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Abstract. Accurate wind and power predictions from numerical models are crucial for wind farm
:::::::
Accurate

::::::::
modeling

::
of

:::::
wind

::::::::
conditions

::
is
:::::
vital

:::
for

:::
the

:::::::
efficient operation and management . This study explores how these predictions can be improved

::
of

::::
wind

::::::
farms.

::::
This

:::::
study

::::::::::
investigates

:::
the

:::::::::::
enhancement

::
of

:::::::
weather

::::::::::
simulations

:
by assimilating local offshore

::::::
LiDAR

::::::
and/or

:::::::
SCADA data into a numerical weather prediction model, while simultaneously taking into account

:::::::::
considering

:
the presence

of neighboring wind farms . The focus is on
:::::::
through

::::
wind

::::
farm

:::::::::::::::
parameterization.

:::
We

:::::
focus

::
on

:::::::::
improving

:::::
model

::::::
output

::::::
during5

:::::
storms

:::::::::
impacting the Belgian-Dutch wind farm cluster located in the Southern Bight of the North Sea . Our results show that

, for the current case study with extreme weather conditions, the assimilation of upstream data reduces mean absolute errors

of wind speed ,
::
via

:::
the

:::::::::::::::
four-dimensional

::::
data

::::::::::
assimilation

::::::::
(nudging)

:::::::::
technique

::
in

:::
the

:::::
WRF

::::::
model.

:::
Our

:::::::
findings

:::::::
indicate

::::
that

::::::::::
assimilating

::::
wind

:::::::::::
observations

::::::::::
significantly

:::::::
reduces

:::
the

::::::
relative

:::::::::::::::
root-mean-square

::::
error

:::
for

::::
wind

:::::
speed

::
at
::
a
::::
wind

::::
farm

:::::::
located

::
47

:::
km

:::::::::
downwind

:::::
from

:::
the

:::::::
offshore

::::::
LiDAR

::::::::
platform.

:::::
This

::::
leads

::
to
:::::

more
:::::::
accurate

::::::
power

:::::::::
production

:::::::
outputs.

:::::::::::
Specifically,

::
at10

::::
wind

:::::::
turbines

:::::::::::
experiencing

::::
wake

::::::
effects,

:::
the wind direction,

::::
speed

:::::
error

::::::::
decreased

::::
from

::::
10.5

::
%

::
to

:::
5.2

:::
%,

:::
and

:::
the

::::
wind

::::::::
direction

::::
error

::::
was

::::::
reduced

:::
by

:
a
::::::

factor
::
of

::::
2.4.

::
A

:::::::
proposed

::::::::
artificial

:::::
cyclic

::::::::::::
configuration,

:::::::::
leveraging

:::
the

::::::
upwind

:::::::
LiDAR

::::::::::::
measurements

::::::::
showcases

:::
the

::::::::
potential

:::
for

:::::::::
improving

:::::::::
hour-ahead

:::::
wind

:
and power predictions, up to 2.7 times in comparison to simulations

without any assimilation . This approach can be useful for forecasting purposes in short- to mid-term horizons, as well as for

a long-term refined reanalysis of various weather conditions and events
:
.
:::::::::
Moreover,

::
we

::::::::
perform

:
a
::::::::
thorough

:::::::::
sensitivity

:::::
study15

::
to

:::::::
nudging

:::::::::
parameters

::::::
during

::::::::
versatile

::::::::::
atmospheric

::::::::::
conditions,

::::::
which

:::::
helps

::
to

:::::::
identify

::::
best

::::::::::
assimilation

::::::::
practices

:::
for

::::
this

:::::::
offshore

::::::
setting.

:::::
These

:::::::
insights

:::
are

::::::::
expected

::
to

:::::
refine

::::
wind

::::::::
resource

:::::::
mapping

::::
and

:::
the

::::::::
reanalysis

::
of

:::::::
weather

::::::
events,

:::
as

::::
well

::
as

::
to

:::::::
motivate

:::::
more

:::::::::::
measurement

:::::::::
campaigns

:::::::
offshore.
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1 Introduction

In recent years, wind energy has emerged as a crucial and rapidly growing renewable energy source. Accurate predictions of20

wind speed, wind direction, and power production have become essential for efficient planning, design
:
, and operation of wind

farms. The use of numerical weather prediction (NWP) models, such as the open-source Weather Research and Forecasting

Model (WRF, Skamarock et al. (2019))
:
)
::::::::::::::::::::
(Skamarock et al., 2019), developed at the National Center for Atmospheric Research

(NCAR), plays a vital role in obtaining these accurate predictions. In the context of wind farm market operations, forecasts

of different lead times have different applications (Soman et al., 2010). Short-term forecasts of up to 6 hours ahead serve for25

regulation, dispatching, and congestion management, whereas mid-term forecasts of days-ahead serve for reserve requirement

and market trading. Long-term forecasts of weeks, seasons or more, are useful for resource planning, operation management,

optimal maintenance scheduling, and long-term energy trading. In the present study, short-term and mid-term forecasts are of

interest. Furthermore, wind is generated due to a number of physical weather processes, which can be simulated accurately only

by NWP models (Cheng et al., 2013). This renders the NWP approach more favorable for our goals than statistical models,30

although these can have strengths especially in post-processing techniques. For offshore wind farms
:::::::::
predictions.

:

:::
For

::::::
weather

::::::::::
simulations

::
at

:::::::
offshore

::::
wind

::::
farm

:::::
zones, NWP models do not necessarily have initial conditions that are accurate

enough
:::::::::
sufficiently

::::::::
accurate

:::::
initial

:::::::::
conditions due to the sparsity of offshore observations. This lack of data leads to broader

issues, where NWP models can display large bias errors due to the overall lack of long-term offshore measurement data (Archer

et al., 2014).35

Extreme events
::::::::::
Furthermore,

:::::::
extreme

::::::
events

::
in

:::::
which

:::::
wind

:::::::
turbines

:::
are

:::
still

::::::::
operating

:
can have a profound impact on wind

farm operations, since they
:
.
::::
Such

::::::
events

::::::::
involving

:::::
high

::::
wind

::::::
speeds

:
can often lead to implications for power generation

and grid stability. The impact at near-ground levels can be damaging for human activity, as well as cause grid instabilities

and potential wind turbine cut-outs. Consequently, numerous studies
::::
This

::::::
further

::::::::
increases

::::
the

::::
need

:::
for

::::::::
accurate

:::::::
weather

::::::::::
simulations.

:::::::::
Numerous

:::::
works are dedicated to studying and understanding extreme events, such as Larsén et al. (2019), Pryor40

and Barthelmie (2021), Sethunadh et al. (2023), Vemuri et al. (2022)
::::::::::::::::
Vemuri et al. (2022)

:
,
:::::::::::::::::::
Sethunadh et al. (2023). Given that

extreme events are often influenced by the larger-scale dynamics of the atmosphere, NWP models are commonly employed

to analyze and predict them. However, accurately capturing extreme events that significantly impact wind energy remains a

challenge.

Improvements in
::::::::
Improving

:
wind and power predictions extend

::::::::::
simulations

::::::
extends

:
beyond model settings

:
,
:
and can be45

enhanced by incorporating additional physics. One such path to consider is the impact of wind farms on the atmosphere. In

NWP models, wind farms are
:::
can

:::
be represented by a wind farm parameterization (WFP). Over the years, different WFP

:::::
WFPs

:
have been proposed. A systematic literature review by Fischereit et al. (2022a) compares 10 existing WFPs. Another

path for improving predictions is applying data assimilation (DA) techniques. In this study, we focus on both WFP and DA. By

employing WFP, the influence of wind farms on the surrounding atmospheric conditions is accounted for, and consequently,50

an insight into approximated inter-farm dynamics is possible. The WFP that is currently released in WRF is developed by

Fitch et al. (2012), and models the wind farm as a momentum sink and a turbulent kinetic energy (TKE) source. A study by
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Lee and Lundquist (2017) quantifies wind and power prediction improvements that are achieved by incorporating this WFP.

:
A
:::::::::

systematic
::::::::

literature
::::::
review

:::
by

::::::::::::::::::::
Fischereit et al. (2022a)

:::::::
compares

:::
10

:::::::
existing

::::::
WFPs. Furthermore, Fischereit et al. (2022b)

highlight
::::::::
highlights that the WFP of Fitch et al. (2012) is a suitable state-of-the-art choice for modeling the presence of wind55

farms in WRF, and is selected in the present work. Overall, WFP has been used in a variety of applications , including
:::
This

:::::
WFP

::::::
models

:::
the

::::
wind

::::
farm

::
as

::
a

:::::::::
momentum

::::
sink

:::
and

::
a

:::::::
turbulent

::::::
kinetic

::::::
energy

::::::
(TKE)

::::::
source.

:::::
Other

::::
WFP

::::::::::
applications

:::::::
include wind-

wave coupling studies(Porchetta et al., 2021), and assessment of modifications in near-surface environment of thunderstorm

outflow boundaries (Tomaszewski and Lundquist, 2021).
:
,
::::
such

:::
as

::::::::::::::::::
Porchetta et al. (2021)

:
.
:::::::::
Accurately

::::::::
capturing

:::::::::::
atmospheric

::::::::
conditions

::
is
::::::
crucial

:::
for

::::::::
modeling

::::
wind

:::::
farm

::::::
wakes.

::::::::
However,

::::
when

:::::::::::
representing

::::
wind

:::::
farm

:::::
wakes

::
in

:::::::::
mesoscale

::::::
models

:::::
using60

::::
WFP,

:::::::::::
uncertainties

::::
arise

::::::::::::::::::::::::::::::::::::::::::::::
(Eriksson et al., 2017; Peña et al., 2022; Ali et al., 2023).

:::::
WFP

:::
has

::::::::::
limitations,

::::::::
including

:::
the

::::
need

:::
for

::::
TKE

:::::::::
correction,

::
as

::::
well

:::
as

::
its

:::::::::
sensitivity

::
to

::::::::::
atmospheric

::::::::
stability.

:::::::::::
Additionally,

:::::
WFPs

::::::
restrict

:::::::
options

:::
for

::::::::
planetary

::::::::
boundary

::::
layer

:::::::
schemes

::
in

:::::
NWP

:::::::
models,

:::::
which

::
in
::::
turn

::::::
affects

:::
the

::::::
fidelity

::
of

::::::::
boundary

:::::
layer

::::::::::::
representation.

:

Along with model setting and including more physics within WRF, improvements in wind and power predictions
:::::
model

:::::
output

:
can also be achieved via DA

::
by

:::::::::
employing

::::
data

:::::::::::
assimilation

::::
(DA)

:
techniques. Data assimilation is the process of in-65

tegrating observed data into a numerical model (Skamarock et al., 2019). We will distinguish between two groups of such

techniques: variational DA (Barker et al., 2012) and four-dimensional data assimilation (FDDA or nudging, Liu et al. (2008)).

Variational DA is concerned with finding the optimal initial state of the atmosphere (in the case of three-dimensional varia-

tional data assimilation (3DVar), Barker et al. (2004)), or
:::
and

:::::::::::
furthermore,

:
with finding the optimal model trajectory

:::::
based

::
on

:::
this

:::::::
optimal

:::::
initial

::::
state

:
(in the case of four-dimensional variational data assimilation (4DVar), Huang et al. (2009); Zhang70

et al. (2013, 2014)). Both
:::
3D

:::
and

:::
4D

:
variational techniques rely on minimizing the difference between model forecasts and

observations by optimizing a cost function. One work that exploits the benefits of variational data assimilation is by Sun et al.

(2022), in which wind speed forecasts are improved when assimilating observations from the nacelle of turbines. In contrast,

FDDA
::::::::
(nudging) operates differently from variational data assimilation: FDDA directly influences the state variables over time

in order to match observed data (Reen, 2016), and it is the selected method in this work. In FDDA, the approach is to introduce75

tendency terms in the model equations to adjust the prognostic variables
:
,
:
such as temperature, humidity, and wind compo-

nents, towards observed values. This approach acts as a controller, rather than a cost function optimizer. This makes FDDA

much more computationally efficient than variational methods, and this is highly relevant in an operational context (Cheng

et al., 2017). A drawback of this method is that only prognostic model variables can be assimilated. Besides observational

FDDA/nudging, it is also possible to perform grid nudging and spectral nudging in WRF(Skamarock et al., 2019): these are80

out of the scope of this work. Several studies have explored the leverage of data assimilation techniques in mesoscale models

for wind energy applications. For example, Kosovic et al. (2020) use RTFDDA (real-time FDDA) for local data, integrated

with artificial intelligence approaches regarding the conversion from wind to power via machine learning .
:
a
::::::::
machine

:::::::
learning

:::::::
approach

:::
for

::::::
power

:::::::::
estimation. Nudging techniques are also applied in the onshore study of Cheng et al. (2017) that highlights

the effectiveness of FDDA
::::::::
RTFDDA

:::::::
(within

:
a
::::::::::
customized

::::::
version

:::
of

:::::
WRF)

:
in improving wind energy predictions 0-3

:::
0–385

hours ahead for normal weather conditions, using only wind speed observations from wind turbine (WT) anemometers. In that

study, the RTFDDA forecasting system is used, and as a NWP model, a customized version of WRF is utilized.
:::::::::::
anemometers.
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Furthermore, the study of Mylonas et al. (2018) performs FDDA /nudging of observations from the offshore meteorological

mast FINO3 in the North Sea for wind resource assessment and reanalysis.

Despite the vast research available, to our knowledge, there is no study that combines the benefits
:::
Our

:::::::
research

:::::::
presents

::
a90

::::
novel

::::::::
approach

::
to

:::::::::
improving

:::::
wind

:::
and

:::::
power

::::::
model

::::::
output

::
by

:::::::::
integrating

:::
the

::::::::::
advantages of a physics-based WFP and FDDA

of local observations offshore in improving wind and power predictions in WRF. This is why we
::
in

:::::
WRF,

::::::::::
particularly

::::::
during

::::::
extreme

::::::::
offshore

:::::::::
conditions.

::::
We focus on utilizing FDDA in WRF offshore by performing observational FDDA /nudging

:::::::::::
observational

::::::
FDDA of horizontal wind components , derived from wind speed and wind direction. The latter are collected by

:::::::
gathered

::::
from

::
a
:
LiDAR (Light Detection and Ranging) profilers, and SCADA (Supervisory Control And Data Acquisition)95

of wind turbine anemometers at hub height. Furthermore, having prominently situated upstream observations makes FDDA

especially advantageous as it provides
::::::
vertical

:::::::
profiler.

::::
This

::::::::
approach

::
is
::::::
unique

::
in

:::
its

:::::::
offshore

:::::::::
application

:::
of

::::::
FDDA

::
in

:::::
WRF

:::
due

::
to

:::
the

:::::::
strategic

:::::::::
placement

::
of

:::
the

::::::
LiDAR

::::::::
upstream

::::
(with

::::::
respect

::
to
:::
the

:::::
most

:::::::
common

:::::::::::::
South-Westerly

:::::
winds

::
in

:::
the

::::::::
Southern

::::
Bight

:::
of

::
the

:::::
North

:::::
Sea).

::::
This

::::::::::
geographical

:::::::::
advantage

::::::
allows

::
for

::::::::
advanced

:
information on incoming wind conditions in advance,

which will be highlighted in this work. With this strategy, we aim to enhance
::
to

::
be

::::::::
provided

::::::::::::
approximately

::::
one

::::
hour

::::::
ahead,100

:::::
which

::
is

:::
the

::::::::
advective

:::::
time

::::::::
required.

:::
Our

:::::
goal

::
is

::
to

:::::::
improve

:
the accuracy of wind and power predictions offshore during

extreme events that occurred
:::::
model

::::::
output

::::::::
offshore

:::
by

::::::::::
assimilating

::::
this

::::
data

::::::
during

:::::::::
significant

::::::
events

::::
such

::
as

::::
the

::::::
storms

::::::
Eunice

:::
and

:::::::
Franklin

:
in February 2022 over the Belgian North sea, namely the storms Dudley, Eunice and Franklin

:::
Sea. These

events had a significant
:::::::::
substantial impact on wind power production (reportedfor example

:
,
:::
for

:::::::
example,

:
in Belgian Offshore

Platform News (2022)), making them important
:::::
crucial

:
case studies for exploring possibilities for improving wind and power105

production predictions. Moreover, in order
::
our

::::::::
research.

::::::::::::
Furthermore, to gain insight into the FDDA setting, we consider

::::::
optimal

::::::
FDDA

:::::::
settings

:::
for

:::
this

:::::::
offshore

::::::::::::
configuration,

:::
we

::::::::::
experiment

::::
with

:::::::::
sensitivity

::
to different observational nudging pa-

rametersby varying
:
,
::::
such

::
as

:
nudging strength and

::::::::
horizontal

:
radius of influence of the assimilated observations. To evaluate

and verify
:::
We

:::::::
evaluate

:
the performance of the simulations , the results are compared to SCADA

::
by

::::::::::
comparing

:::
the

::::::
results

::
to

::::::
LiDAR

::::
and

:::::::
SCADA

:::::::::::
(Supervisory

:::::::
Control

::::
And

::::
Data

:::::::::::
Acquisition)

:::::::
datasets,

:
using classic metrics from the state-of-the-art110

handbook on wind forecasting by Yang et al. (2021).
:::::
These

:::::::
metrics

::
are

:::::
MAE

::::::
(mean

:::::::
absolute

::::::
error),

:::::
RMSE

::::::::::::::::
(root-mean-square

:::::
error),

:::
and

::::
bias

::::
with

::::::
respect

::
to
:::::::::::
observations.

:

The paper is structured as follows. Section 2 describes the methodology and the configuration of the numerical setup of the

WRF model
:::::::
including

:::
the

::::::
FDDA

:::::::::
algorithm,

:::
the

::::::::
available

:::::::
offshore

:::::::::::
observations,

::::
and

:::::::
selected

::::
case

::::::
studies

:::
for

::::::::::
simulations

::
in

:::
this

:::::
work. Section 3 portrays results for different scenarios, and the predictions are verified using MAE (mean absolute error)115

with respect to observations. Section 4 expresses
::::::::
expresses

:::
the

::::::
results

::::
and

:::::::::
discussion

::
for

::::
the

:::::::
different

:::::::::
simulation

:::::::::
scenarios.

::::::
Finally,

::::
Sect.

::
4
:::::::
outlines the conclusions of this paper.

2 Methodology and numerical setup

The NWP model employed in this work is the Advanced Research WRF (ARW) Model (Skamarock et al., 2019), v
:::::::::::::::::::::::::::::::::::::::::::::
(Skamarock and Klemp, 2008; Skamarock et al., 2019)

:
,
::::::
version

:
4.5.1, which is a state-of-the-art mesoscale NWP system available in the public domain. It solves the fully com-120
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pressible non-hydrostatic Euler equations. WRF
:
,
:::
and

::
it
:
has a rich set of physics parameterizations, and has an implemented

algorithm to assimilate prognostic model variables such as the horizontal components of wind speed via the FDDA (nudging)

technique, as described in Skamarock et al. (2019) and Reen (2016). With this algorithm, the numerical solution is nudged

towards observations by introducing tendency terms in the model equations as

∂qµ

∂t
(x,y,z, t) = Fq(x,y,z, t)+µGq

∑N
i=1W

2
q (i,x,y,z, t)(qo(i)− qm(xi,yi,zi, t))∑N

i=1Wq(i,x,y,z, t)
,125

where q is the quantity being nudged (in this work, horizontal wind components derived from wind speed and wind direction),

µ is the dry hydrostatic pressure, Fq are the physical tendency terms of q, Gq is the nudging strength, N is the total number

of observations, Wq is the weighing function in space and time, qo is the observed value of the quantity of interest, and

q(xi,yi,zi, t) is its model value. The working principle is of a proportional controller: with the approaching of the model value

to its observed value, the nudging tendency term decreases. .
:

130

2.1 The WRF model configuration

Our study is focused on the Belgian-Dutch wind farm cluster. The setup consists of five nested domains, three of which are

identical and innermost. The domains have their names and grid cells as follows. D01: 150× 150; D02: 190× 190; D03,

D04, and D05: 220× 190 grid cells; centered at latitude 51.42◦ N and longitude 2.74◦ E, with one-way nesting. The
:::::::
Lambert

::::::::
conformal

:::::::::
projection

::
is

::::::::
selected.

:::
The

:
three identical innermost domains will be

:::
are of main interest, with a size of 680

:::
680135

km by 596
:::
596

:
km. The horizontal grid spacing is 18

::
18

:
km for the outer domain, 6

:
6
:
km for the intermediate domain, and

2
:
2 km for the three innermost domains. The latter follows the guidelines of Fischereit et al. (2022a) to use horizontal grid

spacing of at least 3 to 5
:
3
::
to

::
5 times the wind turbine rotor diameter for the domains where the WFP is active

:::
with

::::::
active

::::
WFP

:
(in this case, the innermost ones). We run the simulations using

::::
D04

:::
and

:::::
D05).

:::
We

::::::::
configure

:::
the

::::::::::
simulations

::
for

:
the three

identical domains (with 2
:
2 km grid spacing) in the following way: D03 is for simulations without WFP, D04 is for active140

WFP, and D05 – for active WFP and
::::
while

:
performing FDDA. The domains are shown in Fig. 1, along with key

:::::::::::
measurement

locations of three LiDARs: at the Westhinder (WHi) platform (Glabeke et al., 2023), and at the Lichteiland Goeree platform

(LEG) and Europlatform (EPL) (Wind@Sea project, Wind Energy Research Group at TNO Energy Transition, 2023). Details

on the physics

:::
The

:::::
setup

::
in
::::

this
:::::
work

::
is

:::::
based

:::
on

:::::::::::::::::::
Hahmann et al. (2020),

::::::::::::::::::::::
Dörenkämper et al. (2020)

:
,
:::
and

::::::::::::::::::::::::
Larsén and Fischereit (2021)

:
.145

:::::::
Relevant

::::::
details

::
on

:::
the

:
parameterizations used in the setup can be found in Table 1, and it is based on Hahmann et al. (2020),

Dörenkämper et al. (2020), and Larsén and Fischereit (2021). The Lambert conformal projection is selected. The .
::::
The

:
cumu-

lus scheme is used only on the outermost domain. The purpose of our work offshore with FDDA and with
:::
Our

:::::
study

:::::::
involves

:::::
usage

::
of the WFP of Fitch et al. (2012)

:
,
:::::
which

:
further requires the introduction of sufficient vertical model levelsin order to

have
:
.
::::
This

::::::
allows

:
a representative description of the wind profile across the rotor, which is done by relying on recommen-150

dations from Lee and Lundquist (2017). The TKE advection flag has been switched on, following the recommendations of

Archer et al. (2020).
:::
The

:::::::
vertical

:::::
levels

:::
are

:::::::::
stretched,

:::::
which

:::::::
ensures

:::::
more

:::::
levels

:::::
close

::
to

:::
the

:::::::
surface.

::::
The

:::::
total

::::::
number

:::
of

5



Figure 1.
:::::
Nested

:::::::
domains

::
in

::::
WRF

:::
(a).

:::
The

:::::::
domains

::
of

::::::
interest

::
(b)

:::
are

::
the

::::
three

:::::::
identical

::::
D03,

::::
D04,

::::
D05,

::::
with

:
a
::::
grid

::::::
spacing

::
of

:
2 km.

::::
Key

::::::::::
measurement

:::::::
locations

::
are

:::::::
indicated

::::
(i.e.

::::
WHi

::::::
LiDAR,

::::
LEG

:::
and

::::
EPL

:::::::
LiDARs).

::::
The

::::
1409

::::
wind

::::::
turbines

::::
that

::
are

:::::::
currently

:::::::
included

::
in

:::
the

::::
WRF

::::
setup

:::
are

:::
also

::::::::
visualized

::
in

:::
(b).

:::::
levels

::
is

::
80

::::::::::::::::::::::
(Lee and Lundquist, 2017)

:
.
:::
The

::::::
lowest

:::::
level

::
is

::
at

:
6
:
m,

::::
with

::::::::
sufficient

::::::
points

::::::
across

:::
the

::::
wind

:::::::
turbine

::::
rotor

:::
for

::
a

:::::
typical

::::::::
offshore

::::
wind

:::::::
turbine

:::::
(WT)

::
in

:::
the

::::::::::::
Belgian-Dutch

:::::::
cluster.

:::::
More

::::::::::
specifically,

:::
for

:::
the

:::::::
smallest

:::::
wind

::::::
turbine

::::::
within

:::
the

::::::
Belgian

::::
side

::
of

:::
the

:::::::::::::
Belgian-Dutch

::::::
cluster,

:::::
there

:::
are

::
8

::::::
vertical

:::::
levels

::::
that

::::
span

::::::
across

:::
the

:::::
rotor,

:::::::
whereas

:::
for

:::
the

::::::
largest

:::::
wind155

::::::
turbine

::
of

:::
this

::::::
cluster,

:::::
there

:::
are

::
15

::::::
levels.

::::
The

:::::
model

:::::::
pressure

:::
top

::
is
::
at

:::::
1000

:::
Pa.

In order to account for farm effects, the
::
To

:::::::
consider

:::
the

::::::
impact

::
of

:::::
wind

:::::
farms,

:::
we

::::::::::
incorporate

:::
not

::::
only

:::
the

:::::::::::::
Belgian-Dutch

::::
wind

::::
farm

:::::::
cluster,

:::
but

::::
also

:::
the fully-commissioned offshore wind farms of interest in the North Sea are also included in our

simulations
:
in

:::
the

:::::
South

:::::
Bight

::
of

:::
the

::::::
North

:::
Sea via the WFP of Fitch et al. (2012) in WRF

:::::
within

:::
the

:::::
WRF

:::::
model. This group

of wind farms consists of 1409 wind turbines (out of 5779 in total in Europe and UK (Hoeser et al., 2022)) within 27 different160

wind farms that are represented in the setup, in proximity to the Belgian-Dutch cluster. The locations of these wind farms

are extracted from Hoeser et al. (2022), and the publicly available dataset of Hoeser and Kuenzer (2022). The details of the

different wind farms are summarized in Appendix A, Table A1. Besides wind turbine locations, the WFP requires the power

and thrust curves for each wind turbine in order to simulate its effects on the atmosphere. These were obtained from a mix of

both open (https://www.thewindpower.net/; and WindPRO (EMD-International)), and confidential sources.165

The vertical levels are stretched which ensures more levels close to the surface, and there are 80 levels in total (Lee and Lundquist, 2017)

. The lowest level is at 6 , with sufficient points across the wind turbine rotor for a typical offshore wind turbine in the
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Table 1.
:::::::::::::
Parameterization

:::::
options

:::
and

:::::::::::
configuration

:
in
:::
the

::::::
present

::::
WRF

::::
setup

Parameterization Scheme (with option in namelist) Reference

PBL scheme MYNN 2.5 level TKE (option 5) Nakanishi and Niino (2006)

Cumulus Kain-Fritsch (option 1) Kain (2004)

Microphysics scheme Thompson et al. (option 8) Thompson et al. (2008)

Radiation RRTMG (option 4) Iacono et al. (2008)

Land surface model NOAH LSM (option 2) Ek et al. (2003)

::::
Wind

::::
farm

::::::::::::
parameterizaiton

: ::::
when

:::::
active:

::::
Fitch

::::::
(option

::
1)

:::::::::::::
Fitch et al. (2012)

:::
TKE

::::::::
correction

::::::::
coefficient

::
α

:::
0.25

::::::
(default

:::::
value)

: :::::::::::::::
Archer et al. (2020)

Parameterization options in the present WRF model configuration

Belgian-Dutch cluster. The model pressure top is at 1000 Pa.
:::
The

:::::::::
performed

:::::
WFP

::::::::::
simulations

::::
take

::::
into

:::::::
account

:::
the

:::::
TKE

::::::::
advection

::::
with

:
a
:::::::::
correction

:::::
factor

::
α

::
of

::::
0.25,

:::::::::
following

::::::::::::::::
Archer et al. (2020).

:::::
This

::::::::
coefficient

::
α
::
is

:::::::
denoted

::
in

:::::
Table

::
1.

For time integration, a
:

third order Runge-Kutta scheme is used, and for advection – second− to sixth−order
::::::
second-

:::
to170

:::::::::
sixth-order

:::::
spatial

::::::::::::
discretization schemes. For the model integration, adaptive time stepping is used, with

:
a target Courant–Friedrichs–Lewy

number of 0.6. For initial and boundary conditions, the Global Forecast System (GFS) 3-hourly data from NCEP’s Histori-

cal Archive is used, with forecast grids on a 0.25 by 0.25 global latitude longitude grid (National Centers for Environmental

Prediction, National Weather Service, NOAA, U.S. Department of Commerce, 2015). The simulated time is from 15 February

2022 to 22 February 2022 including
::
All

:::::::::
simulated

::::::
periods

:::::::
include a 12-hour spin-up time. This week includes three extreme175

events which are
::::
These

:::::::
periods

::
of

::::::
interest

:::
are

:::::::
detailed

::
in

::::
Sect.

:::
2.3

::::
and

::::::
include

:::::::
extreme

:::::
events

::
in

::::::::
February

::::
2022

:::::::
(storms

::::::
Eunice

:::
and

::::::::
Franklin).

:

:::
Our

:::::
study

::::::::::
investigates

:::
the

:::::::::
sensitivity

::
of

::::::
results

::
to

:::::::
nudging

::::::::::
parameters.

:::::::
Varying

::::
such

::::::::::
parameters

:::::
helps

::
to

::::
gain

::::::
insight

::::
into

::
the

:::::
most

:::::::
suitable

::::::::::
assimilation

::::::::
strategies

:::
for

::::
this

:::::::
offshore

::::::::::::
configuration.

:::
For

::
a

:::::::
selected

:::
day

::::
(17

:::::::
February

::::::
2022),

::
a
::::::
number

:::
of

:::::::::
simulations

:::
are

:::::::::
performed

:::
by

:::::::
varying

:::
the

:::::::::
horizontal

:::::
radius

:::
of

::::::::
influence

::::
Rxy ,

:::
as

::::
well

::
as

:::
the

::::::::
nudging

:::::::
strength

::::
Gq .

::
In

:::::
these180

::::::::
numerical

:::::::::::
experiments,

:::::
either

:::::::
LiDAR

::
or

:::::::
SCADA

::::
data

::
is

::::::::::
assimilated.

::::
The

::::::
FDDA

::::::::
algorithm

::
is
:
detailed in Sect. 2.2.

:::
The

::::
full

::::::::
sensitivity

::::::::::
experiment

:
is
:::::::::
described

::
in

::::
Sect.

::::
2.5.

Nested domains in WRF. The domains of interest are the three identical D03, D04, D05, with a grid spacing of 2 . Key

locations that contain observations are indicated (i.e. Westhinder (WHi) LiDAR, LEG and EPL LiDARs). The 1409 wind

turbines that are currently included in the WRF setup are also shown on the right.185

2.2
:::

The
::::::
FDDA

:::::::::
(nudging)

:::::::::
algorithm

Additionally, our study investigates different configurations for FDDA with respect to data sources (either LiDAR or SCADA)

, and the sensitivity of results in one day (17 February, with 12-hour spin-up time also included in this day) to the following

nudging parameters: horizontal
:::::
WRF

:::
has

:::
an

:::::::::::
implemented

:::::::::
algorithm

::
to

:::::::::
assimilate

:::::::::
prognostic

::::::
model

::::::::
variables

::::
such

:::
as

:::
the

::::::::
horizontal

::::::::::
components

::
of

:::::
wind

:::::
speed

:::
via

:::
the

:::::
FDDA

:::::::::
technique,

::
as

::::::::
described

::
in
:::::::::::::::::::::
Skamarock et al. (2019)

::
and

:::::::::::
Reen (2016).

:::::
With190
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:::
this

:::::::::
algorithm,

:::
the

::::::::
numerical

:::::::
solution

::
is

::::::
nudged

:::::::
towards

::::::::::
observations

:::
by

:::::::::
introducing

::::::::
tendency

:::::
terms

::
in

:::
the

:::::
model

:::::::::
equations

::
as

∂qµ

∂t
(x,y,z, t) = Fq(x,y,z, t)+µGq

∑N
i=1W

2
q (i,x,y,z, t)(qo(i)− qm(xi,yi,zi, t))∑N

i=1Wq(i,x,y,z, t)
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

:
q
::
is
:::
the

:::::::
quantity

:::::
being

:::::::
nudged

::
(in

::::
this

:::::
work,

:::::::::
horizontal

::::
wind

::::::::::
components

::::
that

:::
are

::::::::
projected

::::
from

:::::
wind

:::::
speed

:::
and

:::::
wind

:::::::
direction

:::::::::::
observations,

:::
as

::
in

::::::::::::::::
Cheng et al. (2017)

:
),
::
µ
::
is

:::
the

:::
dry

::::::::::
hydrostatic

::::::::
pressure,

:::
Fq :::

are
:::
the

:::::::
physical

::::::::
tendency

:::
(or

::::::
model195

::::::
forcing)

:::::
terms

:::
of

::
q,

:::
Gq ::

is
:::
the

:::::::
nudging

:::::::
strength,

:::
N

::
is

:::
the

::::
total

:::::::
number

::
of

:::::::::::
observations,

:::
Wq::

is
:::
the

::::::::
weighing

::::::::
function

::
in

:::::
space

:::
and

::::
time,

:::
qo :

is
:::
the

::::::::
observed

:::::
value

::
of

:::
the

:::::::
quantity

::
of

:::::::
interest,

:::
and

:::::::::::
q(xi,yi,zi, t)::

is
::
its

::::::
model

:::::
value.

::::
The

:::::::
working

:::::::
principle

::
is
::
of

::
a

::::::::::
proportional

:::::::::
controller:

::::
with

:::
the

::::::::::
approaching

::
of

:::
the

::::::
model

::::
value

:::
to

::
its

::::::::
observed

:::::
value,

:::
the

:::::::
nudging

::::::::
tendency

::::
term

::::::::
decreases.

:

:::
The

::::::::
weighing

:::::::
function

:::
Wq:::

can
:::
be

::::::::
expressed

::
as

:::
the

::::::
product

::
of

:::::::::
horizontal

:::::
(wxy),

:::::::
vertical

::::
(wσ),

::::
and

:::::::
temporal

::::
(wt):::::::::::

contributions

:::::::::::::
(Xu et al., 2002)

:
.
:::
The

:::::::::::
contribution

:::
wxy::

is
::
a
:::::::
function

::
of

:::
the

:::::::::
horizontal

:
radius of influence Rxy , and nudging strength Gq . The200

:::
wσ :

is
::::

the
::::::
vertical

::::::::
weighing

::::::::
function,

:::
and

:::
wt::

is
::
a

:::::::
function

::
of

:::
the

:
assimilation time window is set as default τ = 0.667 hours

(Skamarock et al., 2019). Varying the nudging radius and strength can help gain insight into suitable assimilation strategies

and practices for extreme event forecasting in wind energy applications
:
τ

::::
over

:::::
which

:::
an

::::::::::
observation

::
is

::::
used

::
in
::::

the
:::::::
nudging

::::::::
algorithm.

::::
The

::::::::
horizontal

::::::::
weighing

::::::::
function

:
is
::
a
::::::::::::
Cressman-type

:::::::
function

:::::
given

:::
by

wxy
:::

=
:

R2
xy −D2

R2
xy +D2

, 0≤D ≤Rxy,

:::::::::::::::::::::::

205

wxy
:::

=
:

0, D > Rxy,
:::::::::::::::::::

:::::
where

::::
Rxy::

is
:::

the
::::::

radius
:::
of

::::::::
influence

:::
and

:::
D

::
is

:::
the

::::::::
distance

::::
from

::::
the

::::::::::
observation

:::::::
location

::
to

::::
the

::::
grid

:::::
point.

::::
The

:::::::
vertical

:::
and

:::
the

::::::::
temporal

::::::::
weighing

::::::::
functions

:::
are

::::
also

::::::::::::::::
distance-weighted.

:::::::
Further

::::::
details

::
on

::::::::::::
observational

:::::::
nudging

:::
can

:::
be

:::::
found

:::
in

:::::::::::::::
Grell et al. (1994)

:::
and

::
in

:::::::::::::
Xu et al. (2002).

::
In

:::
this

:::::
work,

:::
we

:::::::
perform

:
a
:::::::::
sensitivity

:::::
study

::
to

:::
the

::::::::
horizontal

::::::
radius

::
of

::::::::
influence

::::
Rxy ,

::
as

::::
well

::
as

::
to
:::
the

:::::::
nudging

:::::::
strength

::::
Gq .210

::::
This

::::
study

::
is
::::::::
described

::
in
:::::
Sect.

:::
2.5

::::
with

::
all

::::::
tested

:::::::
nudging

::::::::
parameter

::::::
values.

:

2.3 Available offshore observations

The observations used for assimilation and performance evaluation of the simulations are
::
In

:::
this

::::::
section,

:::
we

:::::
detail

:::
all

:::::::
offshore

::::::::::
observations

:::
that

:::
are

::::
used

::
in
::::
this

:::::
work,

::::
both

:::
for

::::::::::
assimilation

::
in

:::::
WRF,

:::
and

:::
for

:::::::::
simulation

::::::::::
performance

::::::::::
evaluation.

:::
The

::::::::
locations

::
of

::
all

:::::::
offshore

:::::::::::
observations

:::
are

::::::::
indicated

::
in

:::
Fig.

:::::
2(a).215

::::::
LiDAR

:::::::
profiler

::
at

:::
the

:::::::::::
Westhinder

::::::::
platform

::::::
(WHi)

:::
The

:::::::::::
observations

::::
used

:::
for

:::::::::::
assimilation

:::
are

:
collected by a vertical LiDAR

::::::
profiler

:
at the Westhinder survey platform (

::::
with

:::::::::
coordinates

:
51◦23’18.74”N, 02◦26’16.18”E), as well as by cup anemometers at the wind turbines’ nacelles (SCADA data) that

belong to one of the wind farms in the Belgian-Dutch cluster. The
:
.
::::
The

::::::
vertical

::::::::
profiling LiDAR (ZX 300M) is installed at

that
::::::
shown

::
in

:::
Fig.

:::::
2(b).

:
It
:::
has

:::::
been

:::::::
installed

::
at

:::
the

:::::::::
Westhinder

:
platform since August 2021 and has been collecting wind speed220
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and wind direction information since (Glabeke et al., 2023). The LiDAR location is illustrated in Fig. 2: located upstream from

the farm of interest, the Westhinder LiDAR is situated at approximately 42 from the Belgian-Dutch cluster. It
::
In

:::
this

::::::
study,

::
we

::::::
utilize

::::
WHi

:::::::
LiDAR

::::
data

:::
that

::
is
::::::::
available

:::::
from

:
4
::::::
August

:::::
2021

::
to

:::
18

::::
July

:::::
2022,

::
as

::::
well

::
as

:::::
from

::
26

:::::::
January

::
to

::
6
::::::::
February

:::::
2023.

::::
This

::::::
LiDAR measures at 11 different heights (34.5, 44.5, 62.5, 79.5, 104.5, 124.5, 149.5, 174.5, 224.5, 274.5 and 324.5

mTAW
:
),
:::

as
::::::
shown

::
in

::::
Fig.

::::
2(c).

::::
The

:::::::::::
measurement

:::::::
heights

:::
are

::
in

:
mTAW

::::::
(meters

:::::::
Tweede

:::::::::
Algemene

::::::::::::
Waterpassing),

::::::
which225

:::::
means

::::
that

:::
the

:::::::
average

:::
sea

::::
level

::
at
::::
low

:::
tide

:::
in

::::::
Ostend

:::::::::
(Belgium)

::
is

::::
used

::
as

:::
the

::::
zero

:::::
level.

:::::
This

::::
value

:::
for

:::::::
Ostend

::
is

::::
±2.3

:
m

) at 1
:::::::
(positive

::::
and

:::::::
negative

::::::::::
deviations)

::::
with

::::::
respect

::
to
::::

the
:::::
mean

:::
sea

:::::
level.

::::
The

::::::
LiDAR

::
is
:::::::::
retrieving

::::
wind

::::::
vector

::::
data

::
at

::
a

::::::::
frequency

::
of

::
1 Hz .

:::
per

::::::
height.

::
A

:::
full

:::::::::::
measurement

:::
of

:::
the

::::::
vertical

::::::
profile

::::::::
typically

::::
takes

:::
17

:::::::
seconds

:::
due

::
to

:::
the

:::::
extra

::::
time

:::
for

::::
beam

:::::
focus

::::::::::
adjustment,

::
as

::::
well

::
as

:::
for

::::::::
additional

:::::::
weather

::::::::
condition

::::::::::::
measurements

::::
used

::
in

::::::
quality

::::::
control.

:::::
Thus,

:::
for

:
a
:::::::::
10-minute

:::::::
interval,

:::
the

::::::::
maximum

:::::::
number

::
of

::::::::
validated

:::::
wind

:::::
speed

:::
and

:::::
wind

:::::::
direction

::::::::::::
measurements

::
is
:::
35.

::::
The

:::::::::
validation

::
is

:::::
based

::
on

::
a230

:::::::::::
wind-industry

::::::::
filtering,

:::::::::
performed

::
by

:::
the

:::::::
LiDAR

:::::::
software

:::::::
(User’s

:::::::
Manual

:::::::::::
ZephIR, 2018

:
),
:::

as
::::::::::::
meteorological

:::::::::
conditions

::::
can

::::
result

::
in
::::::::::::
non-validated

::::
wind

::::
data

:::
(for

::::::::
example,

:::
due

::
to
::::
low

:::::
cloud

::::::
ceiling,

::::
fog,

::
or

::::::::::::
precipitation).

:::
The

:::::::
filtering

::::::
criteria

:::
are

:::::::
selected

:::::
based

::
on

:
a
:::::
DNV

::::
(Det

:::::::
Norske

::::::
Verita)

:::::::::::
classification.

The location in which these
::
the

:::::
WHi

::::::
LiDAR

:
observations are collected is especially favorable, as

::::
since the measurements

are of free-stream wind, given the predominant South-Westerly winds (shown in the year-long wind rose in Fig. 2).
::::
(d)). This235

allows information to propagate towards the farm of interest when performing FDDA of these local observations. In contrast,

the SCADA collects
:::
The

::::::
typical

::::::::
advection

::::::::
timescale

::
of

:::
this

::::::::::
propagation

::
is

::::::::::::
approximately

:::
one

:::::
hour.

:::::::::
Therefore,

:::
the

::::::::::
assimilation

::
of

::::
such

::::::
upwind

::::
data

:::
can

::::
help

:::::::
improve

::::::::::
hour-ahead

:::::::::
predictions.

::::
This

::::::::
approach

::
is

::::::::
discussed

::
in

:::::
Sect.

:::
2.5,

:::
and

:::
the

::::::
results

:
–
::
in

:::::
Sect.

:::
3.1.

:

:::::::
SCADA

:::::
from

::::::
nacelle

::::::::::::
anemometers

::
at

:::::
Front

:::
&

::::::
Waked

:::::
WTs240

:::
The

::::::
nacelle

:::::::::::
anemometers

::::::
gather in-situ data

::
on

:::::::::
horizontal

::::
wind

:::::
speed

:::
and

:::::
wind

:::::::
direction

:
at the wind farmson power production

, in addition to horizontal wind speed and wind direction. In the present work, we consider 10-minute averages of both SCADA

and LiDAR datasets, which both otherwise have a one-second temporal resolution. In order for these observations to be

assimilated into WRF, the wind speed and wind direction from the LiDAR and the SCADA at hub heights is pre-processed and

translated to horizontal wind components via a standard procedure (Cheng et al., 2017).
:
.
:::::::::::
Additionally,

:::
the

:::::::
SCADA

:::::::
system245

::::::
records

::::::
power

:::::::::
production

:::::
data.

:::
For

:::
the

:::::::
purpose

:::
of

:::
our

:::::::::::
simulations,

:::
we

::::
have

::::::::::
specifically

:::::::
selected

::::
two

::::::::
locations

::::::
within

:::
the

::::::::::::
Belgian-Dutch

::::::
cluster

::::::
(which

:::::::::
comprises

::::
572

::::
wind

::::::::
turbines)

:::
as

:::::::
depicted

::
in
::::

Fig.
:::

2.
:::
The

::::
first

::::::::
location,

:::::::
referred

::
to
:::

as
::::::
“Front

:::::
WTs”,

::::::::
includes

:
a
::::::
subset

::
of

::::
five

::::
wind

::::::::
turbines.

:::::
These

:::::::
turbines

:::
are

:::::::::::
strategically

:::::::::
positioned

::
in

:::
the

::::
front

::::
row,

:::::::
aligning

:::::
with

:::
the

::::
most

:::::::
common

:::::
wind

:::::::
direction

:::::
from

:::
the

::::::::::
South-West.

::::
This

::::::::
alignment

::
is
:::::::::
consistent

::::
both

::
for

:::
the

::::::
period

:::::
under

:::::::::::
investigation

:::
and

:::
for

::
the

:::::::
overall

::::
wind

::::::::
direction

::
in

:::
the

:::::::
Belgian

:::::
North

::::
Sea,

::
as

::::::
shown

:::::
from

:::
the

::::
wind

::::
rose

::
in

::::
Fig.

::::
2(d).

::::
The

::::::
second

::::::::
location,

:::::::
“Waked250

:::::
WTs”,

:::::::
consists

::
of
:::::::

another
::::::
subset

::
of

:::
five

:::::
wind

::::::::
turbines.

:::::
These

:::::::
turbines

:::
are

:::::::
situated

::
in

:::
the

:::::
wake,

:::
on

:::
an

:::::::
arbitrary

::::
back

::::
row,

:::
of

:
a
:::::::
selected

:::::::
Belgian

::::
wind

:::::
farm

:::::
(when

:::
the

:::::
wind

:::::::
direction

::
is
:::::
from

:::
the

:::::::::::
South-West).

:::
The

::::::::
selection

::
of

:::::
these

:::
two

:::::::
distinct

::::::::
locations

:::::
allows

::
us

::
to
:::::::
observe

:::
the

:::::
effect

::
of

:::
the

:::::
wind

::::
farm

::::::::::::::
parameterization

:::::
across

::
a

:::
few

:::::::::
kilometers.

::
It
::::
also

::::::
enables

:::
the

::::::::::
assessment

::
of

:::
the

:::
area

::
of
::::::
impact

:::
of

:::
the

:::
data

:::::::::::
assimilation

:::::::
upwind.
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Locations of interest within the innermost domains: the (typically) upstream WHi LiDAR; the “Front WTs” and “Waked255

WTs” from the Belgian-Dutch cluster (two subsets of 5 wind turbines each); the LEG and EPL LiDARs. An illustration of

the LiDAR with respect to a typical wind turbine is shown. On the right: a wind rose obtained from the LiDAR dataset of

Glabeke et al. (2023) at 104.5 above sea level for a period of almost one year (4 August 2021 to 18 July 2022).
:::
The

::::::
reason

:::
for

:::::::
selecting

::::::
exactly

::::
five

:::::::
turbines

:::
per

:::::::
location

:::::
(Front

::::
WTs

::::
and

::::::
Waked

:::::
WTs)

::
is

::
the

::::::::::::
computational

:::::::
domain

::
of

:::
our

::::::::::
simulations.

:::::
Each

:::::
subset

::
of

:::::::
turbines

::
is

::::::
located

::::::
within

:
a
:::::::
specific

::::::::::::
computational

:::
cell

::::
with

:
a
::::
grid

:::::::
spacing

::
of

:
2
:
km

:
.
:::::::::
Therefore,

:::
for

::::
both

::::::::
locations,

:::
we260

:::::::
consider

:::
the

::::::
average

::::::
values

::::
from

:::
the

:::::::
SCADA

:::
of

::
the

::::::::::::
corresponding

::::
five

:::::::
turbines,

::::::::
providing

:::
us

::::
with

:
a
::::::::::::
representative

::::::
sample

:::
for

::::
each

::::::::::::
computational

::::
cell.

::::::::
However,

:::
due

:::
to

:
a
:::::::::::::
non-disclosure

:::::::::
agreement

::::
with

:::
the

::::
wind

:::::
farm

:::::::
operator,

:::
we

:::
are

::::::
unable

:::
to

:::
list

:::
the

::::
exact

::::::::::
coordinates

::
of

:::::
these

:::::::
turbines.

:

::::::
LiDAR

::
at

:::
the

:::::::::::
Lichteiland

::::::
Goeree

::::::
(LEG)

::::::::
platform

To further evaluate our numerical results, we compare also with a LiDAR
::::
them

::::::::::
additionally

:::
to

:
a
:::::::

LiDAR
:::::::
profiler on the265

Lichteiland Goeree (LEG) platform (coordinates 51◦55′30” N, 3◦40′12” E) provided by the Wind@Sea project, Wind Energy

Research Group at TNO Energy Transition (2023)
:
(https://www.tno.nl/

:
, https://nimbus.windopzee.net/). The LEG platform

is positioned at approximately 30
::::::
collects

:::::::::::::
meteorological

::::::::::
observations

::::
and

::
is

:::::::::
positioned

::::::::::::
approximately

:::
110

:
km South-West

from Hoek van Holland, and it collects meteorological observations.
::::
away

:::::
from

:::
the

::::::::::
Westhinder

:::::::
platform

:::
as

::::::
shown

::
in

::::
Fig.

::::
2(a). Wind speed observations are available and obtained via a Leosphere Windcube LiDAR V2

::
.1 which can measure up to270

approximately 250
:::
240 m above sea level (8 different heights at 62, 90, 115, 140, 165, 190, 215 and 240 m above sea level)

. This LiDAR is located approximately 63 further downstream the Belgian-Dutch cluster (see Fig. 2). Finally, we perform

comparisons
::::::::::::
simultaneously

::::
with

:
a
:::::
wind

:::::
vector

::::
data

:::
rate

:::
of

:
1
:
Hz

:
.

::::::
LiDAR

::
at

:::
the

:::::::::::::
Europlatform

::::::
(EPL)

:::
We

:::::::
perform

:::::::::::
comparisons

::
of

::::::::::
simulations with one more LiDAR

::::::::
ZX-300M

::::
wind

:::::::
profiler

:
dataset that is collected at the Eu-275

roplatform (EPL) also by the Wind@Sea project, Wind Energy Research Group at TNO Energy Transition (2023)(, ).
:::
The

:::::::::::
measurement

::::::
heights

::
of

:::
the

::::
EPL

:::::::
LiDAR

:::
are

:::
63,

:::
91,

::::
116,

::::
141,

::::
166,

::::
191,

::::
216,

::::
241,

::::
266

:::
and

::::
291

::::::
meters.

:
This platform is also

located at about 30 South-West from Hoek van Holland.
::::::
located

::
in

:::::::::
proximity

::
to

:::
the

::::
LEG

::::::::
platform,

::
as

::::::::
indicated

::
in

::::
Fig.

::::
2(a).

2.4 Case studies of extreme events at specific locations

The period of interest in this research is from 15280

:::::::::::
Performance

:::::::
metrics

:::
The

:::::
WHi

::::::
LiDAR

::::
and

:::::::
SCADA

:::::::
datasets

::
(at

:::::
Front

::
&
::::::
Waked

:::::
WTs

::::::::
locations)

:::
are

:::::::
utilized

:::
for

::::::::::
assimilation

:::::::::
(nudging)

::
in

:::::
WRF

::
in

::::::::
distinctive

:::::::::
numerical

::::::::::
experiments

:::::::::
(described

::
in

::::
Sect.

::::
2.5),

::
as

::::
well

::
as
:::
for

::::::
model

:::::
output

::::::::::
evaluation.

:::::
Before

:::::::::::
assimilation

::
in

:::::
WRF,

::
all

:::::
wind

:::::
speed

:::
and

:::::
wind

::::::::
direction

:::::::::::
observations

:::
are

::::::::
projected

::::
onto

:::
the

::::
axes

:::::::
aligned

::::
with

::::::
model

::
U

::::
and

::
V

:::::::
velocity

::::::::
variables
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Figure 2.
:::::::
Locations

::
of

::::::
interest

::
(a)

:::::
within

:::
the

::::::::
innermost

:::::::
domains:

:::
the

::::::::
(typically)

:::::::
upstream

::::
WHi

:::::::
LiDAR;

::
the

:::::
Front

::::
WTs

:::
and

::::::
Waked

::::
WTs

:::
from

:::
the

:::::::::::
Belgian-Dutch

::::::
cluster;

:::
and

::
the

::::
LEG

:::
and

::::
EPL

:::::::
LiDARs.

:::
The

::::
WHi

::::::
LiDAR

:
is
:::::
shown

:::
on

::
its

::::::
platform

:::
(b),

::
as
::::
well

::
as

::
its

::::::::
illustration

::::
with

:::::
respect

::
to

:
a
::::::
typical

::::
wind

:::::
turbine

:::
(c).

::::::
Finally,

:
a
::::
wind

::::
rose

::
(d)

:::::::
obtained

::::
from

:::
the

:::::
LiDAR

::::::
dataset

::
of

::::::::::::::::
Glabeke et al. (2023)

:
at
:::::
104.5 mTAW

::
for

:
a
:::::
period

::
of

:::::
almost

:::
one

::::
year

::
(4

:::::
August

::::
2021

::
to

::
18

::::
July

:::::
2022).

::::::::::::::::
(Cheng et al., 2017).

::::
The

::::::
results

:::::::
obtained

:::::
from

::::::::::
simulations

:::
are

::::::::
compared

::
to

:::
the

::::
five

::::::::
locations

::
in

::::
total,

::::::
shown

::
in

::::
Fig.

::
2:

:::::
three285

:::::::
LiDARs

:::::
(WHi,

:::::
LEG,

:::
and

::::::
EPL),

::
as

:::
well

:::
as

:::
two

::::::::
locations

:::::
(Front

::
&

::::::
Waked

:::::
WTs)

::::
with

::::
wind

:::::::
turbine

:::
data

:::::
(local

:::::
wind

:::::
speed,

:::::
wind

::::::::
direction,

:::
and

::::::
power)

::::
from

::
a
:::::::
SCADA

::::::::
database.

::
To

:::::::
evaluate

:::
the

:::::::::::
performance

:::
of

::::::::::
simulations,

:::
we

::::::
utilize

:::::::::
established

::::::::
metrics,

:::::::
outlined

::
in

:::::::::::::::
Yang et al. (2021)

:
.
:::::
These

:::::::
metrics

::::::
include

:::::
Mean

::::::::
Absolute

:::::
Error

:::::::
(MAE)

::::::::::::::::
(Lydia et al., 2014)

:
,
::::::::::::::::
Root-Mean-Square

:::::
Error

:::::::
(RMSE)

::::::::::::::::
(Zhao et al., 2011)

:
,
:::
and

:::::
Bias

:::::::::::::::
(Wang et al., 2019)

:
.
:::::
Each

::
of

:::::
these

::::::
metrics

::::::::
provides

:
a
::::::::

different
::::::::::
perspective

::
on

:::
the

::::::::
accuracy

:::
of

:::
our

::::::::::
simulations

::::::::
compared

:::
to290

:::::::
offshore

:::::::::::
observations.

:::
Let

::
us

::::::
denote

:::
the

:::
ith

:::::::::::
(normalized)

:::::
model

::::::
output

:::::::
variable

::
as

:::
pim,

:::
the

:::
ith

:::::::::::
(normalized)

::::::::
observed

:::::::
variable
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::
as

:::
pio,

:::
and

:::
the

:::::
length

:::
of

::
the

::::
data

:::
set

::
as

:::
N.

:::
The

:::::
MAE

::
is

:
a
::::::
widely

::::
used

::::::
metric

:::
for

:::::::::
evaluating

::::
wind

::::::
model

::::::
output,

::
as

::
it

::::::
reflects

:::
the

:::::
overall

:::::
error

:::::
level.

:
It
::
is
:::::::::
calculated

::
as

:::
the

:::::::
average

:::::::
absolute

::::::::
difference

:::::::
between

:::
the

::::::
model

::::::
output

:::
and

:::
the

::::::::
observed

::::
data:

MAE =
1

N

N∑
i=1

|pim − pio|.
::::::::::::::::::::

:::
The

::::::
RMSE

::
is

:::::::
another

::::::::
important

::::::
metric,

::::::::::
particularly

:::
due

:::
to

::
its

:::::::::
sensitivity

::
to

::::::
outliers

:::
in

:::::
NWP

:::::
model

::::::
output.

::
It
::
is

::::::::
computed

:::
as295

::
the

::::::
square

::::
root

::
of

:::
the

:::::::
average

::::::
squared

::::::::::
differences

:::::::
between

:::
the

:::::
model

::::::
output

:::
and

:::
the

::::::::
observed

::::
data:

:

RMSE =

√√√√ 1

N

N∑
i=1

(pim − pio)
2.

:::::::::::::::::::::::::

:::::
Lastly,

:::
the

::::
bias

::::::::
indicates

:::
the

::::::
average

::::::::
deviation

::
of

:::
the

::::::
model

:::::
output

:::::
from

:::
the

:::::
actual

::::::::
observed

::::::
values:

Bias =
1

N

N∑
i=1

(pim − pio).

::::::::::::::::::::

:::::
These

::::::
metrics

:::::
allow

:
a
:::::::::::::
comprehensive

:::::::
analysis

:::
and

:::::::::
evaluation

::
of

::::::
model

::::::::::
performance

::::::
across

:::::::
different

:::::::::
simulation

:::::::::
scenarios.300

2.4
::::

Case
::::::
studies

::
of

::::::::
different

:::::::
weather

::::::::::
conditions

:::
The

::::
case

::::::
studies

::
of

:::::::
interest

::
are

:::::::::
described

::
in

::::
Table

::
2.
::::
For

::
an

:::::
easier

::::::::
reference

:::::::::
throughout

:::
the

::::
text,

:::::
these

::::
cases

:::
are

:::::::
labeled

::
as

::::
time

:::::
frames

:::
F1

::
to

:::
F4.

:::
All

::::
four

:::::
cases

::::
have

::
a

::::::
suitable

::::::::::
South-West

:::::
wind

:::::::
direction

::::
that

:::::
allows

:::
the

:::::::::
advection

::
of

:::
the

:::::::::
assimilated

:::::::
LiDAR

:::
data

:::::::
towards

:::
the

:::::::::::::
Belgian-Dutch

::::::
cluster

::::
(Fig.

:::::
2(a)).

:::::
Each

::::
case

:::::
study

:::
has

::
a
:::::::
targeted

:::::
goal.

::
F1

::::::::
enhances

::::::
model

::::::::
accuracy

:::::
using

::::::
FDDA.

:::
F2

:::::::
involves

:
a
:::::::::::::
comprehensive

::::::::
sensitivity

:::::::
analysis

:::
to

:::::::
nudging

::::::::::
parameters,

:::::
which

::
is

:::
one

:::
of

:::
the

::::
main

:::::
goals

::
of

::::
this

:::::
work.305

::
F3

:::::::
displays

::
a
:::::::
negative

:::::
wind

:::::
speed

::::
bias

:::::
when

:::::
WFP

::
is

:::::::
inactive,

::
a

::::::::
condition

:::
that

::::::::::
deteriorates

:::::
with

:::
the

::::::::
activation

::
of

:::::
WFP

::::
due

::
to

::::::
further

:::::::::
momentum

:::::::::
extraction

::::
from

::
an

:::::::
already

:::::::::::::
underpredicting

::::::::
baseline.

::::::::::
Conversely,

::
F4

:::::::
displays

::
a

::::::
positive

:::::
wind

:::::
speed

::::
bias

::::
when

:::::
WFP

::
is

:::::::
inactive,

:::::
which

::
is
:::::::
reduced

::::
once

:::::
WFP

::
is

::::::::
activated.

:::::
Thus,

:::
for

::::
both

:::
F3

:::
and

:::
F4,

:::::::::::
incorporating

::::::
FDDA

::
is
::::::::
explored

::
to

:::::::
enhance

:::::
model

::::::
output.

:::
All

:::::
times

::::::::
indicated

:::::::::
throughout

:::
the

::::
text

:::
and

::::::
figures

:::
are

::
in

::::
UTC

::::
time

:::::
zone.

:

::::
Time

:::::
frame

:::
F1

:::::::
includes

:::
two

::::::
storms

:::::::
(Eunice

:::
and

::::::::
Franklin)

::
in

::::::::
February 2022. In this period, three extreme events occurred in310

the Belgian North Sea: the storms Dudley, Eunice, and Franklin. Note that hours in this text and all graphs are always in local

time (UTC +1) . At the Westhinder (WHi) LiDAR
:::
The

::::
goal

::::::
within

::
F1

::
is
::
to
::::

use
::::::
FDDA

:::
(of

::::::
upwind

:::::::
LiDAR)

::
to
:::::

help
:::::::
improve

:::::
model

:::::::::::
performance.

:::
For

:::
F1

::
at

:::
the

::::
WHi

::::::
LiDAR

:
location, according to the observations in Fig. 3 , at 104.5 height, these mTAW

::::::
height,

:::
the

:
storms have the following characteristics:

– Storm Dudley: afternoon of 16 February – afternoon of 17 February, with a peak velocity of 25.81 at 21h on 16 February315

2022.

– Storm Eunice :
::::::
Eunice

:::::::
occurred

:::::
from

:::
the

:
early morning of 18 February –

::
to

:::
the

:
early morning of 19 February, with

:
.
:
It
:::::::
reached

:
a peak velocity of 37.13 at 14h m s−1

:
at
:::::
14:00

:
on 18 February 2022. Wind direction is overall gradually

transient
::::
2022,

::::
with

:::
the

:::::
wind

:::::::
direction

:::::::
varying

:::::::
between

::::
225

:::
and

::::
275

::::::
degrees.
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Table 2.
::::
Time

::::::
frames

::
of

:::::
interest

::
in

:::
this

:::::
study

::::
along

::::
with

:::
their

:::::::::::
corresponding

:::::
goals.

::::
Label

: ::::::::
(Duration)

::::
Time

::::
frame

:::::
dates

:::
Goal

:

::
F1 :

(4
::::::

days)
::
17

::
February 2022 to

:::
2022

::
–
:::

21

::::::
February

:::::
2022

::::::
Improve

:::::
model

::::::::::
performance

:::
via

::::::
FDDA

::
of

::::
local

::::::
upwind

::::::
LiDAR

:::
data

::
at

:
a
::::::
specific

:::::
height

::
F2

:
(1
::::

day)
::
17

:::::::
February

::::
2022

::
–
::
18

:::::::
February

::::
2022 ::::::::

Sensitivity
:::::
study

::
of

:::::::
nudging

:::::::
strength

:::
and

:::::::::
horizontal

:::::
radius

::
of

:::::::
influence

:
to
::::::
identify

::::::
optimal

::::::
FDDA

:::::::
practices

::
F3

:
(2
:::::

days)
::
20

::::::
October

::::
2021

::
– 22

::::::
October

::::
2021

:

:::::
Assess

:::::
FDDA

::::::::::
performance

:::::
when

::
the

:::::
wind

::::
speed

::::
bias

::
is

::::::
negative

:::
(for

::::::
inactive

:::::
WFP)

::
F4

:
(4
:::::

days)
::
30

::::::
January

::::
2023

::
–

:
3 February

::::
2023 :::

Test
:::::
FDDA

::::
when

:::
the

::::
wind

::::
speed

::::
bias

:
is
::::::
positive

:::
(for

::::::
inactive

:::::
WFP),

:::
that

:::
also

::::::
involves

::::::
notable

::::
wind

:::::
speed

:::::::::
fluctuations.

:

– Storm Franklin :
:::::::
spanned

::::
from

:::
the

:
afternoon of 20 February – noon at

:
to
:::::

noon
:::
on 21 February, with peak velocity

:
.320

:::
The

::::
peak

:::::::
velocity

::::::::
recorded

:
up to 30.46 at 19h30 m s−1

:
at

:::::
19:30

:
on 20 February 2022. Wind speed and wind direction

undergo sharp transitions
::::::
Notably,

:::::
both

:::
the

:::::
wind

:::::
speed

::::
and

:::::::
direction

::::::::::
underwent

:::::::::
significant

:::::::
changes, especially from

20h00 to 20h30
:::::
20:00

::
to

:::::
20:30 on 20 February 2022.

We selected this week-long period as it provides

:::
The

::::::::
selection

::
of

:::
the

::
F1

::::::
period

::
is

:::::::
strategic,

:::::
given

:::
its versatile atmospheric conditions, including times with values around

:
.
::::
This325

:::::
period

:::::::
includes

::::::::
instances

::::
with

::::
wind

::::::
speeds

::::::
around

:::
the cut-out wind speed

:::::
value, as well as periods featuring fast

::::
times

::::::::
featuring

::::
rapid

:
changes in wind direction, which can lead to yaw misalignment, making this an interesting case study for FDDA. Data

assimilation (FDDA/.
:::::::::::::::
Four-dimensional

::::
data

::::::::::
assimilation

:
(nudging) is favorable whenever the wind direction is predominantly

from South-West, as this allows for the Westhinder LiDAR to be upstream
::::::
upwind

:
from the Belgian-Dutch cluster. This is

:::::
indeed

:
most often the case in the Southern Bight of the North Sea, as shown in the wind rose in Fig. 2

:::
(d).

:::
The

:::::::
average

:::::
wind330

:::::::
direction

:::
for

:::
F1

::
is

::::::::::::::
West-Southwest. Moreover, the LiDAR observations

::::
Note

::::
that

::::
gaps

::
in

:::
the

:::::
time

:::::
series in Fig. 3 evaluate

that the average wind direction is from West-Southwest (247.52) for the selected week in February 2022, which is suitable to

demonstrate the FDDA capabilities of upstream local data.

The results obtained from the simulations are compared to the five shown locations in Fig. 2: three LiDARs (WHi, LEG, and

EPL), as well as two locations with wind turbine data (local wind speed, wind direction, and power) from a SCADA database.335

The two different locations within the Belgian-Dutch cluster (containing 572 wind turbines) in Fig. 2 are as follows. The first

location, “Front WTs”, contains a subset of 5 wind turbines considered as front row with respect to the most common wind

direction from South-West (both for the investigated period and overall for the Belgian North Sea, as mentioned previously).

The second location, “Waked WTs”, consists of another subset of 5 wind turbines, but they are positioned in the wake

(arbitrary back row of a selected Belgian wind farm). In both cases, we consider the average values from the SCADA of340

the corresponding 5 wind turbines. Having comparisons both in the front and in the wake allows observing the effect of the
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Time series of the LiDAR

observations at 104.5 height during the three extreme events from the Westhinder (WHi) dataset of Glabeke et al. (2023).

Figure 3.
::::
Time

:::::
frame

:::
F1:

::::::
LiDAR

:::::::::
observations

::
at
:::::
104.5 mTAW

::::
height

::::
from

:::
the

:::::::::
Westhinder

:::::
(WHi)

:::::
dataset

::
of
::::::::::::::::

Glabeke et al. (2023)
:
.
::::
UTC

:::::::
timezone.

wind farm parameterization across a few kilometers, as well as the area of impact of the data assimilation upstream.
::
are

::::
due

::
to

:::
data

:::::::
filtering

:::::::::
performed

::
by

:::
the

:::::::
LiDAR

:::::::
software

:::::
based

:::
on

::::::::::::
meteorological

::::::::::
conditions.
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2.5 Baseline simulations and numerical experiments

::::
Time

:::::
frame

:::
F2

::
is

:
a
:::::::
selected

::::
day

::::
from

:::
F1

:::
(17

:::::::
February

::::::
2022),

::
in

::::::
which

::
we

:::::
focus

:::
on

:
a
:::::::::
sensitivity

:::::
study

::
of

:::
the

:::::::
nudging

:::::::
strength345

:::
and

::::::
radius

::
of

::::::::
influence

::
to
:::::::

identify
:::::::

optimal
::::::

FDDA
:::::::::

practices.
::::
This

:::::::::
procedure

::
is

:::::::
detailed

::
in
:::::

Sect.
::::
2.5.

::::
The

::::
goal

::
in
:::

F2
::

is
:::

to

:::::::::
understand

::::
how

:::::::
different

::::::::::
parameters

::
of

:::
the

::::::
FDDA

:::::::::
algorithm

::::::
impact

::::::
model

::::::::::
performance

::::
and

::::::::
accuracy,

::::
and

::
to

:::::::
identify

::::
best

:::::
FDDA

::::::::
practices

:::
for

:::
the

:::::::
offshore

::::::
setting.

:

The storms are illustrated in a timeline in Fig. 4. We divide the study in two time frames
::::
Time

:::::
frame

:::
F3

:::::
spans

::::
over

:::
two

:::::
days,

::::
from

:::
20

:::::::
October

::::
2021

:::
to

::
22

:::::::
October

:::::
2021.

:::::::
During

:::
this

:::::::
period,

:::
we

:::
aim

::
to
:::::::::::

demonstrate
:::
the

::::::::::
capabilities

::
of

::
a

:::::::
selected

::::::
FDDA350

:::::
setting

::::::
(based

:::
on

:::
the

:::::::
analysis

:::::::
outlined

::
in
:::::

Sect.
::::
2.5)

:::
for

:
a
::::
case

:::::
with

:
a
:::::::
negative

:::::
bias,

:::::::::
specifically

:::::
when

:::::
WFP

::
is
::::::::
inactive.

::::
This

:::::::
negative

:::
bias

::
is
::::
even

:::::
more

::::::::::
pronounced

:::::
when

::::
WFP

::
is

:::::
active

::::
(due

::
to

:::
the

::::::::::
momentum

::::::::
extracted

::::
from

:::
the

:::::
flow), for which

::::::
making

::
F3

::
a

:::::
useful

::::
case

::
to

::::
test

:::
the

::::::::::
performance

:::
of

:
a
:::::::
selected

::::::
FDDA

:::::::
setting.

::::::
Finally,

::::
time

::::::
frame

::
F4

:::::
spans

::::::
across

::::
four

:::::
days,

::::
from

:::
30

::::::
January

:::::
2023

::
to

:
3
::::::::
February

:::::
2023.

::::
The

::::
goal

::::::
during

:::
this

::::::
period

::
is

::
to

::::::::::
demonstrate

:::
the

::::::::::
capabilities

::
of

:::
the

:::::::
selected

::::::
FDDA

::::::
setting

::
for

::
a
::::
case

::::
with

:
a
:::::::
positive

::::
bias,

:::::
again

:::::
when

::::
WFP

::
is
::::::::
inactive.

::::::::::
Additionally,

::::
this

::::::
period

:::
also

:::::::
involves

:::::::::
significant

:::::::
changes

::
in

:::::
wind355

:::::
speed

::::
data.

::::
This

::
is

::::::::
identified

:::::
using

::
a

:::::::::::::
straightforward

:::::::
SCADA

::::
data

:::::::
filtering

::::::::
approach,

::
in

::::::
which

:
a
::::
time

::::::
period

::
is
::
of

:::::::
interest

::
if

::
the

:::::::::
difference

::
of

::::
two

::::::::::
consecutive

::::
wind

:::::
speed

::::
data

:::::
points

:::
(5

::::::
minutes

::::::
apart)

:
is
::::::

larger
::::
than

:::
the

::::::::::::
corresponding

:::::::
standard

::::::::
deviation

::
of

::::
3.93 m s−1

:
.
::::
This

:::::
allows

::::::
testing

:::
the

:::::::::
robustness

::
of

:::
the

:::::::
selected

::::::
FDDA

::::::
setting

:::::
under

::::::
rapidly

::::::::
changing

::::
wind

::::::::::
conditions.

::
In

::::
each

::
of

:::
the

::::
time

::::::
frames

:::
(F1,

:::
F2,

:::
F3,

::::
F4),

:::
we

::::::::::
consistently

:::::::
perform two baseline simulationsare always performed: forecasts

without WFPand with WFP. Complementing these, depending on the time frame of interest and its goals.
::::
The

:::
first

::::::::::
simulation,360

::::::
referred

:::
to

::
as

:::::::::
‘WFP_off’

:::
in

:::::::::
subsequent

:::::::
figures,

::::
does

::::
not

::::::
account

::::
for

:::
the

:::::::
presence

:::
of

::::
wind

::::::
farms

:::::
within

::::
the

::::::::::::
computational

:::::::
domain.

::::
The

::::::
second

::::::::::
simulation,

::::::
labeled

:::::::
‘WFP’,

::::::::::
incorporates

:::
the

::::::
effects

::
of

:::::
these

:::::
wind

:::::
farms

:::
via

:::
the

:::::
Fitch

:::::
WFP.

::::::
Within

::::
time

:::::
frame

::
F2, we perform numerical experiments of nudging local wind information from either SCADA or LiDAR data source

(that is translated into horizontal wind components)
::
an

::::::::
extensive

:::
set

::
of

:::
20

::::::::
numerical

:::::::::::
experiments

::
to

::::::
assess

:::
the

::::::::
sensitivity

:::
of

:::::
results

::
to
:::::::

varying
:::::::
nudging

::::::::::
parameters. The details of all these simulations are listed in Table 2, including their naming, and365

details on whether WFP is on or off, whether FDDAis performed and if yes, with what properties. In the week-long Frame 1

(
:::
this

::::
study

:::
are

:::::::::
elaborated

::
in

:::::
Sect.

:::
2.5.

::::
This

:::::
helps

::
to

:::::::
identify

:
a
::::::::
preferred

::::::::
(optimal)

:::::::
nudging

:::::::
setting.

::::
This

:::::
setting

::
is
::::
then

:::::::
applied

::
to

::
the

:::::
other

::::
case

::::::
studies

:::
F1,

:::
F3,

:::
F4

:::::::
(labeled

:::::
‘WFP

::::::::
FDDA’).

:::
For

::::
time

:::::
frame

:
F1), we aim to improve predictions via hub-height

SCADA FDDA (with a radius of influence Rxy = 4 )of wind turbine data with respect to SCADA. This is verified at the two

selected subsets (front WTs and waked WTs). The expectation is to thus enhance predictions in time for wind speed, wind370

direction, and power. Furthermore, in a day-ahead Frame 2 (,
:::
we

:::::::
conduct

::
a

::::::::::
comparative

:::::::
analysis

:::
of

::::
four

::::::
distinct

:::::::::
numerical

::::::::::
experiments

::::
(two

:::::::
baseline

::::::::::
simulations

:::
and

:::
two

::::::
FDDA

:::::::::::::
configurations).

::
In

:::
the

::::
case

::
of

:::
F3

:::
and

:::
F4,

:::
we

:::::
carry

:::
out

::::
three

::::::::::
simulations

::::
(two

:::::::
baseline

:::
and

:::
one

:::::
with

:::::::
FDDA).

2.5
::::::
Insight

:::
into

:::::::
optimal

::::::
FDDA

:::::::::
practices:

:::::::::
numerical

:::::::::::
experiments

::
in
:::
F2

::
In

:::
this

:::::::
section,

:::
we

:::::::
describe

:::
the

::::::::
sensitivity

:::::
study

:::::::::
conducted

::::::
during

::::
time

:::::
frame F2), we explore the leverage of having available375

observations upstream from the Westhinder LiDAR profiler: we assimilate observations at 104.5 height in all numerical
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experiments. This is accompanied by ,
:::::
from

::
17

::::::::
February

:::::
2022

:::
to

::
18

::::::::
February

::::::
2022.

:::
The

::::::::
primary

::::::::
objective

::
of

::::
this

:::::
study

:
is
:::

to
::::
gain

::::::
insight

::::
into

:::
the

:::::::
optimal

:::::::
practices

:::
for

:::::::
FDDA,

::::::::::
particularly

:::::::
focusing

:::
on

:::::::
varying

:::
the

:::::::
nudging

:::::::
strength

::::
and

:::::
radius

:::
of

::::::::
influence.

:::
The

:::::::
specific

::::::
values

::
of

:::
the

:::::::
nudging

:::::::::
parameters

::::
used

::
in

::::
this

::::
study

:::
are

:::::::
detailed

::
in

:::::
Table

::
3.

:

:::::
Within

:::
F2,

:::
we

:::::::
perform a sensitivity study of the results to the

:::::::::
examining

:::
the

::::::
impact

::
of

::
the

:
radius of influence of observational380

nudging in FDDA: for the Westhinder LiDAR (being 42 further) , the FDDA experiments are with
:::
and

:::
the

:::::::
nudging

:::::::
strength

::
in

::::::
FDDA.

:::
The

::::::::::
assimilation

::
of
:::::::
upwind

::::::
LiDAR

::::
data

::
is

::::::::
performed

:::
for

::
15

:::::::::
numerical

::::::::::
experiments

:::::::::
(including

:::
one

:::::
cyclic

::::::::::::
configuration)

::
in

:::::
which

:::
we

::::
vary

:::
the

:
radius of influence of Rxy = 10, 20, and 30 , whereas for the cases of SCADA nudging,

:::
Rxy::::

and
:::
the

:::::::
nudging

:::::::
strength

:::
Gq .

::::
The

::::::::::
assimilation

:::
of

:::::::
SCADA

::
is
:::::::::
performed

:::
for

::
3
:::::
cases

:::
(in

:::::
which

:::
we

::::
vary

:::::
only

:::::
Rxy).

:::
For

:::
the

::::::::
SCADA

:::::::
nudging

::::
cases

:::::::
(labeled

:::::::::
S01-S03),

:::
we

:::
test

:
values of Rxy = 2, 4 and 10 kmare chosen. Additionally, for the case of FDDA of385

LiDAR with
:
.
:::
For

:::
the

::::
WHi

:::::::
LiDAR

:::::::
nudging

:::::
cases

::::::
(labeled

::::::::
L01-L14

:::
and

:::::::
LC04),

::
we

:::::::::
assimilate

::::::
upwind

:::::::::::
observations

::
at

:
a
::::::
height

::
of

:::::
104.5 m

:
.
:::
The

::::::
tested

:::::
values

:::
of

:::
the

:::::
radius

:::
of

:::::::
influence

::::
are

::::::::
Rxy = 10,

::::
20,

:::
30,

:::
40,

:::
50,

::::
and

::
60

:
km

:
.
:::
We

:::::::
remind

:::
that

:::
the

:::::
WHi

::::::
LiDAR

::
is

::::::
situated

:::
47 km

:::::
further

::::
from

:::
the

:::::
wind

::::
farm

:::::
sites,

:::
and

::::
that

:::
the

:::
key

:::::
aspect

::
is
::
to

:::::::
leverage

:::::
these

:::::::
upwind

:::::::::::
observations.

::
In

:::::::
addition,

:::
for

:::
the

::::::
LiDAR

::::::
FDDA

:::::
cases

::::
with

::
a radius of influence r =Rxy = 20

:::
Rxy::

of
:::
20 km (as in e.g. Cheng et al. (2017)),

three
:
as

::::
well

::
as

:::
30

:
km

:
,
:::
we

:::::::
consider

::::
five values of nudging strength Gqare considered: 6× 10−4 s−1 (a typical

:::::
default

:
value,390

e.g. in Cheng et al. (2017)), a five times stronger value
:::::
values of 3× 10−3 s−1, and lastly, ten times stronger Gq = 6× 10−3

:::::::
6× 10−3

:
s−1,

::::::::
9× 10−3

:
s−1. After confirming the leverage of the upstream (LiDAR) observations, we propose a simple yet

realistic forecasting routine where FDDA of upstream ,
::::

and
:::
the

::::::::
strongest

:::::
value

::
of

::::::::
3× 10−2

:
s−1

:
.
::::
This

:::::
yields

:::
10

:::::::::
numerical

::::::::::
experiments.

:::::::::::
Furthermore,

:::
for

:::
the

:::::::
nudging

:::::::
strength

:::
of

::::::::
6× 10−3 s−1

:
,
:::
we

:::::::
consider

::
4

::::::::
additional

:::::
cases

::::
with

::::::
radius

::
of

::::::::
influence

::
of

:::
10,

:::
40,

:::
50,

:::
and

:::
60 km.

:
395

::::::
Finally,

:::
we

:::::::
propose

:
a
::::::::
practical

::::::
routine

:::
for

:::::::::
hour-ahead

::::::::::
predictions

::
in

::::::
which

::::::
FDDA

::
of

::::::
upwind

:::::::
LiDAR data is performed in

a cyclical manner: for a certain amount of time (in this case, one hour window is selected) , upstream
:::::
cyclic

:::::::
manner.

::
In

::::
this

::::::
routine

:::::::
(labeled

::::::
‘LC04’

::
in

:::::
Table

::
3

:::
and

::
in

::::::::::
subsequent

::::::
figures)

:::::::
upwind LiDAR data is assimilated

::
for

::::
one

::::
hour

:
and its effect is

propagating
:::::::::
propagates as the simulation is running. After this one hour has passed, DA ends

::::
runs.

:::::
Once

:::
this

::::::::
one-hour

:::::::
window

::::::
elapses,

:::
the

:::
DA

:::::
ends, and the model continues to run without any further data assimilation, leading to improvements in forecasts400

:::::
further

:::::::::::
assimilation.

::::
This

:::::
leads

::
to

::::::::
prediction

::::::::::::
improvements

:
solely due to the propagating wind information downstream that is

::::::::
downwind

::::::::::
propagation

::
of

::::::::
advanced

:::::
wind

::::::::::
information induced by the FDDA effect. For

::::
Given

:
the distance of approximately 42

::
47 km from the Westhinder LiDAR to the Belgian-Dutch cluster, this implies 20-70 minutes of advection time and

::
an

::::::::
advection

::::
time

::
of

:::::
20–70

:::::::
minutes

::::
and

:
a
:

lasting effect of the DA after its end(in this case, one hour). This procedure can be performed

:::::::
repeated as many times as desired(,

:
using WRF restart files to ensure the model has spin-up) and improvements

:
.
:::::
Every

::::::
restart405

:::::
should

:::
be

:::::::::
considered

::
as

:
a
:::::::
separate

:::::::
forecast

:::::::::
simulation

:::::::
initiated

::
at

:::
the

::::
time

::
of

:::
the

:::::::::
completion

:::
of

::::::
LiDAR

::::
data

::::::::
collection

:::::::
(ideally

:::::::
available

::
in

:::::::::
real-time),

:::
so

::
in

:::
this

:::::
view,

:::
no

:::::
future

::::
data

::
is

:::::::::
assimilated

:::
in

:::
the

::::::
model.

::::::::::::
Improvements can be achieved in any area

of interest, as long as
:::::::
provided the data source is upstream: in

:::::::
upwind.

::
In

:
this configuration,

:::
this

:
is
:::

the
::::
case

:
when the wind is

from
:::
the South-West. All these different numerical experiments yield 3 cases for F1, and 11 cases for F2. All simulations for

F1 and F2 with their corresponding names are listed in Table 2.410
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Table 3. All simulations performed within the F2 time frame, with varied nudging strength Gq and horizontal radius of influence Rxy .

S01-03 denote three numerical experiments in which SCADA is assimilated, whereas L01-L14 are simulations with only upwind LiDAR

assimilation. In all of these simulations, the assimilation time window over which each observation point is used in the nudging algorithm is

τ = 0.6667 hours (40 minutes). Finally, LC04 is the artificial cyclic configuration for hour-ahead predictions, in which τ = 0.16667 hours

(10 minutes).

Gq = 6× 10−4 s−1 Gq = 3× 10−3 s−1 Gq = 6× 10−3 s−1 Gq = 9× 10−3 s−1 Gq = 3× 10−2 s−1

Rxy = 2 km S01

Rxy = 4 km S02

Rxy = 10 km S03

Rxy = 10 km L01

Rxy = 20 km L02 L03 L04, LC04 L05 L06

Rxy = 30 km L07 L08 L09 L10 L11

Rxy = 40 km L12

Rxy = 50 km L13

Rxy = 60 km L14

Timeline of the storms. The focus at first is on enhancing predictions via FDDA of SCADA during all three storms (F1,

week-ahead). Then – on performing further numerical experiments over one day (F2, day-ahead), aiming to gain insight into

favorable FDDA practices.

3 Results and Discussion
:::::::::
discussion

This section is dedicated to comparing the results from the simulations at the five locations of interest (the upstream
::::::
upwind415

::::::
Belgian

:
WHi LiDAR; the “Front WTs ” and “Waked WTs ”

::::
Front

::::
WTs

::::
and

::::::
Waked

::::
WTs

:
at the selected Belgian wind farm;

and finally, the two Dutch LiDARs, EPL and LEG). To evaluate simulation performances, we utilize traditional metrics and

compare the mean absolute error (MAE, Lydia et al. (2014)) of the different scenarios with respect to the corresponding local

observations offshore. MAE is a common evaluation criteria of wind forecasting, as it reflects the overall level of errors

(Yang et al., 2021).
::
In

::::
Sect.

:::
3.1,

:::
we

:::::::
discuss

:::
the

:::::
results

:::::
from

:::
the

::::::::
sensitivity

:::::
study

::
to

:::::::
nudging

::::::::::
parameters

::
in

:::
F2,

:::
and

:::
we

:::::::
identify420

::::::
optimal

::::::
FDDA

::::::::::::
configurations.

::::::
These

::::::::::::
configurations

:::
are

::::
then

::::::
applied

::
to

:::
F1,

:::
F3,

::::
and

:::
F4,

::
in

::::
Sect.

:::
3.2

:

3.1 Forecasting with WFP, and enhancing predictions via
::::::
Results

::::
from

::::
the

:::::::::
numerical

:::::::::::
experiments

::
in

:::
F2

::
on

:
FDDA of

SCADA for week-ahead simulations
:::::::
practices

Figure 5 illustrates results for F1 (week-ahead)with and without the presence of
:::
The

:::::
focus

:::
is

::
on

:::
the

::::::::
day-long

:::::
case

::
of

:::
17

:::::::
February

:::::
2022

:::
(F2

::
in

:::::
Table

:::
2),

::::
with

:
the wind turbines in the computational domain. It showcases the importance of WFP in425

WRF by displaying snapshots of wind fields for three arbitrary time slots during this period of interest in February 2022. The
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wind directions for the three snapshots in Fig. 5 are from South-West (top), South (middle), and West (bottom). Snapshots of

wind speed fields () for three different time instances within F1. On the left, results with active WFP show that energy is indeed

extracted from the flow. The middle fields are from the simulation without WFP. On the right, the difference in wind speed

fields with and without WFP is shown.430

For the week-long F1, the time series at the location of the “Waked WTs” are shown in Fig. 6 (both for the cases ‘F1, WFP’

(a run with active WFP) and ‘F1, WFP FDDA S1’ (a run with active WFP and with FDDA) . For more details on these run, see

Table 2). The wind speed values are normalized by cutoff speed. The power is also normalized by the rated values. The forecast

using WFP captures well all three storms in F1, as well as swift wind direction changes, especially before Storm Eunice, and

before and during Storm Franklin. In order to enhance the modeling during the three extreme events, we perform FDDA of435

SCADA data every
:::
goal

:::
to

::::
study

:::
the

:::::::::
sensitivity

::::::
effects

::
of

:::::::
varying

:::
the

:::::
radius

::
of

::::::::
influence

::::
Rxy:::

and
:::

the
::::::::

nudging
:::::::
strength

:::
Gq ::

of

::::::
FDDA,

:::::
while

:::::::
nudging

:::::
either

:::::::
LiDAR

::
or

:::::::
SCADA

::::
data

:::::
every

:
10 minutes for the whole duration of F1, which provides further

improved predictions of wind speed and wind directions, as indicated by the reduced MAE values for the case ‘F1, WFP FDDA

S1’ in Fig. 6.

To evaluate the simulation performances of the different scenarios in the five locations of interest, we present MAEs440

summarized in Fig. 7, for all three different runs (without WFP, with WFP, and with FDDA of SCADA only)at each location

(WHi LiDAR, Front WT, Waked WT, EPL and LEG LiDARs). The predictions at the two wind turbine locations are compared

to SCADA data at hub height
:::::::
minutes.

::
As

:::::::::
mentioned

::::::
before,

:::::
Table

::
3

::::::::::
summarizes

::
all

:::
18

::::
cases

::
of

:::::::::
numerical

::::::::::
experiments

::::::
within

:::
F2:

:::::::
nudging

:::::::
SCADA

::::
with

:::::::
different

::::::
radius

::
of

::::::::
influence,

::::
and

:::::::
nudging

::::::
LiDAR

::::
with

:::::::
different

::::::::::
parameters.

:::
We

::::::
remind

::::
that

:::
for

:::
the

:::::
FDDA

:::
of

:
a
:::::::
LiDAR

:::::::::::
measurement

::::
point

::
at
::::::
104.5 m,

:::
six

::::::
values

:::
for

:::
the

:::::
radius

::
of

::::::::
influence

::::
Rxy:::::

were
:::::
tested

:::
(10

:
km

:
,
::
20

:
km,

:::
30445

km, whereas the predictions at the three LiDARs are compared to observations at corresponding heights listed in the caption

of Fig. 7. Moreover, Fig. 7 emphasizes that WFP helps improve the wind speed, but not the wind direction, whereas further

introducing FDDA of SCADA improves both wind speed and wind direction, especially at the wind farm location. At the

LiDARs (EPL and LEG, approximately 63
::
40

:
kmdownstream from the

:
,
::
50

:
km,

::::
and

::
60

:
km

:
),

:::::::
whereas

:::
for

:::::::
SCADA

::::::
FDDA

::
–

:
2
:
km

:
,
:
4
:
km,

::::
and

:::
10 km

:::
were

::::::::::
considered.

::::::
FDDA

::
of
::::::

solely
:::::::
upwind

::::::::::
observations

:::
(in

::::
this

::::
case,

:::::
from

:::
the

::::::::::
Westhinder

:::::::
LiDAR)450

:::::
allows

:::
for

::::::::
advanced

:::::
wind

::::::::::
information

::
to

:::::::::
propagate

::
to

:::
the

:::::
wind

:::::
farms

::
in

:::
the

:
Belgian-Dutch cluster)

::::::
cluster

:::
for

:::
(an

:::::
order

:::
of)

:::::
20–70

:::::::
minutes

::
in

:::::::
advance.

:

:::
The

:::::
effect

::
of

::::::::
different

:::::
radius

::
of

::::::::
influence

::::
and

:::::::
nudging

:::::::
strength

:::
can

::
be

::::
seen

:::
in

:::
Fig.

::
4.
::::
This

::::::
figure

:::::
shows

:::
the

:::::::::
difference

::::
with

:::
and

:::::::
without

::::::
FDDA

:::
of

::::::
upwind

::::::
LiDAR

:::
for

:::::
three

:::::::
different

:::::
cases:

:

–
:::
L02

:::::
(Fig.

::::
4(a))

::::
with

::::::::
Rxy = 20

:
km

:::
and

::::
with

:::
the

::::::
default

::::
(and

::::::
lowest)

::::::::
nudging

::::::
strength

:::::
value

:::::::::::::
Gq = 6× 10−4

:
s−1, results455

remain almost intact. FDDA of in-situ observations such as SCADA provides prediction enhancements which are useful

for reanalysis of various events and detailed wind resource assessment, especially if performed for long periods of time

–
:::
L04

:::::
(Fig.

::::
4(b))

::::
with

::::::::
Rxy = 20

:
km

:::
and

::::
with

:
a
:::
ten

:::::
times

:::::
larger

:::::::
nudging

:::::::
strength

:::::::::::::
Gq = 6× 10−3

:
s−1,

:

–
:::
L14

:::::
(Fig.

::::
4(c))

::::
with

::::::::
Rxy = 60

:
km

:::
and

:::::::::::::
Gq = 6× 10−3 s−1

:
.
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The simulations

‘F1

Figure 4.
:::::::
Snapshots

::
of

::::
wind

:::::
speed

:::::
fields

:
(m s−1)

:::
on

::
17

:::::::
February

:::::
21:40

:::::
UTC,

::
of

:::::::::
simulations

:::
L02

:::
(a),

::::
L04

:::
(b),

:::
and

::::
L14

:::
(c).

::
In

:::
the

:::
left

:::::::
columns,

::
the

:::::
results

:::
are

::::::
without

::::::::::
assimilation,

::
in

::
the

::::::
middle

::::::
columns

::
–

:::
with

::::::
FDDA,

:::
and

:::::
finally

::
in

:::
the

::::
right

::::::
columns

:::
the

::::::::
differences

:::::::
between

::
the

:::
two

:::
are

::::::
shown.

:::::
Figure

::
4

:::::
shows

:::
the

::::::::::
importance

::
of

:::
the

::::
two

:::::::
nudging

:::::::::
parameters

::::
Rxy::::

and
:::
Gq .

:::::::
Varying

::::
their

::::::
values

::::::
implies

::::::::
resulting

:::::
wind

::::
field460

:::::::::::
modifications.

:::
In

::::
turn,

:::::
these

:::::::
changes

::::
need

::
to
:::

be
:::::::::::
compensated

::
to

::::::::
preserve

::::::::::
conservation

:::::
laws,

::::::
which

::
is

::::
why

:::
we

:::::::
observe

::::
both

::::::
positive

::::
and

:::::::
negative

:::::::
changes

::
of

::::
wind

:::::
speed

::::::
values

::
in

:::
the

:::::::::
difference

::::
fields

:::
of

:::
Fig.

::
4.

::
To

:::::::
explore

:::
the

::::::::::
performance

::
of
:::

the
:::::::::

numerical
::::::::::
experiments

::
in
::::
F2,

:::
we

:::::::
compute

:::
the

::::::
MAEs

:::
for

::::
each

:::::::::::
measurement

::::::
height

::::
with

::::::
respect

::
to

:::
the

::::
WHi

::::::
LiDAR

:::::::
profile,

::
at

::
the

:::::
WHi

::::::
LiDAR

:::::::
location

::
of

::::::::::
assimilation

::::
(for

::::::::::
verification

::::::::
purposes).

::::
This

::
is
:::
the

::::::::
averaged

:::::
profile

::
in

::::
time

:::::
frame

:::
F2.

:::
In

:::
Fig.

::
5,

:::
we

:::::::
visualize

:::::
these

::::::
MAEs

::
for

:::
all

:::::::
different

::::::::::
simulations

:::::
(listed

::
in

::::::
x-axis)

::
in

::::::
which

::::::
LiDAR

::::
data465

:
is
::::::::::
assimilated

:::
(see

:::::
Table

:::
3),

::
as

::::
well

::
as

:::
the

:::
two

:::::::
baseline

::::::::::
simulations:

::
a
:::::::::
simulation

::::
with

::::
WFP

::::
only

::
(a

::::::
control

:::
run

::::
with

:::
no

:::::::
FDDA),

:::
and

:
a
:::::::::
simulation

:::::::
without

:::
any

:::::
WFP.

::
It

:
is
::::::
indeed

::::::::
expected

:::
that

::::::
MAEs

:::
are

::::::
always

:::::::
reduced

::
at

:::
the

::::::::::
assimilation

:::::::
location

::::
WHi

:::::
when

::::::
LiDAR

::::::
FDDA

::
is

::::::::
performed

:::::
there.

:::::::::
Although

::
the

::::::::::
assimilated

::::::
LiDAR

::::
data

:::::
point

::
is

::::::::
positioned

::
at
::
a
:::::::::::
measurement

:::::
height

:::
of

:::::
104.5

m,
:::
we

:::::::
observe

::::::::::::
enhancements

::
in

:::
the

:::::
entire

::::::
profile,

:::::::
evident

::
in

::::
both

::::
wind

::::::
speed

::::
(Fig.

::::
5(a))

::::
and

::::
wind

::::::::
direction

:::::
(Fig.

:::::
5(b)).

::::
This

:::::::::
widespread

:::::::::::
improvement

::
in

::::::
height

::
is

::::::::
attributed

::
to

:::
the

::::::
default

::::::
setting

::
of

:::
the

::::::
vertical

::::::
radius

::
of

::::::::
influence

::
in

::::::
FDDA,

::::::
which

:::::
spans470
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Figure 5.
::::

MAEs
:
at hub height: results at the waked WTs

:::
WHi

:::::::::
assimilation

:
locationduring

:
,
:::::::
computed

:::
for

::::
each

::::::::::
measurement

:::::
height

::::
with

:::::
respect

::
to the three storms

::::
mean

::::::
profiles

::::
from

::
the

:::::::::
Westhinder

::::::
LiDAR

:::::::::
observations

:::
for

::::::::
simulations

::
in
:::
F2.

:::::
across

::
all

::::::
model

:::::
levels.

::::::
Hence,

:::
the

:::::::
absence

::
of

::::::
vertical

:::::::::
constraints

::
in
::::
this

::::::::
influence

::::
helps

:::::
avoid

:::
the

::::::::
formation

::
of

:::::::
unusual

:::::::
profiles.

:::::::::::
Consequently,

:::
the

:::::::::::
assimilation

::
of

:
a
:::::::
LiDAR

:::
data

:::::
point

::
at

:
a
::::::
single

:::::
height

:::::
leads

::
to

::::::::::::
improvements

:::::::
observed

::::::::::
throughout

:::
the

:::::
entire

::::::
profile.

::
In

:::::
terms

::
of

:::::::::
horizontal

::::::::
influence,

::::::::::::
improvements

:::
are

::::::::
especially

::::::::::
pronounced

:::::
when

:::
the

::::::::
horizontal

::::::
radius

::
of

::::::::
influence

::::
Rxy

:::
and

:::
the

:::::::
nudging

:::::::
strength

:::
Gq::::

are
::
set

:::
to

:::::
higher

::::::
values

:::
(as

::::
seen

:::
for

::::::::
example

::
in

::::
L06, WFP’ and ‘F1

::::
L11).

:::::::::
However,

:::::
when

:::
the

::::::
default

::::
value

::
is

::::
used

:::
for

:::
Gq:::

(as
::
in

::::
L02, WFP FDDA S1

::::
L07)

:::
the

::::::::
reduction

::
in

::::::
MAEs

::
is

:::
not

::
as

:::::::::
substantial.

::
It
::
is

:::::
worth

:::::::::
remarking475

:::
also

:::
the

::::::::::::
improvements

::
in

:::
the

::::::
LiDAR

::::::
cyclic

::::::
FDDA

::::::
routine,

::::
case

::::
‘F2,

:::::
WFP

::::::
FDDA,

:::::
LC04’when assimilating SCADA .

:

Mean absolute errors (MAEs) computed for each run at five different locations. The errors are estimated with respect to local

observations: three LiDAR profilers (WHi at 104.5 , EPL at 116 , LEG at 115 ) and two subsets of WTs providing SCADA at

hub height.
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3.2 FDDA for day-ahead predictions to leverage available upstream observations480

In this section, we perform day-ahead predictions (
:::
For

:
a
::::

full
:::::::::
evaluation

:::
and

::::::::::::
determination

:::
of

::::::
optimal

::::::
FDDA

:::::::::
practices,

:::
we

::::::
analyze

:::
all

::::::::::
experiments

::::::
within F2in Fig. 4) and study the effect of radius of influence of FDDA while nudging either LiDAR

or SCADA data. Table 2 can be used as referece as it summarizes all 11 cases of numerical experiments within
:
,
:::::::
detailed

::
in

::::
Table

::
3,
:::
by

:::::::::
presenting

::::
wind

:::::
speed

:::::::
RMSEs

:::
and

::::::
biases

::
in

:::
Fig.

::
6.
::::::::::
Additional

::::
error

::::
data

::
on

:::::
wind

:::::::
direction

::::
and

:::::
power

::
is

::::::
shown

::
in

::::::::
Appendix

::
B.

::::::
Figure

:
6
:::::::::
illustrates

:::
the

::::::::
numerical

::::::
results

::
at

:::
five

:::::::::
locations,

:::::::::::
benchmarked

::::::
against

::::
local

:::::::::::
observations.

::::
For

::::::::
enhanced485

:::::
clarity,

::::
the

::::
cells

:::::
which

::::::::
coincide

::::
with

::
an

::::::::::
assimilation

:::::::
location

:::::
have

::::
been

:::::::
crossed

:::
out,

::::::::
directing

:::
the

::::::::
attention

::
to

::::::::::::
improvements

:
at
:::::
more

::::::
distant

::::::::
locations.

::
It

::
is

:::::::::
particularly

:::::::::::
encouraging

:::
that

:::
the

::::::
FDDA

::
of

:::
the

:::::
WHi

::::::
LiDAR

:::::
point

::
(at

::
a

:::::
height

::
of

:::::
104.5

:
m

:
)
:::::
leads

::
to

:::::::::::
improvements

::
in
::::::
results

:::
47 km

:::::::::
downwind

::
at

::::::
turbine

::::
sites,

::::::::::::
outperforming

:::
the

:::::::
baseline

::::::::::
simulations

::::::
without

::::::
FDDA

::
(‘F2: with

and without WFP, nudging LiDAR with different parameters,
::::::::
WFP_off’

::::
and

:::
‘F2,

:::::::
WFP’).

:::::
When

::::::::
utilizing

:::
the

::::::
default

:::::::
nudging

::::::
strength

:::::
value

:::
of

::::::::
6× 10−4 s−1

:
,
::::::::
relatively

:::::
small

::::
error

:::::::::
reductions

:::
are

::::::::
observed

:::::::::
downwind

::
at
:::
the

:::::::
turbine

::::::::
locations

:::::
(Front

::::
and490

:::::
Waked

::::::
WTs)

::
in

:::
L02

:
and nudging SCADA with different

:::
L07,

::::
with

::::
L07

::::::::::::
outperforming

::::
L02

:::
due

::
to

:::
its

::::::
greater

::::::::
horizontal

:
radius

of influence . For the FDDA of a LiDAR data point at 104.5 , three values for the radius of influence Rxy were tested (10
:::
(30

km
:
).

::::::::
Similarly,

::::::
among

:::::
other

::::
pairs

::::
with

:::::
equal

:::::::
nudging

:::::::
strength

::::
but

:::::::
differing

:::::::::
horizontal

::::
radii

::
of

:::::::::
influence,

:::
L08

::::::::
surpasses

::::
L03,

20
:::
L10

::::::::::
outperforms

::::
L05,

::::
and

::::
L11

:::::
excels

::::
over

::::
L06

::::
due

::
to

:::
the

::::::
greater

:::::
radius

::::::
value.

::::
The

::::
cases

:::::
L01,

::::
L04,

::::
L09,

:::::
L12,

::::
L13,

::::
L14

::::
share

::
a
:::::::
nudging

:::::::
strength

::
of

::::::::
6× 10−3

:
s−1,

::::
with

:::::::::
horizontal

::::
radii

:::
of

::::::::
influence

:::::::
spanning

:::::
from

::
10

:
km as in Cheng et al. (2017),495

::
for

::::
L01

::
to

:::
60 km

::
for

::::
L14.

:::::::::::
Interestingly,

::::
L09

::::
that

:::
has

::::::::
Rxy = 30

:
km

:
,
:::::::::::
demonstrates

:::
the

:::::
most

:::::::::
substantial

::::
error

::::::::
reduction

::
in

::::
this

:::::
group:

:::::::::
increasing

:::
the

:::::
radius

::::::
beyond

:::
40 km

:::::
leads

::
to

::::::::
increased

:::::
biases,

::
as

::::::
shown

::
in

::::
Fig.

::::
6(b).

:::::
Thus,

::::
L04

:::
and

::::
L09

::::
(with

:::::::::
horizontal

::::
radii

::
of

::
20

:
and 30 )

:::
km,

::::::::::
respectively)

:::::::
become

::::::::
apparent

:::::::
balanced

:::::::::::::
configurations.

::::::::::
Furthermore,

:::::
while

:::::::::
examining

::::::
varied

:::::::
nudging

:::::::
strengths

::::
with

::
a
::::
fixed

::::::
radius

::::
Rxy ::

of
:::
20 km

::::
(L02,

::::
L03, whereas for SCADA FDDA – 2

::::
L04,

::::
L05,

:::::
L06),

::::
and

::
of

::
30

:
km

:::::
(L07,

:::
L08, 4

:::
L09,

:::::
L10,

::::
L11),

:::
we

::::
find

::::::::
consistent

::::::
RMSE

:::
and

::::
bias

::::::::::::
improvements

::
as

:::::::
nudging

:::::::
strength

::
is

::::::::
increased

:::::
while

::::::::
Rxy = 20

:
km

:
.500

:::
Yet,

::
at

:::
30 km

:::::
biases

::::::
worsen

::::::
despite

::::::::::::
(inconsistent)

::::::
RMSE

:::::
gains.

:::::
Thus,

:::::::::
Rxy = 20 km

:
is

::::::::
identified

::
as

:::
an

::::::
optimal

::::::
choice

:::
for

::
a

::::::::
horizontal

:::::
radius

:::
of

::::::::
influence.

::::::
Among

::::
L04,

:::
L05

:
and 10

::::
L06,

:::
no

::::::::
significant

::::::::::
differences

:::
are

::::::
present,

::::::
which

::::
leads

::
to

:::
the

::::::::
selection

::
of

:::
L04

:::
as

:::
the

:::::::
preferred

::::::
FDDA

:::::::
setting.

:::::::::
Therefore,

:::
the

:::::::::
parameters

::
of

::::
L04

:::::
and/or

::::
L06

:::
are

:::::::
applied

::
in

::::
Sect.

:::
3.2

:::
for

:::
F1,

:::
F3,

::::
F4,

::
as

:::
well

:::
as

::
in

:
a
::::::::
proposed

:::::
cyclic

:::::::
routine

:::
for

::
F2

::
in
:::
the

:::::::
current

::::::
section.

:::::::
Finally

::
in

::::
Fig.

::
6,

::
at

:::
the

::::
more

::::::
distant

::::
EPL

::::
and

::::
LEG

:::::::
LiDAR

:::::::::
comparison

::::::::
locations

:::::::::::::
(approximately

::::
110 km were considered. The configurations offn these 11 cases are detailed in Table505

2. FDDA of solely upstream observations (in this case, from the Westhinder LiDAR)has strong advantages, especially being

computationally inexpensive and allowing for wind information to propagate to the wind farms in the Belgian-Dutch cluster

for (an order of ) 20-70 minutes in advance
::::
away

:::::
from

:::
the

:::::::::::
assimilation

::
at

::::
WHi

::::::::
LiDAR),

:::::
wind

:::::
speed

:::::
fields

::::::
remain

:::::::
largely

:::::::::
unaffected,

::::::
except

::::
when

:::
the

:::::::::
horizontal

:::::
radius

:::
of

:::::::
influence

:::::::
reaches

::
50

:::
or

::
60

:
km.

Figure 8 shows predictions in the “Waked WTs ”510

:::::
Figure

::
7
:::::
shows

::::::
results

:::
in

:::
the

::::::
Waked

::::
WTs

:
location for three variables: wind speed, wind direction, and power.

:::
The

:::::
wind

:::::
speed

:::::
values

:::
are

:::::
again

::::::::::
normalized

:::
by

:::::
cutoff

:::::
speed

::::
(31 m s−1

:
).

::::
The

:::::
power

::
is
::::
also

::::::::::
normalized

:::
by

:
a
::::::
typical

:::::
rated

:::::
value

::::
(8.4

MW
:
).
:
These results are obtained when nudging only LiDAR upstream. The predictions

::::
WHi

::::::
LiDAR

:::::::
upwind.

::::
The

::::::
results are
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Figure 6.
::::
Color

:::::
maps

::
of

::::
MAE

::
(a)

::::
and

:::
bias

::
(b)

:::
for

::::
wind

:::::
speed

::
for

:::
the

::::::
different

:::::::::
simulations

::::::::
computed

:
at
:::
the

:::
five

:::::::
locations

::::
with

:::::
respect

::
to

:::
the

::::::::::
corresponding

::::::::::
observations:

::::
WHi

::
at

::::
104.5

:
m

:
,
:::
EPL

::
at

:::
116

:
m

:
,
:::
LEG

::
at
:::
115

:
m

:
,
:::
and

::::
Front

:::
and

:::::
Waked

::::
WTs

::
at

:::
hub

:::::
height.

::::::
Results

::
at

:::::::::
assimilation

::::::
locations

:::
are

::::::
marked

::::
with

::::::::
crossed-out

:::::
cells.

compared to SCADA data downstream (the average of the observations of the selected subset of turbines in the wake)
:::::::::
downwind

:
at
:::::

farm
::::
sites. When performing FDDA of LiDAR, improvements in predictions downstream

:::::
results

:::::::::
downwind

:
(at the waked515

:::::
Waked

:
WTs) are evident based on the reduced MAEs in Fig. 8 for

::
the

:::::::
legends

::
of

::::
Fig.

:
7
:::
for

:::
(a) wind speed,

:::
(b) wind direction

and
:::
(c) power. Although the

:::
WHi

:
LiDAR is located 42

::
47 km upstream

::::
away

:
from the wind farm of interest, the wind direction

is favorable and from mostly South-West and allows the nudged information to propagate towards the zone of interest (at the

Belgian wind farms).

Having upstream
::::::
upwind observations proves to be especially useful based on the results so far. Therefore, we will now520

explore a cyclic configuration of FDDA as a forecasting routine. Overall, the use of nudging shows a significant improvement

compared to simulations without it. This methodology can be used as long as local observations are available, but in order

to utilize this in forecasting mode
:
a
::::::::::
forecasting

::::::
setting, it is required to understand the behaviour of the FDDA method when

the data stops being fed into the simulation. Therefore, to expose the reach of this method, we will now explore a cyclic
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Figure 7. Predictions from the simulations
::::::::
Simulation

:::::
results with and without upstream

:::::::::
assimilating

::::::
upwind

::::
WHi LiDAR

:::
(‘F2,

:::::
WFP FDDA

::::
L04’)

:::
that

:::
are compared to SCADA data downstream from waked WTs. Wind speed (top

:
a), wind direction (middle

:
b), and power (bottom

:
c).

Improvements when performing FDDA are highlighted by displaying the MAE values for each variable in the legends.
:::
The

:::
grey

::::
error

::::
bars

::::::
indicate

::
the

:::::::
standard

::::
error

:::::::
(available

::::
from

:::::::
SCADA

:::
only

:::
for

::::
wind

:::::
speed

:::
and

::::::
power).
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numerical experiment of FDDA .
::
for

::::::::::
hour-ahead

::::::::::
predictions.

::::::
Ideally,

::::::::
real-time

::::
data

:::::
access

::::::
would

::
be

::
a

::::::::::
requirement.

:
We nudge525

the simulation variables closer to observations in a similar manner
:::::::
similarly

:
as in the previous sections, but only during short

::::
(one

::::
hour)

:
periods of time (nudging windows, abbreviated as ‘N W

:::
NW’).

::::
Note

::::
that

::::
these

:::::::
nudging

::::::::
windows

:::
are

:::::::
different

:::::
from

::
the

:::::::::::
assimilation

::::
time

:::::::
window

::
τ ,

:::::
which

::::::
defines

:::
the

:::::::
amount

::
of

::::
time

:::
for

:::::
which

::
a

:::::
single

::::::::::
observation

:
is
::::::::::
considered

::
in

:::
the

:::::::
nudging

::::::::
algorithm

::
(τ

::
is

::::::::::
responsible

:::
for

:::
the

:::::::
temporal

::::::::
weighing

::::::::
function

::
wt::

in
::::
Wq ::

of
:::
the

::::::::::
algorithm). The assimilation is done again at

the WHi LiDAR upstream
::::::
upwind

:
with a nudging radius of influence of 20 km, as in Cheng et al. (2017). Figure 9

:::
and

::::
with

:::
the530

:::::::
nudging

::::::
strength

:::
of

::::
L04.

:::::
Figure

::::
8(a) shows the wind speed predictions

:::::::::
simulation

::::::
results

::
for

:::
F2

:::
(17

::::::::
February

:::::
2022) at the WHi

LiDAR (top) while assimilating wind data at a height of 104.5 m in four nudging windows,
:::
each

::::
with

::
a
:::::::
duration

::
of 1 houreach.

The first nudging window (N W1
:::::
NW1) is from 12:00 h to 13:00 h followed by a forecasting window (FC W1

:::::
FCW1) of 2

hours; the second one (N W2
:::::::
nudging

:::::::
window

:::::
(NW2) is from 15:00 h to 16:00h, and so on. The assimilation window τ during

which observations are considered by the model is also indicated in the figure (only in N W3 for illustrative purposes)
::::
Each535

:::
new

::::::::
nudging

:::::::
window

::::::
begins

::::
with

::
a

:::::
restart

:::
of

:::
the

:::::::::
simulation. As expected, we observe that

::
at

:::
the

:::::::
nudging

::::::::
location,

:
wind

speed gets closer to the
::::::
LiDAR observations within the nudging time. We

::::::::
However,

:::
we

:
also observe in Fig. 9 (bottom

:::
8(b)

that those quantities still follow better the observations taken downstream
:::::::
SCADA

:::::::::::
observations

:::::::::
downwind,

:
even after the end

of nudging window
::
the

::::::::
nudging

:::::::
window

:::
(in

:::
the

::::
first

::::
hour

::
of

:::
all

::::::::::
forecasting

::::::::
windows). This is explained by the location of

the
::::::::::
prominently

:::::::::
positioned

::::::
LiDAR

:
observations with respect to the wind farm . The WHi LiDAR is prominently positioned540

with respect to
::::
from

:
the Belgian-Dutch cluster. This

:::::::
position allows for the quantities being assimilated

:::::::::
assimilated

:::::::::
quantities

:
(during the nudging window

:
)
::
to

::
be

:::::::::
propagated

:::::::::
downwind

:
to be advected downstream to the wind farm, therefore their values

:
.
::::
This

::::::::
advection

::::
time

::
is
::
of

::::
the

::::
order

:::
of

:::
one

:::::
hour,

:::
and

::::::::
therefore

:::
the

:::::
wind

::::::::
variables at the wind farm are still influenced after

the assimilation has stopped. After the advection time, the simulation resumes back to the reference run with no FDDA. This

is especially noticeable 40-50 minutes after the end of a N W due to τ being set at approximately 40 minutes. These lead to545

improved forecasts downstream
:::::
model

::::::
output

:::::::::
downwind at the waked wind turbines, as indicated

::
for

:::::::
example

:
by the reduced

MAE values in in Fig. 9 (bottom) . The difference with and without FDDA of upstream LiDAR for the case ‘F2, WFP FDDA,

L6’ can be seen in Fig. 10 for a certain snapshot during this simulation.
:::
Fig.

::
8
:::
(b)

:::
for

::::::::::
normalized

::::
wind

::::::
speed,

::::
from

:::::
0.09

::
to

::::
0.06.

:

We thus demonstrated a cycling
:::::
cyclic

:
routine with four nudging windows to showcase this effect. With this method for using550

observations to improve predictionswithin the hourly range, a
::
the

::::::::
potential

:::
for

::::::::::
hour-ahead

::::::::
improved

::::::::::
predictions.

::
A

:
LiDAR

that is strategically situated (such as in all of these study cases) can become an essential asset for wind farm decision-making,

especially for extreme weather events like a storm, or a frontal passage. Due to the enormous impact that this
::::
these

::::::
events

might have for wind farm operators, it can be expected that the use of this method will motivate more measurement campaigns

offshore, with real-time access. The main limitation of this strategy is when the flow direction is not in its predominant direction,555

where
::::
from

:::::::::::
South-West,

::::::
because

:
we would no longer have LiDAR observations upstream

::::
with

::::::
respect

::
to

:::
this

::::::::
direction; in that

case, the wind farm is no longer downstream
:::::::::
downwind of the nudged quantity, and therefore remains (almost) unaffected.

A snapshot of wind speed fields () on 17 February 21:40 UTC +1, of ‘F2, WFP FDDA, L6’ (left) and ‘F2, WFP’ (without

FDDA) (center), as well as the difference between the two (right).
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Figure 8. Wind speed
::::::
Artificial

:::::
cyclic

::::::
routine

::::
‘F2,

::::
WFP

:::::
FDDA

::::::
LC04’

::
for

:::::::::
hour-ahead

:
predictions:

::::
wind

:::::
speed

:::::
results

:
at the Westhinder

platform
::
(a), compared to

::
the

:::::::::
assimilated LiDAR data (top), while assimilating wind data at a height of 104.5 m in four nudging windows

(N W1-4
::::::
denoted

::
as

::::::
NW1-4, one hour each). Information is advected downstream

::::::::
propagated

::::::::
downwind to the location of the waked WTs,

and the results are compared to SCADA (bottom
:
b). Forecasting windows have a 2-hour length and are denoted as FC W1-4

:::::::
FCW1-4. MAE

values are reduced for
:::
The

:::
grey

::::
error

::::
bars

::::::
indicate

:
the case of cyclic nudging in ‘F2, WFP FDDA L6’ as compared to when no FDDA is

performed
::::::
standard

::::
error (in ‘F2, WFP’

::::::
available

::::
from

::::::
SCADA

::::
only

:::
for

::::
wind

::::
speed

:::
and

:::::
power).

3.2
::::::
Results

:::
for

:::::
cases

::::
with

::::::::
different

:::::::
weather

:::::::::
conditions

:::::
using

:::::
WFP

::::
and

::::::
FDDA560

To further assess how the F2 day-ahead simulations perform, we compute the MAEs in height with respect to the WHi LiDAR

profiles. In Fig. 11, we visualize the MAEs in height for the different simulations (listed in x-axis) that are using LiDAR data
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(see Table 2). The height of the assimilated LiDAR point is solely at 104.5 , yet improvements with respect to observations

are perceived along the whole profile. A vertical smoothing in wind speed profiles is expressed in this figure which ensures

the smooth transition between simulation and observation. Furthermore, the MAEs are reduced
:::
We

::::::
discuss

::::::
results

::::::::
obtained565

::
for

::::
time

::::::
frames

:::::
from

:::::
Table

:
2
::::
(F1,

:::
F3,

:::
and

::::
F4)

:::::
using

::
the

:::::::
findings

:::::
from

:::
the

::::::::
sensitivity

:::::
study

::
to
:::::::
nudging

::::::::::
parameters

::
in

::::
Sect.

::::
3.1.

:::
Let

::
us

::::
first

:::::::
illustrate

::::::
results

::::
with

:::
and

:::::::
without

:::
the

:::::::
presence

::
of

:::::
wind

:::::::
turbines

::
in

:::
the

::::::::::::
computational

::::::
domain

::
in

::::
Fig.

:
9
:::
for

:::
F1

:
.
::::
This

:::::
figure

:::::::
displays

::::::::
snapshots

::
of

:::::
wind

:::::
fields

::
for

:::::
three

:::::::
arbitrary

::::
time

:::::
slots

:::::
during

::::
this

:::::
period

::
of

:::::::
interest

::
in

::::::::
February

:::::
2022.

:::
The

:::::
wind

::::::::
directions

:::
for

:::
the

::::
three

:::::::::
snapshots

::
in

::::
Fig.

:
9
:::
are

:::::
from

::::::::::
South-West

:::
(a),

:::::
South

::::
(b),

:::
and

:::::
West

:::
(c).

:::::::::
Significant

:::::::
velocity

:::::::
deficits

:::
are

:::::::
observed

::
in

:::
all

:::::
cases,

::
as

::::
well

::
as

:::::::::
inter-farm

::::::::::
interactions.

:::
For

:::
the

::::::
whole

:::::::
duration

::
of

:::
the

:::::::
four-day

::::
long

::::
time

::::::
frame

:::
F1,

:::::::::
simulation570

:::::
results

::
at

:::
the

::::::
Waked

::::
WTs

:::::::
location

:::
are

::::::
shown

::
in

:::
Fig.

:::
10.

:::::
These

::::::
results

:::
are

::::
both for the cases where LiDAR FDDA is performed.

The case ‘F2, WFPFDDA, L1’ , that has a typical nudging strength Gq , shows reduction of MAEs of about 1.3− 1.4 times

for both wind speed and wind direction at 104.5
:::
‘F1,

:::::
WFP’

:::::
(with

:::::
active

::::::
WFP)

:::
and

::::
‘F1,

:::::
WFP

::::::
FDDA

::::
L04’

:::::
(with

:::::
active

:::::
WFP

:::
and

::::
with

::::::
FDDA

::
of

:::::::
LiDAR

::::::
located

::::::
further

::::::::
upwind).

::::
The

::::
wind

:::::
speed

::::::
values

:::
are

::::::::::
normalized

::
by

::
a

:::::::::::
representative

:::::::
cut-out

:::::
speed

:::
(31 m . Improvements are especially pronounced when Rxy and Gq have higher values. For example, for the case with no data575

assimilation ‘F2, WFP’, the MAE of normalized wind speed at the height of 104.5 is 0.070, whereas when assimilating LiDAR

with Rxy = 20 in ‘F2s−1
:
).
:::
We

::::::
remind

::::
that

:::
the

:::::
details

:::
on

:::::::
nudging

:::::
values

:::
for

::::
L04

::
are

::
in
:::::
Table

::
3.

::::
The

:::::
results

:::::
using

:::::
WFP

:::::::
captures

:::
well

:::
the

::::::
storms

::
in

:::
F1,

::
as
::::
well

:::
as

::::
swift

:::::
wind

:::::::
direction

::::::::
changes,

::::::::
especially

::::::
before

:::
and

::::::
during

:::::
Storm

:::::::
Franklin

::::
(19

:::::::
February

:::::
2022

:
at
:::::
18:00,

::
20

::::::::
February

:::::
2022

:
at
:::::::
21:00).

::
In

::::
order

::
to
::::::
further

:::::::
enhance

:::
the

::::::
model

:::::
output

::::::
during

:::
the

::::
three

:::::::
extreme

::::::
events,

:::
we

:::::::
perform

:::::
FDDA

:::
of

::::::
upwind

:::::
WHi

::::::
LiDAR

::::
data

:::::
every

:::
10

:::::::
minutes

:::
for

:::
the

:::::
whole

:::::::
duration

:::
of

:::
F1,

:::::
which

::::::::
improves

:::::::::::
significantly

:::
the

::::::
results580

::
of

::::
wind

:::::
speed

::::
and

::::
wind

:::::::::
directions,

:::
as

:::::::
indicated

:::
by

:::
the

:::::::
reduced

:::::
MAE

:::::
values

:::
for

:::
the

::::
case

::::
‘F1,

:
WFP FDDA, L3’ , the MAE is

reduced to 0.021 (about 3.3 times) . Similarly for these two cases, the MAE of wind direction is reduced about 5.2 times. It

is worth remarking also the improvements in the cycling FDDA routine, case ‘F2, WFP FDDA, L6’, are expressed as MAE

reduction for wind speed of about 1.9 times, and for wind direction of about 2.3 times. ’
:::::
(L04)

:::
in

:::
Fig.

:::
10.

:

In height: MAEs computed with respect to the LiDAR observations at the Westhinder platform585

Figure ?? compares the MAEs from resultsat the five locations (with respect to the corresponding local datasets) for the

day-ahead predictions for all the cases described in Table 2, namely when not performing any nudging ‘F2, WFP_off’ and ‘F2,

WFP’, when nudging only LiDAR data ‘F2, WFPFDDA, L1-6’s, and when nudging only SCADA ‘F2, WFP FDDA
::
To

:::::::
evaluate

::
the

:::::::::::
performance

:::
of

:::
the

:::::::
different

::::::::
scenarios

::
in
:::::

wind
:::::
speed

::::
and

::::
wind

::::::::
direction

:::::::
results,

:::
we

::::::
present

::::
their

::::::
errors,

:::::::::::
summarized

::
in

:::
Fig.

:::
11.

:::::
This

:::::::
involves

::::
time

:::::::
frames

:::
F1,

:::
F3,

::::
F4,

::::
with

::::
their

:::::::::::::
corresponding

::::::
options

::::::::
(without

:::::
WFP, S1-3’s, all of which have590

their parameters detailed in Table 2. It is particularly encouraging that performing FDDA of a single LiDAR point (at 104.5

) upstream from the wind farm zone can lead to improvements in predictions downstream at the wind turbines locations, as

seen from the first six rows in Fig. ??, especially in comparison to the last two rows (corresponding to the baseline runs ‘F2:

WFP_off’ and ‘F2, WFP’). Performing FDDA of SCADA also enhances (locally) the predictions (the three rows corresponding

to ‘F2, WFP FDDA, S1-3’ with the three different radius of influence 10
::::
with

::::
WFP, 4 , and 2 . Further downstream at the EPL595

and LEG LiDARs, the fields are almost unaffected, similarly to the week-long case . Additionally,
:::
and

::::
with

::::::
FDDA)

:::
at

:::
the

:::::
Waked

:::::
WTs

::::::::
location.

:::
The

::::::
FDDA

::::::::::::
configuration

::::
used

::
is

::::
also

::::::::
specified

::::
(L04

::
or

::::
L06

:::::
from

:::::
Table

::
3,

:::::
which

::
is
:::::::::

supported
:::
by

:::
the
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Figure 9. Color maps
::::::::
Snapshots of MAEs for wind speed and wind direction

::::
fields

:
(m s−1

:
) for the

::::
three different simulations computed at

:::
time

:::::::
instances

:::::
within

:::
F1

::
(a,

::
b,

::
c).

:::
On the five locations

::
left

:::::::
column,

:::::
results with respect to

::::
active

::::
WFP

::::
show

:::
that

::::::
energy

:
is
::::::
indeed

:::::::
extracted

:::
from

:
the corresponding observations: WHi at 104.5

:::
flow.

:::
The

::::::
middle

::::
fields

:::
are

::::
from

::
the

::::::::
simulation

::::::
without

:::::
WFP.

::
On

:::
the

::::
right, EPL at 116 ,

LEG at 115 ,
::
the

::::::::
difference

::
in

::::
wind

::::
speed

:::::
fields

:::
with

:
and Front and Waked WTs at hub height

:::::
without

::::
WFP

::
is
:::::
shown.

::::::::
sensitivity

:::::
study

::
in

:::::
Sect.

::::
3.1).

:::::::::
Moreover,

::::
Fig.

::::
11(a)

::::::::::
emphasizes

::::
that

::::::::
activating

:::::
WFP

:::::
helps

:::::::
improve

::::
wind

::::::
speed,

:::
but

:::
not

:::::
wind

::::::::
direction.

::::
This

::
is

:::
the

::::
case

:::
for

:::
F1

::::
and

:::
F4,

::::::
except

::
if

:::
the

:::::::
relative

:::
bias

:::
of

:::::
wind

:::::
speed

::::
with

::::::
respect

:::
to

:::::::
SCADA

::::
data

::
is
:::::::
already

:::::::
negative

:::::
when

::::
WFP

::
is
::::::::
inactive.

::
In

::::
that

::::
case,

:::
the

:::::
wind

::::::
power

::::::::
extraction

::::
will

::::::
further

:::::
bring

:::
this

::::
bias

::
to
:::::

more
::::::::
negative

::::::
values,600

::
as

:
it
::

is
::::

the
::::
case

:::
for

::
F3

:
in Fig. ??, power improvements due to FDDA are also significant and are summarized for all cases

that have an active WFP. For normalized power at the Front WTs, the cases of upstream LiDAR data assimilation ‘F2, WFP

FDDA, L1-6’ show a reduced MAE by 1.8− 2.6 times in comparison to ‘F2, WFP ’ (without DA), whereas for the cases of

SCADA ‘F2, WFP FDDA , S1-3’ this reduction is of the order of 3.2− 4.7 times due to the available in-situ observations

:::::
11(c).

:::::::::
Therefore,

::
for

::::::
frame

:::
F3,

::::::::
activating

:::::
WFP

::::
does

:::
not

:::::::
improve

:::::
MAE

::
of

::::
wind

::::::
speed

::
as

:::::
shown

::
in
::::
Fig.

:::::
11(a).

:::::::::
Activating

:::::
WFP605

:::
has

::::::
almost

::
no

::::::
impact

:::
on

::::
wind

::::::::
direction

::::::
MAEs

::::
(Fig.

::::::
11(b))

:::
and

::::::
biases

::::
(Fig.

::::::
11(d)).

::::::::
However,

::::
the

::::::::::
introduction

::
of

:::
the

:::::::
upwind

::::::
LiDAR

::::::
FDDA

::::::::
improves

::::
both

::::
wind

::::::
speed

:::
and

:::::
wind

::::::::
direction.

::::::
FDDA

::
of

::::
such

:::::::::::
observations

:::::::
provides

::::::::
enhanced

::::::
results

::::
that

:::
are

:::::
useful

:::
for

:::::::
weather

:::::::::
reanalysis,

::
as

::::
well

::
as

:::
for

::::::
detailed

:::::
wind

:::::::
resource

::::::::::
assessment.
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Figure 10. MAEs for normalized power for the different
:::
The simulations that have an active

::
‘F1,

:
WFP’

::::
and

:::
‘F1, computed

::::
WFP

::::::
FDDA’

::::
(L04)

::::
when

::::::::::
assimilating

:::::::
(upwind)

:::::
LiDAR

::::
data,

:::
47 km

::::
away:

:::::
results

:
at the two wind farm locations (front and waked

:::::
Waked WTs )

::::::
location

:::::
during

::
the

::::::
Eunice

:::
and

::::::
Franklin

::::::
storms.

:::
UTC

::::::::
timezone.
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Figure 11.
::::
Mean

:::::::
absolute

:::::
errors

::::::
(MAEs)

::
of

::::
wind

:::::
speed

::
(a)

:::
and

::
of
::::
wind

:::::::
direction

:::
(b),

::::::::
computed

:::
for

:::
each

::::
case

::
at

:::
the

:::::
Waked

::::
WTs

:::::::
location.

:::
Bias

::
of

::::
wind

:::::
speed

::
(c)

:::
and

::
of

::::
wind

:::::::
direction

:::
(d)

::
for

::::
each

:::
case

::
at
:::
the

:::::
Waked

::::
WTs

:::::::
location.

::::
Data

:
is
:::::::::
assimilated

::::
only

:
at
::::
WHi

:::::::
LiDAR.

29



4 Conclusions

This study demonstrated the usefulness of assimilating local
::::::
offshore

:
observations (such as from SCADA or LiDAR) in NWP610

models (in this case, via FDDA
::
the

::::::
FDDA

:::::::::
algorithm in the Advanced Research WRF model) to improve predictions of wind

direction, wind speed
::::::::
simulation

::::::
results

:::
of

::::
wind

::::::
speed,

::::
wind

::::::::
direction

:
and, consequently, power production, based on MAE

reduction during a 1-week comparison with three extreme weather events. We forecasted three storms in February 2022 while

also representing the
::::
error

::::::::
reduction

::::::
during

::::
four

::::::::
selected

:::::
study

:::::
cases.

::::
The

:::::::::
simulation

::::::
results

::::::::
included

:
wind farms in the

domain. The swift nature of these extreme events was captured, and we further enhanced the predictions using FDDA of in-situ615

(SCADA) observations: improvements were observed regardless of the flow direction.

:::
One

::
of

:::
the

:::::
study

:::::
cases

:::::::
involved

::::
two

::::::
extreme

:::::::
weather

::::::
events

::
in

:::::::
February

:::::
2022,

::::::
which

::::
were

:::::::
captured

::::
well

:::
by

:::
the

::::::::::
simulations.

Moreover, we explored the leverage of the FDDA method in a day-ahead
:::::::
day-long frame by assimilating data either from an

upstream
::::::
upwind (WHi) LiDAR at a specific height, or solely from SCADA at hub height. We performed 11

:
a
:::::::::
sensitivity

:::::
study

::
via

:::
18

:
numerical experiments that have

::::
eight

:
different values for radius of influence of DA, as well as three

:::
five

:::::::
different

:
val-620

ues for nudging strength.
:::
This

::::::
helped

::
to

:::::::
identify

::
an

:::::::
optimal

::::::
FDDA

:::::::::::
configuration

:::
for

:::
this

::::::::
offshore

::::::
setting. We highlighted the

benefits of having an upstream
::::::
upwind

:
LiDAR, as its assimilation improves predictions downstream

:::::
results

:::
47 km

:::::::::
downwind

at the location of the wind farm. To benefit from this configuration, the only requirement is to have the most common wind

direction (
:::::
which

:
for the Southern Bight of the North Sea , this is from South-West)incoming to the Westhinder LiDAR. The

experiments of upstream LiDAR DA
::::::
upwind

:::::::
LiDAR

::::::
FDDA exhibited improvements in predictions

:::::
results which were quan-625

tified by MAEs
:
,
:::::::
RMSEs,

::::
and

::::
bias, with respect to the local observations. The MAEs for power production when assimilating

upstream LiDAR are reduced approximately twice as compared to the simulations without any DA, whereas this reduction

when assimilating SCADA is approximately four times
:::::::
identified

:::::::
optimal

::::::
FDDA

::::::
setting

:::
was

::::
also

::::::
applied

:::
to

::::
three

:::::
more

:::::
study

::::
cases. Furthermore, after demonstrating the leverage of upstream DA

::::::
upwind

:::::::
nudging, we explored a forecasting routine that

contains cyclical
::::
cyclic

:
nudging windows, which also showed improved forecasts

::::::::::::
improvements

::
in

:::::::::
hour-ahead

:::::::::
predictions

:
that630

were quantified via MAEs.

Limitations of this work include the requirement for a specific range of values for wind direction: the assimilation of West-

hinder LiDAR data would not show improvements in the downstream region of interest if the wind direction is not from

South-West. Additionally, the lack of offshore observations
:::::::::
(especially

::
in

:::::::::
real-time) due to the harsh offshore conditions that

impact measurement campaigns
:::
(as

::::
well

::
as

::::
cost

::
of

::::::::::
deployment,

:::::::::::
maintenance,

:::::::::
structural

:::::::::
limitations

::
in

::::::
deeper

::::::
waters)

:
reduces635

the geographical areas in which this method can be applied. Another important limitation is that only prognostic variables can

be assimilated with the FDDA method, which is why variational methods are widely used and hold potential for future works.

Furthermore, the
:
It
::

is
::::::

worth
:::::::::
mentioning

::::
that

:::
the

:::::::
nudging

:::
of

:::::
waked

::::::::
turbines

:::
can

:::::
affect

:::
the

:::::::
physical

:::::::::
evolution

::
of

::::::
turbine

::::
and

::::
farm

:::::
wakes

::
at
::::::

typical
:::::::::

mesoscale
::::::::::
resolutions

:::
that

:::
do

:::
not

::::::
resolve

:::::::::
individual

::::::
turbine

::::::
wakes.

:::
A

::::::
detailed

:::::
study

:::
on

::::
this

:
is
::::

left
:::
for

:::::
future

:::::
work.

:::::::::::
Furthermore,

::::
with

:::
the

:::::::::
increasing

:::::::
density

::
of

:::::
wind

:::::
farms

:::::::
installed

::
in

:::
the

::::::
North

::::
Sea,

:::
the

::::::::::
assimilation

::
of

::::::::
SCADA640

:::
data

:::::
from

::::::::::
neighboring

::::
wind

:::::
farms

::
in
:::::
NWP

:::::::
models

::
is

::
an

::::::::
important

:::::
topic

:::
for

:::::
future

:::::::
research.

:
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:::
The

:
methods in this work can be valuable in the future for operational nowcasting, as well as for long-term

:::::
refined

:
reanalysis

(several weeks to few years), where the assimilation of offshore data acquired during wind farm pre-development phase can

help reduce bias errors and/or reduce the risk of under-sampling extremes, or where the goal is to evaluate the effects of wind

farm decommission on present farms.645

Practical implications for the wind energy industry can be derived from this research: by utilizing open-source NWP models

such as WRF, which is designed for both atmospheric research and operational forecasting applications, more informed
::::
wind

::::
farm

:
planning and decision-making strategies can be pursued, even under extreme weather conditions. This is especially

feasible if offshore measurement campaigns continue to be motivated. Furthermore, with the increasing density of wind farms

installed in the North Sea, the assimilation of SCADA data from neighboring wind farms in NWP models is an important topic650

for future research.

Code and data availability. The Advanced Research WRF (ARW) model is developed by the National Center for Atmospheric Research,

(Skamarock et al., 2019). WRF v4.5.1 is publicly available at https://github.com/wrf-model/WRF/releases/tag/v4.5.1 (last accessed: Septem-

ber 2023). The forcing data used for initial and boundary conditions in the WRF simulations is also publicly available at the NCEP GFS

0.25 Degree Global Forecast Grids Historical Archive, DOI: 10.5065/D65D8PWK. Data from the numerical simulations and the namelists655

used in the WRF model are available upon reasonable requests. The postprocessing routines are built using the wrf-python library (Lad-

wig, 2017). The Westhinder LiDAR data is collected in the framework of the SeaFD project, funded by the Fund for Innovation and En-

trepreneurship (VLAIO) at the von Karman Institute for Fluid Dynamics. The LiDAR datasets at the Lichteiland Goeree platform and at the

Europlatform are available thanks to the Wind@Sea project, Wind Energy Research Group at TNO Energy Transition (https://www.tno.nl/,

https://nimbus.windopzee.net/). Finally, the SCADA observations of the wind farm of interest, as well as details regarding the wind turbines,660

are under a non-disclosure agreement (NDA).

Appendix A: Included wind farms in the numerical setup

The included wind farms in the numerical setup are described hereafter, in Table A1, using data from Hoeser et al. (2022) and

Hoeser and Kuenzer (2022).

Appendix B:
:::::::::::::
Supplementary

:::::
color

:::::
maps

::
of

::::::
errors

:::
for

::::
wind

:::::::::
direction

:::
and

::::::
power

::
in

:::
F2665

::
To

:::::::
support

:::
the

:::::::
findings

::
on

:::::::
optimal

::::::
FDDA

::::::
settings

:::::
based

:::
on

:::::
wind

:::::
speed

::::
error

::::::::
reduction

::
in

:::::
Sect.

:::
3.1,

:::
we

:::::::
include

:::
the

:::::
errors

:::
for

::::
wind

::::::::
direction

:::
and

::::::
power.

:::::
Figure

:::
B1

:::::::
contains

:::::
wind

:::::::
direction

:::::::
RMSEs

:::
and

::::::
biases

:::
that

::::::::
showcase

:::::::::
significant

::::::::::::
improvements

:::::
when

:::::
FDDA

::
is
:::::::::
performed

::::::::::
(especially

:::
for

:::
the

::::::::
preferred

::::::::::::
configurations

::::
L04

:::
and

:::::
L06).

::::::
Figure

:::
B2

:::::::
displays

::::::
power

::::::::::::
improvements

:::
for

:::::
RMSE

::::
and

::::
bias

:::
for

::
all

::::::
FDDA

::::::::::::
configurations

::::
that

::::
have

::
an

::::::
active

:::::
WFP.

:::::
These

::::::::::::
improvements

:::
are

::::
quite

::::::::::
significant,

::::::::::
considering

::
the

:::::::
(almost

:::::
twice

::
as

:::::
high)

:::::
error

::::::
values

::
in

:::
the

::::
case

::::
‘F2,

:::::
WFP’

::::::
(when

:::
no

::::
data

::
is

::::::::::
assimilated).

::::
The

::::::
results

::
in

:::::
both

::::::
figures

:::
are670

::::::::
consistent

::::
with

:::
the

:::::::
analysis

::
in

::::
Sect.

::::
3.1.
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Table A1.
:::::
Details

::
on

::::
wind

:::::
farms

:::::
(lsited

:
in
:::
no

:::::::
particular

:::::
order)

::
in

::
the

:::::::
Southern

:::::
Bight

::
of

::
the

:::::
North

:::
Sea

:::::::::
summarized

::::
from

:::::::::::::::
Hoeser et al. (2022)

.

Wind farm name Total number of turbines (#) Turbine Capacity Hub Height (m) Rotor Diameter (m)

Borssele I
94 8.4 MW 107 164

Borssele II

Borssele III
77 9.5 MW 107 164

Borssele IV

Borssele V 2 9.5 MW 107 164

Throntonbank I 6 5.0 MW 93.3 126

Throntonbank II & III 48 6.15 MW 93.3 126

Rentel 42 7.35 MW 102 154

Northwind 72 3.0 MW 80.1 112

SeaMade (Seastar) 30 8.4 MW 107 164

Norther 44 8.4 MW 107 164

Nobelwind 50 3.3 MW 77.1 112

Belwind 55 3.0 MW 70.1 112

Belwind Alstom Hailiade 1 6.0 MW 98.1 150

Northwester 2 23 9.5 MW 107 164

Seamade (Mermaid) 28 8.4 MW 107 164

Scroby Sands 30 2.0 MW 68 80

East Anglia ONE 102 7 MW 120 154

Galloper 56 6 MW 88 154

Greater Gabbard 140 3.6 MW 78 107

Gunfleet Sands 48 3.6 MW 78 107

Gunfleet Sands 2 6 MW 84 120

London Array 175 3.6 MW 87 120

Kentfish Flats 30 3 MW 70 90

Kentfish Flats 15 3.3 MW 83.6 112

Thanet 100 3 MW 70 90

Luchterduinen 43 3 MW 81 112

Egmond aan Zee 36 3 MW 70 90

Princess Amalia 60 2 MW 60 80

Details

on wind farms (lsited in no particular order) in the Southern Bight of the North Sea summarized from Hoeser et al. (2022).
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Figure B1.
::::
Color

::::
maps

::
of

::::
MAE

:::
(a)

:::
and

:::
bias

:::
(b)

:::
for

::::
wind

:::::::
direction

::
for

:::
the

::::::
different

:::::::::
simulations

::::::::
computed

::
at

::
the

:::
five

:::::::
locations

::::
with

::::::
respect

:
to
:::

the
:::::::::::
corresponding

::::::::::
observations:

::::
WHi

::
at
:::::
104.5 m,

::::
EPL

::
at
:::
116

:
m,

::::
LEG

::
at

:::
115

:
m
:
,
:::
and

:::::
Front

:::
and

:::::
Waked

::::
WTs

::
at
:::
hub

::::::
height.

::::::
Results

::
at

:::::::::
assimilation

:::::::
locations

::
are

::::::
marked

::::
with

:::::::::
crossed-out

::::
cells.
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Figure B2.
:::::
Color

::::
maps

::
of

::::
MAE

:::
(a)

:::
and

:::
bias

::
(b)

:::
for

:::::
power

::
for

:::
the

:::::::
different

::::::::
simulations

::::
(with

:::
an

::::
active

:::::
WFP)

:::::::
computed

::
at
:::
the

:::
two

::::
wind

::::
farm

::::::
locations

:::::
(Front

:::
and

::::::
Waked

::::
WTs)

::
at
:::
hub

::::::
height.

:::::
Results

::
at
:::::::::
assimilation

:::::::
locations

:::
are

::::::
marked

:::
with

:::::::::
crossed-out

::::
cells.
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