
Authors’ response to Review 1 of “Sensitivity analysis of wake

steering optimisation for wind farm power maximisation”

F. Gori, S. Laizet, A. Wynn

April, 2023

Main comment

The authors would like to thank the reviewer for the in-depth review of the paper. The authors’

responses (in blue) to all major and moderate issues (in black) are included in this document. Minor

issues have been addressed with appropriate modifications to the text. All changes are marked in red

in the revised manuscript.

Major concerns:

1. I am considerably concerned with the fact that the authors claim [line 135] to be using the

exponential loss of power according to the yaw angle as w = 0.627 following Fleming et al.,

(2017), whereas w (pP therein) is therein 1.43 or 1.88 depending on the chosen turbine, and 1.41

when fitted into a cosine function. They need to justify the use of the chosen value (w = 0.627)

in order to being able to proceed with the paper, otherwise it would be a rejection as this

parameter is applied in all the analytical models used (it is embedded in the FLORIS framework).

In addition, you are applying the same w value for the different turbines considered, whereas

Fleming et al. (2107) evidences a different value when considering different turbines. The validity

of this parameter must be checked before proceeding with the rest of the review, because if its

invalidity was verified the whole work would be needed to be re-done (thus rejected herein).

The authors can reassure the reviewer that there is no issue with the w parameter in the

manuscript. According to Equation 3, the correction to power due to yaw misalignment is

((cos γ)w)3, with w = 0.627, and

((cos γ)w)3 = (cos γ)w×3 = (cos γ)pP .

Hence, the parameter value of w = 0.627 used in the manuscript matches the coefficient pP =

3× 0.627 = 1.881 recommended in Fleming et al. [2017].

Regarding the reviewer’s comment on using the same w value for the NREL 5 MW and the

Vestas V-80 2 MW, the authors can confirm that the value of w = 0.627 (tuned value for the

NREL 5 MW presented in Fleming et al. [2017]) has been also used for the Vestas V-80 2

MW. This decision was made after investigating the influence of w on an SLSQP wake steering

optimisation of the Horns Rev wind farm layout (80 Vestas V-80 2 MW) with the GCH wake
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Figure 1: Comparison of optimisation results for different w coefficient values. The farm layout is
representative of the Horns Rev wind farm, the optimisation algorithm is SLSQP, and the wake model
used is the GCH. (a): optimal set-points per turbine. Dashed lines delimit wind farm rows. (b):
resulting objective function (normalised farm power).

model. As it can be seen in Figure 1, the results indicate that the largest variation is 7 % in

power improvement and 5 ◦ in optimal yaw settings for a single turbine. These differences in

optimisation results do not fundamentally affect the main trend in the obtained optimal solution

(i.e. a monotonic decrease of optimal yaw angles with increasing downstream turbine location)

and show that the conclusions of the original manuscript are not affected by the choice of w. It

should be noted that there is a lack of power data for the Vestas V-80 2 MW turbine in yawed

conditions. As an example, no specific value of w for the Vestas V-80 2 MW is stated in [Dou

et al., 2020]. The manuscript has been modified to include the discussion on the validity of w

in the presented study.

2. In sections 4.2.1 and 4.2.2 the authors show several times that, the used optimization algorithm

(SLSQP) has serious problems to find global maxima for each turbine individually and therefore

for the overall wind farm. Then in Section 4.2.3 they show the results statistics or TuRBO and

SLSQP, showing a clear outperforming by TuRBO, a stochastic optimization approach. Indeed,

the fact that stochastic algorithms present higher skill than gradient-based algorithms is shown

in contributions such as e.g, see Kuo et al., 2020: ”Wind Farm Yaw Optimization via Random

Search Algorithm”. For both reasons, it is worrying surprising that they do not apply TuRBO

for the analysis of the long sections 4.2.1 and 4.2.2. Please re-do 4.2.1 and 4.2.2 sections (at

least also) for the TuRBO algorithm, or consider dismissing such sections.

The purpose of Sections 4.2.1 and 4.2.2 is to highlight not only that unconstrained gradient-based

optimisation can perform poorly, but also to explain why this happens. The observations made

in this section (i.e., initial condition sensitivity and cost function bimodality) then motivate the

proposed solutions to this problem via global optimisation (TuRBO) or constrained gradient-

based optimisation in Section 4.3. For this reason, the authors believe that the insights gained

in Sections 4.2.1 and 4.2.2 are necessary to motivate the paper.

To address the reviewer’s comment, the authors have:

1. Re-run the optimisation presented in Figure 5 to include the output of the TuRBO algo-

rithm. These new results are discussed at the end of section 4.2.1 and now provide further

motivation for the statistical comparison of TuRBO and SLSQP in Section 4.3.
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2. Replaced the ten indicative SLSQP optimization runs from Figure 4 with an analogous

sample of ten optimisation runs selected from the 50 cases studied in Section 4.3. Conse-

quently, both TuRBO and SLSQP have been applied to every initialisation case considered

in Figures 4,5 and 8. For legibility, TuRBO’s output for the ten cases of Figure 4 is not

shown, but note that the improved performance of TuRBO can now be inferred from the

statistical results presented in Figure 8.

3. Added more discussion to Sections 4.2 and 4.3 comparing the pros and cons of stochastic

algorithms versus constrained/unconstrained gradient-based algorithms.

Finally, the purpose of Section 4.2.2 is only to discuss the geometry of the underlying objective

functions for each wake model and use any observations to understand the poor performance of

gradient-based wake steering optimisation. No optimisation is performed in this section, meaning

that it is not possible to generate extra results here using TuRBO.

3. With their statement at Line 370: “To the best of the authors’ knowledge, the work by Dou

et al. (2020) is the only published study in which wake steering optimisation is performed on

the Horns Rev farm layout” the authors seem not to handle the literature in depth, as they

fail to raise other contributions such as the one by Zong and Porté-Agel (2021): ’Experimental

investigation and analytical modelling of active yaw control for wind farm power optimization’

(Section 6). This will entail (at least) serious implications in their discussion on their obtained

results.

The authors thank the reviewer for raising this additional work, which is valuable to include.

Nevertheless, it is clear that only a few studies on wake steering optimisation for the Horns Rev

farm layout have been published to date, meaning that it does not have serious implications for

the manuscript discussion. This study by Zong and Porté-Agel [2021], which uses gradient-based

optimisation, requires explicit knowledge of the optimal solution to define appropriate initial yaw

angles which guarantee optimiser convergence. This is a strong limitation to which our work

offers a simpler alternative based on constrained gradient-based optimisation (Section 4.3). The

revised manuscript has been modified accordingly to reflect this comment from the reviewer.

4. As a follow-up from point 3, a flagrant lack of state of the art on wake steering optimization

contributions (at least those on open-loop) is noted in the introduction.

The authors’ intention in the original submission was to present a concise overview of the liter-

ature on wake steering optimisation, as they wanted the focus of the paper to be on the results

and new optimisation approaches proposed. To address the reviewer’s comment, the introduc-

tion in the revised manuscript has been expanded to include a wider discussion of the literature

on wake steering optimisation.

5. Numerous descriptive elements of the introduction and methodology are misplaced (those at

the introduction should be at the methodology and vice-versa), and the paper shows in general

serious lack of appropriate writing style. All my comments regarding these two aspects are

indicated in the attached PDF.

The authors appreciate the reviewer’s comment even if they disagree with the use of the word

“serious” to describe their writing style. Numerous appropriate modifications have been made

in the revised manuscript following this comment in an attempt to improve the quality of the

study.
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6. Finally, due to the fact that the analytical models used were not validated against ground truth

(field campaigns) or more robust representations (e.g., wind tunnel experiments, high resolution

numerical simulations as LES), it is very difficult to detect which analytical model is actually

performing better. Therefore I would at least recommend to apply the optimized yaw angles

obtained with a given model into the rest of models (inter-model cross-validation), and check

how solutions perform.

As stated in Section 2, lines 106–107 of the original manuscript, the study does not seek to identify

which wake model is best for wake steering optimisation in terms of modelling accuracy. Much

past literature, such as [Göçmen et al., 2022, King et al., 2022], addresses this research question.

The purpose of this submission study is instead to identify and analyse situations in which wake

steering optimisation is highly sensitive to either wake model choice or the optimisation strategy

used.

Regarding cross-validation, Table 1 shows, for the Horns Rev example of Section 4.3, the farm

power increase for the Jensen, Multizone and Gaussian models when (i) using optimal decision

variables computed using the GCH model and (ii) using the optimal decision variables from

the original submission. For all three models, lower farm power increases are achieved using

the optimal CGH yaw angles. This implies that optimising using the Jensen, Multizone, and

Gaussian models will not give the characteristic row-monotonic behaviour of the optimal GCH

yaw angles.

As noted in [Zong and Porté-Agel, 2021], this row-by-row decrease in optimal yaw angles arises

due to secondary-steering effects, which are captured in the GCH model but are not in the

Gaussian model. It is therefore arguable that optimisation using the GCH model exhibits the

best performance out of all models considered.

Some text has been added in the revised manuscript to discuss inter-model cross-validation and

which wake model is potentially performing better.

Case Jensen PwfP (0)−1 Multizone PwfP (0)−1 Gaussian PwfP (0)−1

Original model γopt 1.04 1.83 1.12
GCH γopt 1.03 1.39 1.07

Table 1: Inter-model cross-validation for C1+C2 optimisation results of the Horns Rev case.

Moderate concerns (orange comments extracted from the reviewer’s PDF file):

1. L146: “80 Vestas V-80 2 MW turbines”.

Reviewer’s comment: You apply the same w value to different turbines, even though in Fleming

et al., (2017) a considerable w (pP therein) difference is found among different turbines. Please

justify.

Please refer to authors’ reply for major concern 1.

2. L173-L174: “Moreover, a single trust region is used in all cases to enable a fair comparison with

the SLSQP algorithm”

Reviewer’s comment: Could you please explain why a fair comparison is attained by only con-

sidering ONE of the trust regions at TuRBO?
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If multiple trust regions are used, then TuRBO uses a multiple starting point search and fits a

different Gaussian process model in each trust region. Hence, a single run of TuRBO would be

comparable, in complexity, to multiple runs of SLSQP. Therefore, the simplest fair comparison

between the two methods is to use a single trust region for TuRBO, initialised with the same

conditions as those used for each SLSQP optimisation. To address this comment, a clarification

has been added to Section 3.1 of the revised manuscript.

3. L335-L336: “Higher mean values are obtained for all models by the global TuRBO algorithm.”

Reviewer’s comment: If you want to keep sections 4.2.1 and 4.2.2 you must re-do them in terms

of (at least also) TuRBO. It does not make any sense to show them in terms of just SLSQP

when they are performing that poorly, especially when you are showing now these comparisons

with an outperforming aproach such as TuRBO.

Please refer to authors’ reply for major concern 2.

4. L348-L352: “It is interesting that the best-performing SLSQP run (blue markers) converges after

fewer iterations, and to a higher farm power, than the indicative TuRBO case presented and, in

fact, outperforms all TuRBO runs (see Figure 8). This suggests that, if initialised in the region

of attraction of a global (or near-global) maxima, a gradient-based optimiser may exhibit faster

convergence than a generic global strategy.”

L356-L361: “Finally, it is interesting to note that while the optimal wake velocity fields in Figures

9-b and 9-c are visually similar, they are not identical: the TuRBO solution has 1.5 % lower farm

power, and requires 55 % more evaluations to find it. This confirms a possible, albeit counter-

intuitive, advantage of the rapid local convergence enjoyed by gradient-based optimisers. Indeed,

the quasi-Newton algorithm employed in SLSQP is well-known (Deuflhard, 2011) to possess rapid

locally-quadratic convergence rates, which may partially explain this observation.”

Reviewer’s comment: However, due to the high variability of runs in results not validated against

ground truth (field data) or at least more robust reproductions (wind tunnel, high resol. simula-

tions such as LES), it is very hard to justify an option with such big dispersion as with SLSQP.

In absence of such validation, it would be preferable to trust the optimizer providing more reli-

ability in terms of least dispersed results and higher average performance (i.e., TuRBO). Please

justify more robustly or remove.

A clarification has been added to Section 4.2.3 to emphasise that unconstrained optimisation

using SLSQP gives more variable results than TuRBO and, consequently, that TuRBO should

be viewed as a more robust optimiser than unconstrained SLSQP.

Text has also been added to emphasise that: (i) SLSQP’s variability is precisely the motivation

for considering constrained optimisation in Section 4.3; and (ii) that, as shown in Figure 11,

extra constraints can significantly reduce the variability of SLSQP. Consequently, the authors

argue that appropriately constrained gradient-based optimisation is also a viable solution to

robust wake steering optimisation.

5. L369-L370: “To the best of the authors’ knowledge, the work by Dou et al. (2020) is the only

published study in which wake steering optimisation is performed on the Horns Rev farm layout.”

Reviewer’s comment: The authors knowledge is incomplete. Please check Zong and Porté-Agel

(2021): ’Experimental investigation and analytical modelling of active yaw control for wind farm

power optimization’ (Section 6).
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Please refer to authors’ reply for major concern 3.

Minor concerns (yellow comments in the reviewer’s PDF file):

These comments are addressed directly in the revised manuscript (red colour in the text). The authors

have also dealt with the recommendations from the referee to remove small pieces of text when they

felt that it was appropriate to do so.
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Authors’ response to Review 2 of “Sensitivity analysis of wake

steering optimisation for wind farm power maximisation”

F. Gori, S. Laizet, A. Wynn

May, 2023

Main comment

The authors would like to thank the reviewer for the careful reading of the paper and the in-depth

review. The authors’ responses (in blue) to all reviewer’s comments (in black) are included in this

document. All changes are marked in red in the revised manuscript.

General:

1. I’m not sure the inter-model comparisons make a good contribution to the paper. The different

models give different results, but often it should be noted that this is the intention, in other words,

the reason model development continued was to improve the match to higher-fidelity models of

cases similar to the ones explored in this paper. The differences are therefore somewhat the

point of the model, and so relate a bit awkwardly to the paper’s framing of sensitivity.

Our motivation for using inter-model comparisons has been clarified with an addition to the

second paragraph of Section 2.

For completeness, we have two reasons for studying inter-model behaviour. First, if a model is

used in wake steering optimisation, it is important to ask how complex the model should be to

produce broadly the correct decision variables: lower fidelity models may still perform well in an

optimisation context. Second, even if two models give similar optimal variables, it is important

to know which model gives good solutions more consistently (e.g. under different initialisations).

The examples given in our submission help clarify these points. First, while the Gaussian and

Multizone models can broadly give the same optimal yaw angles, the Gaussian model is much

more robust (see Figure 8-b,c). Second, while the GCH model provides more physically accurate

optimal yaw angles compared to the Gaussian model (due to secondary steering effects), GCH

optimisation results are more variable (Figure 8-c,d), and hence less robust.

We do not believe that, to-date, the question finding the “correct” model fidelity for wake

steering optimisation has been fully resolved. Our intention is that the presented inter-model

comparison makes a step towards answering it.

2. I thought the comparisons between optimization strategies were useful and interesting though.

However, the description of the turbo algorithm was a little too brief for me to fully understand

its approach (I’m also not familiar with several of the terms).



The description of the TuRBO algorithm in Section 3.1 has been extended to provide fur-

ther insight into Bayesian optimisation and the specifics of TuRBO. Moreover, an illustrative

1D minimisation problem on a toy function using a Bayesian optimisation has been added in

Appendix-C.

3. I think in general the paper would benefit if some aspects were condensed and de-emphasized:

(a) The Jensen model does a poor job at wake steer modeling, I don’t think it was really

designed for this so the time spent describing the model or looking at results of this model

I think could be given over to better use

We agree that our study shows that the Jensen model performs poorly in wake steering op-

timisation. However, the Jensen model remains widely used by the wind energy community

for wake steering applications [Kheirabadi and Nagamune, 2019, Houck, 2021, Andersson

et al., 2021]. For this reason, we believe it is valuable to demonstrate its high sensitivity for

at least the simple and medium-complexity cases considered in this study (the 2 × 1 and

5× 5 farms).

For brevity, however, we have removed the Jensen model from the results for the Horns

Rev example.

(b) Then more generally, the difference of the results between models is also less interesting I

think because the models were anyway designed to produce different results, so this does

not need to be proved in my opinion.

Please refer to answer to Comment 1, above.

4. It would be interesting to know more about the Turbo method, not just the general theoretical

description of the method, but how specifically it is implemented in this case and why it is

out-performing SLSQP

Section 3.1 has been expanded to give a more detailed description of the TuRBO algorithm. In

addition, a simple 1D example has been added to Appendix C to help visualise the iterative

behaviour of Bayesian optimisation algorithms (of which TuRBO is an example).

These added details help to explain the main differences between the two considered algorithms:

at each iteration, TuRBO’s global approach can potentially sample from anywhere in the design

space, while SLSQP typically takes a small step computed using local gradients. This observation

underpins the discussion of many of the presented results (e.g. the sensitivity to initialisation

demonstrated in Sect 4.1).

5. Is this result specific to Turbo vs SLSQP, or would it be expected to generalize to similarly

structured optimizers?

Our results (see, e.g., Figures 4 and 6) demonstrate that the farm power improvement objective

function typically has multiple local maxima and, for the Multizone and GCH models, has either

discontinuities or discontinuous gradients. This behaviour implies that significant differences

should be expected between the performance of any typical global optimiser (e.g., TuRBO) and

the performance of any typical gradient-based optimiser.

6. A diagram of the TuRBO method would be welcome.
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An illustration of Bayesian optimisation applied to a simple 1D minimisation problem has been

added in Appendix-C. For further examples, please also see [Shahriari et al., 2016, Figure 1] and

[Eriksson et al., 2019, Figure 1].

7. Would other optimizers compare interestingly? Genetic annealing? Serial-Refine?

Consistent with the answer to Comment 6, above, we expect an improvement in performance

for global strategies (e.g. genetic annealing) over local searches, which include gradient-based

(e.g., SLSQP) or gradient-free (e.g., Serial-Refine) approaches, due to the multi-modal and

discontinuous/non-smooth nature of the objective function.

8. In terms of optimization, layout optimization (or coupled layout/control design) is a harder

problem for optimizers, since there are many more variables. Would turbo be interesting for

those doing research in layout design?

TuRBO would be useful in this context due to its ability to reduce optimisation sensitivity

compared to unconstrained gradient-based optimisation (e.g. the recent use of Bayesian optimi-

sation in farm layout optimisation [Bempedelis and Magri, 2023]). However, a known drawback

of Bayesian approaches is the computational cost involved with tuning the Gaussian processes

in high-dimensional optimisation problems which require many objective function evaluations.

Although TuRBO mitigates this issue by using trust regions, it may also be promising to take

inspiration from our findings and add physically-inspired constraints to enable efficient gradient-

based algorithms for layout optimisation problems.

Specific:

9. Section 4: Does it make sense to include the Jensen model in these investigations, such as Figure

2? For instance you state:

“Model sensitivity is caused by the flatness of the Jensen model’s downstream power curve appar-

ent in Figure 2-b, that is, d
dγ1

PT2(γ1) is significantly smaller for Jensen than for other models.

Flatness arises due to the uniform, or “top-hat”, profile of the Jensen distribution (see Fig-

ure 1), which results in a lack of sensitivity 210 of streamwise velocity deficit to moderate yaw

perturbations.”

The inability of the flat Jensen distribution to model the impact of wake steering (or fit to

LES data) was a motivation for the development of the multi-zone model (Gebraad, P. M. O.,

Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A., Ruben, S. D., Marden, J. R., and Pao,

L. Y. (2016) Wind plant power optimization through yaw control using a parametric model for

wake effects—a CFD simulation study. Wind Energ., 19: 95– 114 doi: 10.1002/we.1822.).

Please refer to the answer to Comment 3, above.

10. Figure 4: This is an interesting result. But I might recommend you also check the slightly

misaligned cases (for example 1 deg off in either direction) in addition to the aligned, these

problems can be special to circumstances where wind turbine rows are perfectly aligned to the

inflow, which is actually not the dominant case in a practical setting.

The results and conclusions of Section 4.2 are also valid for slightly misaligned cases. Figure

1 of this document replicates the conditions of Figure 8 in the paper but extends the results
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for slightly misaligned conditions. The objective function statistics are found to be consistent

with those presented in our manuscript. Similar initialisation sensitivities, as well as model and

optimiser dependencies, are observed for at least 2◦ of misalignment from fully aligned conditions.

As the revised manuscript is already fairly long, we have decided not to add this figure in the

revised manuscript and to only have a small comment for slightly misaligned cases.
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Figure 1: Comparison of the 5 × 5 objective function statistics in wind direction range [260, 270]
between SLSQP (a-d) and TuRBO (e-h) optimisation algorithms for (a,e) Jensen, (b,f) Multizone,
(c,g) Gaussian, and (d,h) GCH wake models. Mean values are illustrated with error bars for one
standard deviation (red) and minimum and maximum values (black). Vertical dashed lines indicate
fully aligned conditions, while horizontal dashed lines correspond to no power improvement.

11. Figure 7: Interesting find, is this still an issue in the latest versions of FLORIS?

The results are independent of FLORIS, as long as the exact same wake, deflection and super-

position models are used.

12. Section 4.3: The C2 constraint is a good idea, but is it complicated to carry out in all cases of

wind directions? Can it be included in the optimization which turbines are upstream of which

in every wind direction?

The C2 constraint can be easily adapted to all cases of wind directions. For example, a simple

permutation of the labelling of the turbines can be performed to obtain columns of turbines

aligned with the downstream direction. The C2 constraint could then be applied in an equivalent

manner to the one described in our study, using the new labelling.

A small clarification has been added to the end of Section 4 to explain this point.
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