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Abstract. Active trailing edge flap systems (AFlap) have shown promising results in reducing wind turbine (WT) loads. The

design of WT relying on AFlap load reduction requires implementing systems to detect, monitor, and quantify any potential

fault or performance degradation of the flap system to avoid jeopardizing the wind turbine’s safety and performance. Currently,

flap fault detection or monitoring systems are yet to be developed. This paper presents two approaches based on machine

learning to diagnose the health state of an AFlap system. Both approaches rely only on the sensors commonly available on5

commercial WTs, avoiding the need and the cost of additional measurement systems. The first approach (MFS) combines man-

ual feature engineering with a random forest classifier. The second approach (AFS) relies on random convolutional kernels to

create the feature vectors. The study shows that the MFS
:::
first

:
method is reliable in classifying all the investigated combinations

of AFlap health states in the case of asymmetrical flap faults not only when the WT operates in normal power production

but also before startup. Instead, the AFS
::::::
second

:
method can identify some of the AFlap health states for both asymmetrical10

and symmetrical faults when the WT is in normal power production. These results contribute to developing the systems for

detecting and monitoring active flap faults, which are paramount for the safe and reliable integration of active flap technology

in future wind turbine design.
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1 Introduction

The pursuit of lower Levelized Cost of Energy has driven a steady increase in the size of utility-scale Wind Turbines (WTs)

over the past years, with a consequent increase in the load carried by the WT components. Among the new technologies studied

to mitigate this load increase, actively controlled flaps located at the blade trailing edge (AFlap) have shown promising results

in reducing fatigue and ultimate loads and increasing annual energy production, see Barlas et al. (2016), and Pettas et al. (2016).45

Despite the potential benefits of AFlaps, this technology has yet to reach a sufficient level of maturity for its implementation in
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commercial WTs. To the authors’ knowledge, only Siemens Gamesa Renewable Energy (SGRE) has publicly shared data of

an AFlap system implemented on two different multi-MW WTs: a 4.0 MW WT prototype and a 4.3 MW WT prototype, both

installed in Høvsøre (Denmark), see Gomez Gonzalez et al. (2022).

Every time a new component is included in a wind turbine’s design, the safe and reliable continuous wind turbine operation50

must be ensured for the whole turbine’s lifetime. To fulfill this requirement, additional components, systems, and controller

strategies are needed to identify, quantify,
:
and resolve any potential issue deriving from the fault of the new component without

compromising the WT safety. Once the active flap reaches an adequate level of maturity, the wind turbine design will rely on

the load reduction provided by the active flap. Therefore, any potential fault or performance degradation of the flap system

may jeopardize the safety and performance of the wind turbine if not adequately managed. Therefore, a system will be needed55

to identify, monitorand handle ,
::::
and

:::::::
manage active flap faults or degradation. Until now, the fault diagnosis and condition

monitoring of AFlap systems has not been detailed investigated, and to our knowledge, no literature is available on this topic.

Nevertheless, we can foresee different approaches for AFlap fault diagnosis and monitoring, following the standard methodolo-

gies currently applied in the wind energy sector,
::::::
which

::::::::::::::::::
(Hossain et al., 2018)

:::
and

:::::::::::::::::
(Gao and Liu, 2021)

::::::
provide

:::::::::::::
comprehensive

:::
and

:::::::
updated

::::::::
overviews.60

First
::
As

::
a

:::
first

::::::::
approach, monitoring and diagnosis can rely on dedicated sensors located in specific mechanical elements,

like a temperature
:::::::
vibration

:
sensor in a gearbox

::::::::::::::::::
(Zappalá et al., 2014). For the AFlap system, position or pressure sensors

could be located on the flap surfaces or in their proximity to quantify the AFlap deflection or the AFlap impact on the blade

aerodynamic
:::::::::::
aerodynamics. Due to the expected large blade area covered by the flaps, this monitoring approach will require

several sensors distributed along the outer third of the blade length. This system will likely be complex, expensive to deploy65

and maintain, sensitive to lighting, and affected by the reliability of the sensor operating in the harsh environment of a wind

turbine rotating blade.

The second approach is the model-based method that mainly relies on the analyses of the residual signals, signals defined

as the difference between the real system outputs and the output from a model of the system created by using, for example,

Kalman filter, observers, or model-based machine learning techniques. On WTs, the model-based methods have been applied,70

for example, in the condition monitoring of main bearing (de Azevedo et al., 2016), sensor and actuators (Cho et al., 2018), and

generator (Gálvez-Carrillo and Kinnaert, 2011). As a drawback, the model-based methods require a reasonably good model to

guarantee the detection of faults. The model generation could be challenging for AFlap fault detection, mainly due to the high

nonlinearity of the WT blade dynamic, the high uncertainty on the wind field interacting with the WT rotor, and the limited

number of sensor measurements available on a commercial WT. Improved wind field estimations (e.g., from nacelle Lidar) or75

additional load or pressure sensors on the blade can facilitate the model generations and improve their accuracy at the price of

an increased system complexity and cost.

Finally, data-driven methods allow fault detection without needing a detailed system model but by different
::::::
several types of

data and signal analysis. These analyses range from the simple detection of changes in mean values, variances, or trends to

the more advanced machine learning (ML) methodologies (Badihi et al., 2022). In particular, the study and application of ML80

methodologies to fault diagnosis and condition monitoring has increased exponentially in recent years thanks to the techno-
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logical and computational advances that have allowed to quickly and efficiently analyze the large amount of data needed for

the training of the ML models (García Márquez and Peinado Gonzalo, 2022). An overview
:::::::::
Overviews of the Machine learn-

ing methods for wind turbine condition monitoring is
:::
are provided by (Stetco et al., 2019)

:::
and

:::::::::::::::::::
(Malekloo et al., 2022). ML

techniques can be applied for the AFlap fault detection if a sufficient amount of relevant data can be provided for the model85

training. Currently, the amount of AFlap field data is limited, even more for AFlap faults. Nevertheless, aeroelastic simulations

have been commonly used for WT design. Therefore,
:
it is reasonable to assume

:::
that a sufficiently accurate aeroelastic model

of a WT equipped with AFlap can be used to train a ML model for the AFlap fault detection. To test this assumption, in this

paper we study if data-driven methods based on ML trained with aeroelastic simulation can properly
:::::::::
adequately

:
classify the

AFlap fault states.90

1.1 Detecting AFlap health state

The detection of the health state of the AFlap is a challenging task. Figure 1a shows the mean blade root moment when the flap

is deactivated (AF_Off) or is active without performance degradation (AF_On) in function of the wind speed. As expected,

AFlaps have a relevant impact on the WT blade aerodynamic, visible in the two distinct lines of the mean moment binned in

function of the wind speed. However, the broad range of environmental conditions where the WT operates causes the moment95

to vary within a wide range of values, a range shown in the plot by the colored areas. These areas overlap significantly, making

it difficult for a detection system to identify the actual AFlap health state. Figure 1b shows the time series of the blade root

bending moment for the AFlap active and AFlap not active with the same 10 ms−1 turbulent wind. The two lines have a similar

highly oscillating behavior with just a small shift due to the increased lift generated by the flap activation.

Furthermore, several faults of the AFlap system can occur in the WT lifetime, which behavior and severity depend on the100

layout and scope of the AFlap system itself. Wear and tear can slowly degrade the performance of part of the AFlap system;

ice or lightning can instead compromise the whole system’s functionality. As it is impossible to test
:::::::
evaluate all the different

combinations of faults, we selected a set of representative conditions we believe can cover a wide range of flap faults. The

selected cases cover partial and complete performance degradation happening only on one blade or on all three blades simulta-

neously. We focus on identifying the AFlap health state in static flap actuation to keep the approach as general as possible. This105

approach keeps the detection system independent from any specific AFlap controller strategy, AFlap system design, or Fault

dynamics. The idea is to integrate this kind of detection system in an AFlap status check routine running for several minutes

where the performance of the stationary flap is verified.

1.2 Research contribution

This paper investigates whether a simple ML algorithm can assess the health of an active trailing edge flap system from the110

data provided by the sensors commonly available on a commercial WT. The aim is to develop a system that does not require

any additional sensor to be installed on the WTs, making it easy to implement without relevant additional costs for installation

or maintenance. This task can be seen as a multivariate time-series classification problem where the ML algorithm aims to

estimate if the AFlap is properly operating or is affected by performance degradation. We follow two different approaches
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Figure 1. a) Mean value of the normalized blade root bending moment when the AFlap is deactivated (AF_Off) and activated without

degradation (AF_On), binned in function of the wind speed. b) Example of time series of the normalized blade root bending moment when

the AFlap is deactivated (AF_Off) and activated without degradation (AF_On) for a 10 ms−1 turbulent wind

for computing the features from the sensors’ time series data. In the first approach, we manually select the features based on115

our knowledge of the impact of AFlaps on the different WTs signals. In the second approach, multiple random convolutional

kernels automatically generate the
:::
we

:::
use

:
a
:::::
brute

:::::
force

::::::::
approach

::
to

::::::
explore

:::::::
possible

::::::::
unknown

::::::::::
correlations

::::::::
between

:::::::
AFlaps’

::::
states

::::
and

::::::::
variations

::
in
:::
the

:::::
WTs

:::::::
signals.

::::
This

::::::::
approach

::::
relies

:::
on

:::::::::
thousands

::
of

::::::::
randomly

::::::::
generated

::::::::::::
convolutional

::::::
kernels

::::
that

:::::::::::
automatically

:::::::
compute

:
features from all the available signals , without requiring pre-knowledge of the AFlaps’ impact on the

WT signals
::::::
AFlaps. We select the simple but robust random forest classifier for both feature calculation approaches. Aeroelastic120

simulations are used to train and test the ML models. We use the aeroelastic model developed by (Gamberini et al., 2022) of

the 4.3MW WT prototype owned by SGRE, where a 20m AFlap was installed and tested on one blade of the 120 m diameter

rotor.

Section 2 describes the aeroelastic model, the environmental conditions, and the flap health states used in the aeroelastic

simulations. In Section 3, we describe the ML methodologies used in the study and the two approaches used for AFlap health125

detection. In Sections 4 and 5, we show the obtained results that we discuss in Section 6.

2 Simulated experiments

The training of the ML models is based on a pool of aeroelastic simulations reproducing the WT aeroelastic response for the

combination of wind turbine operative conditions and flap health states of interest.
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2.1 Aeroelastic simulations130

A set of aeroelastic simulations is computed for every combination of wind turbine operative conditions and flap health state

of interest. We computed all sets with the same WT aeroelastic model.

We accounted for the influence of the variability of the environmental conditions on the wind turbine’s aeroelastic response by

defining the main environmental conditions as random variables of pre-imposed statistical properties.

2.1.1 Environmental conditions135

Table 1 shows the environmental conditions modeled as random variables and their parameters, which are:

– Mean wind speed: follows a Weibull distribution with the annual average wind speed set to 10 ms−1 and the shape

parameter to 2. It is equivalent to IEC wind class 1.

– Wind turbulence intensity: follows the normal turbulence model described in the IEC 61400-1:2019 (IEC, 2019) for

turbulence class A where Iref is set to 0.16 with a lognormal distribution. It is defined as:140

E[σU |U ] = Iref (0.75U +3.8) (1)

V ar[σU |U ] = (1.4Iref )
2 (2)

– Wind shear exponent: the vertical wind profile is modeled with a power law with exponent α. As proposed by Dimitrov

et al. (2015), the wind shear exponent is normally distributed and conditionally dependent on the mean wind speed U as

follows:145

E[α|U ] = 0.088(ln(U)− 1) (3)

V ar[α|U ] =

(
1

U

)2

(4)

α values are constrained within realistic limits.

– Horizontal inflow angle: Ψ follows a normal distribution, is truncated within realistic limits, and is conditionally de-

pendent on the mean wind speed U as proposed by Duthé et al. (2021):150

E[Ψ|U ] = ln(U)− 3 (5)

V ar[Ψ|U ] =

(
15

U

)2

(6)

– Vertical inflow angle and Air density: normally distributed, truncated within reasonable limits, with prescribed values

of mean and standard deviation.

One example set of environmental condition is sampled for the pre-startup cases, showed in Figure 2, and the normal power155

production cases, showed in Figure 3.
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Table 1. Parameters of the environmental conditions modelled as random variables

Value Unit Distribution Mean Variance Min Max

Turbulence intensity % lognormal Eq.(1) Eq.(2) - -

Wind shear exponent - normal Eq.(3) Eq.(4) -0.2 0.4

Air density Kg/m3 normal 1.225 0.05 1.103 1.348

Horizontal inflow angle deg normal Eq.(5) Eq.(6) -6 6

Vertical inflow angle deg normal 3 3 -2 8

Figure 2. Example of environmental conditions for Pre-Starup simulations: mean wind speed U, wind turbulence intensity TI, wind shear

exponent α, horizontal inflow angle Ψ, vertical inflow angle Σ, and air density ρ.

2.1.2 Aeroelastic model and simulation setup

BHawC is the aeroelastic engineering tool developed internally by SGRE. It is based on the Blade Element Momentum

(Fisker Skjoldan, 2011) and models the AFlap’s aerodynamic and actuator system with a dedicated flap module.
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Figure 3. Example of environmental conditions for Normal Power Production simulations: mean wind speed U, wind turbulence intensity

TI, wind shear exponent α, horizontal inflow angle Ψ, vertical inflow angle Σ, and air density ρ.

SGRE provided the BHawC model of the prototype wind turbine (pWT) used for the aeroelastic simulations. It includes the160

pWT’s structural and aerodynamic models and its controller. The AFlap model is also tuned to match the lift increase in the

blade region covered by the flap when activated. In Gamberini et al. (2022), one of the authors showed that this model estimates

the pWT operational parameters and blade loads with reasonable accuracy, and the AFlap activation increases up to +8% the

mean flapwise bending moment at the blade root. All simulations have the same pWT BHawC model, with only changes in the

environmental conditions and the AFlap health state. The simulations are performed with turbulence wind and are 10 minutes165

long with 0.01 s time step length.

Two operative conditions are simulated: normal power production (NPP) and pre-startup (PS). In the latter cases, the wind

turbine is in idling condition with the controller optimizing the blade pitch angle to bring the rotor speed and generator torque

to the startup conditions.
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For every operative condition, asymmetrical and symmetrical AFlap fault cases are simulated. In the symmetrical flap fault170

case (3B), the flaps on the three blades have all the same state and performance. This means the three flaps are modeled with

the same aerodynamic polars and control signal. In the asymmetrical case (1B), the AFlap is active only on one blade. Even if

this is not an expected configuration for future wind turbines, this setup mirrors the pWT setup and in the future it can be tested

:::::::::
facilitating

:
a
:::::
future

::::::
testing with the pWT measurements data. Furthermore, the rotor imbalance due to the flap activated on only

one blade is still a good approximation of the imbalance due to a flap on one blade being at a different state or performance175

than the flaps on the other two blades.

For every case, we simulated seven different AFlap health states:

– Flap Off (AF_Off): AFlap not active, simulated with baseline aerodynamic polar and flap control Off.

– Flap On (AF_On): AFlap active, simulated with active flap aerodynamic polar and flap control On.

– Flap Off with fault (AF_Off_Fault): AFlap active even if the control commands it to be not active. This state can sim-180

ulate the case when ice formed on the blades prevents the flap from closing. It is simulated with active flap aerodynamic

polar and flap control Off.

– Flap On with fault (AF_On_Fault): AFlap not active even if the control commands it to be active. This state can be

caused by ice preventing the flap from opening or the flap actuator not working. It is simulated with baseline aerodynamic

polar and flap control On.185

– Flap On with degradation: AFlap active but with degraded performance. Reduced flap deflections due to reduced flap

actuator operation, material aging, or extremely low temperature can be associated with these cases. We simulated AFlap

performance reduced to 25% (AF_On_25pc), 50% (AF_On_50pc), and 75% (AF_On_75pc) by using a corresponded

aerodynamic polar linearly interpolated between the baseline polar and the active flap one meanwhile the flap control is

On.190

In the simulations, the AFlap’s health state is kept constant as this study aims to identify the stationary AFlap health state and

not the exact time of the change of state a fault can trigger. Figure 4 shows an example of the normalized lift coefficient of the

flap baseline (AF_Off, line with triangle), flap active (AF_On, line with squares),and flap active with performance reduced to

25% (AF_On_25pc, dashed line), 50% (AF_On_50pc, circles), and 75% (AF_On_75pc, dotted line).

For every AFlap health states computed in the NPP case, we make two simulation sets: a Training and Test (TaT) set of 1000195

simulations and a Validation (Val) set of 500 simulations. The TaT sets cover a wind speed range from 3.5 and 25 ms−1 and

share the same sample set of environmental conditions. The Val sets cover the same wind speeds as the TaT sets but share a set

of environmental conditions uncorrelated to the TaT set. The PS cases have a similar setup, but they covers
::::
cover

:
wind speeds

between 1 and 3.5 ms−1; TaT sets have 300 simulations, and the Val sets 150. Environmental conditions
::::::::
condition sets used

for the PS simulations are also uncorrelated to the NPP ones.200

As the input of the ML model, we selected only signals commonly available in the modern commercial wind turbines. These
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Figure 4. Example of flap normalized lift coefficient of the baseline (AF_Off, line with triangle), flap active (AF_On, line with squares),and

flap active with performance reduced to 25% (AF_On_25pc, dashed line), 50% (AF_On_50pc, circles), and 75% (AF_On_75pc, dotted line).

signals are the pitch angle [deg], the rotor speed [rpm], the generator power [kW], flapwise and edgewise bending moments at

the root of each of the three blades [kNm], and linear tower top accelerations [ms−2] together with the flap actuator control

signal [logic].

205

3 AFlap health state estimation with ML

3.1 Introduction

This paper investigates whether a simple ML algorithm can estimate the health state of an active trailing edge flap from the

data provided by the sensors commonly available on a commercial WT. We approached this task as a multivariate time-series

classification problem where the ML algorithm aims to estimate the AFlap health state. We followed two different approaches210

for computing the features from the sensors’ time series data. The first approach relies on the manual selection of the channels

and their relevant statistics that, from the authors’ knowledge, are known to be impacted by the trailing edge flap system.

In the second approach, multiple random convolutional kernels automatically
::
On

::::
the

:::::::
contrary,

:::
the

::::::
second

::::::::
approach

:::::
relies

:::
on

::::::::
thousands

::
of

:::::::::
randomly

::::::::
generated

::::::::::::
convolutional

::::::
kernels

::
to

:
generate the features from all the available signals. Based on the

MiniRocket algorithm, this approach does not require pre-knowledge of the AFlap system’s impact on the WT signalsand
:
.215

:
It
:
explores possible unknown relations among the different

:::::::::
correlations

::::::::
between

:::
the

:::::
Aflaps

:::::
states

::::
and

:::
the WT channels. As a
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classifier method, we selected the simple but robust random forest classifier for both feature calculation approaches. For the

approach based on the MiniRocket algorithm, we also used the Ridge classifier with Cross Validation.

3.1.1 Random Forest

A Random Forest Classifier (RF) is a supervised discriminative machine learning technique whose objective is to estimate220

P
(
Y |X,θ

)
in which Y: target, X: observable, and θ are the parameters. We assume a multi-class classification problem

where each observational sample is assigned to one and only one label, as opposed to the multi-label approach.

The Random Forest classifier is based on a collection of Decision Trees (DT, also called Classification or Prediction Trees), a

non-parametric supervised learning method designed for the classification or regression of a discrete category from the data.

In the machine learning sense, the goal is to create a classification model (classification tree) that predicts the value of a225

target variable (also known as label or class) by learning simple decision rules inferred from the data features (also known as

attributes or predictors). From Figure 5a, an internal node N denotes a test on an attribute, an edge B represents an outcome of

the test, and the Leaf nodes L represent class labels or class distribution. A decision tree is a tree-structured classifier built by

(a)
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Figure 5. (a) Graphical representation of a forest of decision tree classifiers. (b) Impurity index Id for a two-class example as a function of

the probability of one of the classes f1 using the information entropy, Gini impurity and classification error. In all cases, the impurity is at its

maximum when the fraction of data within a node with class 1 is 0.5, and zero when all data are in the same category.

starting with a single node that encompasses the entire data and recursively splitting the data within a node, generally into two

branches (some algorithms can perform multiway splits). The splitting is obtained by selecting the variable (dimension) that230

best classifies the samples according to a split criterion, i.e., the one that maximizes the information gain among the random

sub-sample of dimensions obtained at every point. The splitting continues until a terminal leaf is created by meeting a stopping

criterion, such as a minimum leaf size or a variance threshold. Each terminal leaf contains data that belongs to one or more
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classes. Within this leaf, a model is applied that provides a reasonably comprehensible prediction, especially in situations

where many variables may exist that interact in a nonlinear manner, as is often the case on wind turbines (Carrasco Kind and235

Brunner, 2013). Several algorithms exist for training decision trees with variations on impurity, pruning, stopping criteria, how

to treat missing variables, etc. A top-to-bottom construction of a decision tree begins with a set of objects. Each object has an

assigned label and a set of measured features. The dataset is split at each tree node into two subsets, left and right, so the two

resulting subsets are more homogeneous than the set in their parent node. To do so, one must define a cost function that the

algorithm will minimize. One can use the information entropy, the Gini impurity, or a classification error for the cost function.240

Formally, the splitting is done by choosing the attribute that maximizes the Information Gain, defined in terms of the impurity

degree index Id as shown in Figure 5b.

By definition, a random forest classifier is a non-parametric classification algorithm consisting of a collection of decision tree-

structured classifiers {h(x,Θk) ,k = 1, ...} where the Θk are independent identically distributed random vectors, and each tree

casts a unit vote for the most popular class at input x. The RF prediction consists of the aggregation of the DT
::::::
decision

:::::
trees245

results obtained by a majority vote. Furthermore, the fraction of the trees that vote for the predicted class serves as a measure

of certainty of the resulting prediction. RF
:::::::
Random

:::::
Forest

:
improves prediction accuracy over single decision tree classifiers

by injecting randomness that minimizes the correlation ρ amongst the grown individual decision trees h(x,Θk) that operate as

an ensemble. This is achieved by using bootstrap aggregating (a.k.a. bagging, sample with replacement of the training dataset)

in tandem with random feature selection in the process of growing each decision tree in the ensemble Breiman (1996). This250

forces even more variation amongst the trees in the model (different conditions in their nodes and different overall structures)

and ultimately results in lower correlation across trees and more diversification.

Some of the arguments in favour
::::
favor of using a RF

::::::
Random

::::::
Forest in this research include:

– Random Forests work well with both categorical and numerical data. No scaling or transformation of variables is usually

necessary.255

– Random Forests implicitly perform feature selection and generate uncorrelated decision trees. It does this by choosing a

random set of features to build each decision tree. This also makes it a great model when you have to work with a high

number of features in the data.

– Random Forests are not influenced by outliers to a fair degree. It does this by binning the variables.

– Random Forests can handle linear and non-linear relationships well.260

– Random Forests generally provide high accuracy and balance the bias-variance trade-off well. Since the model’s principle

is to average the results across the multiple decision trees it builds, it averages the variance as well.

– Random Forests are fairly interpretable. They provide both feature importance and in certain instances the ability to trace

branches to follow the decision making
:::::::::::::
decision-making

:
process.
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3.1.2 MiniRocket265

::::::
Current

:::::::
methods

:::
for

::::
time

:::::
series

:::::::::::
classification

::::
often

::::::::::
concentrate

::
on

:::::::
singular

::::::
aspects

:::
like

::::::
shape,

:::::::::
frequency,

::
or

:::::::
variance.

::::::::::::
Convolutional

::::::
kernels

::::
offer

::
a
::::::
unified

::::::::
approach

:::::::
capable

::
of

:::::::::
capturing

:::::::
multiple

:::::::
features

::::
that

:::::::::
previously

::::::::::
necessitated

::::::::::
specialized

::::::::::
techniques.

:::::
These

::::::
kernels

::::
have

::::::
proven

:::::::
effective

::
in

:::::::::::
convolutional

::::::
neural

:::::::
networks

:::
for

::::
time

:::::
series

:::::::::::
classification

:::
like

::::::
ResNet

:::::::::::::::::
(Wang et al., 2017)

:::
and

::::::::::::
InceptionTime

::::::::::::::::::::::
(Ismail Fawaz et al., 2020).

ROCKET (RandOm Convolutional KErnel Transform) is ,
:::::::::::::::::::
(Dempster et al., 2020)

:
)
:::
has

:::::::::::
demonstrated

:::
that

::::::::
achieving

:::::::::::::
state-of-the-art270

::::::::::
classification

::::::::
accuracy

::
is

:::::::
possible

::
by

:::::::::::
transforming

::::
time

:::::
series

::::
using

:::::::
random

:::::::::::
convolutional

:::::::
kernels.

:::::
Unlike

:::
the

:::::::
learned

:::::::::::
convolutional

::::::
kernels

::
in

::::::::::
conventional

::::::
neural

::::::::
networks,

::::::::::::::::::::
(Dempster et al., 2020)

:::::
shown

:::
that

::
a
::::::::::
combination

::
of

:::::::::
numerous

::::::
random

::::::::::::
convolutional

::::::
kernels

:::
can

:::::::::
effectively

::::::
capture

:::::::
relevant

:::::::
features

::
for

::::
time

:::::
series

::::::::::::
classification.

::::
Even

::::::
though

:
a
::::::
single

::::::
random

:::::::::::
convolutional

::::::
kernel

:::::
might

::::
only

::::::::::
approximate

::
a

:::::::
relevant

::::::
feature

::
in

:
a
:::::
given

::::
time

::::::
series,

:::::::::::
convolutional

::::::
kernels

:::::::::::
significantly

:::::::
enhance

:::
the

:::::::::::
classification

:::::::
accuracy

:::::
when

:::::::::
combined.

::::::::
ROCKET

::
is
:
an algorithm that generates a large number of convolution kernels (10000 by default)275

with random length, weights, bias, dilation, and padding of the time series provided as input. ROCKET extracts two features

for each kernel: the maximum value (an equivalent to the maximum global pooling) and the proportion of positive values

(PPV), indicating the proportion of the input matching a given pattern. The PPV is the most critical element of ROCKET for

achieving the state of the art accuracy(Dempster et al., 2020)
::::::::::::
state-of-the-art

:::::::
accuracy.

MiniRocket (MINImally RandOm Convolutional KErnel Transform) is a reformulated version of ROCKET (Dempster et al.,280

2021), 75 times faster while maintaining the same accuracy. MiniRocket minimizes the number of options for hyperparameters

and computes only the PPV, generating half number of features as ROCKET. In addition, it does not require normalization.

The v0.3.4 version of the MiniRocket implementation in (Oguiza, 2022) has been used in this paper.

3.1.3 Ridge classifier with Cross Validation

This Ridge classifier uses the Ridge regression to predict the class of a multiclass problem by solving the problem as a multi-285

output regression where the predicted class corresponds to the output with the highest value. Ridge Regression, also known as

Tikhonov regularization, solves a regression model by minimizing the following objective function:

min
w

||Xw− y||22 +α||w||22 (7)

Where: X are the training data, y the target values, k
:
w
:
the ridge coefficients to be minimized, and α the regularization strength.

α controls the amount of shrinkage: the higher the value, the greater the amount of shrinkage, increasing the robustness of the290

ridge coefficients to collinearity. The addition of the Cross Validation helps to identify the best set of ridge coefficients, reducing

the risk of overfitting.

3.2 Manual Feature selection with Random forest classifier

The main effect of the activation or deactivation of a trailing edge flap on a WT is the change of local blade lift that consequently

affects the blade’s aerodynamic loading. The impact on the blade loading depends significantly on the WT operative conditions,295
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as shown in Gomez Gonzalez et al. (2022). Furthermore, asymmetric activation of the flaps on the three blades leads to a rotor

bending moments imbalance that is often associated with tower top vibration. Based on this, we manually select a set of

signals to generate the features to train an RF model. In addition, we consider only signals commonly available in all modern

commercial wind turbines. The aim is the development of a method that can be implemented on commercial wind turbines

without the need of installing additional hardware. Initially, we use simple statistical properties of the signal time series as300

features. Afterward, we include the Catch22 collection (Lubba et al., 2019) to expand the features pool.

3.2.1 Signal and features selection

The selected WT signals are:

– Flap actuator control signal [logic]: control signal of the flap activation state (On or Off).

– Flapwise and edgewise bending moments at the three blade roots [kNm]: main signals to detect the impact of the305

flaps on the blade aerodynamic loading. Load sensors placed at the blade root are commonly available in modern WTs.

– Pitch angle [deg], rotor speed [rpm] and, generator power [kW]: main signals to estimate the WT’s operative condition

to which the flaps’ load impact is related. These signals are available in every WT controller.

– Fore-Aft and side-side tower top accelerations [ms−2]: useful signals in detecting possible rotor imbalances. The WT

safety systems commonly monitor these signals to detect WT anomalies.310

– Out of plane rotor bending moments [kNm]: signals computed from the blade root moments, pitch angle, and azimuth

position through the Coleman transformation Bir (2008) equation. These moments help detect possible rotor imbalances.

The initially selected features are the standard deviation, mean, maximum, minimum, range, and maximum absolute value of

every signal. Afterward, we add the Catch22 collection (Lubba et al., 2019) to expand the features pool to explore possible

unknown correlations between the input signals. We choose the Catch22 (CAnonical Time-series CHaracteristics) collection as315

it is a high-performing subset of 22 features selected over a pool of over 7000 based on their classification performance across a

collection of 93 real-world time-series classification problems. The v0.4 Catch22 Matlab tool is used for this paper. Finally, we

include the blade-to-blade difference of the mean and absolute maximum blade root bending moments to help detect possible

flap activation imbalances.

The features generation process computes circa 400 features for each aeroelastic simulation. To reduce complexity, we add two320

features filtering processes to the algorithm:

– manual selection of the desired feature subset in the algorithm pre-processing.

– automatic features reduction based on Out-of-bag permuted predictor importance (oobPPI) value. The oobPPI mea-

sures how influential a feature is in the model prediction by permuting the value of the feature and measuring the model

error. The permutation of an influential feature should have a relevant effect on the model error; little to no effect should325
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come from a permutation of a not influential feature. If this filter is active, the oobPPI of each feature is evaluated after

the RF model is trained. Features with an oobPPI value below the threshold specified by the user are removed, and the RF

model is trained again with the remaining features subset. The process is repeated until all the remaining features con-

sistently have an oobPPI value above the threshold, simplifying the final model by removing the features not influential

on the classification process.330

We decided to do not include the wind speed sensor signal in the ML training. This sensor is generally located on the nacelle,

behind the rotor, where the complexity of the 3D wind flow can only be correctly estimated by high-fidelity codes, like CFD.

In this paper we use a mid-fidelity aeroelastic model that is unable to estimate the wind speed on the nacelle with sufficient

accuracy. Therefore, training the ML model with a low-fidelity nacelle wind speed would reduce the model accuracy and

performance on a real WT. Furthermore, the ML model can still derive the wind speed data from the rotor speed, pitch angle,335

and generator power, which strongly correlate to the wind speed. Therefore, omitting the wind speed signal reduces model

uncertainties without losing relevant data for the ML training. Instead, we use the mean wind speed for splitting the NPP into

different wind speed regions for which a dedicated RF model is trained. Generally, a modern WT operates differently below

rated wind speed, where it is power or torque controlled, compared to above rated wind speed, where it is pitch controlled.

Therefore, we expect RF models trained for each specific wind region to perform better than a single RF model covering the340

whole wind speed range.

3.2.2 Algorithm structure and setup

The algorithm
:::::::
structure,

::::::
shown

::
in

::::::
Figure

::
6, has the following structure

::::
steps:

1. Calculation of the features for every simulation. Usually it is done only once, after the aeroelastic simulation is computed.

2. Selection of the AFlap fault symmetry (1B or 3B), WT operative condition (NPP or PS).345

3. Selection of the AFlap health states to be used in the classification.

4. For every specified wind speed range:

(a) Manual selection of the desired feature subset.

(b) Training of the RF model with the TaT set.

(c) If the "automatic features reduction" is enabled, the following steps are repeat until all features have oobPPI above350

threshold:

i. Evaluation of the oobPPI of every features.

ii. Removal of the features with oobPPI below threshold.

iii. Training of a new RF model with the remaining features.

(d) Validation of the trained RF model with the Val sets.355
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Figure 6.
::::::::
Schematic

:::::::
structure

::
of

::::
MFS

:::::::
algorithm.

In the algorithms, three Matlab functions are used: templateTree to create the decision tree template; fitcensemble to train the

Rf
:::
RF model, and oobPermutedPredictorImportance to compute the oobPPI value for each feature.

We use the setup proposed by (Abdallah, 2019) as default RF setup: number of trees of 100, learning rate of 0.25, maximum

number of split
::::
splits of 12, test rate of 30% and impOOB threshold of 0.01.

3.3 Automatic Feature Generation with Random Forest or Ridge classifier360

The AFS approach relies on the same signals used for the manual feature selection approach: pitch position, rotor speed,

generator power, flapwise and edgewise bending moments at the root of each of the three blades, linear tower top accelerations,

and the flap actuator control signal. As described in Section 3.2, these signals are relevant to detect the flap impact on the WT

and are provided with the standard sensors available on commercial WT. Instead of generating a set of features for each signal

based on statistical properties, the AFS approach utilizes ML techniques developed for image processing to create features of365

the whole simulation. We implement two different algorithms for the classification: a RF classifier, similarly on what we used

for the MFS, and a Ridge classifier with Cross Validation (Ridge) suggested by (Dempster et al., 2020) for application with

MiniRocket.

3.3.1 Feature generation with MiniRocket

MiniRocket works by first combining the time series of the relevant signals of a single simulation in a single matrix, aligning370

them in function of time. Then it processes the resulting matrix like an image utilizing a kernel from which the proportion of
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positive values is computed. A set of 10000 kernels of random length, weights, bias, dilation, and padding, are used, generating

10000 features per simulation. This process is repeated for all the simulations. For consistency, the same kernel set must be

used for all the simulations used in the RF models’ training, testing, and validation.

3.3.2 Algorithm structure and setup375

The algorithm
:::::::
structure,

::::::
shown

::
in

::::::
Figure

::
7, has the following structure

::::
steps:

1. Calculation of the features with MiniRocket.

2. Selection of the AFlap fault symmetry (1B or 3B) and WT operative condition (NPP or PS).

3. Selection of the AFlap health states to be used in the classification.

4. Selection of the classifier: RF or Ridge.380

5. For every specified wind speed range:

(a) Training of the classification model:

i. Training of one (or more) classification model.

ii. If more than one classification model is trained, select the model with higher F1-score.

(b) Validation of the trained classification model with the Val sets.385

Figure 7.
::::::::
Schematic

:::::::
structure

::
of

:::
AFS

::::::::
algorithm.

In the AFS method, we used the following sklearn python codes (Pedregosa et al., 2011): StratifiedShuffleSplit to create

multiple Test and Training subsets from the TaT sets; RandomForestClassifier to train, test and validate the RF models;
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RidgeClassifierCV to train, test and validate the Ridge classifier models; f1_score to compute the F1-score; StandardScaler

to standardize features by removing the mean and scaling to unit variance.

Starting from the setup proposed by (Abdallah, 2019), we investigate the optimal RF setup for the different scenarios, obtaining390

as optimal values: test rate of 30%, number of trees of 100, Shannon entropy as the criterion to measure the quality of a split,

maximum depth of the tree of 5, minimum number of samples required to split an internal node of 5, and all features included.

For the Ridge setup, the regularization strength parameter was set to an evenly spaced vector in log space of 1000 values

between 1 and 106, and the cross-validation set to Leave-One-Out Cross-Validation that handles efficiently the case of the

number of features higher than the number of samples.395

4 Manual feature selection results

The potential of the MFS approach in detecting a flap system’s fault is investigated for several AFlap fault scenarios. These

scenarios cover different combinations of AFlap fault symmetry (1B or 3B), WT operative conditions (NPP or PS), the possible

split in different wind speed ranges, and different initial features selection (All or Reduced). The initial features option allows

the reduction of the features used in training. We set the features subset without the Catch22 collection as the default Reduced400

setup. Instead, the wind speed ranges option enables the training of a dedicated ML model for every specified wind speed

range. The default ranges used in this paper are Below Rated (BR: wind speed between 3.5 and 9.5 ms−1), Around Rated (Rt:

wind speed between 9.5 and 16.5 ms−1), and Above Rated (AR: wind speed between 16.5 to 25 ms−1).

Furthermore, we investigate three different fault detection levels:

– Primary: the model is trained to detect only the four primary health states: flap not active (AF_Off), active (AF_On),405

not active with fault (AF_Off_Fault), and active with fault (AF_Off
::
On_Fault).

– Degraded: the model is trained to detect if the flap has degraded performance but without identifying the performance

degradation level. The three health states of flap with degraded performance are merged in a single state, called active

with degradation (AF_On_Degr), that is included in the training with the four primary health states.

– Detailed: the model is trained to identify the flap performance reduced to 25% (AF_On_25pc), 50% (AF_On_50pc),410

and 75% (AF_On_75pc) in addition to the primary health states.

Table 2 collects the list of the MFS scenarios and shows their setup. Scenarios stated within parenthesis have a customized

setup detailed described in the following chapters.

The selection of the models’ performance metrics is strictly related to the requirements of the detection system. If one (or more)

flap fault is critical for the WT integrity, the detection of this fault would be prioritized over the other AFlap health states. In415

this case, a good metric would be the Recall of the critical fault. For an opposite scenario, where it would be more critical

to avoid false fault detections and keep the WT operating, the Precision of the different faults should be considered. In this

paper, we are not considering any particular requirement for the fault detection system, and we aim to correctly detect all the

different classes equally without prioritizing anyone specifically. Therefore,
:
we select the F1-score, a trade-off between Recall
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Table 2. Compact description of the setup of the AFlap fault scenarios.

Fault scenario names for detection level: Fault scenario setup:

Primary Degraded Detailed Features Wind speed ranges WT operation Fault symmetry

1BN_A1

(1BN_A1c)
1BN_B1 1BN_C1 All

No

NPP
Asymmetric

(1B)

- 1BN_B1r - Reduced

1BN_A2

(1BN_A2c)
1BN_B2 1BN_C2 All

Yes

- 1BN_B2r 1BN_C2r Reduced

- 1BP_B1 1BP_C1 All
No PS

1BP_A1r

(1BP_A1rc)
1BP_B1r 1BP_C1r Reduced

3BN_A01 - - All No

NPP Symmeatric

(3B)
3BN_A02

(3BN_A02c)

3BN_B2

(3BN_B2b)

3BN_C2

(3BN_C2b)
All Yes

- 3BN_B3 3BN_C3 All Yes

3BP_A1

(3BN_A01c)

3BP_B1

(3BP_B1b)

3BP_C1

(3BP_C1b)
All No PS

and Precision that rewards the reduction of both false positives and false negatives. In detail, we use the weighted F1-score:420

the average of the F1-score of each class weighted by the ratio of the number of samples of each class over the total sample

number. This metric is consistent between balanced and unbalanced classification tasks, allowing us to properly evaluate the

few scenarios where the classes are not balanced.

4.1 Detection of asymmetric fault

Table 3 collects the performance of the RF models trained for the asymmetric fault scenarios described in Table 2. In addition425

to the weighted F1-score, the number of features obtained after the automatic feature reduction in the model training is shown.

We use this number as an estimate of the model complexity: where more features are needed, more complex is to implement

and execute the model. In addition, Precision and Recall values of the AFlap health states for some specific asymmetric fault

scenario models are collected in Table 4.

As the first step, scenario 1BN_A1 trains a single RF model for all the wind speeds to detect the Primary flap health states in430

normal power production, starting the training with all the available features. The trained model needs only 3 features (out of

400) to achieve an F1-score of 1, meaning it can perfectly classify the Primary health states. To understand how this trained
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model would perform with AFlap degradation (that will occur during the normal lifetime of the flap, also as a partial fault), we

test
:::::::
evaluate it with all the degraded AFlap health states classified as AF_On_Fault (scenario 1BN_A1c). Under this condition,

the model F1-score decreases to 0.79 due to the misclassification of the flap fault (AF_On_Fault) as normal flap operation435

(AF_On). This misclassification is expressed numerically by a low value of AF_On Recall (0.33) and AF_On_Fault Precision

(0.48). We obtain similar
:::::::::
comparable

:
results in scenario 1BN_A2, where the wind speeds are split into three different wind

speed ranges, and an independent RF model is trained for each range. The models trained in this scenario detect well the

Primary health states (F1-score of 1) but cannot distinguish the degraded AFlap states (scenario 1BN_A2c).

As the second step, we unify the degraded AFlap health states under a single category (AF_On_Degr). Scenario 1BN_B1440

trains a single RF model for all the wind speeds to detect the Degraded fault health states in NPP. The trained model requires

17 features for an F1-score of 0.90, mainly due to the low Recall (0.56) of the AF_On class. Removing the Catch22 features

to simplify the model (scenario 1BN_B1r) leads to a lower F1-score (0.82), poor AF_Off_Fault class Recall (0.41), and poor

AF_On class Precision (0.37). Splitting the training for the tree wind speed ranges (scenario 1BN_B2) generates three high-

performing models (F1-score higher than 0.95) even in the scenario where the Catch22 features are removed (1BN_B2r).445

As the last step for the NPP case, we test
::::::
evaluate

:
if a model could individually identify the degraded AFlap health states.

Scenario 1BN_c1 trains a single RF model for all the wind speeds for a Detailed detection level in NPP. The trained model

requires 16 features for an F1-score of 0.70 and can almost not distinguish the AF_Off_Fault from the other classes. Splitting

the training for the tree wind speed ranges (scenario 1BN_c2) dramatically improves the performance of the models with an

F1-score of 0.91 BR, 0.95 around rated, and 0.98 AR obtained with 14 features or less. In detail, the BR model is imprecise450

in classifying the AF_Off_Fault and has a low Recall for AF_On. Removing the Catch22 features leads to models with similar

performance but fewer features (10 or less).

After the NPP scenarios, we investigated if the AFlap health states can be correctly classified in pre-startup conditions where

the WT is idling due to low wind speed. For the scenarios aiming at the Primary flap health states (1BP_A1r and 1BP_A1rc) in

the PS condition, the performance follows the same pattern as the previous similar scenarios in NPP. When the AF_On_Degr455

class is included (scenario 1BP_B1), the trained model shows a high F1-score (0.94) with 20 features. A high F1-score of 0.95

is also achieved with only 9 features starting from a reduced set of features (scenario 1BP_B1r). Finally, when we analyze

the Detailed detection level (scenario 1BP_C1), the trained model achieves an F1-score of 0.92 with 27 features. Omitting the

Catch22 features in training (scenario 1BP_C1r) brings an equivalent F1-score with only 14 features.

4.2 Detection of symmetric fault460

Table 5 collects the performance of the RF models trained for the symmetric fault scenarios described in Table 2. Precision and

Recall values of the AFlap health states for some specific symmetric fault scenario models are collected in Table 6.

Similarly to the asymmetric faults’
:

cases, we start with a scenario (3BN_A1) that trains a single RF model for all the wind

speeds to detect the Primary health cases in NPP, using all the available features initially. The trained model achieves an F1-

score of 0.75 with 32 features. When tested with the degraded flap health states bundled together as AF_On_Fault (scenario465

3BN_A1c), the F1-score decreased to 0.71 due to the misclassification of the fault (AF_On_Fault) as normal flap operation
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Table 3. F1-score of the asymmetric flap fault scenarios evaluated with MFS and AFS approaches. The number of features used for the MFS

is also specified.

Blade

Fault

WT

operation

Wind speed

range [ms−1]

Basic Degraded Detailed

MFS MFS AFS MFS AFS

Case name
RF

F1-Score
-

#

Features
Case name

RF

F1-Score
-

#

Features

RF

F1-score
Case name

RF

F1-Score
-

#

Features

RF

F1-score

1B

NPP 3.5 - 25.5
1BN_A1

(1BN_A1c)
1 (0.79) - 3 1BN_B1 0.90 - 17 0.67 1BN_C1 0.70 - 16 0.55

1BN_B1r 0.82 - 11

NPP

3.5 - 9.5 (BR)
1BN_A2

(1BN_A2c)

1 (0.80) - 10

1BN_B2

0.96 - 10 0.59

1BN_C2

0.91 - 14 0.52

9.5 - 16.5 (RT) 1 (0.82) - 5 0.98 - 9 0.78 0.95 - 14 0.73

16.5 - 25.5 (AR) 1 (0.80) - 4 0.99 - 5 0.62 0.98 - 4 0.56

3.5 - 9.5 (BR)

1BN_B2r

0.95 - 6

1BN_C2r

0.90 - 10

9.5 - 16.5 (RT) 0.90 - 7 0.94 - 10

16.5 - 25.5 (AR) 0.98 - 3 0.99 - 6

PS 0 - 3.5
1BP_B1 0.94 - 20 0.45 1BP_C1 0.92 - 27 0.38

1BP_A1r

(1BP_A1rc)
1 (0.80) - 5 1BP_B1r 0.95 - 9 1BP_C1r 0.93 - 14

(AF_On). This misclassification is expressed numerically by a low value of AF_On Recall (0.33) and low Precision (0.61)

of both AF_Off_Fault and AF_On_Fault. We obtained similar
:::::::::
comparable

:
results in scenario 3BN_A2, where we trained an

independent RF model for each of the three different wind speed ranges. The models trained in this scenario detect better than

the previous scenario the Primary flap health states, especially for AR (F1-score of 0.92) but cannot correctly distinguish the470

degraded AFlap states (scenario 1BN_A2c).

As the second step, we include the degraded AFlap health states under a single category (AF_On_Degr). Scenario 3BN_B2

trains an independent RF model to detect the Degraded flap cases in NPP for each of the three different wind speed ranges. The

trained model shows a low F1-score of 0.41 for BR, 0.51 at rated, and 0.64 for AR. To improve the performance of the models,

we explore the RF model hyperparameters setup. One of the most successful results is scenario 3BN_B2b, where we increase475

the number of trees from 100 to 300 and the maximum number of slit from 12 to 30. These changes lead to an increase of

the F1-score of around 0.08, with the highest value achieved in the AR wind sped range with an F1-score of 0.72. This model

still shows low Recall for AF_On and AF_On_Fault flap states and a low Precision for AF_On_Degr. As a final try to increase

the models’ performance, we reduce the width of the wind speed ranges, obtaining: BRa (3.5 to 6.5 ms−1), BRb (6.5 to 9.5

ms−1), RTa (9.5 to 12.5 ms−1), RTb (12.5 to 15.5 ms−1), ARa (15.5 to 20.5 ms−1), and ARb (20.5 to 25.5 ms−1). This480

scenario (3BN_B3) leads to RF models with higher performance but only ARa and ARb models have the F1-scores higher

than 0.7 (0.75 and 0.83, respectively). Both RF models have good Precision except for the AF_On_Degr class but a low Recall

for AF_On, AF_On_Fault and AF_On_Degr.

Finally, we investigate if an RF model could individually identify the Detailed flap health states, obtaining models with poor

performance in the symmetric fault case during NPP. Scenario 3BN_C2 trains an independent RF model to detect the Degraded485
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Table 4. Precision and Recall values of each AFlap health state of a selection of scenarios of asymmetric flap fault evaluated with MFS and

AFS approaches.

Approach MFS AFS

WT operation NPP PS NPP PS

Scenarios 1BN_A1c 1BN_B1 1BN_B1r 1BN_C1 1BN_C2 1BP_B1r 1BP_C1r 1BN_B1 1BN_C1 1BN_B2 1BP_B1

Wind speed range All All All All BR AR All All All All RT All

F1 score 0.79 0.90 0.82 0.70 0.91 0.98 0.95 0.93 0.67 0.55 0.78 0.45

Pr
ec

is
io

n

AF_Off 1.00 1.00 0.98 0.97 1.00 1.00 0.95 0.98 0.81 0.80 0.99 0.66

AF_Off_Fault 1.00 0.77 0.70 0.00 0.53 0.95 0.84 0.78 0.89 0.93 1.00 0.63

AF_On 1.00 0.95 0.37 0.68 0.92 0.97 0.90 0.93 0.50 0.59 0.61 0.28

AF_On_Fault 0.48 1.00 1.00 0.98 1.00 0.98 0.95 0.98 0.47 0.49 0.55 0.27

AF_On_Degr - 0.81 0.87 - - - 0.98 0.96 0.73 - 0.90 0.62

AF_On_25pc - - - 0.88 1.00 0.98 - - - 0.40 - -

AF_On_50pc - - - 0.66 0.88 0.99 - 0.90 - 0.30 - -

AF_On_75pc - - - 0.97 1.00 1.00 - 0.95 - 0.42 - -

R
ec

al
l

AF_Off 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.90 0.95 1.00 0.59

AF_Off_Fault 1.00 0.95 0.41 0.00 1.00 1.00 1.00 1.00 0.79 0.76 0.99 0.70

AF_On 0.33 0.56 0.56 0.44 0.65 0.99 0.88 0.83 0.71 0.58 0.85 0.41

AF_On_Fault 1.00 0.97 0.96 0.92 1.00 0.98 0.99 0.95 0.60 0.54 0.93 0.50

AF_On_Degr - 0.98 0.99 - - - 0.90 - 0.56 - 0.57 0.35

AF_On_25pc - - - 0.84 0.99 0.99 - 0.90 - 0.21 - -

AF_On_50pc - - - 0.47 0.84 0.94 - 0.87 - 0.48 - -

AF_On_75pc - - - 1.00 1.00 0.98 - 0.99 - 0.32 - -

fault cases in NPP for each of the three different wind speed ranges. The trained model has an F1-score below 0.50. Increasing

the number of trees to 300 and the maximum number of slit to 30 (scenario 3BN_C2b) improves the F1-score of around 0.1.

The Precision and Recall values show that the models cannot correctly detect most AFlap health states. Adding the reduction of

the size of the wind ranges (scenario 3BN_C3) does slightly improve the F1-score, but with the best performing model (ARb)

reaching only an F1-score of 0.77. For the PS wind turbine operation, the scenario aiming at the Degraded flap health states490

(scenario 3BP_B1) trains a model with a low F1-score (0.55) unable to classify all the different AFlap health states correctly.

Increasing the number of trees and split (3BP_B1b) does not lead to better performance. Also, for the Detailed detection level

(scenario 3BP_C1), the trained model achieves a poor F1-score of 0.30 that is only marginally improved (0.38) by increasing

the number of trees and split (3BP_C1b).
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Table 5. F1-score of the symmetric flap fault scenarios evaluated with MFS and AFS approaches. The number of features used for the MFS

is also specified.

Blade

Fault

WT

operation

Wind speed

range [ms−1]

Basic Degraded Detailed

MFS MFS AFS MFS AFS

Case name
RF

F1-Score
-

#

Features
Case name

RF

F1-Score
-

#

Features

RF

F1-score
Case name

RF

F1-Score
-

#

Features

RF

F1-score

3B

NPP 3.5 - 25.5
3BN_A1

(3BN_A1c)
0.75 (0.71) - 32

NPP

3.5 - 9.5 (BR)
3BN_A2

(3BN_A2c)

0.74 (0.69) - 27
3BN_B2

(3BN_B2b)

0.41 (0.49) - 20 (23) 0.53
3BN_C2

(3BN_C2b)

0.24 (0.35) - 21 (22) 0.49

9.5 - 16.5 (RT) 0.85 (0.75) - 31 0.51 (0.63) - 18 (25) 0.61 0.30 (0.40) - 15 (16) 0.55

16.5 - 25.5 (AR) 0.92 (0.81) - 15 0.64 (0.72) - 8 (9) 0.63 0.50 (0.61) - 7 (7) 0.58

NPP

3.5 - 6.5 (BRa)

3BN_B3

0.61 - 7 0.49

3BN_C3

0.48 - 7 0.43

6.5 - 9.5 (BRb) 0.55 - 16 0.55 0.39 - 17 0.49

9.5 - 12.5 (RTa) 0.67 - 20 0.55 0.48 - 15 0.49

12.5 - 15.5 (RTb) 0.62 - 9 0.64 0.45 - 8 0.59

15.5 - 20.5 (ARa) 0.75 - 8 0.67 0.58 - 9 0.60

20.5 - 25.5 (ARb) 0.83 - 7 0.49 0.77 - 9 0.50

PS 0 - 3.5
3BP_A1

(3BP_A1c)
0.80 (0.71) - 12

3BP_B1

(3BP_B1b)

0.55

(0.55)
-

11

(22)
0.50

3BP_C1

(3BP_C1b)

0.30

(0.38)
-

7

(7)
0.43

5 Automatic feature selection results495

The AFS approach is investigated with most of the scenarios used for the MFS approach and collected in Table 2. An initial

preliminary investigation shows that a model trained only to detect the Primary flap health states will most likely perform poorly

when the AFlap starts to have degraded performance, similar to what we obtain in the MFS analysis. Since this performance

degradation is likely to happen, there is a low interest in a model that cannot account for it properly, and the Primary fault

detection level is therefore omitted in the AFS analyses. Furthermore, the initial feature reduction does not apply to the AFS500

approach, and the scenarios with the Reduced feature setup are not included. Regarding the RF hyperparameters setup, we ran

an initial study using several randomly generated subsets of features to identify the values of the hyperparameters optimizing

the F1-score. This study shows an optimal hyperparameters setup with the number of trees of 100 (an increase up to 300 does

not improve the performance), the maximum depth of the tree of 5 (lower values tend to cause overfitting), the minimum

number of samples required to split an internal node of 5, and Shannon entropy as a criterion to measure the quality of a505

split. The final model training is instead performed including all the features. This configuration showed better performance

compared to the random pick of a subset of features of the size of square root or log2 of the total number of features.

Having a number of features considerably higher than the number of samples, a condition not ideal for the RF method, we

investigate if another classifier can perform better than RF. We selected the Ridge regression classifier with Cross Validation, a

linear classifier tested in the development of both ROCKET (Dempster et al., 2020) and MiniRocket (Dempster et al., 2021).510
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Table 6. Precision and Recall values of each AFlap health state of a selection of scenarios of symmetric flap fault evaluated with MFS and

AFS approaches.

Approach MFS AFS

WT operation NPP PS NPP PS

Scenarios 3BN_A1c 3BN_B2b 3BN_B3 3BN_C2b 3BP_C3 3BP_B1 3BN_B2 3BN_B3 3BP_C3 3BP_B1

Wind speed range All BR AR ARa ARb BR AR ARb All AR ARa ARa All

F1 score 0.71 0.49 0.72 0.75 0.83 0.35 0.61 0.77 0.55 0.63 0.67 0.60 0.50

Pr
ec

is
io

n

AF_Off 0.84 0.44 0.68 0.80 0.94 0.37 0.81 0.78 0.06 0.94 0.90 0.93 0.74

AF_Off_Fault 0.61 0.58 0.77 0.74 0.94 0.39 0.44 0.78 0.15 0.95 0.98 0.98 0.78

AF_On 0.71 0.71 0.82 0.80 0.89 0.50 0.71 0.78 0.15 0.40 0.40 0.54 0.29

AF_On_Fault 0.62 0.73 0.94 0.84 1.00 0.15 0.41 0.78 0.10 0.42 0.53 0.53 0.35

AF_On_Degr - 0.16 0.54 0.65 0.61 - - - 0.97 0.67 0.76 - 0.65

AF_On_25pc - - - 0.09 0.49 0.78 - - - 0.38 -

AF_On_50pc - - - 0.21 0.47 0.61 - - - 0.33 -

AF_On_75pc - - - 0.63 0.78 0.83 - - - 0.29 -

R
ec

al
l

AF_Off 0.69 0.94 0.97 1.00 1.00 0.63 0.97 0.93 1.00 0.95 0.98 0.98 0.79

AF_Off_Fault 0.79 0.82 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.94 0.89 0.92 0.72

AF_On 0.32 0.30 0.51 0.52 0.64 0.37 0.53 0.74 0.60 0.79 0.85 0.78 0.55

AF_On_Fault 0.89 0.28 0.52 0.60 0.58 0.20 0.41 0.70 0.70 0.85 0.80 0.62 0.66

AF_On_Degr - 0.58 0.78 0.77 0.91 - - - 0.45 0.22 0.35 - 0.26

AF_On_25pc - - - 0.20 0.51 0.82 - - - 0.28 -

AF_On_50pc - - - 0.20 0.40 0.58 - - - 0.31 -

AF_On_75pc - - - 0.29 0.63 0.68 - - - 0.22 -

5.1 Detection of asymmetric fault

The performances of models trained with the RF classifier for the asymmetric fault scenarios described in Table 2 are shown

in Table 3, together with the results from the MFS approach. Table 4 collects Precision and Recall values of the AFlap health

states for some specific asymmetric fault scenarios of the RF models.

In NPP, AFS RF shows low performance when trained to detect the Degraded health states for all the wind speeds (scenario515

1BN_B1) with an F1-score of 0.67. The model can correctly classify the AF_Off and AF_Off_Fault states but cannot classify

the other AFlap health states, as indicated by the Recall and Precision values. When we train the classifiers for the Detailed

health states (scenario 1BN_C1), performance decreases with an F1-score of 0.55. Also, for this scenario, the models can

adequately classify AF_Off and AF_Off_Fault states but fail with the other states. Performances slightly increase when we
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Figure 8. a) Comparison between the MFS RF F1-scores and the MFS RF F1-scores of the different Degraded and Detailed flap health

scenarios. b) Comparison between the AFS RF F1-scores and the AFS Ridge F1-scores of the different Degraded and Detailed flap health

scenarios.

split the training into different wind speed ranges. AFS RF achieves the highest performance in evaluating the Degraded health520

states (scenario 1BN_B2) around rated wind speed with an F1-score of 0.78. For the other wind speed ranges, the F1-score

stays around 0.6. Similar
::::::::
Coparable

:
results are achieved for the Detailed health states (scenario 1BN_C2), where AFS RF

achieves a max F1-score of 0.73 at RT and not higher than 0.56 in the other wind speed ranges. Looking at the results in PS, the

RF classifier performs poorly in identifying Degraded and Detailed health states (scenario 1BP_B1 and 1BP_C1, respectively)

with a max F1-score of 0.45.525

Figure 8 compares the F1-scores from AFS RF with the scores from AFS Ridge. The Ridge classifier achieves similar results

compared
::::::
results

:::::::::
comparable

:
to RF for Degraded and Detailed flap health states in the 1B case. Also, the Precision and Recall

values of the Ridge models are close to the values of the RF models of the corresponding scenarios. For brevity, we have not

included them in this paper.

5.2 Detection of symmetric fault530

The performances of models trained with the RF classifier for the symmetric fault scenarios described in Table 2 are shown

in Table 5, together with the results from the MFS approach. Precision and Recall values of the AFlap health states for some

specific asymmetric fault scenario models are collected in Table 6.

In NPP, AFS RF shows low performance when trained to detect the Degraded health states (scenario 3BN_B2) for different

wind speed ranges. The F1-score is between 0.53 at BR and 0.63 at AR. Similarly to what was observed in the asymmetric fault,535
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the models can detect most of the AF_Off and AF_Off_Fault states properly but cannot classify the other AFlap health states.

Reducing the width of the wind speed ranges (scenario 3BN_B3) mainly reduces the performance, especially for low and high

wind speeds, except at ARa, where the F1-score increases up to 0.67. Looking at the Detailed health states for the three wind

seed ranges (scenario 3BN_C2), the F1-score rises from 0.49 at BR to 0.58 at AR. Similarly to the Degraded flap health states,

reducing the width of the wind speed ranges (scenario 3BN_C3) does reduce the performance, especially for low or high wind540

speeds. Like the previous scenarios, the models have high Recall and Precision values for AF_Off and AF_Off_Fault states

and low values for the other health states.

Looking at the results in PS, AFS RF classifiers perform poorly in identifying Degraded and Detailed health states (scenario

1BP_B1 and 1BP_C1 respectively) with a max F1-score of 0.5. Also, the ability to correctly classify AF_Off and AF_Off_Fault

states is consistently reduced with both Recall and Precision below 0.8.545

Similarly to the asymmetrical case, the Ridge classifier achieves similar
::::::::::
comparable results to RF for both Degraded and

Detailed flap health states in the 3B case. Figure 8 shows that AFS RF performs slightly better than the Ridge classifier for the

Detailed flap health states.

6 Discussion

6.1 Manual feature selection with random forest550

The results described in Section 4.1 show that the manual feature selection approach with a random forest classifier can cor-

rectly classify the AFlap health states in the case of asymmetric flap fault 1B. In normal power production, Degraded and

Detailed health states are correctly classified, and the performance increases when splitting the training into three wind speed

ranges. This result supports our initial hypothesis that as a WT operates differently at different wind speed ranges, models

trained for specific wind ranges perform better than a single model trained for all wind speeds. Notably, less than 20 features555

are needed for the models, a small fraction of the around 400 provided at the beginning of the training. This number can be

further reduced to 10 or less by removing the Catch22 features without significantly reducing the models’ performance. Even

if few features are specific to some scenarios, all scenarios share the blade-to-blade differences of the mean blade root bending

moment (mainly of flapwise bending moment), followed by the mean value of WT performance indicators like pitch angle,

generator power, rotor speed, or blade root bending moments. This sounds logical since an asymmetrical flap fault among the560

different blades should result in a relevant difference in the blades’ loading. The blade-to-blade load difference channels should

collect this load imbalance. Furthermore, the blade imbalance is a function of the WT operational working state that the models

most probably identify with the WT performance indicator features. Also, the models need fewer features at above rated wind

speed, where generator power and rotor speed are almost constant, and the blade-to-blade load difference is most likely less

impacted by them. Looking at pre-startup operation, both Degraded and Detailed health states are correctly classified and the565

Catch22 features can be omitted without reducing performance, as experienced in NPP. The models need more features than

the NPP scenarios, with still blade-to-blade load difference as main features
:::
key

::::::
feature

:
followed by mean values of the blade

loads. Generator power and rotor speed are no longer relevant, being almost null in the idling state.
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Regarding the Primary health states detection, the models obtained with MFS show, on one side, high performance in identify-

ing the four Primary health states in both NPP and PS, but on the other side, they cannot account properly for the degradation570

of the AFlap performance. Since this degradation is likely to happen in the WT lifetime, we think these models can lead to

some significant misclassification, and we do not recommend them for field application.

In the case of a symmetric flap fault 3B, the MFS approach fails to correctly classify all the tested AFlap health states in both

NPP and PS operation states. Increasing the model complexity or reducing the wind range width improves the performance

negligibly, and the only case with an acceptable F1-score is the Degraded health states at high wind speeds (ARb). Looking575

at the selected features helps to understand the reasons for the misclassification. The blade-to-blade features are no longer

present, replaced by several features related to single-blade loading, tower top accelerations, and rotor speed. This result con-

firms that the blade-to-blade loads no longer contain any flap fault information in the symmetric fault scenario, where the flap

fails symmetrically in all three blades. Therefore, the RF models try to estimate the AFlap health states from the features of

other channels, like blade loads. The failure to obtain good
:::::::::
satisfactory performance means the channels used in training do580

not have sufficient information to identify the AFlap health states, and more signals are needed to achieve it. A possible solu-

tion to properly detect and classify AFlap health states in the 3B condition is to transform it into an asymmetrical case. This

transformation can be achieved with a flap check routine that activates the flap one blade at a time, which is like a 1B condition

where the RF models can accurately estimate the flap health states.

The reduced feature set of the MFS approach relies on statistical data commonly available in the commercial wind turbine585

SCADA data. This approach greatly facilitates the application of this methodology to commercial wind turbines. To do so,

the MFS model must be trained with simulations based on the target wind turbine aeroelastic model and eventually fine-tuned

with transfer learning techniques using the wind turbine SCADA data. Instead, the MLS method with full features requires

calculating additional features generally not included in the standard SCADA data. For this method, a cost-benefit evaluation

should identify which features are relevant to be computed in addition to the standard SCADA data.590

6.2 Automatic feature selection with random forest and ridge classifier

The results described in Section 5 show that the automatic feature selection approach with a random forest classifier cannot

correctly classify the AFlap health states for both asymmetric and symmetric flap fault cases. The trained models do not reach

an F1-score higher than 0.8 in 1B scenarios and higher than 0.7 in 3B scenarios. Figure 8 compares the F1-scores between MFS

and AFS RF models, with the MFS models outperforming the AFS models in the 1B scenarios. In the 3B scenarios, AFS RF595

models perform slightly better, especially for the Detailed flap health states. As shown in Figure 8, for the 1B scenarios, AFS

Ridge models perform similarly to the AFS RF models in 1B cases and slightly worst in the 3B cases. The overall performances

of the AFS models need to be further improved before the AFS models can be implemented in detecting all the AFlap health

states. However, the AFS models performed better than the MFS models for two flap health states. For the NPP operation state,

the AFS models can correctly identify the AF_Off and AF_OFF_Fault flap health states from the other states with Precision600

and Recall above 0.9. This result suggests that the selected input channels also carry the flap state information for the NPP

state. The AFS method has the potential to detect this information, even if partially, for the flap state estimation. Further studies
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are needed to achieve acceptable Precision and Recall for all the flap health states. These studies should cover a comprehensive

study on the impact of the different setup parameters on the model performance or explore other ML techniques like, for

example, Multirocket
::::::::::
MultiRocket (MiniRocket evolution) or HYDRA.605

Regarding the implementation into the wind turbine controller, the AFS approach processes the whole 10 minutes signal data

to generate the features. Therefore, it requires a dedicated feature generation algorithm that constantly computes the different

features
::::::::
computes

:::
the

:::::::
features

:::::::::
constantly. As a result, implementing the AFS requires more resources (both hardware and

software) than the MFS.

7 Conclusions610

The integration of active flaps in the wind turbine design has the potential to reduce loads and enhance wind turbine per-

formances. However, this integration requires implementing systems to detect, monitor, and quantify any potential fault or

performance degradation of the flap system to avoid jeopardizing the wind turbine’s safety and performance. This paper inves-

tigated two approaches to identify the health state of a WT’s active trailing edge flaps. These approaches do not rely on specific

sensors designated for AFlap’s health monitoring but only on sensors commonly available on all commercial wind turbines.615

Both approaches are based on multivariate time-series classification methods. The first method (MFS) uses manual feature

engineering in combination with a random forest classifier. The second method (AFS) creates the feature vectors from MTS

data by passing the inputs through multiple random convolutional kernels in combination with a random forest classifier. We

trained both methods to classify combinations of seven AFlap health states for a WT operating in normal power production and

pre-startup. We analyzed asymmetrical flap faults, with the flap health states applied to only one blade, and symmetrical flap620

faults, where the flap health states were applied to all three blades. The study is based on a pool of aeroelastic simulations of a

WT equipped with an active flap. These simulations were performed with a broad set of environmental conditions to account

for the variability due to external weather conditions in the model’s training. To keep the approach as general as possible, we

focused on identifying the AFlap health state when the flap is in stationary actuation positions. This approach keeps the detec-

tion system independent from any specific AFlap controller strategy, AFlap system design, or fault dynamics. The underlying625

idea is to integrate the monitoring system in an AFlap status check routine running for several minutes where the performance

of the stationary flap is verified.

In this paper, we showed that the MFS method could classify the different combinations of AFlap health states in the case

of asymmetrical flap faults. The MFS method is reliable when the WT operates in normal power production and pre-startup,

achieving an F1-score higher than 0.9. Essential features to achieve this result are the blade-to-blade differences of the mean630

blade root loads.

Instead, the MFS method failed to classify the AFlap health states in the case of symmetrical flap fault. This failure is likely

due to the channels used for the training not providing sufficient information about the flap fault. To avoid adding other sensor

signals to the model, we suggest transforming the symmetrical flap fault detection into an asymmetrical one. For example, a

flap check routine can activate the flap one blade at a time, generating a temporary asymmetrical flap activation that the MFS635
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methodology can monitor.

As the MFS approach with a reduced feature set relies only on 10 minutes statistical properties, we believe it can be directly

implemented into an actual wind turbine. The model must be trained with simulations based on the target wind turbine aeroe-

lastic model and eventually tuned with transfer learning techniques using the wind turbine SCADA data. Instead, the MLS

method with full features requires calculating additional features generally not included in the standard SCADA data. For this640

method, a cost-benefit evaluation should be performed to identify which features are relevant to be computed in addition to the

SCADA data.

Furthermore, we showed that, in general, the AFS method fails to classify most AFlap health states in asymmetrical and sym-

metrical flap faults. However, AFS can identify some specific flap health states better than the MFS method for the symmetrical

case. This result suggests that the selected input channels carry the flap state information for the NPP state, but only the AFS645

method has the potential to detect them. We also tested
:::::::
evaluated

:
a Ridge classifier in the AFS method, obtaining a similar

performance to the random forest classifier with a consistently lower training time.

Compared to the MFS approach, implementing the AFS method will require more resources as it needs additional preprocess-

ing to generate the features. The methodologies described in this study contribute to developing the systems for detecting and

monitoring active flap faults, which are paramount for the safe and reliable integration of active flap technology in future wind650

turbine design.

As future developments, we suggest further exploring the AFS method by applying different and more performing convolu-

tional techniques. Also, the AFS and MFS methodology can be combined into a hybrid system to investigate if the combined

system presents improved performances by leveraging the strengths of each method. It is also of extreme interest to validate the

capability of the MFS method with data from an actual wind turbine, to which the models can be adapted via transfer learning655

techniques.

Author contributions. AG and IA conceptualized and designed the study. AG designed the objectives, performed analysis, and wrote the

original draft paper. AI supported the methodology, the analysis and reviewed and edited the whole paper.

Competing interests. AG is hired by Siemens Gamesa Renewable Energy, company that is developing the flap technology used as reference

in the paper.660

Acknowledgements. The authors thank Gregory Duthé and Eleni Chatzi for their support. This research was partially funded by Danmarks

Innovationsfond, Case no. 9065-00243B, PhD Title: "Advanced model development and validation of Wind Turbine Active Flap system"

and by Otto Mønsteds Fond, application file number 22-70-0210. The authors also thank Davide Astolfi and an anonymous reviewer whose

comments and suggestions helped improve and clarify this manuscript.

29



References665

Abdallah, Imad Chatzi, E.: Probabilistic fault diagnostics using ensemble time-varying decision tree learning,

https://doi.org/10.5281/zenodo.3474633, 2019.

Badihi, H., Zhang, Y., Jiang, B., Pillay, P., and Rakheja, S.: A Comprehensive Review on Signal-Based and Model-Based

Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis, Proceedings of the IEEE, 110, 754–806,

https://doi.org/10.1109/JPROC.2022.3171691, 2022.670

Barlas, T., Pettas, V., Gertz, D., and Madsen, H. A.: Extreme load alleviation using industrial implementation of active trailing edge flaps in

a full design load basis, in: Journal of Physics: Conference Series, vol. 753, Institute of Physics Publishing, https://doi.org/10.1088/1742-

6596/753/4/042001, 2016.

Bir, G.: Multi-blade coordinate transformation and its application to wind turbine analysis, 46th Aiaa Aerospace Sciences Meeting and

Exhibit, pp. 2008–1300, 2008.675

Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996.

Carrasco Kind, M. and Brunner, R.: TPZ : Photometric redshift PDFs and ancillary information by using prediction trees and random forests,

Monthly Notices of the Royal Astronomical Society, 432, 1483–1501, 2013.

Cho, S., Gao, Z., and Moan, T.: Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind

turbines, Renewable energy, 120, 306–321, 2018.680

de Azevedo, H. D. M., Araújo, A. M., and Bouchonneau, N.: A review of wind turbine bearing condition monitoring: State of the art and

challenges, Renewable and Sustainable Energy Reviews, 56, 368–379, 2016.

Dempster, A., Petitjean, F., and Webb, G. I.: ROCKET: exceptionally fast and accurate time series classification using random convolutional

kernels, Data Mining and Knowledge Discovery, 34, 1454–1495, 2020.

Dempster, A., Schmidt, D. F., and Webb, G. I.: Minirocket: A very fast (almost) deterministic transform for time series classification, in:685

Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 248–257, 2021.

Dimitrov, N., Natarajan, A., and Kelly, M.: Model of wind shear conditional on turbulence and its impact on wind turbine loads, Wind

Energy, 18, 1917–1931, https://doi.org/10.1002/we.1797, 2015.

Duthé, G., Abdallah, I., Barber, S., and Chatzi, E.: Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades, Energies,

14, https://doi.org/10.3390/en14217262, 2021.690

Fisker Skjoldan, P.: Aeroelastic modal dynamics of wind turbines including anisotropic effects, Risø National Laboratory, 2011.

Gamberini, A., Gomez Gonzalez, A., and Barlas, T.: Aeroelastic model validation of an Active Trailing Edge Flap System tested on a 4.3

MW wind turbine, Journal of Physics. Conference Series, 2265, 032 014, https://doi.org/10.1088/1742-6596/2265/3/032014, 2022.

Gao, Z. and Liu, X.: An overview on fault diagnosis, prognosis and resilient control for wind turbine systems, Processes, 9, 300, 2021.

García Márquez, F. P. and Peinado Gonzalo, A.: A Comprehensive Review of Artificial Intelligence and Wind Energy, Archives of Compu-695

tational Methods in Engineering, 29, 2935–2958, https://doi.org/10.1007/s11831-021-09678-4, 2022.

Gomez Gonzalez, A., Enevoldsen, P. B., Madsen, H. A., and Barlas, A.: Test of an active flap system on a 4.3 MW wind turbine, TORQUE

2022, 2022.

Gálvez-Carrillo, M. and Kinnaert, M.: Sensor fault detection and isolation in doubly-fed induction generators accounting for parameter

variations, Renewable Energy, 36, 1447–1457, https://doi.org/https://doi.org/10.1016/j.renene.2010.10.021, 2011.700

30

https://doi.org/10.5281/zenodo.3474633
https://doi.org/10.1109/JPROC.2022.3171691
https://doi.org/10.1088/1742-6596/753/4/042001
https://doi.org/10.1088/1742-6596/753/4/042001
https://doi.org/10.1088/1742-6596/753/4/042001
https://doi.org/10.1002/we.1797
https://doi.org/10.3390/en14217262
https://doi.org/10.1088/1742-6596/2265/3/032014
https://doi.org/10.1007/s11831-021-09678-4
https://doi.org/https://doi.org/10.1016/j.renene.2010.10.021


Hossain, M. L., Abu-Siada, A., and Muyeen, S.: Methods for advanced wind turbine condition monitoring and early diagnosis: A literature

review, Energies, 11, 1309, 2018.

IEC: Standard IEC 61400-1: 2019, Wind Energy Generation System—Part 1: Design Requirements, 1, 2019.

Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., Webb, G. I., Idoumghar, L., Muller, P.-A., and Petitjean,

F.: Inceptiontime: Finding alexnet for time series classification, Data Mining and Knowledge Discovery, 34, 1936–1962, 2020.705

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher, B. D., and Jones, N. S.: catch22: CAnonical Time-series CHar-

acteristics: Selected through highly comparative time-series analysis, Data Mining and Knowledge Discovery, 33, 1821–1852,

https://doi.org/10.1007/s10618-019-00647-x, 2019.

Malekloo, A., Ozer, E., AlHamaydeh, M., and Girolami, M.: Machine learning and structural health monitoring overview with emerging

technology and high-dimensional data source highlights, Structural Health Monitoring, 21, 1906–1955, 2022.710

Oguiza, I.: tsai - A state-of-the-art deep learning library for time series and sequential data, Github, https://github.com/timeseriesAI/tsai,

2022.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, Journal

of Machine Learning Research, 12, 2825–2830, 2011.715

Pettas, V., Barlas, T., Gertz, D., and Madsen, H. A.: Power performance optimization and loads alleviation with active flaps using individual

flap control, in: Journal of Physics: Conference Series, vol. 749, p. 012010, Institute of Physics Publishing, https://doi.org/10.1088/1742-

6596/749/1/012010, 2016.

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane, J., and Nenadic, G.: Machine learning methods for wind

turbine condition monitoring: A review, Renewable Energy, 133, 620–635, https://doi.org/10.1016/j.renene.2018.10.047, 2019.720

Wang, Z., Yan, W., and Oates, T.: Time series classification from scratch with deep neural networks: A strong baseline, in: 2017 International

joint conference on neural networks (IJCNN), pp. 1578–1585, IEEE, 2017.

Zappalá, D., Tavner, P. J., Crabtree, C. J., and Sheng, S.: Side-band algorithm for automatic wind turbine gearbox fault detection and

diagnosis, IET Renewable Power Generation, 8, 380–389, 2014.

31

https://doi.org/10.1007/s10618-019-00647-x
https://github.com/timeseriesAI/tsai
https://doi.org/10.1088/1742-6596/749/1/012010
https://doi.org/10.1088/1742-6596/749/1/012010
https://doi.org/10.1088/1742-6596/749/1/012010
https://doi.org/10.1016/j.renene.2018.10.047

