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Main comment

The authors would like to thank the reviewer for the careful reading of the paper and the in-depth

review. The authors’ responses (in blue) to all reviewer’s comments (in black) are included in this

document. All changes are marked in red in the revised manuscript.

General:

1. I’m not sure the inter-model comparisons make a good contribution to the paper. The different

models give different results, but often it should be noted that this is the intention, in other words,

the reason model development continued was to improve the match to higher-fidelity models of

cases similar to the ones explored in this paper. The differences are therefore somewhat the

point of the model, and so relate a bit awkwardly to the paper’s framing of sensitivity.

Our motivation for using inter-model comparisons has been clarified with an addition to the

second paragraph of Section 2.

For completeness, we have two reasons for studying inter-model behaviour. First, if a model is

used in wake steering optimisation, it is important to ask how complex the model should be to

produce broadly the correct decision variables: lower fidelity models may still perform well in an

optimisation context. Second, even if two models give similar optimal variables, it is important

to know which model gives good solutions more consistently (e.g. under different initialisations).

The examples given in our submission help clarify these points. First, while the Gaussian and

Multizone models can broadly give the same optimal yaw angles, the Gaussian model is much

more robust (see Figure 8-b,c). Second, while the GCH model provides more physically accurate

optimal yaw angles compared to the Gaussian model (due to secondary steering effects), GCH

optimisation results are more variable (Figure 8-c,d), and hence less robust.

We do not believe that, to-date, the question finding the “correct” model fidelity for wake

steering optimisation has been fully resolved. Our intention is that the presented inter-model

comparison makes a step towards answering it.

2. I thought the comparisons between optimization strategies were useful and interesting though.

However, the description of the turbo algorithm was a little too brief for me to fully understand

its approach (I’m also not familiar with several of the terms).



The description of the TuRBO algorithm in Section 3.1 has been extended to provide fur-

ther insight into Bayesian optimisation and the specifics of TuRBO. Moreover, an illustrative

1D minimisation problem on a toy function using a Bayesian optimisation has been added in

Appendix-C.

3. I think in general the paper would benefit if some aspects were condensed and de-emphasized:

(a) The Jensen model does a poor job at wake steer modeling, I don’t think it was really

designed for this so the time spent describing the model or looking at results of this model

I think could be given over to better use

We agree that our study shows that the Jensen model performs poorly in wake steering op-

timisation. However, the Jensen model remains widely used by the wind energy community

for wake steering applications [Kheirabadi and Nagamune, 2019, Houck, 2021, Andersson

et al., 2021]. For this reason, we believe it is valuable to demonstrate its high sensitivity for

at least the simple and medium-complexity cases considered in this study (the 2 × 1 and

5× 5 farms).

For brevity, however, we have removed the Jensen model from the results for the Horns

Rev example.

(b) Then more generally, the difference of the results between models is also less interesting I

think because the models were anyway designed to produce different results, so this does

not need to be proved in my opinion.

Please refer to answer to Comment 1, above.

4. It would be interesting to know more about the Turbo method, not just the general theoretical

description of the method, but how specifically it is implemented in this case and why it is

out-performing SLSQP

Section 3.1 has been expanded to give a more detailed description of the TuRBO algorithm. In

addition, a simple 1D example has been added to Appendix C to help visualise the iterative

behaviour of Bayesian optimisation algorithms (of which TuRBO is an example).

These added details help to explain the main differences between the two considered algorithms:

at each iteration, TuRBO’s global approach can potentially sample from anywhere in the design

space, while SLSQP typically takes a small step computed using local gradients. This observation

underpins the discussion of many of the presented results (e.g. the sensitivity to initialisation

demonstrated in Sect 4.1).

5. Is this result specific to Turbo vs SLSQP, or would it be expected to generalize to similarly

structured optimizers?

Our results (see, e.g., Figures 4 and 6) demonstrate that the farm power improvement objective

function typically has multiple local maxima and, for the Multizone and GCH models, has either

discontinuities or discontinuous gradients. This behaviour implies that significant differences

should be expected between the performance of any typical global optimiser (e.g., TuRBO) and

the performance of any typical gradient-based optimiser.

6. A diagram of the TuRBO method would be welcome.
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An illustration of Bayesian optimisation applied to a simple 1D minimisation problem has been

added in Appendix-C. For further examples, please also see [Shahriari et al., 2016, Figure 1] and

[Eriksson et al., 2019, Figure 1].

7. Would other optimizers compare interestingly? Genetic annealing? Serial-Refine?

Consistent with the answer to Comment 6, above, we expect an improvement in performance

for global strategies (e.g. genetic annealing) over local searches, which include gradient-based

(e.g., SLSQP) or gradient-free (e.g., Serial-Refine) approaches, due to the multi-modal and

discontinuous/non-smooth nature of the objective function.

8. In terms of optimization, layout optimization (or coupled layout/control design) is a harder

problem for optimizers, since there are many more variables. Would turbo be interesting for

those doing research in layout design?

TuRBO would be useful in this context due to its ability to reduce optimisation sensitivity

compared to unconstrained gradient-based optimisation (e.g. the recent use of Bayesian optimi-

sation in farm layout optimisation [Bempedelis and Magri, 2023]). However, a known drawback

of Bayesian approaches is the computational cost involved with tuning the Gaussian processes

in high-dimensional optimisation problems which require many objective function evaluations.

Although TuRBO mitigates this issue by using trust regions, it may also be promising to take

inspiration from our findings and add physically-inspired constraints to enable efficient gradient-

based algorithms for layout optimisation problems.

Specific:

9. Section 4: Does it make sense to include the Jensen model in these investigations, such as Figure

2? For instance you state:

“Model sensitivity is caused by the flatness of the Jensen model’s downstream power curve appar-

ent in Figure 2-b, that is, d
dγ1

PT2(γ1) is significantly smaller for Jensen than for other models.

Flatness arises due to the uniform, or “top-hat”, profile of the Jensen distribution (see Fig-

ure 1), which results in a lack of sensitivity 210 of streamwise velocity deficit to moderate yaw

perturbations.”

The inability of the flat Jensen distribution to model the impact of wake steering (or fit to

LES data) was a motivation for the development of the multi-zone model (Gebraad, P. M. O.,

Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A., Ruben, S. D., Marden, J. R., and Pao,

L. Y. (2016) Wind plant power optimization through yaw control using a parametric model for

wake effects—a CFD simulation study. Wind Energ., 19: 95– 114 doi: 10.1002/we.1822.).

Please refer to the answer to Comment 3, above.

10. Figure 4: This is an interesting result. But I might recommend you also check the slightly

misaligned cases (for example 1 deg off in either direction) in addition to the aligned, these

problems can be special to circumstances where wind turbine rows are perfectly aligned to the

inflow, which is actually not the dominant case in a practical setting.

The results and conclusions of Section 4.2 are also valid for slightly misaligned cases. Figure

1 of this document replicates the conditions of Figure 8 in the paper but extends the results
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for slightly misaligned conditions. The objective function statistics are found to be consistent

with those presented in our manuscript. Similar initialisation sensitivities, as well as model and

optimiser dependencies, are observed for at least 2◦ of misalignment from fully aligned conditions.

As the revised manuscript is already fairly long, we have decided not to add this figure in the

revised manuscript and to only have a small comment for slightly misaligned cases.
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Figure 1: Comparison of the 5 × 5 objective function statistics in wind direction range [260, 270]
between SLSQP (a-d) and TuRBO (e-h) optimisation algorithms for (a,e) Jensen, (b,f) Multizone,
(c,g) Gaussian, and (d,h) GCH wake models. Mean values are illustrated with error bars for one
standard deviation (red) and minimum and maximum values (black). Vertical dashed lines indicate
fully aligned conditions, while horizontal dashed lines correspond to no power improvement.

11. Figure 7: Interesting find, is this still an issue in the latest versions of FLORIS?

The results are independent of FLORIS, as long as the exact same wake, deflection and super-

position models are used.

12. Section 4.3: The C2 constraint is a good idea, but is it complicated to carry out in all cases of

wind directions? Can it be included in the optimization which turbines are upstream of which

in every wind direction?

The C2 constraint can be easily adapted to all cases of wind directions. For example, a simple

permutation of the labelling of the turbines can be performed to obtain columns of turbines

aligned with the downstream direction. The C2 constraint could then be applied in an equivalent

manner to the one described in our study, using the new labelling.

A small clarification has been added to the end of Section 4 to explain this point.
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