, a probabilistic cost model is developed for I&M actions performed 
to detect and repair fatigue cracks in welded connections in steel support structures of wind 
turbines in offshore wind farms (e.g., monopiles, jackets, etc.). In such structural systems, the 
welded components can be located above and below water level. The components located above 
water are typically part of the turbine tower, transition piece, main access platform, and access 
systems, which can be inspected via rope access and getting closer to the structure, while in the 
areas of the transition piece and sub structure below water, inspections are carried out by a 
diver, or by utilizing a remotely operated vehicle (ROV). The location of the inspected welded 
component has thus an effect on the required personnel, vessels, equipment, and logistics. 
Two types of inspection methods to identify fatigue damage in welded components located 
above and/or below water level are considered: visual inspection, and electromagnetic (EM) 
inspection methods such as eddy current (EC), magnetic particle inspection (MPI) and 
alternating current field measurement (ACFM). Visual inspection is a coarse method capable 
of detecting only relatively large surface breaking defects in welds or fatigue failures of welded 
connections. It can be performed with the help of a camera mounted on an ROV or by naked-
eye observation. In contrast, EM inspection methods detect smaller surface breaking defects in 
welds. They can also be applied by a diver below water. 
After an inspection campaign, if any fatigue damage is detected, a subsequent maintenance 
action (e.g., a repair) is performed based on the inspection outcomes. Depending on the 
criticality of the identified fatigue damage, the maintenance campaign is launched in the same 
year or the following year.  
During an inspection campaign, the length and depth of a detected surface-breaking defect is 
measured to inform decisions on the repair methods. With regards to possible repairs for welded 
joints, we consider two methods. The first repair method is referred to as welding (Rodriguez-
Sanchez, Rodriguez-Castellanos, Perez-Guerrero et al., 2011). In this method, the welded joint 
is repaired by removing a surface crack through grinding and subsequent filling of the resulting 
groove with wet welding. This method is applied if the measured depth of the surface crack is 
greater than a defined percentage of the section thickness. Any surface crack with a measured 
depth less than the defined percentage of the section thickness may be repaired by grinding, 
which is the second repair method (Rodriguez-Sanchez, Dover and Brennan, 2004). 

3.2 Factors affecting I&M costs 

There are several factors that influence the total cost of inspecting and maintaining support 
structures in an offshore wind farm. In this contribution, the influencing factors are identified, 
and their costs are estimated based on the existing scientific literature and interviews with I&M 
experts: a wind farm operator, engineering consultants, and operation and maintenance 
engineers – whose expertise does not necessarily cover all types of offshore wind farms. These 
experts are, however, able to provide sufficiently detailed information on established 
operational procedures and approximate estimates of I&M costs. The precise figures of I&M 
costs always depend on the actual wind farm type and the existing operational constraints. In 
this study, we consider the common case in which the wind farm is serviced by workboats 
operating from a nearby port base. Therefore, other forms of wind farm access such as 
helicopters, are not considered in this contribution.  
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Accessibility is the main factor influencing the cost of I&M of turbine support structures in 
offshore wind farms. Depending on the location of the offshore wind farm, the type and location 
of the I&M activity (above water level (AW) and/or below water level (BW)), and the duration 
of the I&M activity, a certain type of vessel is employed. The choice of vessel for port-based 
operations could be a crew transfer vessel (CTV) or a service operation vessel (SOV). CTV are 
usually used for frequent operations and are generally small aluminum catamarans employed 
to transfer personnel to and from offshore sites on a daily basis. CTV do not have sufficient 
dynamic positioning redundancies to keep still during rough sea conditions. Their carrying 
capacity is usually 12 crew members who do 12-hour shifts. SOV are larger vessels designed 
and equipped to be present for a longer duration at the offshore wind farm for subsea or 
extensive I&M operations. These vessels have a capacity of around 40 technicians and can 
perform 24-hour operations with multiple shifts (each shift is 12 hours), which means that they 
come back to port only approximately once every two weeks (Martinez-Luengo and Shafiee, 
2019). Table 1 shows the range of mobilization and demobilization costs and costs per shift for 
CTV and SOV. 

Table 1: Estimates of vessel costs 

 Type of vessel 

Type of vessel cost CTV SOV 

Mobilization / demobilization (€) 2,000 - 20,000 15,000 – 80,000 

Vessel cost per shift (€/shift) 1,000 - 15,000 10,000 – 50,000 

The mobilization and demobilization costs of the vessels cover several aspects like the 
commuting time to the offshore wind farm, fuel consumption of the vessel, equipment and 
material costs as well as project management costs, which account for logistics organization 
and reporting. The vessel cost per shift captures the number of people involved in the operation, 
the personnel costs, and the operational cost of the vessel during the I&M activity.  
I&M also include the additional effort for engineering the required repairs. This effort is 
associated with costs as summarized in Table 2. The engineering costs usually dependent on 
the type of repair. In the case of grinding, the extra cost of engineering and preparation entails 
the design of the repair, laboratory tests, etc. In the case of welding, the cost entails the design 
of the repair, chambers for underwater repair work if required, laboratory tests, etc. This 
additional cost is ideally incurred once during the service life of a wind farm because the type 
of hotspots/components is known; thus, if any repair is performed, the implementation of the 
repair has already been planned for the specific type of hotspot in the support structures. 

Table 2: Estimates of engineering costs 

Type of repair Engineering cost (€) 

Grind repair 5,000 – 35,000 

Weld repair 10,000 – 100,000 

The duration to complete a I&M activity is another factor that strongly influences the total I&M 
cost. It depends, for example, on the weather conditions, the experience of the personnel, the 
condition of the asset and the existence of marine growth. The total time to complete a I&M 
activity usually entails transit time between WT, the time required to complete the work 
package once stationed at a WT, and additional weather downtime due to unfavorable weather 
conditions. An increase in I&M activity time due to the aforementioned factors can lengthen 



  8/33 

the offshore time within a campaign. While this may not seem crucial, the time increase has an 
effect on other costs, such as the costs of the deployment of a vessel, personnel, and equipment. 
Table 3 shows the estimation of the time that each of the I&M activities takes for a single 
component in a support structure. A component is here defined as a hotspot in a welded 
connection (i.e., a certain section of a weld). 

Table 3: I&M activity: type, location, and estimates of the duration per component 

Type of activity Location hrs./component 

Weld repair 
Above water 50 – 58 

Below water 60 – 70 

Grind repair 
Above water 14 – 18 

Below water 24 – 30 

Visual inspection 
Above water 1 – 2 

Below water 5 – 8 

EM inspection 
Above water 4 – 6 

Below water 10 – 15 

Weather downtime is mostly dependent on the type of vessel utilized and is given in Table 4. 
In the case of CTV, the weather downtime is usually higher because they are small in size and 
lighter compared to SOV and can easily lose position, especially if there are large waves and 
strong currents, while SOV can safely withstand the harshest conditions even in winter.  

Table 4: Estimates weather downtime in function of the vessel type 

Type of vessel Weather downtime 

CTV 30 – 40% 

SOV 10 – 15 % 

The transit time between turbines also influences the inspection maintenance cost. It is here 
estimated based Martinez-Luengo and Shafiee (2019), and usually varies between 15 to 30 
minutes.  

4 Parametric model of I&M costs 

4.1 Deterministic model 

Based on the discussion on the factors affecting I&M costs in Section 3.2, we develop a 
deterministic parametric cost model to describe the total cost of I&M of WT support structures 
in an offshore wind farm. This cost can be generally broken down into a campaign cost 𝐶𝐶𝐶𝐶, 
engineering cost 𝐶𝐶𝐸𝐸, and operational cost 𝐶𝐶𝑂𝑂𝑂𝑂. In case I&M are performed simultaneously 
(mixed I&M), the total cost 𝐶𝐶𝐼𝐼&𝑀𝑀 is given as: 

𝐶𝐶𝐼𝐼&𝑀𝑀 = 𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐸𝐸 + 𝐶𝐶𝑂𝑂𝑂𝑂 (7) 
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In the usual case where inspections and maintenance are performed in separate campaigns, the 
total cost of inspection 𝐶𝐶𝐼𝐼 and the total cost of maintenance 𝐶𝐶𝑀𝑀 is given by: 

𝐶𝐶𝐼𝐼 = 𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐼𝐼,𝑂𝑂𝑂𝑂 

𝐶𝐶𝑀𝑀 = 𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐸𝐸 + 𝐶𝐶𝑀𝑀,𝑂𝑂𝑂𝑂 
(8) 

The campaign cost 𝐶𝐶𝐶𝐶 corresponds to the fixed one-time cost of initiating the I&M activities, 
which includes the cost of commuting to the wind farm and back, the cost of the equipment and 
materials required for the planned activities, fuel costs, and project management costs. These 
cost components are included in the mobilization and demobilization cost of the vessels (see 
Table 1). As discussed in Section 3.2, a CTV or SOV can be selected as a vessel for the planned 
I&M activities depending on their nature and extent. In the case of maintenance, an additional 
cost for planning and engineering repairs 𝐶𝐶𝐸𝐸  has to be considered. This cost depends on the 
chosen repair method (welding or grinding). 

Moreover, 𝐶𝐶𝐼𝐼,𝑂𝑂𝑂𝑂 and 𝐶𝐶𝑀𝑀,𝑂𝑂𝑂𝑂 are the operational costs of inspection and maintenance, which are 
the costs of conducting the inspection or maintenance operation when the vessel is at the 
offshore wind farm. The total operational costs further depend on the time to complete the 
operation, the vessel type, and its shift pattern. The total time to complete the operation depends 
on the extent of the I&M activity and where it is carried out, i.e., above or below water. The 
operational cost of inspection 𝐶𝐶𝐼𝐼,𝑂𝑂𝑂𝑂 and maintenance 𝐶𝐶𝑀𝑀,𝑂𝑂𝑂𝑂 activity is given by: 

𝐶𝐶𝐼𝐼,𝑂𝑂𝑂𝑂  =
𝑡𝑡𝐼𝐼,𝑂𝑂𝑂𝑂 
𝑡𝑡shift

∙ 𝐶𝐶shift 

𝐶𝐶𝑀𝑀,𝑂𝑂𝑂𝑂  =
𝑡𝑡𝑀𝑀,𝑂𝑂𝑂𝑂

𝑡𝑡shift
∙ 𝐶𝐶shift 

(9) 

where 𝐶𝐶shift is the cost of the vessel (CTV or SOV) per shift, 𝑡𝑡shift is the duration of a shift (in 
hours) (see Section 3.2), 𝑡𝑡𝐼𝐼,𝑂𝑂𝑂𝑂 is the total time (in hours) to complete the overall inspection 
operation, and 𝑡𝑡𝑀𝑀,𝑂𝑂𝑂𝑂  is the total time to complete the overall maintenance operation. The total 
operational time for I&M is estimated as:  

𝑡𝑡𝐼𝐼,𝑂𝑂𝑂𝑂 = ��� 𝑛𝑛𝐼𝐼,𝐶𝐶,𝑖𝑖 ∙ 𝑡𝑡𝐼𝐼,𝐶𝐶
𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊

𝑖𝑖=1
� + (𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊 − 1) ∙ 𝑡𝑡transit� ∙ (1 + 𝑊𝑊𝑊𝑊) 

𝑡𝑡𝑀𝑀,𝑂𝑂𝑂𝑂  = ��� 𝑛𝑛𝑀𝑀,𝐶𝐶,𝑖𝑖 ∙ 𝑡𝑡𝑀𝑀,𝐶𝐶

𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊

𝑖𝑖=1
� + (𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊 − 1) ∙ 𝑡𝑡transit� ∙ (1 + 𝑊𝑊𝑊𝑊) 

(10) 

where 𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊 is the total number of WT to be inspected in an offshore wind farm during an 
inspection campaign, 𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊 is the total number of WT to be repaired in the offshore wind farm 
during a maintenance campaign, 𝑛𝑛𝐼𝐼,𝐶𝐶,𝑖𝑖 is the number of components to be inspected in the 𝑖𝑖th 
WT support structure in the offshore wind farm, 𝑛𝑛𝑀𝑀,𝐶𝐶,𝑖𝑖 is the number of components to be 
repaired in the 𝑖𝑖th WT support structure in the offshore wind farm, 𝑡𝑡transit is the transit time 
between the different WT, 𝑡𝑡𝐼𝐼,𝐶𝐶 is the time to inspect a component above or below the water, and 
𝑡𝑡𝑀𝑀,𝐶𝐶 is the time to repair a component above or below water. Furthermore, 𝑊𝑊𝑊𝑊 is the weather-
related downtime, which is here defined relative to the overall operation time. This parameter 
also depends on the vessel type. 



  10/33 

4.2 Probabilistic model 

The model developed in Section 4 provides deterministic estimates of the I&M costs. However, 
due to the uniqueness of each operation, and the complexity of the individual activities involved, 
the different parameters governing Eq. (7), (8), (9), and (10) – i.e., the campaign cost, the vessel 
costs, the engineering costs, the inspection duration, the repair duration, the transit time, and 
the weather downtime – are uncertain and their values are typically only known in terms of 
intervals, as estimated in Section 3.2. To capture these uncertainties, the parameters of the cost 
model are modeled as random variables. By probabilistically modeling the uncertainties in the 
parameters and propagating them through the deterministic cost model, a probabilistic 
description of the I&M costs is obtained. 

Let 𝐖𝐖 generically denote the vector of random variables influencing the total I&M costs. Based 
on Eq. (8), (9), and (10), the probabilistic cost model of inspection 𝐶𝐶𝐼𝐼(𝐖𝐖) can now be written 
as: 

𝐶𝐶𝐼𝐼(𝐖𝐖) =  𝐶𝐶𝐶𝐶 +
��∑ 𝑛𝑛𝐼𝐼,𝐶𝐶,𝑖𝑖 ∙ 𝑡𝑡𝐼𝐼,𝐶𝐶

𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊
𝑖𝑖=1 �+ (𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊 − 1) ∙ 𝑡𝑡transit� ∙ (1 + 𝑊𝑊𝑊𝑊)

𝑡𝑡shift
∙ 𝐶𝐶shift (11) 

Similarly, the probabilistic cost model of maintenance 𝐶𝐶𝑀𝑀(𝐖𝐖) is formulated as: 

𝐶𝐶𝑀𝑀(𝐖𝐖)  =  𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐸𝐸 +  
��∑ 𝑛𝑛𝑀𝑀,𝐶𝐶,𝑖𝑖 ∙ 𝑡𝑡𝑀𝑀,𝐶𝐶

𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊
𝑖𝑖=1 �+ (𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊 − 1) ∙ 𝑡𝑡transit� ∙ (1 + 𝑊𝑊𝑊𝑊)

𝑡𝑡shift
∙ 𝐶𝐶shift (12) 

Given the lack of empirical data on the uncertain parameters of the cost models 𝐖𝐖, their 
probabilistic models are – in a Bayesian sense – chosen based on the available expert 
knowledge. It should be emphasized upfront, however, that these probabilistic models can be 
updated using Bayesian methods if data on the parameters 𝐖𝐖 become available. 

As a first step in the probabilistic model building, the parameters in 𝐖𝐖 are assumed to be 
independent and their marginal distributions are assumed to follow the lognormal distribution. 
The first assumption is made as no information on the correlation of the different parameters is 
available. The second assumption is supported by the following reasons. First, each parameter 
of the cost models only takes non-negative values, and their statistical distribution is typically 
expected to be unimodal, i.e., one range of values in the distribution occurs more frequently 
than other ranges of values. The lognormal distribution is commonly chosen to probabilistically 
model such quantities as it is bounded by zero, has no upper limit, and is unimodal. Second, the 
lognormal distribution is skewed to the right with a long tail capturing rare extreme values of 
the cost model parameters. Third, the assumption that the parameters are lognormal distributed 
can be partially explained by the central limit theorem. Assuming that each parameter of the 
cost model itself derives from a multiplicative process, the sum of the logarithms of the factors 
in the underlying process approaches a normal distribution and their product approaches a 
lognormal distribution as the number of factors becomes large. For these reasons, the lognormal 
distribution is a plausible probabilistic model for the different cost model parameters (see also 
Moy, Chen and Kao, 2015). 
As a second step in the model building, the statistics of the different lognormal distributions are 
determined based on the lower and upper bounds of each cost model parameter specified in 
Section 3.2. These bounds represent the available expert knowledge on the ranges of the 
parameter values. Based on additional expert judgement, the lower and upper bound are 
assumed to characterize the 1% and 95%-quantile of the parameter values. Using this 
information, the different lognormal distributions are fitted as illustrated in Figure 2. The 
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resulting mean and coefficient of variation (CoV) of each probabilistic parameter of the cost 
models is summarized Table 5. 

 
Figure 2: Lognormal distribution fitted based on the lower and upper bound on the corresponding cost model parameter. The 
lower and upper bound represent the 1% and 95%-quantile of the parameter values. 

Table 5: Mean and coefficient of variation (CoV) of the probabilistic parameters of the cost model 

Parameter Description Unit Distribution Mean CoV 

𝐶𝐶𝐶𝐶,CTV Campaign cost (CTV) [€] lognormal 9111.04 0.63 

𝐶𝐶𝐶𝐶,SOV Campaign cost (SOV) [€] lognormal 43771.22 0.44 

𝐶𝐶shift,CTV Vessel cost per shift (CTV) [€/shift] lognormal 6220.67 0.78 

𝐶𝐶shift,SOV Vessel cost per shift (SOV) [€/shift] lognormal 27744.47 0.42 

𝑡𝑡𝐸𝐸𝑀𝑀,𝐵𝐵𝑊𝑊 Duration of component inspection 
(EM, below water) [hrs.] lognormal 12.73 0.10 

𝑡𝑡𝐸𝐸𝑀𝑀,𝑃𝑃𝑊𝑊 Duration of component inspection 
(EM, above water) [hrs.] lognormal 5.10 0.10 

𝑡𝑡𝑉𝑉,𝐵𝐵𝑊𝑊 Duration of component inspection 
(visual inspection, below water) [hrs.] lognormal 6.63 0.12 

𝑡𝑡𝑉𝑉,𝑃𝑃𝑊𝑊 Duration of component inspection 
(visual inspection, above water) [hrs.] lognormal 1.53 0.17 

𝐶𝐶𝐸𝐸,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  Engineering cost (welding) [€] lognormal 45719.43 0.63 

𝐶𝐶𝐸𝐸,𝑔𝑔𝑔𝑔𝑖𝑖𝑛𝑛𝑤𝑤  Engineering cost (grinding) [€] lognormal 17584.96 0.51 

𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝐵𝐵𝑊𝑊 Duration of component repair 
(welding, below water) [hrs.] lognormal 65.74 0.03 

𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑃𝑃𝑊𝑊 Duration of component repair 
(welding, above water) [hrs.] lognormal 54.59 0.03 
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𝑡𝑡𝑔𝑔𝑔𝑔𝑖𝑖𝑛𝑛𝑤𝑤,𝐵𝐵𝑊𝑊 Duration of component repair 
(grinding, below water) [hrs.] lognormal 27.41 0.05 

𝑡𝑡𝑔𝑔𝑔𝑔𝑖𝑖𝑛𝑛𝑤𝑤,𝑃𝑃𝑊𝑊 Duration of component repair 
(grinding above water) [hrs.] lognormal 16.24 0.06 

𝑡𝑡transit Transit time between turbines [hrs.] lognormal 0.38 0.17 

𝑊𝑊𝑊𝑊CTV Weather downtime (CTV) - lognormal 0.35 0.07 

𝑊𝑊𝑊𝑊SOV Weather downtime (SOV) - lognormal 0.12 0.10 

5 Quantification of uncertainties in I&M costs and sensitivity analysis 
5.1 Uncertainty quantification 

The probabilistic cost models for I&M of turbine support structures in the offshore wind farm 
defined in Equations (11) and (12) can be applied for different combinations of input parameters. 
The different combinations are defined by the vessel type, the inspection and repair methods, 
the number of inspected and/or repaired components above and/or below water level, and the 
number of inspected and/or repaired wind turbine support structures. For illustration, the 
probabilistic total I&M costs are in the following quantified at wind farm, wind turbine and 
component level.  
First, the total I&M costs are estimated at wind farm level. To this end, it is assumed that 
𝑛𝑛𝐼𝐼,𝐶𝐶,𝐵𝐵𝑊𝑊 = 10 components of 𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊 = 10 support structures are inspected below water. In 
addition, it is assumed that 𝑛𝑛𝑀𝑀,𝐶𝐶,𝐵𝐵𝑊𝑊 = 5 components of 𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊 = 5 support structures are 
repaired below water. Inspections are performed using EM and visual inspection methods, 
while welding and grinding are applied as repair methods. Moreover, a CTV is utilized as 
workboat in each scenario. For each considered scenario, the probabilistic distributions of the 
total I&M costs are determined using Monte Carlo (MC) simulations with 𝑛𝑛𝑀𝑀𝐶𝐶 = 106 samples 
of the corresponding model parameters. In the analysis, the model parameters are assumed to 
be statistically independent. The resulting empirical probability distributions of the total I&M 
costs are shown in Figure 3. 
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a) b) 

  
c) d) 

Figure 3: Empirical probability distributions of the total I&M costs: a) 10 components in each 10 support structures are 
inspected below water with EM inspection technique, b) 10 components in each 10 support structures are visually inspected 
below water, c) 5 components in each 5 support structures are repaired below water by welding, d) 5 components in each 5 
support structures are repaired below water by grinding 

Second, the total I&M costs are estimated at turbine level. In this case, it is assumed that 10 
components of a support structure are inspected below water level, i.e., 𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊 = 1, 𝑛𝑛𝐼𝐼,𝐶𝐶,𝐵𝐵𝑊𝑊 =
10; and 5 components in a support structure are repaired below water level, i.e., 𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊 = 1, 
𝑛𝑛𝑀𝑀,𝐶𝐶,𝐵𝐵𝑊𝑊 = 5. The assumptions regarding inspection and repair methods and the choice of vessel 
are the same as in the previous scenario considering I&M at wind farm level. The estimated 
empirical probability distributions of the total I&M costs together with their expected value and 
CoV are shown in Figure 4. 

  
a) b) 
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c) d) 

Figure 4: Empirical distributions of the total I&M costs: a) 10 components of a turbine support structures are inspected below 
water with EM inspection technique, b) 10 components of a turbine support structures are visually inspected below water, c) 5 
components of a turbine support structures are repaired below water by welding, d) 5 components of a turbine support 
structures are repaired below water by welding 

Finally, the total I&M costs are estimated at the element level. In this scenario, 𝑛𝑛𝐼𝐼,𝐶𝐶,𝐵𝐵𝑊𝑊 = 1 
components of 𝑛𝑛𝐼𝐼,𝑊𝑊𝑊𝑊 = 1 turbines are inspected below water. The same is assumed for the 
maintenance campaign, i.e., only 𝑛𝑛𝑀𝑀,𝐶𝐶,𝐵𝐵𝑊𝑊 = 1 component of 𝑛𝑛𝑀𝑀,𝑊𝑊𝑊𝑊 = 1 turbine support 
structure is repaired below water. The assumptions regarding inspection and repair methods and 
the choice of vessel are the same as in the scenario considering I&M at wind farm level. The 
empirical probability distributions of the total I&M costs are shown in Figure 5. 

  
a) b) 

  
c) d) 

Figure 5: Empirical distributions of the total I&M costs: a) EM inspection of a component in a support structure below water 
level, b) visual inspection of a component in a support structure below water level, c) welding repair maintenance of a 
component repaired below water level for a support structure, d) grinding repair maintenance of a component repaired below 
water level for a support structure 
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From Figure 3 to Figure 5, it can be seen that propagating the uncertainties in the cost model 
parameters through the cost models defined in Eq. (11) and (12) provides a probabilistic 
description of the total I&M costs. In each considered scenario, the total I&M costs exhibit an 
approximate lognormal distribution. The statistics of the total I&M costs shown Figure 3 to 
Figure 5 are summarized in Table 6. Note that the coefficients of variation (CoV) of the total 
I&M costs indicate that in each scenario certain parameters dominate the uncertainty in the total 
I&M costs. As an example, in Figure 3a (wind farm level analysis considering EM inspection), 
the CoV of the total I&M costs is similar to the CoV of the vessel cost per shift. This finding is 
further substantiated by the variance-based sensitivity analysis in Section 5.2.1, where in Figure 
6 we observe that the vessel cost per shift has a sensitivity index close to one for the same 
inspection scenario. 

Table 6: Summary of the statistics of the total I&M costs 

  Wind farm Wind turbine Component 

EM inspection 
Expected value (106€) 0.899 0.097 0.018 

CoV 0.77 0.70 0.50 

Visual inspection 
Expected value (106€) 0.473 0.055 0.014 

CoV 0.76 0.66 0.49 

Weld repair 
Expected value (106€) 1.200 0.283 0.100 

CoV 0.73 0.63 0.45 

Grind repair 
Expected value (106€) 0.505 0.122 0.046 

CoV 0.73 0.60 0.39 

5.2 Sensitivity analysis 

As discussed in Sections 3 and 4, the total I&M costs are influenced by numerous uncertain 
parameters 𝐖𝐖. To study the importance of each model parameter 𝑊𝑊𝑖𝑖, a variance-based 
sensitivity analysis is performed (Sobol, 1993), which quantifies 𝑊𝑊𝑖𝑖’s effect on the variance of 
the inspection and maintenance costs in terms of the following first-order measure: 

𝑉𝑉𝑖𝑖 = Var𝑊𝑊𝑖𝑖
{𝔼𝔼𝑾𝑾−𝑖𝑖

[𝐶𝐶(𝐖𝐖)|𝑊𝑊𝑖𝑖]} (13) 

where 𝐶𝐶(𝐖𝐖) can be the probabilistic model of the inspection costs defined in Eq. (11) or the 
probabilistic model of the maintenance costs defined in Eq. (12), 𝔼𝔼𝑾𝑾−𝑖𝑖

[𝐶𝐶(𝐖𝐖)|𝑊𝑊𝑖𝑖] is the 
expected value of the inspection or maintenance costs with respect to all parameters except 𝑊𝑊𝑖𝑖 
whose value is fixed, and Var𝑊𝑊𝑖𝑖

{𝔼𝔼𝑾𝑾−𝑖𝑖
[𝐶𝐶(𝐖𝐖)|𝑊𝑊𝑖𝑖]} is the variance of this average model. 

Normalizing 𝑉𝑉𝑖𝑖 with the variance Var[𝐶𝐶(𝐖𝐖)] provides the first order sensitivity index 𝑆𝑆𝑖𝑖 (Sobol, 
1993): 

𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑖𝑖

Var[𝐶𝐶(𝐖𝐖)] =
Var𝑊𝑊𝑖𝑖

{𝔼𝔼𝑾𝑾−𝑖𝑖
[𝐶𝐶(𝐖𝐖)|𝑊𝑊𝑖𝑖]}

Var[𝐶𝐶(𝐖𝐖)]  (14) 

in which Var[𝐶𝐶(𝐖𝐖)] is the variance of the inspection or maintenance costs. 𝑆𝑆𝑖𝑖 is here evaluated 
using a MC approach (Sobol, 2001). 
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5.2.1 Inspection costs 

The first part of the sensitivity study analyses the effect of the campaign cost 𝐶𝐶𝑐𝑐, vessel cost per 
shift 𝐶𝐶shift, and inspection operation time 𝑡𝑡𝐼𝐼,𝑂𝑂𝑂𝑂 on the total inspection costs based on the 
probabilistic cost model defined in Eq. (11), where the inspection operation time depends on the 
duration of a component inspection, the transit time between turbines, and the weather 
downtime. 

For the inspection campaign, we perform a sensitivity analysis assuming that inspections are 
performed using the EM inspection method via a CTV. The study explores various scenarios 
related to component location (above or below water), the number of inspected turbine support 
structures, and the quantity of inspected components within each structure. Figure 6 illustrates 
these scenarios, with columns representing the number of inspected turbines and rows 
corresponding to component location. Each subplot displays sensitivity indices for campaign 
cost, vessel operation cost, and inspection operation time as functions of the number of 
inspected components. 

 
Figure 6: Sensitivity indices of the campaign cost  𝐶𝐶𝑐𝑐, vessel cost per shift 𝐶𝐶shift, and inspection operation time 𝑡𝑡𝐼𝐼,𝑂𝑂𝑂𝑂 in function 
of the location of the inspected components (above or below water), the number inspected turbine support structures and the 
number of inspected components in each support structure. Inspections are performed using the EM inspection method via a 
CTV. 

Figure 6 reveals that the vessel cost per shift exerts the most significant impact on total 
inspection cost throughout various scenarios, while the inspection operation time has the 
smallest effect. Campaign costs only become significant when a few components are inspected 
in one WT support structure. We obtain similar results when considering visual inspections as 
inspection method and an SOV as a workboat. 

5.2.2 Maintenance costs 

The second part of our sensitivity study evaluates the impact of the campaign cost 𝐶𝐶𝑐𝑐, the 
engineering costs 𝐶𝐶𝐸𝐸, the vessel cost per shift 𝐶𝐶shift, and repair operation time 𝑡𝑡𝑀𝑀,𝑂𝑂𝑂𝑂 on the 
maintenance costs defined by Eq. (12). In the analysis, we assume that welding is used as repair 
method and a CTV is utilized as the workboat. The study considers various scenarios related to 
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the component location (above or below water), the number of repaired turbine support 
structures, and the number of repaired components within each support structure.  

In Figure 7, we observe that at the turbine level the engineering costs have the greatest impact 
on the total maintenance costs, while the other parameters only have a small influence. 
Additionally, the influence of the vessel cost per shift increases with the number of repaired 
turbines and components, while the impact of the engineering costs decreases. Similar results 
are obtained when considering grinding as repair method and an SOV as a workboat. 

 
Figure 7: Sensitivity indices of the campaign cost 𝐶𝐶𝑐𝑐, the cost of engineering repairs 𝐶𝐶𝐸𝐸, the vessel cost per shift 𝐶𝐶shift, and the 
repair operation time 𝑡𝑡𝑀𝑀,𝑂𝑂𝑂𝑂 in function of the location of the repaired components (above or below water), the number repaired 
turbine support structures and the number of repaired components in each support structure. Repairs are performed using the 
welding repair method and a CTV. 

6 Numerical example 
In the following, the probabilistic cost model formulated in Section 4 is applied in a cost and 
risk-informed optimization of an I&M strategy for the two-dimensional steel frame resembling 
a jacket support structure of an offshore wind turbine (see Figure 8). The optimization is 
performed at the beginning of its lifetime based on information from the design phase. The 
frame has been studied in numerous publications and in the following we provide a summary 
of the underlying models and assumptions. A more detailed description of the frame can be 
found in (Schneider, Thöns and Straub, 2017; Schneider, 2020; Eichner, Schneider and Baeßler, 
2023). 
The steel frame is made of welded tubular sections. Its planned lifetime is 25 years, which is 
divided into 𝑗𝑗 = 1, … ,𝑚𝑚 intervals of one year length. During the operational phase, the frame 
is exposed to a time-dependent lateral force representing a storm load. This load is modeled by 
its annual maximum 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗 . In addition to storm loads, the frame – like a jacket support 
structure of an offshore wind turbine – is subject to fatigue due to dynamic excitations. In the 
current analysis, the welded connections of the frame contain 22 critical fatigue hotspots, which 
are indicated as red dots in Figure 8. The hotspot fatigue demand is quantified by the 
corresponding distributions of the fatigue stress ranges. Typically, these distributions are 
derived from an overall dynamic response analysis. In the current example, they are – as 
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described in Straub (2004) – determined based on the available design information (i.e. the 
hotspot fatigue lives and the applied SN curves). 
Fatigue deterioration of the hotspots is described by probabilistic Paris-Erdogan fatigue crack 
growth models. The statistical dependence among the fatigue behavior of different hotspots is 
captured by introducing correlations among the uncertain parameters of the hotspot fatigue 
models. This correlation influences the system reliability and has an impact on the (optimal) 
inspection and maintenance regime. 
The hotspots are inspected with MPI via a CTV and repaired by welding if required. The applied 
repair model is documented in detail in (Farhan, Schneider and Thöns, 2021). It is assumed that 
hotspots 1 to 8 are located above water, while hotspots 9 to 22 are located below water. The 
location of the of the hotspots (above or below water) influences the cost of inspections and 
repairs.  
The time-dependent failure probability is computed by coupling the probabilistic fatigue 
deterioration models with a probabilistic structural performance model utilized to evaluate the 
system failure probability conditional on the hotspot condition. Inspection information is 
included in the estimation of the system failure probability through Bayesian updating of the 
probabilistic fatigue models. Further information regarding the applied fatigue, structural 
performance, and inspection models as well as the methods employed to compute the (updated) 
time-variant failure probability of the frame is documented in (Schneider, Thöns and Straub, 
2017; Schneider, 2020; Eichner, Schneider and Baeßler, 2023). 
In the current application, all consequences (costs of inspections and repairs as well as failure 
consequences) are expressed as monetary costs 𝐶𝐶 to facilitate quantitative DV analyses. 
Furthermore, as discussed in Nielsen and Sorensen (2021), the economic benefits from the 
existence of the wind turbine may be assumed to be independent of the structural reliability and 
I&M actions. In this case, they are constant and, consequently, can be neglected in the 
optimization of I&M of the WT support structure. It follows that the utility 𝑈𝑈 introduced in 
Section 2.1 is proportional to −𝐶𝐶. 
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Figure 8.: Steel frame with 22 fatigue hotspots indicated as red dots (adapted from Schneider, Thöns and Straub (2017)) 

6.1 System state analysis 

The SS-A determines the expected total lifetime cost 𝔼𝔼[𝐶𝐶0] assuming that no inspections and 
no maintenance actions are performed during the lifetime of the support structure. 𝔼𝔼[𝐶𝐶0] is equal 
to the expected total lifetime cost of system failure 𝔼𝔼[𝐶𝐶𝐹𝐹] (lifetime risk of failure), i.e.: 

𝔼𝔼[𝐶𝐶0] = 𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝑐𝑐𝐹𝐹 ∙ 𝛾𝛾𝑗𝑗 ∙ [Pr(𝐹𝐹𝑗𝑗) − Pr(𝐹𝐹𝑗𝑗−1)]
𝑚𝑚

𝑗𝑗=1

 (15) 

where 𝑐𝑐𝐹𝐹 = 2 ∙ 107€ is the failure cost, which is here assumed to be deterministic and equal to 
the investment cost of one wind turbine (Thöns, Faber and Val, 2017); Pr(𝐹𝐹𝑗𝑗) is the cumulative 
probability of failure up to the end of year 𝑗𝑗; Pr(𝐹𝐹𝑗𝑗) − Pr(𝐹𝐹𝑗𝑗−1) is the probability of failure in 
year 𝑗𝑗; and 𝛾𝛾𝑗𝑗 is the discounting function which discounts the failure cost 𝑐𝑐𝐹𝐹 occurring in year 
𝑗𝑗 back to the present. The discounting function is defined as 𝛾𝛾𝑗𝑗 = 1 (1 + 𝑟𝑟)𝑗𝑗⁄ , wherein 𝑟𝑟 =
0.02 is the discount rate. The expected total lifetime cost 𝔼𝔼[𝐶𝐶0] of the case study related to steel 
frame is 7 ∙ 105€. 
 

6.2 Predictive information and predictive action decision analysis considering 
probabilistic I&M costs 

The PIPA-DA for jointly optimizing I&M is performed using the heuristic cost and risk-
informed approach proposed in (Luque and Straub, 2019; Bismut and Straub, 2021), which 
corresponds in essence to the normal from of the preposterior decision analysis. We adopt this 
approach as it is computationally tractable compared to the extensive form of analysis described 
in Appendix A.3. In this approach, a I&M strategy, generically denoted by 𝒮𝒮, is defined by 
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parameterized rules that specify what, when, and how to inspect and repair based on the 
available system information (i.e., inspection outcomes and corresponding repairs as well as the 
predicted system failure probability conditional on the inspection outcomes and previously 
performed repairs). In the current application, the parameterized rules are defined as follows 
(see also Bismut, Luque and Straub, 2017; Eichner, Schneider and Baeßler, 2023; Schneider, 
2019): 

1. Inspection campaigns are performed at fixed intervals ∆𝑡𝑡. 
2. 𝑛𝑛𝐼𝐼,𝐶𝐶 hotspots are inspected during each inspection campaign. 
3. Hotspots are prioritized for inspection according to a metric proposed by Bismut, Luque 

and Straub (2017), which is a function of a parameter 𝜂𝜂 as well as the structural 
importance and fatigue reliability of each hotspot. 

4. An additional inspection campaign is launched if the predicted annual system failure 
probability exceeds a threshold 𝑝𝑝𝑡𝑡ℎ. 

5. A maintenance campaign is launched if fatigue cracks are indicated and measured to be 
deeper than 𝑎𝑎𝑅𝑅. 

Note that rules 4 and 5 have the following implication: Inspection information obtained at one 
hotspot contains indirect information on the fatigue state of the remaining hotspots as their 
fatigue behavior is correlated due to common influencing factors (see Straub and Faber, 2004 
for a detailed discussion). Consider now the case in which a fatigue crack is unexpectedly 
indicated at one hotspot and measured to be deeper than 𝑎𝑎𝑅𝑅. Conditional on this inspection 
information, the probability that fatigue deterioration of the remaining hotspots has progressed 
faster than expected increases. Consequently, the system failure probability also increases. If it 
exceeds the threshold 𝑝𝑝𝑡𝑡ℎ, additional inspections and possibly repairs are performed as 
prescribed by rules 4 and 5. Because of these two rules and the explicit modeling of the 
dependence among the fatigue behavior of different hotspots, the current optimization of I&M 
of the frame captures scenarios in which the inspection and repair effort has to be increased due 
to accelerated fatigue deterioration.  

From the above list of parameterized rules, it follows that the I&M strategy 𝒮𝒮 is here fully 
defined by the parameters 𝜽𝜽 = [∆𝑡𝑡, 𝑝𝑝𝑡𝑡ℎ,𝑛𝑛𝐼𝐼,𝐶𝐶 , 𝜂𝜂,𝑎𝑎𝑅𝑅]𝑊𝑊. To highlight the dependence of 𝒮𝒮 on 𝜽𝜽, we 
write 𝒮𝒮𝜽𝜽 in the following.  
The utility function – or more precisely the cost function – underlying the current optimization 
is (generically) defined as: 

𝐶𝐶2(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) = 𝐶𝐶𝐼𝐼(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) + 𝐶𝐶𝑀𝑀(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) + 𝐶𝐶𝐹𝐹(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) (16) 

where 𝐶𝐶2(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) is the total lifetime cost, 𝐶𝐶𝐼𝐼(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) is the total lifetime 
inspection cost, 𝐶𝐶𝑀𝑀(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) is the total lifetime maintenance cost and 𝐶𝐶𝐹𝐹(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) 
is the total lifetime cost of structural failure. These costs are defined in function of the I&M 
strategy 𝒮𝒮𝜽𝜽, the uncertain parameters 𝐗𝐗 influencing the time-dependent system failure 
probability, the uncertain parameters 𝐘𝐘 influencing the effect of repairs and the uncertain 
parameters of the I&M cost model 𝐖𝐖 = [W1

𝑊𝑊, … , W𝑚𝑚
𝑊𝑊 ]𝑊𝑊, where 𝐖𝐖𝑗𝑗  are the uncertain parameters 

influencing the I&M costs in year 𝑗𝑗 as defined in Table 5. The total I&M costs occurring in each 
year 𝑗𝑗 are evaluated based on the parametric cost models described in Section 4. It is here 
assumed that the different 𝐖𝐖𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚 are independent and identically distributed. Note 
that this assumption is not a limitation, as the model can be extended to account for dependent 
and non-identically distributed cost model parameters. 
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The optimal strategy 𝒮𝒮𝜽𝜽∗  characterized by the optimal heuristic parameters 𝜽𝜽∗ minimizes the 
expected value of the total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] = 𝔼𝔼𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖[𝑐𝑐2(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖)]. It follows that 
the optimal heuristic parameters 𝜽𝜽∗can be determined as: 

𝜽𝜽∗ = arg min
𝜽𝜽
𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] (17) 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] is evaluated as described in Appendix B.1. The optimal heuristic parameters 𝜽𝜽∗ are 
here identified by conducting an exhaustive search across the following sets of parameter 
values: ∆𝑡𝑡 ∈  {4, 8} [years], 𝑝𝑝𝑡𝑡ℎ ∈  {5 ∙ 10−4, 10−3}, 𝑛𝑛𝐼𝐼,𝐶𝐶 ∈  {1, … ,22}, 𝜂𝜂 = 1 and 𝑎𝑎𝑅𝑅 =
1 [mm]. The estimated expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in function of 𝜽𝜽 is shown in Figure 
9. 

All strategies with 𝑛𝑛𝐼𝐼,𝐶𝐶 = {3,4,5,6} result in a similar expected total lifetime cost. This provides 
some flexibility to the decision-maker to choose a strategy based on their specific requirements 
regarding the inspection interval and structural reliability. Notably, both strategies with ∆𝑡𝑡 =
 4 years, exhibit similar expected costs for 𝑛𝑛𝐼𝐼,𝐶𝐶 > 7 regardless of the reliability threshold. When 
considering strategies with ∆𝑡𝑡 =  8, the reliability threshold has an impact on the expected total 
lifetime cost: a lower threshold results in more unscheduled inspections between regular 
inspections. In our current example the optimal strategy 𝒮𝒮𝜽𝜽∗  is characterized by 𝜽𝜽∗= 
[∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 6, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑊𝑊. 

 
Figure 9: Expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in function of 𝜽𝜽 = [∆𝑡𝑡, 𝑝𝑝𝑡𝑡ℎ,𝑛𝑛𝐼𝐼,𝐶𝐶 ,𝜂𝜂, 𝑎𝑎𝑅𝑅]𝑊𝑊determined based on the probabilistic 
I&M cost model 

Figure 10 shows the decomposed expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in function of the 
heuristic parameters 𝜽𝜽 = [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑊𝑊. This cost 
is composed of the expected values of the failure cost, inspection campaign cost, inspection 
operation cost, repair campaign cost, repair operation cost, and engineering cost for repairs. As 
the inspection effort increases (i.e., more hotspots are inspected during each inspection 
campaign), the expected value of the system failure cost (i.e., the risk of structural failure) 
decreases, and – as expected – the expected values of the inspection and repair costs increase. 
This nicely illustrates the impact of the risk mitigation measures on the structural risk of failure. 
Note that the engineering cost for repairs is constant in this case study since it is here incurred 
only once at the beginning of the operational phase as repair solutions are engineered 
proactively before the frame is commissioned. Consequently, they could be neglected in the 
current optimization, as they only shift the expected total lifetime costs upwards by a fixed 
value. 
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Figure 10: Decomposed expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in function of 𝜽𝜽 = [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22,𝜂𝜂 =
1,𝑎𝑎𝑅𝑅 = 1]𝑊𝑊 

To support the decision on whether one should implement a I&M strategy, the predicted value 
of information and actions is computed by the difference between the expected total lifetime 
cost 𝔼𝔼[𝐶𝐶0] and the expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽]. By normalizing this difference with 
respect to 𝔼𝔼[𝐶𝐶0], the relative 𝑉𝑉�𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃(𝜽𝜽) is obtained (Farhan, Schneider and Thöns, 2021): 

𝑉𝑉�𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃(𝜽𝜽) =
𝔼𝔼[𝐶𝐶0] − 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽]

𝔼𝔼[𝐶𝐶0]  (18) 

Figure 11 shows the 𝑉𝑉�𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 in function of the parameters 𝜽𝜽 = [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙
10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑊𝑊, where ∆𝑡𝑡 = 8  and  𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3 are the optimal 
inspection interval and reliability threshold. The dashed blue line corresponds to the expected 
total lifetime cost 𝔼𝔼[𝐶𝐶0] determined by the SS-A. The dashed-dotted blue line corresponds to 
the expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽]. Notably, 𝑉𝑉�𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 is positive for 𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22. This 
result indicates that it is a rational decision to inspect and maintain the frame. As expected, the 
highest 𝑉𝑉�𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃 is obtained when implementing the optimal strategy 𝒮𝒮𝜽𝜽∗ with an optimal 
number of inspected hotspots in each inspection campaign 𝑛𝑛𝐼𝐼,𝐶𝐶 = 6. 
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Figure 11: Relative DV 𝑉𝑉�𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃−𝐷𝐷𝑃𝑃(𝜽𝜽) = (𝔼𝔼[𝐶𝐶0] − 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽])/𝔼𝔼[𝐶𝐶0] together with the expected lifetime costs 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in 
function of 𝜽𝜽= [∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 1, … ,22,𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑊𝑊 and 𝐸𝐸[𝐶𝐶0] 

6.3 Predictive information and predictive action decision analysis considering 
expected I&M costs 

The numerical example considers only a single turbine support structure. In this case, the cost 
models defined in Eq. (11) and (12) can be expressed as linear functions of the number of 
inspected and repaired hotspots as follows: 

𝐶𝐶𝐼𝐼 =  𝐶𝐶𝐶𝐶 + 𝑛𝑛𝐼𝐼,𝐶𝐶 ∙ 𝐶𝐶𝐼𝐼,𝑂𝑂𝑂𝑂 with 𝐶𝐶𝐼𝐼,𝑂𝑂𝑂𝑂 =  
𝑡𝑡𝐼𝐼,𝐶𝐶 ∙ (1 + 𝑊𝑊𝑊𝑊) ∙ 𝐶𝐶shift

𝑡𝑡shift
 (19) 

and 

𝐶𝐶𝑀𝑀 =  𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐸𝐸 + 𝑛𝑛𝑀𝑀,𝐶𝐶 ∙ 𝐶𝐶𝑀𝑀,𝑂𝑂𝑂𝑂 with 𝐶𝐶𝑀𝑀,𝑂𝑂𝑂𝑂 =  
𝑡𝑡𝑀𝑀,𝐶𝐶 ∙ (1 + 𝑊𝑊𝑊𝑊) ∙ 𝐶𝐶shift

𝑡𝑡shift
 (20) 

The expected lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] can now be estimated based on the expected values of the 
parameters of the I&M cost model as described in Appendix B.2. Subsequently, the optimal 
heuristic parameters 𝜽𝜽∗ are identified based on Eq. (17) by conducting again an exhaustive 
search across the following sets of parameter values: ∆𝑡𝑡 ∈  {4, 8} [years], 𝑝𝑝𝑡𝑡ℎ ∈  {5 ∙
10−4, 10−3}, 𝑛𝑛𝐼𝐼,𝐶𝐶 ∈  {1, … ,22}, 𝜂𝜂 = 1 and 𝑎𝑎𝑅𝑅 = 1 [mm]. The estimated expected total lifetime 
cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] considering expected I&M costs are shown in Figure 12. 
It can be seen that the current analysis provides the same results as the analysis considering the 
probabilistic I&M costs (cf. also Figure 9) and thus the same optimal strategy 𝒮𝒮𝜽𝜽∗ with 𝜽𝜽∗= 
[∆𝑡𝑡 = 8,𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3,𝑛𝑛𝐼𝐼,𝐶𝐶 = 6, 𝜂𝜂 = 1,𝑎𝑎𝑅𝑅 = 1]𝑊𝑊. Consequently, the current analysis 
illustrates that the I&M costs can be considered deterministically as expected values in the DV 
analysis if they are included in the optimization on a linear basis. 
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Figure 12: Expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] in function of 𝜽𝜽 = [∆𝑡𝑡, 𝑝𝑝𝑡𝑡ℎ,𝑛𝑛𝐼𝐼 , 𝜂𝜂,𝑎𝑎𝑅𝑅]𝑊𝑊determined based on the expected values 
of the parameters of the I&M cost model 

Aligning with existing works, we utilize the probabilistic I&M cost model to derive 
deterministic or normalized cost ratios. In the literature, such a normalization is typically 
performed with respect to the failure cost or expected campaign cost due to their significant 
contribution to the overall lifetime costs. Applying the same methodology, we obtain the 
normalized cost models summarized in Table 7 and Table 8. These models can subsequently be 
used to optimize I&M of offshore wind turbine support structures if the costs are included in 
the underlying models on a linear basis. 

Table 7. Cost model normalized with respect to the expected campaign cost 

Cost parameter Ratio Normalized value 

Campaign cost 𝑐𝑐C 9. 11 ∙ 103 9. 11 ∙ 103⁄  1.00 

Failure cost 𝑐𝑐𝐹𝐹 2.00 ∙ 107 9. 11 ∙ 103⁄  2193.77 

Engineering cost 𝑐𝑐𝐸𝐸 4.55 ∙ 104 9. 11 ∙ 103⁄  5.00 

Inspection cost below water with EM 𝑐𝑐𝐼𝐼,𝑂𝑂𝑂𝑂 8.87 ∙ 103 9. 11 ∙ 103⁄  0.97 

Inspection cost above water with EM 𝑐𝑐𝐼𝐼,𝑂𝑂𝑂𝑂 3.54 ∙ 103 9. 11 ∙ 103⁄  0.38 

Repair cost below water with welding 𝑐𝑐𝑀𝑀,𝑂𝑂𝑂𝑂 4.58 ∙ 104 9. 11 ∙ 103⁄  5.02 

Repair cost above water with welding 𝑐𝑐𝑀𝑀,𝑂𝑂𝑂𝑂 3.80 ∙ 104 9. 11 ∙ 103⁄  4.17 

Table 8. Cost model normalized with respect to the failure cost 

Cost parameter Ratio Normalized value 

Failure cost 𝑐𝑐𝐹𝐹 2.00 ∙ 107 2.00 ∙ 107⁄  1.0 

Campaign cost 𝑐𝑐C 9. 11 ∙ 103 2.00 ∙ 107⁄  4. 55 ∙ 10−4 

Engineering cost 𝑐𝑐𝐸𝐸 4.55 ∙ 104 2.00 ∙ 107⁄  2.28 ∙ 10−3 
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Inspection cost below water with EM 𝑐𝑐𝐼𝐼,𝑂𝑂𝑂𝑂 8.87 ∙ 103 2.00 ∙ 107⁄  4.43 ∙ 10−4 

Inspection cost above water with EM 𝑐𝑐𝐼𝐼,𝑂𝑂𝑂𝑂 3.54 ∙ 103 2.00 ∙ 107⁄  1.77 ∙ 10−4 

Repair cost below water with welding 𝑐𝑐𝑀𝑀,𝑂𝑂𝑂𝑂 4.58 ∙ 104 2.00 ∙ 107⁄  2.29 ∙ 10−3 

Repair cost above water with welding 𝑐𝑐𝑀𝑀,𝑂𝑂𝑂𝑂 3.80 ∙ 104 2.00 ∙ 107⁄  1.90 ∙ 10−3 

7 Summary and concluding remarks 
This paper formulates and applies a probabilistic cost model to support the planning of I&M of 
the turbine support structures in offshore wind farms. It provides a decision-theoretical basis 
for optimizing I&M activities, with an emphasis on integrating the probabilistic cost model in 
the decision analysis. The probabilistic cost model is derived based on a discussion of (a) the 
types of I&M of turbine support structures and (b) the parameters that influence the overall 
I&M cost. Subsequently, variance-based sensitivity analyses are performed based on the 
probabilistic cost model to quantify the influence of the different cost model parameters on the 
overall I&M costs. Finally, the proposed probabilistic cost model is applied in a numerical 
example in which the I&M regime is optimized for a frame with steel members which resembles 
a jacket support structure of an offshore wind turbine. As part of the example, a SS-A, PIPA-
DA and DV analysis is performed. The SS-A determines the lifetime risk of structural when no 
information is collected, and no maintenance actions are performed throughout the structure’s 
lifetime. The PIPA-DA optimizes a heuristic I&M strategy defined by parameterized rules that 
guide the actions to be taken based on the available system information. The analysis is first 
performed based on the probabilistic model of the I&M costs. Subsequently, it is performed 
based on the expected values of the I&M costs. This is here possible since the costs are included 
in the model on a linear basis. Both analyses yield the same optimal heuristic I&M strategy. 
Finally, to determine the cost-effectiveness of the identified optimal I&M strategy, a DV 
analysis is carried out considering the probabilistic I&M cost model. 
Based on our work, the following conclusions can be drawn: 

1. The generic framework described in Section 2 facilitates an optimization of I&M 
regimes for turbine support structures in offshore wind farms taking into account the 
uncertainties in the I&M costs. 

2. The proposed probabilistic cost model can be utilized to quantify I&M costs at wind 
farm, structural system, and component level, which can be updated when the new data 
on the parameters governing the I&M costs become available during the operation of 
wind farms. 

3. The sensitivity analyses showed that, at component level, the campaign cost and 
engineering cost have the highest influence on the overall I&M cost, while the vessel 
cost per shift has the highest impact on the overall I&M costs at structural system and 
wind farm level. 

4. The decision analysis described in the numerical example identifies a cost and risk 
optimal I&M strategy for a steel frame subject to fatigue based on the probabilistic cost 
model. An optimal inspection interval of ∆𝑡𝑡 = 8 years is obtained from the PIPA-DA 
and DV analysis. Furthermore, if the annual system failure probability exceeds a 
threshold of 𝑝𝑝𝑡𝑡ℎ = 1 ∙ 10−3 yr-1, an additional inspection campaign is launched. In each 
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campaign, six prioritized hotspots are inspected, and a repair campaign is launched if 
fatigue cracks are indicated and measured to be deeper than 𝑎𝑎𝑅𝑅 = 1 mm. 

5. With the help of the numerical example, it is demonstrated that the I&M costs can be 
considered deterministically as expected values in the decision analysis if they are 
included in the optimization on a linear basis.  

6. The expected I&M costs at the structural system level depend solely on the number of 
campaigns and components involved in the I&M operations as wells as on the expected 
campaign, engineering, and operational cost, which therefore can be normalized and 
used in decision analyses to optimize the I&M regime of support structures at the 
structural system level. In the future, we will research similar concepts to derive 
deterministic (normalized) cost models for I&M planning at wind farm level.  
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Appendix A Expected utilities and optimal I&M decisions 
As described in Section 2.1, the expected utilities 𝔼𝔼[𝑈𝑈0], 𝔼𝔼[𝑈𝑈1|𝐚𝐚] and 𝔼𝔼[𝑈𝑈2|𝑖𝑖] form the basis 
for utility-informed optimizations of inspection/monitoring and maintenance of WT support 
structures in offshore wind farms. This appendix briefly summarizes the evaluation of these 
expected utilities. The summary assumes that the corresponding utility functions and the 
probability distributions of their input parameters are available. In addition, the appendix shows 
in more detail how decisions on inspection/monitoring and maintenance are optimized by 
maximizing the corresponding expected utilities. 

A.1 System state analysis 

As part of the system state analysis (SS-A), the expected utility 𝔼𝔼[𝑈𝑈0] is evaluated as follows: 

𝔼𝔼[𝑈𝑈0] =  𝔼𝔼𝐗𝐗,𝐖𝐖[𝑈𝑈0(𝐗𝐗,𝐖𝐖)] = � � 𝑈𝑈0(𝐱𝐱,𝐰𝐰) 𝑝𝑝(𝐱𝐱,𝐰𝐰) d𝐰𝐰 d𝐱𝐱 
𝐖𝐖𝐗𝐗

 (21) 
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where 𝔼𝔼𝐗𝐗,𝐖𝐖[𝑈𝑈0(𝐗𝐗,𝐖𝐖)] is the expected value of the utility function 𝑈𝑈0(𝐗𝐗,𝐖𝐖) defined in Eq. (1) 
with respect random variables 𝐗𝐗 and 𝐖𝐖 which influence the system state and the I&M costs, 
and 𝑝𝑝(𝐱𝐱,𝐰𝐰) is the joint prior probability distribution of 𝐗𝐗 and 𝐖𝐖. 

A.2 Predicted action decision analysis 

In the predicted action decision analysis (PA-DA), the expected utility 𝔼𝔼[𝑈𝑈1|𝐚𝐚] is evaluated. 
This expected utility is conditional on a possible choice of maintenance actions 𝐚𝐚, and computed 
with respect to the random variables Y, 𝐗𝐗 and W. These random variables influence the outcome 
of the associated maintenance actions, the system state, and the I&M costs. In a generic format, 
𝔼𝔼[𝑈𝑈1|𝐚𝐚] is determined as: 

𝔼𝔼[𝑈𝑈1|𝐚𝐚] =  𝔼𝔼𝐘𝐘,𝐗𝐗,𝐖𝐖[𝑈𝑈1(𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖)] = � � � 𝑈𝑈1(𝐚𝐚,𝐲𝐲, 𝐱𝐱,𝐰𝐰) 𝑝𝑝(𝐲𝐲,𝐱𝐱,𝐰𝐰) d𝐰𝐰 d𝐱𝐱 d𝐲𝐲 
𝐖𝐖𝐗𝐗𝐘𝐘

 (22) 

where 𝔼𝔼Y, X, W[𝑈𝑈1(a, Y, X, W)] is the expected value of the utility function 𝑈𝑈1(a, Y, X, W) defined 
in Eq. (2) with respect to 𝐘𝐘, 𝐗𝐗, and W, and 𝑝𝑝(𝐲𝐲,𝐱𝐱,𝐰𝐰) is the joint prior probability distribution 
of 𝐘𝐘, 𝐗𝐗 and 𝐖𝐖. 

The optimal maintenance actions 𝐚𝐚∗ are identified by maximizing the conditional expected 
value of 𝑈𝑈1 as: 

𝐚𝐚∗ = arg max
a

𝔼𝔼[𝑈𝑈1|𝐚𝐚] (23) 

Finally, the expected value of 𝑈𝑈1 conditional on the optimal maintenance actions 𝐚𝐚∗ can be 
defined as: 

𝔼𝔼[𝑈𝑈1|𝐚𝐚∗] = 𝔼𝔼𝐘𝐘,𝐗𝐗,𝐖𝐖[𝑈𝑈1(𝐚𝐚∗,𝐘𝐘,𝐗𝐗,𝐖𝐖)] (24) 

A.3 Predicted information and predicted action decision analysis 

A predicted information and predicted action decision analysis (PIPA-DA) is performed to 
jointly optimize decisions on inspection/monitoring and maintenance (see also Thöns and 
Kapoor, 2019). In this analysis, the expected value of the utility 𝑈𝑈2 is maximized based on 
predicted inspection/monitoring outcomes and predicted maintenance actions. When applying 
the extensive form of the analysis based on the lower branch of the decision tree in Figure 1 
(Raiffa and Schlaifer, 1961), the optimization is progressed from the leaf of the branch towards 
the node representing the decision on the inspection/monitoring regime 𝑖𝑖. The analysis starts by 
determining the expected value of 𝑈𝑈2 conditional on a choice of the inspection/monitoring 
regime 𝑖𝑖, a realization of the corresponding inspection/monitoring outcomes 𝐙𝐙𝑖𝑖 = 𝐳𝐳𝑖𝑖, and a 
possible choice of maintenance actions 𝐚𝐚 as follows: 

𝔼𝔼[𝑈𝑈2|𝑖𝑖, 𝐳𝐳𝑖𝑖 ,𝐚𝐚] =  𝔼𝔼𝐘𝐘,𝐗𝐗,𝐖𝐖|𝐙𝐙𝑖𝑖=𝐳𝐳𝑖𝑖[𝑈𝑈2(𝑖𝑖, 𝐳𝐳𝑖𝑖,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖)] 

= � � � 𝑈𝑈2(𝑖𝑖, 𝐳𝐳𝑖𝑖, 𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) 𝑝𝑝(𝐲𝐲,𝐱𝐱,𝐰𝐰|𝐳𝐳𝑖𝑖) d𝐰𝐰 d𝐱𝐱 d𝐲𝐲 
𝐖𝐖𝐗𝐗𝐘𝐘

 
(25) 

where 𝔼𝔼𝐘𝐘,𝐗𝐗,𝐖𝐖|𝐙𝐙𝑖𝑖=𝐳𝐳𝑖𝑖[𝑈𝑈2(𝑖𝑖, 𝐳𝐳𝑖𝑖,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖)] is the conditional expected value of the utility function 
𝑈𝑈2(𝑖𝑖, 𝐳𝐳𝑖𝑖 ,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖) defined in Eq. (3) with respect to Y, X and W conditional on 𝐙𝐙𝑖𝑖 = 𝐳𝐳𝑖𝑖, and 
𝑝𝑝(𝐲𝐲, 𝐱𝐱,𝐰𝐰|𝐳𝐳𝑖𝑖) is the joint posterior probability distribution of 𝐘𝐘, 𝐗𝐗 and 𝐖𝐖 given 𝐙𝐙𝑖𝑖 = 𝐳𝐳𝑖𝑖 , which 
is determined using Bayesian analysis. 
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Subsequently, the optimal maintenance actions 𝐚𝐚|𝑖𝑖,𝐳𝐳𝑖𝑖
∗  conditional on a certain choice of the 

inspection/monitoring regime 𝑖𝑖 and a corresponding realization of the inspection/monitoring 
outcomes 𝐙𝐙𝑖𝑖 = 𝐳𝐳𝑖𝑖 can be determined by maximizing 𝔼𝔼[𝑈𝑈2|𝑖𝑖, 𝐳𝐳𝑖𝑖 ,𝐚𝐚] as: 

𝐚𝐚|𝑖𝑖,𝐳𝐳𝑖𝑖
∗ = arg max

a
𝔼𝔼[𝑈𝑈2|𝑖𝑖, 𝐳𝐳𝑖𝑖 ,𝐚𝐚] (26) 

Given that the decision-maker upon knowing the inspection/monitoring outcomes 𝐙𝐙𝑖𝑖 = 𝐳𝐳𝑖𝑖  will 
always make the optimal maintenance decisions 𝐚𝐚|𝑖𝑖,𝐳𝐳𝑖𝑖

∗ , the expected value of the utility 𝑈𝑈2 
conditional on a choice of the inspection/monitoring regime 𝑖𝑖 is computed as: 

𝔼𝔼[𝑈𝑈2|𝑖𝑖] = 𝔼𝔼𝐙𝐙𝑖𝑖[𝔼𝔼𝐘𝐘,𝐗𝐗,𝐖𝐖|𝐙𝐙𝑖𝑖[𝑈𝑈2�𝑖𝑖, 𝐙𝐙𝑖𝑖,𝐚𝐚|𝑖𝑖,𝐙𝐙𝑖𝑖
∗ ,𝐘𝐘,𝐗𝐗,𝐖𝐖�]] 

= � �max
a
𝔼𝔼𝐘𝐘,𝐗𝐗,𝐖𝐖|𝐙𝐙𝑖𝑖=𝐳𝐳𝑖𝑖[𝑈𝑈2(𝑖𝑖, 𝐳𝐳𝑖𝑖,𝐚𝐚,𝐘𝐘,𝐗𝐗,𝐖𝐖)]�  𝑝𝑝(𝐳𝐳𝑖𝑖) d𝐳𝐳𝑖𝑖

𝐙𝐙𝑖𝑖

 
(27) 

where 𝔼𝔼𝐙𝐙𝑖𝑖[∙] is the expectation with respect to 𝐙𝐙𝑖𝑖, and 𝑝𝑝(𝐳𝐳𝑖𝑖) is the marginal probability 
distribution of the probabilistic inspection/monitoring outcomes 𝐙𝐙𝑖𝑖. The optimal 
inspection/maintenance regime 𝑖𝑖∗ is then obtained by maximizing 𝔼𝔼[𝑈𝑈2|𝑖𝑖] as: 

𝑖𝑖∗ = arg max
𝑖𝑖
𝔼𝔼[𝑈𝑈2|𝑖𝑖] (28) 

Finally, the maximum expected value of 𝑈𝑈2 conditional on 𝑖𝑖∗ is obtained as: 

𝔼𝔼[𝑈𝑈2|𝑖𝑖∗] = 𝔼𝔼𝐙𝐙𝑖𝑖∗[𝔼𝔼𝐘𝐘,𝐗𝐗,𝐖𝐖|𝐙𝐙𝑖𝑖∗[𝑈𝑈2(𝑖𝑖∗,𝐙𝐙𝑖𝑖∗ ,𝐚𝐚|𝑖𝑖∗,𝐙𝐙𝑖𝑖∗
∗ ,𝐘𝐘,𝐗𝐗,𝐖𝐖)]] (29) 

From Eq. (26), (27) and (28) it can be seen that a PIPA-DA cannot be summarized in a single 
optimization problem if the extensive form of the analysis is applied. As shown in Eq. (26), the 
optimal decisions on the maintenance actions 𝐚𝐚|𝑖𝑖,𝐳𝐳𝑖𝑖

∗  can in this case only be determined 
conditional on a certain realization of the inspection/monitoring outcomes 𝐙𝐙𝑖𝑖 = 𝐳𝐳𝑖𝑖.  

Appendix B Expected total lifetime cost conditional on a heuristic 
I&M strategy 
The expected value of the total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] conditional on a heuristic I&M strategy 
𝒮𝒮𝜽𝜽 is required to identify the cost and risk-informed optimal heuristic I&M strategy 𝒮𝒮𝜽𝜽∗ as 
described in numerical example in Section 6. In the following, we outline the evaluation of 
𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] considering probabilistic and expected I&M costs. 

B.1 Probabilistic I&M costs 

The expected total lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] considering probabilistic I&M costs is defined as: 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] = 𝔼𝔼𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖[𝐶𝐶2(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖)] 

= � � � � 𝐶𝐶2(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘,𝐙𝐙,𝐖𝐖) 𝑝𝑝(𝐱𝐱,𝐲𝐲, 𝐳𝐳|𝒮𝒮𝜽𝜽) 𝑝𝑝(𝐰𝐰|𝒮𝒮𝜽𝜽) d𝐱𝐱 d𝐲𝐲 d𝐳𝐳 d𝐰𝐰
𝐖𝐖𝐙𝐙𝐘𝐘𝐗𝐗

 
(30) 

in which 𝑝𝑝(𝐱𝐱,𝐲𝐲, 𝐳𝐳|𝒮𝒮𝜽𝜽) 𝑝𝑝(𝐰𝐰|𝒮𝒮𝜽𝜽) is the joint probability density function (PDF) of 𝐗𝐗, 𝐘𝐘, 𝐙𝐙 and 
𝐖𝐖. Eq. (30) implies that the uncertain parameters W governing the I&M costs are modeled as 
statistically independent of the uncertain parameters X influencing the system failure 
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probability, the uncertain parameters Y affecting the repair outcomes and the probabilistic 
inspection outcomes Z. 
Eq. (30) can be rewritten as: 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] = � � 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] 
𝐖𝐖

𝑝𝑝(𝐳𝐳|𝒮𝒮𝜽𝜽) 𝑝𝑝(𝐰𝐰|𝒮𝒮𝜽𝜽) d𝐳𝐳 d𝐰𝐰
𝐙𝐙

 (31) 

where 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] is the expected total lifetime cost conditional inspection outcomes 𝐙𝐙 = 𝐳𝐳 
and corresponding repairs as prescribed by strategy 𝒮𝒮𝜽𝜽 and 𝑝𝑝(𝐳𝐳|𝒮𝒮𝜽𝜽) is the marginal PDF of the 
lifetime inspection outcomes. 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] is computed as: 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] = 𝔼𝔼X,Y|Z=z, W=w[𝐶𝐶2(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘, 𝐳𝐳,𝐰𝐰)] = � � 𝐶𝐶2(𝒮𝒮𝜽𝜽,𝐗𝐗,𝐘𝐘, 𝐳𝐳,𝐰𝐰) 
𝐘𝐘

𝑝𝑝(𝐱𝐱, 𝐲𝐲|𝒮𝒮𝜽𝜽, 𝐳𝐳) d𝐱𝐱 d𝐲𝐲
𝐗𝐗

 (32) 

where 𝑝𝑝(𝐱𝐱,𝐲𝐲|𝒮𝒮𝜽𝜽, 𝐳𝐳) is the conditional PDF of 𝐗𝐗 and 𝐘𝐘 given 𝐙𝐙 = 𝐳𝐳. 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] can be 
decomposed as: 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] = 𝔼𝔼[𝐶𝐶𝐼𝐼|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] + 𝔼𝔼[𝐶𝐶𝑀𝑀|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] + 𝔼𝔼[𝐶𝐶𝐹𝐹|𝒮𝒮𝜽𝜽, 𝐳𝐳] (33) 

where 𝔼𝔼[𝐶𝐶𝐼𝐼|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] is the conditional expected lifetime inspection cost, 𝔼𝔼[𝐶𝐶𝑀𝑀|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] is the 
conditional expected lifetime maintenance cost, and 𝔼𝔼[𝐶𝐶𝐹𝐹|𝒮𝒮𝜽𝜽, 𝐳𝐳] quantifies the conditional 
expected lifetime failure costs over the lifetime of the structure. Note that the latter does not 
depend on the I&M cost model parameters as shown in Eq. (36) below. 

The conditional expected lifetime inspection cost 𝔼𝔼[𝐶𝐶𝐼𝐼|𝒮𝒮, 𝐳𝐳,𝐰𝐰] is computed as: 

𝔼𝔼[𝐶𝐶𝐼𝐼|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] =  �𝐶𝐶𝐼𝐼,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰) ∙ 𝛾𝛾𝑗𝑗 ∙ [1 − Pr(𝐹𝐹𝑗𝑗|𝒮𝒮𝜽𝜽, 𝐳𝐳)]
𝑚𝑚

𝑗𝑗=1

 (34) 

where the 𝑗𝑗th term represents the inspection costs in year 𝑗𝑗 given that failure has not occurred 
up to the end of that year; 𝐶𝐶𝐼𝐼,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰) is the inspection cost in year 𝑗𝑗, which are estimated 
based on the model defined in Eq. (11); and 1 − Pr(𝐹𝐹𝑗𝑗|𝒮𝒮𝜽𝜽, 𝐳𝐳) is the probability of survival of the 
system up to the end of year 𝑗𝑗 conditional on the inspection outcomes 𝐙𝐙 = 𝐳𝐳 and corresponding 
repairs as determined by the strategy 𝒮𝒮. 

Similarly, the conditional expected lifetime maintenance cost 𝔼𝔼[𝐶𝐶𝑀𝑀|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] is given by: 

𝔼𝔼[𝐶𝐶𝑀𝑀|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] =  �𝐶𝐶𝑀𝑀,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰) ∙ 𝛾𝛾𝑗𝑗 ∙ [1 − Pr(𝐹𝐹𝑗𝑗|𝒮𝒮𝜽𝜽, 𝐳𝐳)]
𝑚𝑚

𝑗𝑗=1

 (35) 

where 𝐶𝐶𝑀𝑀,𝑗𝑗(𝒮𝒮𝜽𝜽,z,𝐰𝐰) is the maintenance costs in year 𝑗𝑗, which are determined based on the model 
defined in Eq. (12). 

The conditional expected lifetime failure cost 𝔼𝔼[𝐶𝐶𝐹𝐹|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] is evaluated as: 
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𝔼𝔼[𝐶𝐶𝐹𝐹|𝒮𝒮𝜽𝜽, 𝐳𝐳] =  �𝑐𝑐𝐹𝐹 ∙ 𝛾𝛾𝑗𝑗 ∙ [Pr(𝐹𝐹𝑗𝑗|𝒮𝒮𝜽𝜽, 𝐳𝐳) − Pr(𝐹𝐹𝑗𝑗−1|𝒮𝒮𝜽𝜽, 𝐳𝐳)]
𝑚𝑚

𝑗𝑗=1

 (36) 

where 𝑐𝑐𝐹𝐹 is the deterministic failure cost and Pr(𝐹𝐹𝑗𝑗|𝒮𝒮𝜽𝜽, 𝐳𝐳) − Pr(𝐹𝐹𝑗𝑗−1|𝒮𝒮𝜽𝜽, 𝐳𝐳) is the probability of 
failure for year 𝑗𝑗 given 𝐙𝐙 = 𝐳𝐳 (cf. also Eq. (15)).  

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] is here estimated using a MC approach: 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] = � � 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐰𝐰] 
𝐖𝐖

𝑝𝑝(𝐳𝐳|𝒮𝒮𝜽𝜽) 𝑝𝑝(𝐰𝐰|𝒮𝒮𝜽𝜽) d𝐳𝐳 d𝐰𝐰
𝐙𝐙

 ≈
1
𝑛𝑛
�𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳(𝑖𝑖),𝐰𝐰(𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

 (37) 

in which {𝐳𝐳(𝑖𝑖)}𝑖𝑖=1𝑛𝑛  are samples of the probabilistic inspection outcomes 𝐙𝐙 conditional on the 
heuristic strategy 𝒮𝒮𝜽𝜽, which are generated as discussed by Bismut and Straub (2021); {𝐰𝐰(𝑖𝑖)}𝑖𝑖=1𝑛𝑛  
are samples of the uncertain cost model parameters 𝐖𝐖 = [W1

𝑊𝑊 , … , W𝑚𝑚
𝑊𝑊 ]𝑊𝑊, where 𝐖𝐖𝑗𝑗  are the 

probabilistic parameters influencing the I&M costs in year 𝑗𝑗 as defined in Table 5. As described 
in Section 6.2, it is assumed that the different 𝐖𝐖𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚 are independent and identically 
distributed. Thus, the joint PDF 𝑝𝑝(𝐰𝐰|𝒮𝒮𝜽𝜽) can simply be written as 𝑝𝑝(𝐰𝐰|𝒮𝒮𝜽𝜽) = 𝑝𝑝(𝐰𝐰1|𝒮𝒮𝜽𝜽) ∙ … ∙
𝑝𝑝(𝐰𝐰𝑚𝑚|𝒮𝒮𝜽𝜽). It is further assumed that repair solutions are pre-engineered before the frame is 
commissioned. Thus, the engineering costs are only incurred once at the beginning of the 
lifetime. 

The expected lifetime cost 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] is in this contribution estimated using MCS with 400 
samples of the inspection outcome Z and cost model parameters W.  

B.1 Expected I&M costs 

Based on Eq. (19), the conditional expected lifetime inspection cost can be formulated such that 
it only depends on the inspection outcomes 𝐙𝐙 = 𝐳𝐳 and corresponding repairs as determined by 
the strategy 𝒮𝒮𝜽𝜽, i.e.: 

𝔼𝔼[𝐶𝐶𝐼𝐼|𝒮𝒮𝜽𝜽, 𝐳𝐳] = 𝔼𝔼𝐖𝐖|𝐙𝐙=𝐳𝐳[𝐶𝐶𝐼𝐼|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐖𝐖] =  �𝔼𝔼𝐖𝐖|𝐙𝐙=𝐳𝐳[𝐶𝐶𝐼𝐼,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐖𝐖)] ∙ 𝛾𝛾𝑗𝑗 ∙ �1 − Pr(𝐹𝐹𝑗𝑗|𝒮𝒮𝜽𝜽, 𝐳𝐳)�
𝑚𝑚

𝑗𝑗=1

 (38) 

with 

𝔼𝔼𝐖𝐖|𝐙𝐙=𝐳𝐳[𝐶𝐶𝐼𝐼,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐖𝐖)] =  𝑛𝑛𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) ∙ 𝔼𝔼[𝐶𝐶𝐶𝐶] + 𝑛𝑛𝐼𝐼,𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) ∙ 𝔼𝔼[𝐶𝐶𝐼𝐼,𝑂𝑂𝑂𝑂] (39) 

where 𝑛𝑛𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) and 𝑛𝑛𝐼𝐼,𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) are the total numbers of inspection campaigns and 
component inspections in year 𝑗𝑗. 
Equivalently, based on Eq. (20), the conditional expected lifetime maintenance cost can be 
expressed as: 

𝔼𝔼[𝐶𝐶𝑀𝑀|𝒮𝒮𝜽𝜽, 𝐳𝐳] = 𝔼𝔼𝐖𝐖|𝐙𝐙=𝐳𝐳[𝐶𝐶𝑀𝑀|𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐖𝐖] =  �𝔼𝔼𝐖𝐖|𝐙𝐙=𝐳𝐳[𝐶𝐶𝑀𝑀,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐖𝐖)] ∙ 𝛾𝛾𝑗𝑗 ∙ �1− Pr(𝐹𝐹𝑗𝑗|𝒮𝒮𝜽𝜽, 𝐳𝐳)�
𝑚𝑚

𝑗𝑗=1

 (40) 

with 

𝔼𝔼𝐖𝐖|𝐙𝐙=𝐳𝐳[𝑐𝑐𝑀𝑀,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳,𝐖𝐖)] =  𝑛𝑛𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) ∙ (𝔼𝔼[𝐶𝐶𝐶𝐶] + 𝔼𝔼[𝐶𝐶𝐸𝐸]) + 𝑛𝑛𝑀𝑀,𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) ∙ 𝔼𝔼[𝐶𝐶𝑀𝑀,𝑂𝑂𝑂𝑂] (41) 
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where 𝑛𝑛𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) and 𝑛𝑛𝑀𝑀,𝐶𝐶,𝑗𝑗(𝒮𝒮𝜽𝜽, 𝐳𝐳) are the number of repair campaigns and component repairs 
in year 𝑗𝑗. Note the models defined in Eq. (39) and (41) do not explicitly account for the 
inspection and repair location and methods to simply the notation.  
Based on Eq. (36), (39) and (40), the expected total lifetime cost can now be written to depend 
only on the heuristic I&M strategy 𝒮𝒮𝜽𝜽 and the inspection outcomes 𝐙𝐙 = 𝐳𝐳:  

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳] = 𝔼𝔼[𝐶𝐶𝐼𝐼|𝒮𝒮𝜽𝜽, 𝐳𝐳] + 𝔼𝔼[𝐶𝐶𝑀𝑀|𝒮𝒮𝜽𝜽, 𝐳𝐳] + 𝔼𝔼[𝐶𝐶𝐹𝐹|𝒮𝒮𝜽𝜽, 𝐳𝐳] (42) 

After evaluating the expected total lifetime cost conditional on the inspection outcomes 𝐙𝐙 = 𝐳𝐳, 
𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] can be computed as: 

𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽] = � 𝔼𝔼[𝐶𝐶2|𝒮𝒮𝜽𝜽, 𝐳𝐳] 𝑝𝑝(𝐳𝐳|𝒮𝒮𝜽𝜽) d𝐳𝐳 
𝐙𝐙

 (43) 

The integral in Eq. (43) can be solved using a MC approach similar to Eq. (37). 
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